12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212 |
- //===- GVN.cpp - Eliminate redundant values and loads ---------------------===//
- //
- // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
- // See https://llvm.org/LICENSE.txt for license information.
- // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
- //
- //===----------------------------------------------------------------------===//
- //
- // This pass performs global value numbering to eliminate fully redundant
- // instructions. It also performs simple dead load elimination.
- //
- // Note that this pass does the value numbering itself; it does not use the
- // ValueNumbering analysis passes.
- //
- //===----------------------------------------------------------------------===//
- #include "llvm/Transforms/Scalar/GVN.h"
- #include "llvm/ADT/DenseMap.h"
- #include "llvm/ADT/DepthFirstIterator.h"
- #include "llvm/ADT/Hashing.h"
- #include "llvm/ADT/MapVector.h"
- #include "llvm/ADT/PostOrderIterator.h"
- #include "llvm/ADT/STLExtras.h"
- #include "llvm/ADT/SetVector.h"
- #include "llvm/ADT/SmallPtrSet.h"
- #include "llvm/ADT/SmallVector.h"
- #include "llvm/ADT/Statistic.h"
- #include "llvm/Analysis/AliasAnalysis.h"
- #include "llvm/Analysis/AssumeBundleQueries.h"
- #include "llvm/Analysis/AssumptionCache.h"
- #include "llvm/Analysis/CFG.h"
- #include "llvm/Analysis/DomTreeUpdater.h"
- #include "llvm/Analysis/GlobalsModRef.h"
- #include "llvm/Analysis/InstructionPrecedenceTracking.h"
- #include "llvm/Analysis/InstructionSimplify.h"
- #include "llvm/Analysis/LoopInfo.h"
- #include "llvm/Analysis/MemoryBuiltins.h"
- #include "llvm/Analysis/MemoryDependenceAnalysis.h"
- #include "llvm/Analysis/MemorySSA.h"
- #include "llvm/Analysis/MemorySSAUpdater.h"
- #include "llvm/Analysis/OptimizationRemarkEmitter.h"
- #include "llvm/Analysis/PHITransAddr.h"
- #include "llvm/Analysis/TargetLibraryInfo.h"
- #include "llvm/Analysis/ValueTracking.h"
- #include "llvm/IR/Attributes.h"
- #include "llvm/IR/BasicBlock.h"
- #include "llvm/IR/Constant.h"
- #include "llvm/IR/Constants.h"
- #include "llvm/IR/DebugLoc.h"
- #include "llvm/IR/Dominators.h"
- #include "llvm/IR/Function.h"
- #include "llvm/IR/InstrTypes.h"
- #include "llvm/IR/Instruction.h"
- #include "llvm/IR/Instructions.h"
- #include "llvm/IR/IntrinsicInst.h"
- #include "llvm/IR/LLVMContext.h"
- #include "llvm/IR/Metadata.h"
- #include "llvm/IR/Module.h"
- #include "llvm/IR/PassManager.h"
- #include "llvm/IR/PatternMatch.h"
- #include "llvm/IR/Type.h"
- #include "llvm/IR/Use.h"
- #include "llvm/IR/Value.h"
- #include "llvm/InitializePasses.h"
- #include "llvm/Pass.h"
- #include "llvm/Support/Casting.h"
- #include "llvm/Support/CommandLine.h"
- #include "llvm/Support/Compiler.h"
- #include "llvm/Support/Debug.h"
- #include "llvm/Support/raw_ostream.h"
- #include "llvm/Transforms/Utils/AssumeBundleBuilder.h"
- #include "llvm/Transforms/Utils/BasicBlockUtils.h"
- #include "llvm/Transforms/Utils/Local.h"
- #include "llvm/Transforms/Utils/SSAUpdater.h"
- #include "llvm/Transforms/Utils/VNCoercion.h"
- #include <algorithm>
- #include <cassert>
- #include <cstdint>
- #include <optional>
- #include <utility>
- using namespace llvm;
- using namespace llvm::gvn;
- using namespace llvm::VNCoercion;
- using namespace PatternMatch;
- #define DEBUG_TYPE "gvn"
- STATISTIC(NumGVNInstr, "Number of instructions deleted");
- STATISTIC(NumGVNLoad, "Number of loads deleted");
- STATISTIC(NumGVNPRE, "Number of instructions PRE'd");
- STATISTIC(NumGVNBlocks, "Number of blocks merged");
- STATISTIC(NumGVNSimpl, "Number of instructions simplified");
- STATISTIC(NumGVNEqProp, "Number of equalities propagated");
- STATISTIC(NumPRELoad, "Number of loads PRE'd");
- STATISTIC(NumPRELoopLoad, "Number of loop loads PRE'd");
- STATISTIC(IsValueFullyAvailableInBlockNumSpeculationsMax,
- "Number of blocks speculated as available in "
- "IsValueFullyAvailableInBlock(), max");
- STATISTIC(MaxBBSpeculationCutoffReachedTimes,
- "Number of times we we reached gvn-max-block-speculations cut-off "
- "preventing further exploration");
- static cl::opt<bool> GVNEnablePRE("enable-pre", cl::init(true), cl::Hidden);
- static cl::opt<bool> GVNEnableLoadPRE("enable-load-pre", cl::init(true));
- static cl::opt<bool> GVNEnableLoadInLoopPRE("enable-load-in-loop-pre",
- cl::init(true));
- static cl::opt<bool>
- GVNEnableSplitBackedgeInLoadPRE("enable-split-backedge-in-load-pre",
- cl::init(false));
- static cl::opt<bool> GVNEnableMemDep("enable-gvn-memdep", cl::init(true));
- static cl::opt<uint32_t> MaxNumDeps(
- "gvn-max-num-deps", cl::Hidden, cl::init(100),
- cl::desc("Max number of dependences to attempt Load PRE (default = 100)"));
- // This is based on IsValueFullyAvailableInBlockNumSpeculationsMax stat.
- static cl::opt<uint32_t> MaxBBSpeculations(
- "gvn-max-block-speculations", cl::Hidden, cl::init(600),
- cl::desc("Max number of blocks we're willing to speculate on (and recurse "
- "into) when deducing if a value is fully available or not in GVN "
- "(default = 600)"));
- static cl::opt<uint32_t> MaxNumVisitedInsts(
- "gvn-max-num-visited-insts", cl::Hidden, cl::init(100),
- cl::desc("Max number of visited instructions when trying to find "
- "dominating value of select dependency (default = 100)"));
- struct llvm::GVNPass::Expression {
- uint32_t opcode;
- bool commutative = false;
- // The type is not necessarily the result type of the expression, it may be
- // any additional type needed to disambiguate the expression.
