123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748 |
- //===- LoopLoadElimination.cpp - Loop Load Elimination Pass ---------------===//
- //
- // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
- // See https://llvm.org/LICENSE.txt for license information.
- // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
- //
- //===----------------------------------------------------------------------===//
- //
- // This file implement a loop-aware load elimination pass.
- //
- // It uses LoopAccessAnalysis to identify loop-carried dependences with a
- // distance of one between stores and loads. These form the candidates for the
- // transformation. The source value of each store then propagated to the user
- // of the corresponding load. This makes the load dead.
- //
- // The pass can also version the loop and add memchecks in order to prove that
- // may-aliasing stores can't change the value in memory before it's read by the
- // load.
- //
- //===----------------------------------------------------------------------===//
- #include "llvm/Transforms/Scalar/LoopLoadElimination.h"
- #include "llvm/ADT/APInt.h"
- #include "llvm/ADT/DenseMap.h"
- #include "llvm/ADT/DepthFirstIterator.h"
- #include "llvm/ADT/STLExtras.h"
- #include "llvm/ADT/SmallPtrSet.h"
- #include "llvm/ADT/SmallVector.h"
- #include "llvm/ADT/Statistic.h"
- #include "llvm/Analysis/AssumptionCache.h"
- #include "llvm/Analysis/BlockFrequencyInfo.h"
- #include "llvm/Analysis/GlobalsModRef.h"
- #include "llvm/Analysis/LazyBlockFrequencyInfo.h"
- #include "llvm/Analysis/LoopAccessAnalysis.h"
- #include "llvm/Analysis/LoopAnalysisManager.h"
- #include "llvm/Analysis/LoopInfo.h"
- #include "llvm/Analysis/ProfileSummaryInfo.h"
- #include "llvm/Analysis/ScalarEvolution.h"
- #include "llvm/Analysis/ScalarEvolutionExpressions.h"
- #include "llvm/Analysis/TargetLibraryInfo.h"
- #include "llvm/Analysis/TargetTransformInfo.h"
- #include "llvm/IR/DataLayout.h"
- #include "llvm/IR/Dominators.h"
- #include "llvm/IR/Instructions.h"
- #include "llvm/IR/Module.h"
- #include "llvm/IR/PassManager.h"
- #include "llvm/IR/Type.h"
- #include "llvm/IR/Value.h"
- #include "llvm/InitializePasses.h"
- #include "llvm/Pass.h"
- #include "llvm/Support/Casting.h"
- #include "llvm/Support/CommandLine.h"
- #include "llvm/Support/Debug.h"
- #include "llvm/Support/raw_ostream.h"
- #include "llvm/Transforms/Scalar.h"
- #include "llvm/Transforms/Utils.h"
- #include "llvm/Transforms/Utils/LoopSimplify.h"
- #include "llvm/Transforms/Utils/LoopVersioning.h"
- #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h"
- #include "llvm/Transforms/Utils/SizeOpts.h"
- #include <algorithm>
- #include <cassert>
- #include <forward_list>
- #include <tuple>
- #include <utility>
- using namespace llvm;
- #define LLE_OPTION "loop-load-elim"
- #define DEBUG_TYPE LLE_OPTION
- static cl::opt<unsigned> CheckPerElim(
- "runtime-check-per-loop-load-elim", cl::Hidden,
- cl::desc("Max number of memchecks allowed per eliminated load on average"),
- cl::init(1));
- static cl::opt<unsigned> LoadElimSCEVCheckThreshold(
- "loop-load-elimination-scev-check-threshold", cl::init(8), cl::Hidden,
- cl::desc("The maximum number of SCEV checks allowed for Loop "
- "Load Elimination"));
- STATISTIC(NumLoopLoadEliminted, "Number of loads eliminated by LLE");
- namespace {
- /// Represent a store-to-forwarding candidate.