- Type *type = nullptr;
- SmallVector<uint32_t, 4> varargs;
- Expression(uint32_t o = ~2U) : opcode(o) {}
- bool operator==(const Expression &other) const {
- if (opcode != other.opcode)
- return false;
- if (opcode == ~0U || opcode == ~1U)
- return true;
- if (type != other.type)
- return false;
- if (varargs != other.varargs)
- return false;
- return true;
- }
- friend hash_code hash_value(const Expression &Value) {
- return hash_combine(
- Value.opcode, Value.type,
- hash_combine_range(Value.varargs.begin(), Value.varargs.end()));
- }
- };
- namespace llvm {
- template <> struct DenseMapInfo<GVNPass::Expression> {
- static inline GVNPass::Expression getEmptyKey() { return ~0U; }
- static inline GVNPass::Expression getTombstoneKey() { return ~1U; }
- static unsigned getHashValue(const GVNPass::Expression &e) {
- using llvm::hash_value;
- return static_cast<unsigned>(hash_value(e));
- }
- static bool isEqual(const GVNPass::Expression &LHS,
- const GVNPass::Expression &RHS) {
- return LHS == RHS;
- }
- };
- } // end namespace llvm
- /// Represents a particular available value that we know how to materialize.
- /// Materialization of an AvailableValue never fails. An AvailableValue is
- /// implicitly associated with a rematerialization point which is the
- /// location of the instruction from which it was formed.
- struct llvm::gvn::AvailableValue {
- enum class ValType {
- SimpleVal, // A simple offsetted value that is accessed.
- LoadVal, // A value produced by a load.
- MemIntrin, // A memory intrinsic which is loaded from.
- UndefVal, // A UndefValue representing a value from dead block (which
- // is not yet physically removed from the CFG).
- SelectVal, // A pointer select which is loaded from and for which the load
- // can be replace by a value select.
- };
- /// Val - The value that is live out of the block.
- Value *Val;
- /// Kind of the live-out value.
- ValType Kind;
- /// Offset - The byte offset in Val that is interesting for the load query.
- unsigned Offset = 0;
- /// V1, V2 - The dominating non-clobbered values of SelectVal.
- Value *V1 = nullptr, *V2 = nullptr;
- static AvailableValue get(Value *V, unsigned Offset = 0) {
- AvailableValue Res;
- Res.Val = V;
- Res.Kind = ValType::SimpleVal;
- Res.Offset = Offset;
- return Res;
- }
- static AvailableValue getMI(MemIntrinsic *MI, unsigned Offset = 0) {
- AvailableValue Res;
- Res.Val = MI;
- Res.Kind = ValType::MemIntrin;
- Res.Offset = Offset;
- return Res;
- }
- static AvailableValue getLoad(LoadInst *Load, unsigned Offset = 0) {
- AvailableValue Res;
- Res.Val = Load;
- Res.Kind = ValType::LoadVal;
- Res.Offset = Offset;
- return Res;
- }
- static AvailableValue getUndef() {
- AvailableValue Res;
- Res.Val = nullptr;
- Res.Kind = ValType::UndefVal;
- Res.Offset = 0;
- return Res;
- }
- static AvailableValue getSelect(SelectInst *Sel, Value *V1, Value *V2) {
- AvailableValue Res;
- Res.Val = Sel;
- Res.Kind = ValType::SelectVal;
- Res.Offset = 0;
- Res.V1 = V1;
- Res.V2 = V2;
- return Res;
- }
- bool isSimpleValue() const { return Kind == ValType::SimpleVal; }
- bool isCoercedLoadValue() const { return Kind == ValType::LoadVal; }
- bool isMemIntrinValue() const { return Kind == ValType::MemIntrin; }
- bool isUndefValue() const { return Kind == ValType::UndefVal; }
- bool isSelectValue() const { return Kind == ValType::SelectVal; }
- Value *getSimpleValue() const {
- assert(isSimpleValue() && "Wrong accessor");
- return Val;
- }
- LoadInst *getCoercedLoadValue() const {
- assert(isCoercedLoadValue() && "Wrong accessor");
- return cast<LoadInst>(Val);
- }
- MemIntrinsic *getMemIntrinValue() const {
- assert(isMemIntrinValue() && "Wrong accessor");
- return cast<MemIntrinsic>(Val);
- }
- SelectInst *getSelectValue() const {
- assert(isSelectValue() && "Wrong accessor");
- return cast<SelectInst>(Val);
- }
- /// Emit code at the specified insertion point to adjust the value defined
- /// here to the specified type. This handles various coercion cases.
- Value *MaterializeAdjustedValue(LoadInst *Load, Instruction *InsertPt,
- GVNPass &gvn) const;
- };
- /// Represents an AvailableValue which can be rematerialized at the end of
- /// the associated BasicBlock.
- struct llvm::gvn::AvailableValueInBlock {
- /// BB - The basic block in question.
- BasicBlock *BB = nullptr;
- /// AV - The actual available value
- AvailableValue AV;
- static AvailableValueInBlock get(BasicBlock *BB, AvailableValue &&AV) {
- AvailableValueInBlock Res;
- Res.BB = BB;
- Res.AV = std::move(AV);
- return Res;
- }
- static AvailableValueInBlock get(BasicBlock *BB, Value *V,
- unsigned Offset = 0) {
- return get(BB, AvailableValue::get(V, Offset));
- }
- static AvailableValueInBlock getUndef(BasicBlock *BB) {
- return get(BB, AvailableValue::getUndef());
- }
- static AvailableValueInBlock getSelect(BasicBlock *BB, SelectInst *Sel,
- Value *V1, Value *V2) {
- return get(BB, AvailableValue::getSelect(Sel, V1, V2));
- }
- /// Emit code at the end of this block to adjust the value defined here to
- /// the specified type. This handles various coercion cases.
- Value *MaterializeAdjustedValue(LoadInst *Load, GVNPass &gvn) const {
- return AV.MaterializeAdjustedValue(Load, BB->getTerminator(), gvn);
- }
- };
- //===----------------------------------------------------------------------===//
- // ValueTable Internal Functions
- //===----------------------------------------------------------------------===//
- GVNPass::Expression GVNPass::ValueTable::createExpr(Instruction *I) {
- Expression e;
- e.type = I->getType();
- e.opcode = I->getOpcode();
- if (const GCRelocateInst *GCR = dyn_cast<GCRelocateInst>(I)) {
- // gc.relocate is 'special' call: its second and third operands are
- // not real values, but indices into statepoint's argument list.
- // Use the refered to values for purposes of identity.
- e.varargs.push_back(lookupOrAdd(GCR->getOperand(0)));
- e.varargs.push_back(lookupOrAdd(GCR->getBasePtr()));
- e.varargs.push_back(lookupOrAdd(GCR->getDerivedPtr()));
- } else {
- for (Use &Op : I->operands())
- e.varargs.push_back(lookupOrAdd(Op));
- }
- if (I->isCommutative()) {
- // Ensure that commutative instructions that only differ by a permutation
- // of their operands get the same value number by sorting the operand value
- // numbers. Since commutative operands are the 1st two operands it is more
- // efficient to sort by hand rather than using, say, std::sort.
- assert(I->getNumOperands() >= 2 && "Unsupported commutative instruction!");
- if (e.varargs[0] > e.varargs[1])
- std::swap(e.varargs[0], e.varargs[1]);
- e.commutative = true;
- }
- if (auto *C = dyn_cast<CmpInst>(I)) {
- // Sort the operand value numbers so x<y and y>x get the same value number.
- CmpInst::Predicate Predicate = C->getPredicate();
- if (e.varargs[0] > e.varargs[1]) {
- std::swap(e.varargs[0], e.varargs[1]);
- Predicate = CmpInst::getSwappedPredicate(Predicate);
- }
- e.opcode = (C->getOpcode() << 8) | Predicate;
- e.commutative = true;
- } else if (auto *E = dyn_cast<InsertValueInst>(I)) {
- e.varargs.append(E->idx_begin(), E->idx_end());
- } else if (auto *SVI = dyn_cast<ShuffleVectorInst>(I)) {
- ArrayRef<int> ShuffleMask = SVI->getShuffleMask();
- e.varargs.append(ShuffleMask.begin(), ShuffleMask.end());
- }
- return e;
- }
- GVNPass::Expression GVNPass::ValueTable::createCmpExpr(
- unsigned Opcode, CmpInst::Predicate Predicate, Value *LHS, Value *RHS) {
- assert((Opcode == Instruction::ICmp || Opcode == Instruction::FCmp) &&
- "Not a comparison!");
- Expression e;
- e.type = CmpInst::makeCmpResultType(LHS->getType());
- e.varargs.push_back(lookupOrAdd(LHS));
- e.varargs.push_back(lookupOrAdd(RHS));
- // Sort the operand value numbers so x<y and y>x get the same value number.
- if (e.varargs[0] > e.varargs[1]) {
- std::swap(e.varargs[0], e.varargs[1]);
- Predicate = CmpInst::getSwappedPredicate(Predicate);
- }
- e.opcode = (Opcode << 8) | Predicate;
- e.commutative = true;
- return e;
- }
- GVNPass::Expression
- GVNPass::ValueTable::createExtractvalueExpr(ExtractValueInst *EI) {
- assert(EI && "Not an ExtractValueInst?");
- Expression e;
- e.type = EI->getType();
- e.opcode = 0;
- WithOverflowInst *WO = dyn_cast<WithOverflowInst>(EI->getAggregateOperand());
- if (WO != nullptr && EI->getNumIndices() == 1 && *EI->idx_begin() == 0) {
- // EI is an extract from one of our with.overflow intrinsics. Synthesize
- // a semantically equivalent expression instead of an extract value
- // expression.
- e.opcode = WO->getBinaryOp();
- e.varargs.push_back(lookupOrAdd(WO->getLHS()));
- e.varargs.push_back(lookupOrAdd(WO->getRHS()));
- return e;
- }
- // Not a recognised intrinsic. Fall back to producing an extract value
- // expression.
- e.opcode = EI->getOpcode();
- for (Use &Op : EI->operands())
- e.varargs.push_back(lookupOrAdd(Op));
- append_range(e.varargs, EI->indices());
- return e;
- }
- GVNPass::Expression GVNPass::ValueTable::createGEPExpr(GetElementPtrInst *GEP) {
- Expression E;
- Type *PtrTy = GEP->getType()->getScalarType();
- const DataLayout &DL = GEP->getModule()->getDataLayout();
- unsigned BitWidth = DL.getIndexTypeSizeInBits(PtrTy);
- MapVector<Value *, APInt> VariableOffsets;
- APInt ConstantOffset(BitWidth, 0);
- if (PtrTy->isOpaquePointerTy() &&
- GEP->collectOffset(DL, BitWidth, VariableOffsets, ConstantOffset)) {
- // For opaque pointers, convert into offset representation, to recognize
- // equivalent address calculations that use different type encoding.
- LLVMContext &Context = GEP->getContext();
- E.opcode = GEP->getOpcode();
- E.type = nullptr;
- E.varargs.push_back(lookupOrAdd(GEP->getPointerOperand()));
- for (const auto &Pair : VariableOffsets) {
- E.varargs.push_back(lookupOrAdd(Pair.first));
- E.varargs.push_back(lookupOrAdd(ConstantInt::get(Context, Pair.second)));
- }
- if (!ConstantOffset.isZero())
- E.varargs.push_back(
- lookupOrAdd(ConstantInt::get(Context, ConstantOffset)));
- } else {
- // If converting to offset representation fails (for typed pointers and
- // scalable vectors), fall back to type-based implementation:
- E.opcode = GEP->getOpcode();
- E.type = GEP->getSourceElementType();
- for (Use &Op : GEP->operands())
- E.varargs.push_back(lookupOrAdd(Op));
- }
- return E;
- }
- //===----------------------------------------------------------------------===//
- // ValueTable External Functions
- //===----------------------------------------------------------------------===//
- GVNPass::ValueTable::ValueTable() = default;
- GVNPass::ValueTable::ValueTable(const ValueTable &) = default;
- GVNPass::ValueTable::ValueTable(ValueTable &&) = default;
- GVNPass::ValueTable::~ValueTable() = default;
- GVNPass::ValueTable &
- GVNPass::ValueTable::operator=(const GVNPass::ValueTable &Arg) = default;
- /// add - Insert a value into the table with a specified value number.
- void GVNPass::ValueTable::add(Value *V, uint32_t num) {
- valueNumbering.insert(std::make_pair(V, num));
- if (PHINode *PN = dyn_cast<PHINode>(V))
- NumberingPhi[num] = PN;
- }
- uint32_t GVNPass::ValueTable::lookupOrAddCall(CallInst *C) {
- if (AA->doesNotAccessMemory(C) &&
- // FIXME: Currently the calls which may access the thread id may
- // be considered as not accessing the memory. But this is
- // problematic for coroutines, since coroutines may resume in a
- // different thread. So we disable the optimization here for the
- // correctness. However, it may block many other correct
- // optimizations. Revert this one when we detect the memory
- // accessing kind more precisely.
- !C->getFunction()->isPresplitCoroutine()) {
- Expression exp = createExpr(C);
- uint32_t e = assignExpNewValueNum(exp).first;
- valueNumbering[C] = e;
- return e;
- } else if (MD && AA->onlyReadsMemory(C) &&
- // FIXME: Currently the calls which may access the thread id may
- // be considered as not accessing the memory. But this is
- // problematic for coroutines, since coroutines may resume in a
- // different thread. So we disable the optimization here for the
- // correctness. However, it may block many other correct
- // optimizations. Revert this one when we detect the memory
- // accessing kind more precisely.
- !C->getFunction()->isPresplitCoroutine()) {
- Expression exp = createExpr(C);
- auto ValNum = assignExpNewValueNum(exp);
- if (ValNum.second) {
- valueNumbering[C] = ValNum.first;
- return ValNum.first;
- }
- MemDepResult local_dep = MD->getDependency(C);
- if (!local_dep.isDef() && !local_dep.isNonLocal()) {
- valueNumbering[C] = nextValueNumber;
- return nextValueNumber++;
- }
- if (local_dep.isDef()) {
- // For masked load/store intrinsics, the local_dep may actually be
- // a normal load or store instruction.
- CallInst *local_cdep = dyn_cast<CallInst>(local_dep.getInst());
- if (!local_cdep || local_cdep->arg_size() != C->arg_size()) {
- valueNumbering[C] = nextValueNumber;
- return nextValueNumber++;
- }
- for (unsigned i = 0, e = C->arg_size(); i < e; ++i) {
- uint32_t c_vn = lookupOrAdd(C->getArgOperand(i));
- uint32_t cd_vn = lookupOrAdd(local_cdep->getArgOperand(i));
- if (c_vn != cd_vn) {
- valueNumbering[C] = nextValueNumber;
- return nextValueNumber++;
- }
- }
- uint32_t v = lookupOrAdd(local_cdep);
- valueNumbering[C] = v;
- return v;
- }
- // Non-local case.