- struct StoreToLoadForwardingCandidate {
- LoadInst *Load;
- StoreInst *Store;
- StoreToLoadForwardingCandidate(LoadInst *Load, StoreInst *Store)
- : Load(Load), Store(Store) {}
- /// Return true if the dependence from the store to the load has a
- /// distance of one. E.g. A[i+1] = A[i]
- bool isDependenceDistanceOfOne(PredicatedScalarEvolution &PSE,
- Loop *L) const {
- Value *LoadPtr = Load->getPointerOperand();
- Value *StorePtr = Store->getPointerOperand();
- Type *LoadType = getLoadStoreType(Load);
- auto &DL = Load->getParent()->getModule()->getDataLayout();
- assert(LoadPtr->getType()->getPointerAddressSpace() ==
- StorePtr->getType()->getPointerAddressSpace() &&
- DL.getTypeSizeInBits(LoadType) ==
- DL.getTypeSizeInBits(getLoadStoreType(Store)) &&
- "Should be a known dependence");
- // Currently we only support accesses with unit stride. FIXME: we should be
- // able to handle non unit stirde as well as long as the stride is equal to
- // the dependence distance.
- if (getPtrStride(PSE, LoadType, LoadPtr, L).value_or(0) != 1 ||
- getPtrStride(PSE, LoadType, StorePtr, L).value_or(0) != 1)
- return false;
- unsigned TypeByteSize = DL.getTypeAllocSize(const_cast<Type *>(LoadType));
- auto *LoadPtrSCEV = cast<SCEVAddRecExpr>(PSE.getSCEV(LoadPtr));
- auto *StorePtrSCEV = cast<SCEVAddRecExpr>(PSE.getSCEV(StorePtr));
- // We don't need to check non-wrapping here because forward/backward
- // dependence wouldn't be valid if these weren't monotonic accesses.
- auto *Dist = cast<SCEVConstant>(
- PSE.getSE()->getMinusSCEV(StorePtrSCEV, LoadPtrSCEV));
- const APInt &Val = Dist->getAPInt();
- return Val == TypeByteSize;
- }
- Value *getLoadPtr() const { return Load->getPointerOperand(); }
- #ifndef NDEBUG
- friend raw_ostream &operator<<(raw_ostream &OS,
- const StoreToLoadForwardingCandidate &Cand) {
- OS << *Cand.Store << " -->\n";
- OS.indent(2) << *Cand.Load << "\n";
- return OS;
- }
- #endif
- };
- } // end anonymous namespace
- /// Check if the store dominates all latches, so as long as there is no
- /// intervening store this value will be loaded in the next iteration.
- static bool doesStoreDominatesAllLatches(BasicBlock *StoreBlock, Loop *L,
- DominatorTree *DT) {
- SmallVector<BasicBlock *, 8> Latches;
- L->getLoopLatches(Latches);
- return llvm::all_of(Latches, [&](const BasicBlock *Latch) {
- return DT->dominates(StoreBlock, Latch);
- });
- }
- /// Return true if the load is not executed on all paths in the loop.
- static bool isLoadConditional(LoadInst *Load, Loop *L) {
- return Load->getParent() != L->getHeader();
- }
- namespace {
- /// The per-loop class that does most of the work.
- class LoadEliminationForLoop {
- public:
- LoadEliminationForLoop(Loop *L, LoopInfo *LI, const LoopAccessInfo &LAI,
- DominatorTree *DT, BlockFrequencyInfo *BFI,
- ProfileSummaryInfo* PSI)
- : L(L), LI(LI), LAI(LAI), DT(DT), BFI(BFI), PSI(PSI), PSE(LAI.getPSE()) {}
- /// Look through the loop-carried and loop-independent dependences in
- /// this loop and find store->load dependences.
- ///
- /// Note that no candidate is returned if LAA has failed to analyze the loop
- /// (e.g. if it's not bottom-tested, contains volatile memops, etc.)
- std::forward_list<StoreToLoadForwardingCandidate>
- findStoreToLoadDependences(const LoopAccessInfo &LAI) {
- std::forward_list<StoreToLoadForwardingCandidate> Candidates;
- const auto *Deps = LAI.getDepChecker().getDependences();
- if (!Deps)
- return Candidates;
- // Find store->load dependences (consequently true dep). Both lexically
- // forward and backward dependences qualify. Disqualify loads that have
- // other unknown dependences.
- SmallPtrSet<Instruction *, 4> LoadsWithUnknownDepedence;
- for (const auto &Dep : *Deps) {
- Instruction *Source = Dep.getSource(LAI);
- Instruction *Destination = Dep.getDestination(LAI);
- if (Dep.Type == MemoryDepChecker::Dependence::Unknown) {
- if (isa<LoadInst>(Source))
- LoadsWithUnknownDepedence.insert(Source);
- if (isa<LoadInst>(Destination))
- LoadsWithUnknownDepedence.insert(Destination);
- continue;
- }
- if (Dep.isBackward())
- // Note that the designations source and destination follow the program
- // order, i.e. source is always first. (The direction is given by the
- // DepType.)