- const MemoryDependenceResults::NonLocalDepInfo &deps =
- MD->getNonLocalCallDependency(C);
- // FIXME: Move the checking logic to MemDep!
- CallInst* cdep = nullptr;
- // Check to see if we have a single dominating call instruction that is
- // identical to C.
- for (const NonLocalDepEntry &I : deps) {
- if (I.getResult().isNonLocal())
- continue;
- // We don't handle non-definitions. If we already have a call, reject
- // instruction dependencies.
- if (!I.getResult().isDef() || cdep != nullptr) {
- cdep = nullptr;
- break;
- }
- CallInst *NonLocalDepCall = dyn_cast<CallInst>(I.getResult().getInst());
- // FIXME: All duplicated with non-local case.
- if (NonLocalDepCall && DT->properlyDominates(I.getBB(), C->getParent())) {
- cdep = NonLocalDepCall;
- continue;
- }
- cdep = nullptr;
- break;
- }
- if (!cdep) {
- valueNumbering[C] = nextValueNumber;
- return nextValueNumber++;
- }
- if (cdep->arg_size() != C->arg_size()) {
- valueNumbering[C] = nextValueNumber;
- return nextValueNumber++;
- }
- for (unsigned i = 0, e = C->arg_size(); i < e; ++i) {
- uint32_t c_vn = lookupOrAdd(C->getArgOperand(i));
- uint32_t cd_vn = lookupOrAdd(cdep->getArgOperand(i));
- if (c_vn != cd_vn) {
- valueNumbering[C] = nextValueNumber;
- return nextValueNumber++;
- }
- }
- uint32_t v = lookupOrAdd(cdep);
- valueNumbering[C] = v;
- return v;
- } else {
- valueNumbering[C] = nextValueNumber;
- return nextValueNumber++;
- }
- }
- /// Returns true if a value number exists for the specified value.
- bool GVNPass::ValueTable::exists(Value *V) const {
- return valueNumbering.count(V) != 0;
- }
- /// lookup_or_add - Returns the value number for the specified value, assigning
- /// it a new number if it did not have one before.
- uint32_t GVNPass::ValueTable::lookupOrAdd(Value *V) {
- DenseMap<Value*, uint32_t>::iterator VI = valueNumbering.find(V);
- if (VI != valueNumbering.end())
- return VI->second;
- auto *I = dyn_cast<Instruction>(V);
- if (!I) {
- valueNumbering[V] = nextValueNumber;
- return nextValueNumber++;
- }
- Expression exp;
- switch (I->getOpcode()) {
- case Instruction::Call:
- return lookupOrAddCall(cast<CallInst>(I));
- case Instruction::FNeg:
- case Instruction::Add:
- case Instruction::FAdd:
- case Instruction::Sub:
- case Instruction::FSub:
- case Instruction::Mul:
- case Instruction::FMul:
- case Instruction::UDiv:
- case Instruction::SDiv:
- case Instruction::FDiv:
- case Instruction::URem:
- case Instruction::SRem:
- case Instruction::FRem:
- case Instruction::Shl:
- case Instruction::LShr:
- case Instruction::AShr:
- case Instruction::And:
- case Instruction::Or:
- case Instruction::Xor:
- case Instruction::ICmp:
- case Instruction::FCmp:
- case Instruction::Trunc:
- case Instruction::ZExt:
- case Instruction::SExt:
- case Instruction::FPToUI:
- case Instruction::FPToSI:
- case Instruction::UIToFP:
- case Instruction::SIToFP:
- case Instruction::FPTrunc:
- case Instruction::FPExt:
- case Instruction::PtrToInt:
- case Instruction::IntToPtr:
- case Instruction::AddrSpaceCast:
- case Instruction::BitCast:
- case Instruction::Select:
- case Instruction::Freeze:
- case Instruction::ExtractElement:
- case Instruction::InsertElement:
- case Instruction::ShuffleVector:
- case Instruction::InsertValue:
- exp = createExpr(I);
- break;
- case Instruction::GetElementPtr:
- exp = createGEPExpr(cast<GetElementPtrInst>(I));
- break;
- case Instruction::ExtractValue:
- exp = createExtractvalueExpr(cast<ExtractValueInst>(I));
- break;
- case Instruction::PHI:
- valueNumbering[V] = nextValueNumber;
- NumberingPhi[nextValueNumber] = cast<PHINode>(V);
- return nextValueNumber++;
- default:
- valueNumbering[V] = nextValueNumber;
- return nextValueNumber++;
- }
- uint32_t e = assignExpNewValueNum(exp).first;
- valueNumbering[V] = e;
- return e;
- }
- /// Returns the value number of the specified value. Fails if
- /// the value has not yet been numbered.
- uint32_t GVNPass::ValueTable::lookup(Value *V, bool Verify) const {
- DenseMap<Value*, uint32_t>::const_iterator VI = valueNumbering.find(V);
- if (Verify) {
- assert(VI != valueNumbering.end() && "Value not numbered?");
- return VI->second;
- }
- return (VI != valueNumbering.end()) ? VI->second : 0;
- }
- /// Returns the value number of the given comparison,
- /// assigning it a new number if it did not have one before. Useful when
- /// we deduced the result of a comparison, but don't immediately have an
- /// instruction realizing that comparison to hand.
- uint32_t GVNPass::ValueTable::lookupOrAddCmp(unsigned Opcode,
- CmpInst::Predicate Predicate,
- Value *LHS, Value *RHS) {
- Expression exp = createCmpExpr(Opcode, Predicate, LHS, RHS);
- return assignExpNewValueNum(exp).first;
- }
- /// Remove all entries from the ValueTable.
- void GVNPass::ValueTable::clear() {
- valueNumbering.clear();
- expressionNumbering.clear();
- NumberingPhi.clear();
- PhiTranslateTable.clear();
- nextValueNumber = 1;
- Expressions.clear();
- ExprIdx.clear();
- nextExprNumber = 0;
- }
- /// Remove a value from the value numbering.
- void GVNPass::ValueTable::erase(Value *V) {
- uint32_t Num = valueNumbering.lookup(V);
- valueNumbering.erase(V);
- // If V is PHINode, V <--> value number is an one-to-one mapping.
- if (isa<PHINode>(V))
- NumberingPhi.erase(Num);
- }
- /// verifyRemoved - Verify that the value is removed from all internal data
- /// structures.