- std::swap(Source, Destination);
- else
- assert(Dep.isForward() && "Needs to be a forward dependence");
- auto *Store = dyn_cast<StoreInst>(Source);
- if (!Store)
- continue;
- auto *Load = dyn_cast<LoadInst>(Destination);
- if (!Load)
- continue;
- // Only propagate if the stored values are bit/pointer castable.
- if (!CastInst::isBitOrNoopPointerCastable(
- getLoadStoreType(Store), getLoadStoreType(Load),
- Store->getParent()->getModule()->getDataLayout()))
- continue;
- Candidates.emplace_front(Load, Store);
- }
- if (!LoadsWithUnknownDepedence.empty())
- Candidates.remove_if([&](const StoreToLoadForwardingCandidate &C) {
- return LoadsWithUnknownDepedence.count(C.Load);
- });
- return Candidates;
- }
- /// Return the index of the instruction according to program order.
- unsigned getInstrIndex(Instruction *Inst) {
- auto I = InstOrder.find(Inst);
- assert(I != InstOrder.end() && "No index for instruction");
- return I->second;
- }
- /// If a load has multiple candidates associated (i.e. different
- /// stores), it means that it could be forwarding from multiple stores
- /// depending on control flow. Remove these candidates.
- ///
- /// Here, we rely on LAA to include the relevant loop-independent dependences.
- /// LAA is known to omit these in the very simple case when the read and the
- /// write within an alias set always takes place using the *same* pointer.
- ///
- /// However, we know that this is not the case here, i.e. we can rely on LAA
- /// to provide us with loop-independent dependences for the cases we're
- /// interested. Consider the case for example where a loop-independent
- /// dependece S1->S2 invalidates the forwarding S3->S2.
- ///
- /// A[i] = ... (S1)
- /// ... = A[i] (S2)
- /// A[i+1] = ... (S3)
- ///
- /// LAA will perform dependence analysis here because there are two
- /// *different* pointers involved in the same alias set (&A[i] and &A[i+1]).
- void removeDependencesFromMultipleStores(
- std::forward_list<StoreToLoadForwardingCandidate> &Candidates) {
- // If Store is nullptr it means that we have multiple stores forwarding to
- // this store.
- using LoadToSingleCandT =
- DenseMap<LoadInst *, const StoreToLoadForwardingCandidate *>;
- LoadToSingleCandT LoadToSingleCand;
- for (const auto &Cand : Candidates) {
- bool NewElt;
- LoadToSingleCandT::iterator Iter;
- std::tie(Iter, NewElt) =
- LoadToSingleCand.insert(std::make_pair(Cand.Load, &Cand));
- if (!NewElt) {
- const StoreToLoadForwardingCandidate *&OtherCand = Iter->second;
- // Already multiple stores forward to this load.
- if (OtherCand == nullptr)
- continue;
- // Handle the very basic case when the two stores are in the same block
- // so deciding which one forwards is easy. The later one forwards as
- // long as they both have a dependence distance of one to the load.
- if (Cand.Store->getParent() == OtherCand->Store->getParent() &&
- Cand.isDependenceDistanceOfOne(PSE, L) &&
- OtherCand->isDependenceDistanceOfOne(PSE, L)) {
- // They are in the same block, the later one will forward to the load.
- if (getInstrIndex(OtherCand->Store) < getInstrIndex(Cand.Store))
- OtherCand = &Cand;
- } else
- OtherCand = nullptr;
- }
- }
- Candidates.remove_if([&](const StoreToLoadForwardingCandidate &Cand) {
- if (LoadToSingleCand[Cand.Load] != &Cand) {
- LLVM_DEBUG(
- dbgs() << "Removing from candidates: \n"
- << Cand
- << " The load may have multiple stores forwarding to "
- << "it\n");
- return true;
- }
- return false;
- });
- }
- /// Given two pointers operations by their RuntimePointerChecking
- /// indices, return true if they require an alias check.
- ///
- /// We need a check if one is a pointer for a candidate load and the other is
- /// a pointer for a possibly intervening store.