- void GVNPass::ValueTable::verifyRemoved(const Value *V) const {
- for (DenseMap<Value*, uint32_t>::const_iterator
- I = valueNumbering.begin(), E = valueNumbering.end(); I != E; ++I) {
- assert(I->first != V && "Inst still occurs in value numbering map!");
- }
- }
- //===----------------------------------------------------------------------===//
- // GVN Pass
- //===----------------------------------------------------------------------===//
- bool GVNPass::isPREEnabled() const {
- return Options.AllowPRE.value_or(GVNEnablePRE);
- }
- bool GVNPass::isLoadPREEnabled() const {
- return Options.AllowLoadPRE.value_or(GVNEnableLoadPRE);
- }
- bool GVNPass::isLoadInLoopPREEnabled() const {
- return Options.AllowLoadInLoopPRE.value_or(GVNEnableLoadInLoopPRE);
- }
- bool GVNPass::isLoadPRESplitBackedgeEnabled() const {
- return Options.AllowLoadPRESplitBackedge.value_or(
- GVNEnableSplitBackedgeInLoadPRE);
- }
- bool GVNPass::isMemDepEnabled() const {
- return Options.AllowMemDep.value_or(GVNEnableMemDep);
- }
- PreservedAnalyses GVNPass::run(Function &F, FunctionAnalysisManager &AM) {
- // FIXME: The order of evaluation of these 'getResult' calls is very
- // significant! Re-ordering these variables will cause GVN when run alone to
- // be less effective! We should fix memdep and basic-aa to not exhibit this
- // behavior, but until then don't change the order here.
- auto &AC = AM.getResult<AssumptionAnalysis>(F);
- auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
- auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
- auto &AA = AM.getResult<AAManager>(F);
- auto *MemDep =
- isMemDepEnabled() ? &AM.getResult<MemoryDependenceAnalysis>(F) : nullptr;
- auto *LI = AM.getCachedResult<LoopAnalysis>(F);
- auto *MSSA = AM.getCachedResult<MemorySSAAnalysis>(F);
- auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F);
- bool Changed = runImpl(F, AC, DT, TLI, AA, MemDep, LI, &ORE,
- MSSA ? &MSSA->getMSSA() : nullptr);
- if (!Changed)
- return PreservedAnalyses::all();
- PreservedAnalyses PA;
- PA.preserve<DominatorTreeAnalysis>();
- PA.preserve<TargetLibraryAnalysis>();
- if (MSSA)
- PA.preserve<MemorySSAAnalysis>();
- if (LI)
- PA.preserve<LoopAnalysis>();
- return PA;
- }
- void GVNPass::printPipeline(
- raw_ostream &OS, function_ref<StringRef(StringRef)> MapClassName2PassName) {
- static_cast<PassInfoMixin<GVNPass> *>(this)->printPipeline(
- OS, MapClassName2PassName);
- OS << "<";
- if (Options.AllowPRE != std::nullopt)
- OS << (*Options.AllowPRE ? "" : "no-") << "pre;";
- if (Options.AllowLoadPRE != std::nullopt)
- OS << (*Options.AllowLoadPRE ? "" : "no-") << "load-pre;";
- if (Options.AllowLoadPRESplitBackedge != std::nullopt)
- OS << (*Options.AllowLoadPRESplitBackedge ? "" : "no-")
- << "split-backedge-load-pre;";
- if (Options.AllowMemDep != std::nullopt)
- OS << (*Options.AllowMemDep ? "" : "no-") << "memdep";
- OS << ">";
- }
- #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
- LLVM_DUMP_METHOD void GVNPass::dump(DenseMap<uint32_t, Value *> &d) const {
- errs() << "{\n";
- for (auto &I : d) {
- errs() << I.first << "\n";
- I.second->dump();
- }
- errs() << "}\n";
- }
- #endif
- enum class AvailabilityState : char {
- /// We know the block *is not* fully available. This is a fixpoint.
- Unavailable = 0,
- /// We know the block *is* fully available. This is a fixpoint.
- Available = 1,
- /// We do not know whether the block is fully available or not,
- /// but we are currently speculating that it will be.
- /// If it would have turned out that the block was, in fact, not fully
- /// available, this would have been cleaned up into an Unavailable.
- SpeculativelyAvailable = 2,
- };
- /// Return true if we can prove that the value
- /// we're analyzing is fully available in the specified block. As we go, keep
- /// track of which blocks we know are fully alive in FullyAvailableBlocks. This
- /// map is actually a tri-state map with the following values:
- /// 0) we know the block *is not* fully available.
- /// 1) we know the block *is* fully available.
- /// 2) we do not know whether the block is fully available or not, but we are
- /// currently speculating that it will be.
- static bool IsValueFullyAvailableInBlock(
- BasicBlock *BB,
- DenseMap<BasicBlock *, AvailabilityState> &FullyAvailableBlocks) {
- SmallVector<BasicBlock *, 32> Worklist;
- std::optional<BasicBlock *> UnavailableBB;
- // The number of times we didn't find an entry for a block in a map and
- // optimistically inserted an entry marking block as speculatively available.
- unsigned NumNewNewSpeculativelyAvailableBBs = 0;
- #ifndef NDEBUG
- SmallSet<BasicBlock *, 32> NewSpeculativelyAvailableBBs;
- SmallVector<BasicBlock *, 32> AvailableBBs;
- #endif
- Worklist.emplace_back(BB);
- while (!Worklist.empty()) {
- BasicBlock *CurrBB = Worklist.pop_back_val(); // LoadFO - depth-first!
- // Optimistically assume that the block is Speculatively Available and check
- // to see if we already know about this block in one lookup.
- std::pair<DenseMap<BasicBlock *, AvailabilityState>::iterator, bool> IV =
- FullyAvailableBlocks.try_emplace(
- CurrBB, AvailabilityState::SpeculativelyAvailable);
- AvailabilityState &State = IV.first->second;
- // Did the entry already exist for this block?
- if (!IV.second) {
- if (State == AvailabilityState::Unavailable) {
- UnavailableBB = CurrBB;
- break; // Backpropagate unavailability info.
- }
- #ifndef NDEBUG
- AvailableBBs.emplace_back(CurrBB);
- #endif
- continue; // Don't recurse further, but continue processing worklist.
- }
- // No entry found for block.
- ++NumNewNewSpeculativelyAvailableBBs;
- bool OutOfBudget = NumNewNewSpeculativelyAvailableBBs > MaxBBSpeculations;
- // If we have exhausted our budget, mark this block as unavailable.
- // Also, if this block has no predecessors, the value isn't live-in here.
- if (OutOfBudget || pred_empty(CurrBB)) {
- MaxBBSpeculationCutoffReachedTimes += (int)OutOfBudget;
- State = AvailabilityState::Unavailable;
- UnavailableBB = CurrBB;
- break; // Backpropagate unavailability info.
- }
- // Tentatively consider this block as speculatively available.
- #ifndef NDEBUG
- NewSpeculativelyAvailableBBs.insert(CurrBB);
- #endif
- // And further recurse into block's predecessors, in depth-first order!
- Worklist.append(pred_begin(CurrBB), pred_end(CurrBB));
- }
- #if LLVM_ENABLE_STATS
- IsValueFullyAvailableInBlockNumSpeculationsMax.updateMax(
- NumNewNewSpeculativelyAvailableBBs);
- #endif
- // If the block isn't marked as fixpoint yet
- // (the Unavailable and Available states are fixpoints)
- auto MarkAsFixpointAndEnqueueSuccessors =
- [&](BasicBlock *BB, AvailabilityState FixpointState) {
- auto It = FullyAvailableBlocks.find(BB);
- if (It == FullyAvailableBlocks.end())
- return; // Never queried this block, leave as-is.
- switch (AvailabilityState &State = It->second) {
- case AvailabilityState::Unavailable:
- case AvailabilityState::Available:
- return; // Don't backpropagate further, continue processing worklist.
- case AvailabilityState::SpeculativelyAvailable: // Fix it!