- bool needsChecking(unsigned PtrIdx1, unsigned PtrIdx2,
- const SmallPtrSetImpl<Value *> &PtrsWrittenOnFwdingPath,
- const SmallPtrSetImpl<Value *> &CandLoadPtrs) {
- Value *Ptr1 =
- LAI.getRuntimePointerChecking()->getPointerInfo(PtrIdx1).PointerValue;
- Value *Ptr2 =
- LAI.getRuntimePointerChecking()->getPointerInfo(PtrIdx2).PointerValue;
- return ((PtrsWrittenOnFwdingPath.count(Ptr1) && CandLoadPtrs.count(Ptr2)) ||
- (PtrsWrittenOnFwdingPath.count(Ptr2) && CandLoadPtrs.count(Ptr1)));
- }
- /// Return pointers that are possibly written to on the path from a
- /// forwarding store to a load.
- ///
- /// These pointers need to be alias-checked against the forwarding candidates.
- SmallPtrSet<Value *, 4> findPointersWrittenOnForwardingPath(
- const SmallVectorImpl<StoreToLoadForwardingCandidate> &Candidates) {
- // From FirstStore to LastLoad neither of the elimination candidate loads
- // should overlap with any of the stores.
- //
- // E.g.:
- //
- // st1 C[i]
- // ld1 B[i] <-------,
- // ld0 A[i] <----, | * LastLoad
- // ... | |
- // st2 E[i] | |
- // st3 B[i+1] -- | -' * FirstStore
- // st0 A[i+1] ---'
- // st4 D[i]
- //
- // st0 forwards to ld0 if the accesses in st4 and st1 don't overlap with
- // ld0.
- LoadInst *LastLoad =
- std::max_element(Candidates.begin(), Candidates.end(),
- [&](const StoreToLoadForwardingCandidate &A,
- const StoreToLoadForwardingCandidate &B) {
- return getInstrIndex(A.Load) < getInstrIndex(B.Load);
- })
- ->Load;
- StoreInst *FirstStore =
- std::min_element(Candidates.begin(), Candidates.end(),
- [&](const StoreToLoadForwardingCandidate &A,
- const StoreToLoadForwardingCandidate &B) {
- return getInstrIndex(A.Store) <
- getInstrIndex(B.Store);
- })
- ->Store;
- // We're looking for stores after the first forwarding store until the end
- // of the loop, then from the beginning of the loop until the last
- // forwarded-to load. Collect the pointer for the stores.
- SmallPtrSet<Value *, 4> PtrsWrittenOnFwdingPath;
- auto InsertStorePtr = [&](Instruction *I) {
- if (auto *S = dyn_cast<StoreInst>(I))
- PtrsWrittenOnFwdingPath.insert(S->getPointerOperand());
- };
- const auto &MemInstrs = LAI.getDepChecker().getMemoryInstructions();
- std::for_each(MemInstrs.begin() + getInstrIndex(FirstStore) + 1,
- MemInstrs.end(), InsertStorePtr);
- std::for_each(MemInstrs.begin(), &MemInstrs[getInstrIndex(LastLoad)],
- InsertStorePtr);
- return PtrsWrittenOnFwdingPath;
- }
- /// Determine the pointer alias checks to prove that there are no
- /// intervening stores.
- SmallVector<RuntimePointerCheck, 4> collectMemchecks(
- const SmallVectorImpl<StoreToLoadForwardingCandidate> &Candidates) {
- SmallPtrSet<Value *, 4> PtrsWrittenOnFwdingPath =
- findPointersWrittenOnForwardingPath(Candidates);
- // Collect the pointers of the candidate loads.
- SmallPtrSet<Value *, 4> CandLoadPtrs;
- for (const auto &Candidate : Candidates)
- CandLoadPtrs.insert(Candidate.getLoadPtr());
- const auto &AllChecks = LAI.getRuntimePointerChecking()->getChecks();
- SmallVector<RuntimePointerCheck, 4> Checks;
- copy_if(AllChecks, std::back_inserter(Checks),
- [&](const RuntimePointerCheck &Check) {
- for (auto PtrIdx1 : Check.first->Members)
- for (auto PtrIdx2 : Check.second->Members)
- if (needsChecking(PtrIdx1, PtrIdx2, PtrsWrittenOnFwdingPath,
- CandLoadPtrs))
- return true;
- return false;
- });
- LLVM_DEBUG(dbgs() << "\nPointer Checks (count: " << Checks.size()
- << "):\n");
- LLVM_DEBUG(LAI.getRuntimePointerChecking()->printChecks(dbgs(), Checks));
- return Checks;
- }
- /// Perform the transformation for a candidate.