- State = FixpointState;
- #ifndef NDEBUG
- assert(NewSpeculativelyAvailableBBs.erase(BB) &&
- "Found a speculatively available successor leftover?");
- #endif
- // Queue successors for further processing.
- Worklist.append(succ_begin(BB), succ_end(BB));
- return;
- }
- };
- if (UnavailableBB) {
- // Okay, we have encountered an unavailable block.
- // Mark speculatively available blocks reachable from UnavailableBB as
- // unavailable as well. Paths are terminated when they reach blocks not in
- // FullyAvailableBlocks or they are not marked as speculatively available.
- Worklist.clear();
- Worklist.append(succ_begin(*UnavailableBB), succ_end(*UnavailableBB));
- while (!Worklist.empty())
- MarkAsFixpointAndEnqueueSuccessors(Worklist.pop_back_val(),
- AvailabilityState::Unavailable);
- }
- #ifndef NDEBUG
- Worklist.clear();
- for (BasicBlock *AvailableBB : AvailableBBs)
- Worklist.append(succ_begin(AvailableBB), succ_end(AvailableBB));
- while (!Worklist.empty())
- MarkAsFixpointAndEnqueueSuccessors(Worklist.pop_back_val(),
- AvailabilityState::Available);
- assert(NewSpeculativelyAvailableBBs.empty() &&
- "Must have fixed all the new speculatively available blocks.");
- #endif
- return !UnavailableBB;
- }
- /// Given a set of loads specified by ValuesPerBlock,
- /// construct SSA form, allowing us to eliminate Load. This returns the value
- /// that should be used at Load's definition site.
- static Value *
- ConstructSSAForLoadSet(LoadInst *Load,
- SmallVectorImpl<AvailableValueInBlock> &ValuesPerBlock,
- GVNPass &gvn) {
- // Check for the fully redundant, dominating load case. In this case, we can
- // just use the dominating value directly.
- if (ValuesPerBlock.size() == 1 &&
- gvn.getDominatorTree().properlyDominates(ValuesPerBlock[0].BB,
- Load->getParent())) {
- assert(!ValuesPerBlock[0].AV.isUndefValue() &&
- "Dead BB dominate this block");
- return ValuesPerBlock[0].MaterializeAdjustedValue(Load, gvn);
- }
- // Otherwise, we have to construct SSA form.
- SmallVector<PHINode*, 8> NewPHIs;
- SSAUpdater SSAUpdate(&NewPHIs);
- SSAUpdate.Initialize(Load->getType(), Load->getName());
- for (const AvailableValueInBlock &AV : ValuesPerBlock) {
- BasicBlock *BB = AV.BB;
- if (AV.AV.isUndefValue())
- continue;
- if (SSAUpdate.HasValueForBlock(BB))
- continue;
- // If the value is the load that we will be eliminating, and the block it's
- // available in is the block that the load is in, then don't add it as
- // SSAUpdater will resolve the value to the relevant phi which may let it
- // avoid phi construction entirely if there's actually only one value.
- if (BB == Load->getParent() &&
- ((AV.AV.isSimpleValue() && AV.AV.getSimpleValue() == Load) ||
- (AV.AV.isCoercedLoadValue() && AV.AV.getCoercedLoadValue() == Load)))
- continue;
- SSAUpdate.AddAvailableValue(BB, AV.MaterializeAdjustedValue(Load, gvn));
- }
- // Perform PHI construction.
- return SSAUpdate.GetValueInMiddleOfBlock(Load->getParent());
- }
- Value *AvailableValue::MaterializeAdjustedValue(LoadInst *Load,
- Instruction *InsertPt,
- GVNPass &gvn) const {
- Value *Res;
- Type *LoadTy = Load->getType();
- const DataLayout &DL = Load->getModule()->getDataLayout();
- if (isSimpleValue()) {
- Res = getSimpleValue();
- if (Res->getType() != LoadTy) {
- Res = getStoreValueForLoad(Res, Offset, LoadTy, InsertPt, DL);
- LLVM_DEBUG(dbgs() << "GVN COERCED NONLOCAL VAL:\nOffset: " << Offset
- << " " << *getSimpleValue() << '\n'
- << *Res << '\n'
- << "\n\n\n");
- }
- } else if (isCoercedLoadValue()) {
- LoadInst *CoercedLoad = getCoercedLoadValue();
- if (CoercedLoad->getType() == LoadTy && Offset == 0) {
- Res = CoercedLoad;
- } else {
- Res = getLoadValueForLoad(CoercedLoad, Offset, LoadTy, InsertPt, DL);
- // We would like to use gvn.markInstructionForDeletion here, but we can't
- // because the load is already memoized into the leader map table that GVN
- // tracks. It is potentially possible to remove the load from the table,
- // but then there all of the operations based on it would need to be
- // rehashed. Just leave the dead load around.
- gvn.getMemDep().removeInstruction(CoercedLoad);
- LLVM_DEBUG(dbgs() << "GVN COERCED NONLOCAL LOAD:\nOffset: " << Offset
- << " " << *getCoercedLoadValue() << '\n'
- << *Res << '\n'
- << "\n\n\n");
- }
- } else if (isMemIntrinValue()) {
- Res = getMemInstValueForLoad(getMemIntrinValue(), Offset, LoadTy,
- InsertPt, DL);
- LLVM_DEBUG(dbgs() << "GVN COERCED NONLOCAL MEM INTRIN:\nOffset: " << Offset
- << " " << *getMemIntrinValue() << '\n'
- << *Res << '\n'
- << "\n\n\n");
- } else if (isSelectValue()) {
- // Introduce a new value select for a load from an eligible pointer select.
- SelectInst *Sel = getSelectValue();
- assert(V1 && V2 && "both value operands of the select must be present");
- Res = SelectInst::Create(Sel->getCondition(), V1, V2, "", Sel);
- } else {
- llvm_unreachable("Should not materialize value from dead block");
- }
- assert(Res && "failed to materialize?");
- return Res;
- }
- static bool isLifetimeStart(const Instruction *Inst) {
- if (const IntrinsicInst* II = dyn_cast<IntrinsicInst>(Inst))
- return II->getIntrinsicID() == Intrinsic::lifetime_start;
- return false;
- }
- /// Assuming To can be reached from both From and Between, does Between lie on
- /// every path from From to To?
- static bool liesBetween(const Instruction *From, Instruction *Between,
- const Instruction *To, DominatorTree *DT) {
- if (From->getParent() == Between->getParent())
- return DT->dominates(From, Between);
- SmallSet<BasicBlock *, 1> Exclusion;
- Exclusion.insert(Between->getParent());
- return !isPotentiallyReachable(From, To, &Exclusion, DT);
- }
- /// Try to locate the three instruction involved in a missed
- /// load-elimination case that is due to an intervening store.
- static void reportMayClobberedLoad(LoadInst *Load, MemDepResult DepInfo,
- DominatorTree *DT,
- OptimizationRemarkEmitter *ORE) {
- using namespace ore;
- Instruction *OtherAccess = nullptr;
- OptimizationRemarkMissed R(DEBUG_TYPE, "LoadClobbered", Load);
- R << "load of type " << NV("Type", Load->getType()) << " not eliminated"
- << setExtraArgs();
- for (auto *U : Load->getPointerOperand()->users()) {
- if (U != Load && (isa<LoadInst>(U) || isa<StoreInst>(U))) {
- auto *I = cast<Instruction>(U);
- if (I->getFunction() == Load->getFunction() && DT->dominates(I, Load)) {
- // Use the most immediately dominating value
- if (OtherAccess) {
- if (DT->dominates(OtherAccess, I))
- OtherAccess = I;
- else
- assert(U == OtherAccess || DT->dominates(I, OtherAccess));
- } else
- OtherAccess = I;
- }
- }
- }
- if (!OtherAccess) {
- // There is no dominating use, check if we can find a closest non-dominating
- // use that lies between any other potentially available use and Load.
- for (auto *U : Load->getPointerOperand()->users()) {
- if (U != Load && (isa<LoadInst>(U) || isa<StoreInst>(U))) {
- auto *I = cast<Instruction>(U);
- if (I->getFunction() == Load->getFunction() &&
- isPotentiallyReachable(I, Load, nullptr, DT)) {
- if (OtherAccess) {
- if (liesBetween(OtherAccess, I, Load, DT)) {
- OtherAccess = I;
- } else if (!liesBetween(I, OtherAccess, Load, DT)) {
- // These uses are both partially available at Load were it not for
- // the clobber, but neither lies strictly after the other.
- OtherAccess = nullptr;
- break;
- } // else: keep current OtherAccess since it lies between U and Load
- } else {
- OtherAccess = I;
- }
- }
- }
- }
- }
- if (OtherAccess)
- R << " in favor of " << NV("OtherAccess", OtherAccess);
- R << " because it is clobbered by " << NV("ClobberedBy", DepInfo.getInst());
- ORE->emit(R);
- }
- // Find non-clobbered value for Loc memory location in extended basic block
- // (chain of basic blocks with single predecessors) starting From instruction.
- static Value *findDominatingValue(const MemoryLocation &Loc, Type *LoadTy,
- Instruction *From, AAResults *AA) {
- uint32_t NumVisitedInsts = 0;
- BasicBlock *FromBB = From->getParent();
- BatchAAResults BatchAA(*AA);
- for (BasicBlock *BB = FromBB; BB; BB = BB->getSinglePredecessor())
- for (auto I = BB == FromBB ? From->getReverseIterator() : BB->rbegin(),
- E = BB->rend();
- I != E; ++I) {
- // Stop the search if limit is reached.
- if (++NumVisitedInsts > MaxNumVisitedInsts)
- return nullptr;
- Instruction *Inst = &*I;
- if (isModSet(BatchAA.getModRefInfo(Inst, Loc)))
- return nullptr;
- if (auto *LI = dyn_cast<LoadInst>(Inst))
- if (LI->getPointerOperand() == Loc.Ptr && LI->getType() == LoadTy)
- return LI;
- }
- return nullptr;
- }
- std::optional<AvailableValue>
- GVNPass::AnalyzeLoadAvailability(LoadInst *Load, MemDepResult DepInfo,
- Value *Address) {
- assert(Load->isUnordered() && "rules below are incorrect for ordered access");
- assert(DepInfo.isLocal() && "expected a local dependence");
- Instruction *DepInst = DepInfo.getInst();
- const DataLayout &DL = Load->getModule()->getDataLayout();
- if (DepInfo.isClobber()) {
- // If the dependence is to a store that writes to a superset of the bits
- // read by the load, we can extract the bits we need for the load from the
- // stored value.
- if (StoreInst *DepSI = dyn_cast<StoreInst>(DepInst)) {
- // Can't forward from non-atomic to atomic without violating memory model.
- if (Address && Load->isAtomic() <= DepSI->isAtomic()) {
- int Offset =
- analyzeLoadFromClobberingStore(Load->getType(), Address, DepSI, DL);
- if (Offset != -1)
- return AvailableValue::get(DepSI->getValueOperand(), Offset);
- }
- }
- // Check to see if we have something like this:
- // load i32* P
- // load i8* (P+1)
- // if we have this, replace the later with an extraction from the former.
- if (LoadInst *DepLoad = dyn_cast<LoadInst>(DepInst)) {
- // If this is a clobber and L is the first instruction in its block, then
- // we have the first instruction in the entry block.
- // Can't forward from non-atomic to atomic without violating memory model.
- if (DepLoad != Load && Address &&
- Load->isAtomic() <= DepLoad->isAtomic()) {
- Type *LoadType = Load->getType();
- int Offset = -1;
- // If MD reported clobber, check it was nested.
- if (DepInfo.isClobber() &&
- canCoerceMustAliasedValueToLoad(DepLoad, LoadType, DL)) {
- const auto ClobberOff = MD->getClobberOffset(DepLoad);
- // GVN has no deal with a negative offset.
- Offset = (ClobberOff == std::nullopt || *ClobberOff < 0)
- ? -1
- : *ClobberOff;
- }
- if (Offset == -1)
- Offset =
- analyzeLoadFromClobberingLoad(LoadType, Address, DepLoad, DL);
- if (Offset != -1)
- return AvailableValue::getLoad(DepLoad, Offset);
- }
- }
- // If the clobbering value is a memset/memcpy/memmove, see if we can
- // forward a value on from it.
- if (MemIntrinsic *DepMI = dyn_cast<MemIntrinsic>(DepInst)) {
- if (Address && !Load->isAtomic()) {
- int Offset = analyzeLoadFromClobberingMemInst(Load->getType(), Address,
- DepMI, DL);
- if (Offset != -1)
- return AvailableValue::getMI(DepMI, Offset);
- }
- }
- // Nothing known about this clobber, have to be conservative
- LLVM_DEBUG(
- // fast print dep, using operator<< on instruction is too slow.
- dbgs() << "GVN: load "; Load->printAsOperand(dbgs());
- dbgs() << " is clobbered by " << *DepInst << '\n';);
- if (ORE->allowExtraAnalysis(DEBUG_TYPE))
- reportMayClobberedLoad(Load, DepInfo, DT, ORE);
- return std::nullopt;
- }
- assert(DepInfo.isDef() && "follows from above");
- // Loading the alloca -> undef.
- // Loading immediately after lifetime begin -> undef.
- if (isa<AllocaInst>(DepInst) || isLifetimeStart(DepInst))
- return AvailableValue::get(UndefValue::get(Load->getType()));
- if (Constant *InitVal =
- getInitialValueOfAllocation(DepInst, TLI, Load->getType()))
- return AvailableValue::get(InitVal);
- if (StoreInst *S = dyn_cast<StoreInst>(DepInst)) {
- // Reject loads and stores that are to the same address but are of
- // different types if we have to. If the stored value is convertable to
- // the loaded value, we can reuse it.
- if (!canCoerceMustAliasedValueToLoad(S->getValueOperand(), Load->getType(),
- DL))
- return std::nullopt;
- // Can't forward from non-atomic to atomic without violating memory model.
- if (S->isAtomic() < Load->isAtomic())
- return std::nullopt;
- return AvailableValue::get(S->getValueOperand());
- }
- if (LoadInst *LD = dyn_cast<LoadInst>(DepInst)) {
- // If the types mismatch and we can't handle it, reject reuse of the load.