- void
- propagateStoredValueToLoadUsers(const StoreToLoadForwardingCandidate &Cand,
- SCEVExpander &SEE) {
- // loop:
- // %x = load %gep_i
- // = ... %x
- // store %y, %gep_i_plus_1
- //
- // =>
- //
- // ph:
- // %x.initial = load %gep_0
- // loop:
- // %x.storeforward = phi [%x.initial, %ph] [%y, %loop]
- // %x = load %gep_i <---- now dead
- // = ... %x.storeforward
- // store %y, %gep_i_plus_1
- Value *Ptr = Cand.Load->getPointerOperand();
- auto *PtrSCEV = cast<SCEVAddRecExpr>(PSE.getSCEV(Ptr));
- auto *PH = L->getLoopPreheader();
- assert(PH && "Preheader should exist!");
- Value *InitialPtr = SEE.expandCodeFor(PtrSCEV->getStart(), Ptr->getType(),
- PH->getTerminator());
- Value *Initial = new LoadInst(
- Cand.Load->getType(), InitialPtr, "load_initial",
- /* isVolatile */ false, Cand.Load->getAlign(), PH->getTerminator());
- PHINode *PHI = PHINode::Create(Initial->getType(), 2, "store_forwarded",
- &L->getHeader()->front());
- PHI->addIncoming(Initial, PH);
- Type *LoadType = Initial->getType();
- Type *StoreType = Cand.Store->getValueOperand()->getType();
- auto &DL = Cand.Load->getParent()->getModule()->getDataLayout();
- (void)DL;
- assert(DL.getTypeSizeInBits(LoadType) == DL.getTypeSizeInBits(StoreType) &&
- "The type sizes should match!");
- Value *StoreValue = Cand.Store->getValueOperand();
- if (LoadType != StoreType)
- StoreValue = CastInst::CreateBitOrPointerCast(
- StoreValue, LoadType, "store_forward_cast", Cand.Store);
- PHI->addIncoming(StoreValue, L->getLoopLatch());
- Cand.Load->replaceAllUsesWith(PHI);
- }
- /// Top-level driver for each loop: find store->load forwarding
- /// candidates, add run-time checks and perform transformation.
- bool processLoop() {
- LLVM_DEBUG(dbgs() << "\nIn \"" << L->getHeader()->getParent()->getName()
- << "\" checking " << *L << "\n");
- // Look for store-to-load forwarding cases across the
- // backedge. E.g.:
- //
- // loop:
- // %x = load %gep_i
- // = ... %x
- // store %y, %gep_i_plus_1
- //
- // =>
- //
- // ph:
- // %x.initial = load %gep_0
- // loop:
- // %x.storeforward = phi [%x.initial, %ph] [%y, %loop]
- // %x = load %gep_i <---- now dead
- // = ... %x.storeforward
- // store %y, %gep_i_plus_1
- // First start with store->load dependences.
- auto StoreToLoadDependences = findStoreToLoadDependences(LAI);
- if (StoreToLoadDependences.empty())
- return false;
- // Generate an index for each load and store according to the original
- // program order. This will be used later.
- InstOrder = LAI.getDepChecker().generateInstructionOrderMap();
- // To keep things simple for now, remove those where the load is potentially
- // fed by multiple stores.
- removeDependencesFromMultipleStores(StoreToLoadDependences);
- if (StoreToLoadDependences.empty())
- return false;
- // Filter the candidates further.
- SmallVector<StoreToLoadForwardingCandidate, 4> Candidates;
- for (const StoreToLoadForwardingCandidate &Cand : StoreToLoadDependences) {
- LLVM_DEBUG(dbgs() << "Candidate " << Cand);
- // Make sure that the stored values is available everywhere in the loop in
- // the next iteration.
- if (!doesStoreDominatesAllLatches(Cand.Store->getParent(), L, DT))
- continue;
- // If the load is conditional we can't hoist its 0-iteration instance to
- // the preheader because that would make it unconditional. Thus we would
- // access a memory location that the original loop did not access.
- if (isLoadConditional(Cand.Load, L))
- continue;
- // Check whether the SCEV difference is the same as the induction step,
- // thus we load the value in the next iteration.
- if (!Cand.isDependenceDistanceOfOne(PSE, L))
- continue;
- assert(isa<SCEVAddRecExpr>(PSE.getSCEV(Cand.Load->getPointerOperand())) &&
- "Loading from something other than indvar?");
- assert(
- isa<SCEVAddRecExpr>(PSE.getSCEV(Cand.Store->getPointerOperand())) &&
- "Storing to something other than indvar?");
- Candidates.push_back(Cand);
- LLVM_DEBUG(
- dbgs()
- << Candidates.size()
- << ". Valid store-to-load forwarding across the loop backedge\n");
- }
- if (Candidates.empty())
- return false;
- // Check intervening may-alias stores. These need runtime checks for alias
- // disambiguation.
- SmallVector<RuntimePointerCheck, 4> Checks = collectMemchecks(Candidates);
- // Too many checks are likely to outweigh the benefits of forwarding.
- if (Checks.size() > Candidates.size() * CheckPerElim) {
- LLVM_DEBUG(dbgs() << "Too many run-time checks needed.\n");
- return false;
- }
- if (LAI.getPSE().getPredicate().getComplexity() >
- LoadElimSCEVCheckThreshold) {
- LLVM_DEBUG(dbgs() << "Too many SCEV run-time checks needed.\n");
- return false;
- }
- if (!L->isLoopSimplifyForm()) {
- LLVM_DEBUG(dbgs() << "Loop is not is loop-simplify form");
- return false;
- }
- if (!Checks.empty() || !LAI.getPSE().getPredicate().isAlwaysTrue()) {
- if (LAI.hasConvergentOp()) {
- LLVM_DEBUG(dbgs() << "Versioning is needed but not allowed with "
- "convergent calls\n");
- return false;
- }
- auto *HeaderBB = L->getHeader();
- auto *F = HeaderBB->getParent();
- bool OptForSize = F->hasOptSize() ||
- llvm::shouldOptimizeForSize(HeaderBB, PSI, BFI,
- PGSOQueryType::IRPass);
- if (OptForSize) {
- LLVM_DEBUG(
- dbgs() << "Versioning is needed but not allowed when optimizing "
- "for size.\n");
- return false;
- }
- // Point of no-return, start the transformation. First, version the loop
- // if necessary.
- LoopVersioning LV(LAI, Checks, L, LI, DT, PSE.getSE());
- LV.versionLoop();
- // After versioning, some of the candidates' pointers could stop being
- // SCEVAddRecs. We need to filter them out.
- auto NoLongerGoodCandidate = [this](
- const StoreToLoadForwardingCandidate &Cand) {
- return !isa<SCEVAddRecExpr>(
- PSE.getSCEV(Cand.Load->getPointerOperand())) ||
- !isa<SCEVAddRecExpr>(
- PSE.getSCEV(Cand.Store->getPointerOperand()));
- };
- llvm::erase_if(Candidates, NoLongerGoodCandidate);
- }
- // Next, propagate the value stored by the store to the users of the load.
- // Also for the first iteration, generate the initial value of the load.
- SCEVExpander SEE(*PSE.getSE(), L->getHeader()->getModule()->getDataLayout(),
- "storeforward");
- for (const auto &Cand : Candidates)
- propagateStoredValueToLoadUsers(Cand, SEE);
- NumLoopLoadEliminted += Candidates.size();
- return true;
- }
- private:
- Loop *L;
- /// Maps the load/store instructions to their index according to
- /// program order.
- DenseMap<Instruction *, unsigned> InstOrder;
- // Analyses used.
- LoopInfo *LI;
- const LoopAccessInfo &LAI;
- DominatorTree *DT;
- BlockFrequencyInfo *BFI;
- ProfileSummaryInfo *PSI;
- PredicatedScalarEvolution PSE;
- };
- } // end anonymous namespace
- static bool eliminateLoadsAcrossLoops(Function &F, LoopInfo &LI,
- DominatorTree &DT,
- BlockFrequencyInfo *BFI,
- ProfileSummaryInfo *PSI,
- ScalarEvolution *SE, AssumptionCache *AC,
- LoopAccessInfoManager &LAIs) {
- // Build up a worklist of inner-loops to transform to avoid iterator
- // invalidation.
- // FIXME: This logic comes from other passes that actually change the loop
- // nest structure. It isn't clear this is necessary (or useful) for a pass
- // which merely optimizes the use of loads in a loop.
- SmallVector<Loop *, 8> Worklist;
- bool Changed = false;
- for (Loop *TopLevelLoop : LI)
- for (Loop *L : depth_first(TopLevelLoop)) {
- Changed |= simplifyLoop(L, &DT, &LI, SE, AC, /*MSSAU*/ nullptr, false);
- // We only handle inner-most loops.
- if (L->isInnermost())
- Worklist.push_back(L);
- }
- // Now walk the identified inner loops.
- for (Loop *L : Worklist) {
- // Match historical behavior
- if (!L->isRotatedForm() || !L->getExitingBlock())
- continue;
- // The actual work is performed by LoadEliminationForLoop.
- LoadEliminationForLoop LEL(L, &LI, LAIs.getInfo(*L), &DT, BFI, PSI);
- Changed |= LEL.processLoop();
- if (Changed)
- LAIs.clear();
- }
- return Changed;
- }
- namespace {
- /// The pass. Most of the work is delegated to the per-loop
- /// LoadEliminationForLoop class.
- class LoopLoadElimination : public FunctionPass {
- public:
- static char ID;
- LoopLoadElimination() : FunctionPass(ID) {
- initializeLoopLoadEliminationPass(*PassRegistry::getPassRegistry());
- }
- bool runOnFunction(Function &F) override {
- if (skipFunction(F))
- return false;
- auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
- auto &LAIs = getAnalysis<LoopAccessLegacyAnalysis>().getLAIs();
- auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
- auto *PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
- auto *BFI = (PSI && PSI->hasProfileSummary()) ?
- &getAnalysis<LazyBlockFrequencyInfoPass>().getBFI() :
- nullptr;
- auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
- // Process each loop nest in the function.
- return eliminateLoadsAcrossLoops(F, LI, DT, BFI, PSI, SE, /*AC*/ nullptr,
- LAIs);
- }
- void getAnalysisUsage(AnalysisUsage &AU) const override {
- AU.addRequiredID(LoopSimplifyID);
- AU.addRequired<LoopInfoWrapperPass>();
- AU.addPreserved<LoopInfoWrapperPass>();
- AU.addRequired<LoopAccessLegacyAnalysis>();
- AU.addRequired<ScalarEvolutionWrapperPass>();
- AU.addRequired<DominatorTreeWrapperPass>();
- AU.addPreserved<DominatorTreeWrapperPass>();
- AU.addPreserved<GlobalsAAWrapperPass>();
- AU.addRequired<ProfileSummaryInfoWrapperPass>();
- LazyBlockFrequencyInfoPass::getLazyBFIAnalysisUsage(AU);
- }
- };
- } // end anonymous namespace
- char LoopLoadElimination::ID;
- static const char LLE_name[] = "Loop Load Elimination";
- INITIALIZE_PASS_BEGIN(LoopLoadElimination, LLE_OPTION, LLE_name, false, false)
- INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
- INITIALIZE_PASS_DEPENDENCY(LoopAccessLegacyAnalysis)
- INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
- INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
- INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
- INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass)
- INITIALIZE_PASS_DEPENDENCY(LazyBlockFrequencyInfoPass)
- INITIALIZE_PASS_END(LoopLoadElimination, LLE_OPTION, LLE_name, false, false)
- FunctionPass *llvm::createLoopLoadEliminationPass() {
- return new LoopLoadElimination();
- }
- PreservedAnalyses LoopLoadEliminationPass::run(Function &F,
- FunctionAnalysisManager &AM) {
- auto &LI = AM.getResult<LoopAnalysis>(F);
- // There are no loops in the function. Return before computing other expensive
- // analyses.
- if (LI.empty())
- return PreservedAnalyses::all();
- auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F);
- auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
- auto &AC = AM.getResult<AssumptionAnalysis>(F);
- auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F);
- auto *PSI = MAMProxy.getCachedResult<ProfileSummaryAnalysis>(*F.getParent());
- auto *BFI = (PSI && PSI->hasProfileSummary()) ?
- &AM.getResult<BlockFrequencyAnalysis>(F) : nullptr;
- LoopAccessInfoManager &LAIs = AM.getResult<LoopAccessAnalysis>(F);
- bool Changed = eliminateLoadsAcrossLoops(F, LI, DT, BFI, PSI, &SE, &AC, LAIs);
- if (!Changed)
- return PreservedAnalyses::all();
- PreservedAnalyses PA;
- return PA;
- }
|