- // If the stored value is larger or equal to the loaded value, we can reuse
- // it.
- if (!canCoerceMustAliasedValueToLoad(LD, Load->getType(), DL))
- return std::nullopt;
- // Can't forward from non-atomic to atomic without violating memory model.
- if (LD->isAtomic() < Load->isAtomic())
- return std::nullopt;
- return AvailableValue::getLoad(LD);
- }
- // Check if load with Addr dependent from select can be converted to select
- // between load values. There must be no instructions between the found
- // loads and DepInst that may clobber the loads.
- if (auto *Sel = dyn_cast<SelectInst>(DepInst)) {
- assert(Sel->getType() == Load->getPointerOperandType());
- auto Loc = MemoryLocation::get(Load);
- Value *V1 =
- findDominatingValue(Loc.getWithNewPtr(Sel->getTrueValue()),
- Load->getType(), DepInst, getAliasAnalysis());
- if (!V1)
- return std::nullopt;
- Value *V2 =
- findDominatingValue(Loc.getWithNewPtr(Sel->getFalseValue()),
- Load->getType(), DepInst, getAliasAnalysis());
- if (!V2)
- return std::nullopt;
- return AvailableValue::getSelect(Sel, V1, V2);
- }
- // Unknown def - must be conservative
- LLVM_DEBUG(
- // fast print dep, using operator<< on instruction is too slow.
- dbgs() << "GVN: load "; Load->printAsOperand(dbgs());
- dbgs() << " has unknown def " << *DepInst << '\n';);
- return std::nullopt;
- }
- void GVNPass::AnalyzeLoadAvailability(LoadInst *Load, LoadDepVect &Deps,
- AvailValInBlkVect &ValuesPerBlock,
- UnavailBlkVect &UnavailableBlocks) {
- // Filter out useless results (non-locals, etc). Keep track of the blocks
- // where we have a value available in repl, also keep track of whether we see
- // dependencies that produce an unknown value for the load (such as a call
- // that could potentially clobber the load).
- for (const auto &Dep : Deps) {
- BasicBlock *DepBB = Dep.getBB();
- MemDepResult DepInfo = Dep.getResult();
- if (DeadBlocks.count(DepBB)) {
- // Dead dependent mem-op disguise as a load evaluating the same value
- // as the load in question.
- ValuesPerBlock.push_back(AvailableValueInBlock::getUndef(DepBB));
- continue;
- }
- if (!DepInfo.isLocal()) {
- UnavailableBlocks.push_back(DepBB);
- continue;
- }
- // The address being loaded in this non-local block may not be the same as
- // the pointer operand of the load if PHI translation occurs. Make sure
- // to consider the right address.
- if (auto AV = AnalyzeLoadAvailability(Load, DepInfo, Dep.getAddress())) {
- // subtlety: because we know this was a non-local dependency, we know
- // it's safe to materialize anywhere between the instruction within
- // DepInfo and the end of it's block.
- ValuesPerBlock.push_back(
- AvailableValueInBlock::get(DepBB, std::move(*AV)));
- } else {
- UnavailableBlocks.push_back(DepBB);
- }
- }
- assert(Deps.size() == ValuesPerBlock.size() + UnavailableBlocks.size() &&
- "post condition violation");
- }
- void GVNPass::eliminatePartiallyRedundantLoad(
- LoadInst *Load, AvailValInBlkVect &ValuesPerBlock,
- MapVector<BasicBlock *, Value *> &AvailableLoads) {
- for (const auto &AvailableLoad : AvailableLoads) {
- BasicBlock *UnavailableBlock = AvailableLoad.first;
- Value *LoadPtr = AvailableLoad.second;
- auto *NewLoad =
- new LoadInst(Load->getType(), LoadPtr, Load->getName() + ".pre",
- Load->isVolatile(), Load->getAlign(), Load->getOrdering(),
- Load->getSyncScopeID(), UnavailableBlock->getTerminator());
- NewLoad->setDebugLoc(Load->getDebugLoc());
- if (MSSAU) {
- auto *MSSA = MSSAU->getMemorySSA();
- // Get the defining access of the original load or use the load if it is a
- // MemoryDef (e.g. because it is volatile). The inserted loads are
- // guaranteed to load from the same definition.
- auto *LoadAcc = MSSA->getMemoryAccess(Load);
- auto *DefiningAcc =
- isa<MemoryDef>(LoadAcc) ? LoadAcc : LoadAcc->getDefiningAccess();
- auto *NewAccess = MSSAU->createMemoryAccessInBB(
- NewLoad, DefiningAcc, NewLoad->getParent(),
- MemorySSA::BeforeTerminator);
- if (auto *NewDef = dyn_cast<MemoryDef>(NewAccess))
- MSSAU->insertDef(NewDef, /*RenameUses=*/true);
- else
- MSSAU->insertUse(cast<MemoryUse>(NewAccess), /*RenameUses=*/true);
- }
- // Transfer the old load's AA tags to the new load.
- AAMDNodes Tags = Load->getAAMetadata();
- if (Tags)
- NewLoad->setAAMetadata(Tags);
- if (auto *MD = Load->getMetadata(LLVMContext::MD_invariant_load))
- NewLoad->setMetadata(LLVMContext::MD_invariant_load, MD);
- if (auto *InvGroupMD = Load->getMetadata(LLVMContext::MD_invariant_group))
- NewLoad->setMetadata(LLVMContext::MD_invariant_group, InvGroupMD);
- if (auto *RangeMD = Load->getMetadata(LLVMContext::MD_range))
- NewLoad->setMetadata(LLVMContext::MD_range, RangeMD);
- if (auto *AccessMD = Load->getMetadata(LLVMContext::MD_access_group))
- if (LI &&
- LI->getLoopFor(Load->getParent()) == LI->getLoopFor(UnavailableBlock))
- NewLoad->setMetadata(LLVMContext::MD_access_group, AccessMD);
- // We do not propagate the old load's debug location, because the new
- // load now lives in a different BB, and we want to avoid a jumpy line
- // table.
- // FIXME: How do we retain source locations without causing poor debugging
- // behavior?
- // Add the newly created load.
- ValuesPerBlock.push_back(
- AvailableValueInBlock::get(UnavailableBlock, NewLoad));
- MD->invalidateCachedPointerInfo(LoadPtr);
- LLVM_DEBUG(dbgs() << "GVN INSERTED " << *NewLoad << '\n');
- }
- // Perform PHI construction.
- Value *V = ConstructSSAForLoadSet(Load, ValuesPerBlock, *this);
- Load->replaceAllUsesWith(V);
- if (isa<PHINode>(V))
- V->takeName(Load);
- if (Instruction *I = dyn_cast<Instruction>(V))
- I->setDebugLoc(Load->getDebugLoc());
- if (V->getType()->isPtrOrPtrVectorTy())
- MD->invalidateCachedPointerInfo(V);
- markInstructionForDeletion(Load);
- ORE->emit([&]() {
- return OptimizationRemark(DEBUG_TYPE, "LoadPRE", Load)
- << "load eliminated by PRE";
- });
- }
- bool GVNPass::PerformLoadPRE(LoadInst *Load, AvailValInBlkVect &ValuesPerBlock,
- UnavailBlkVect &UnavailableBlocks) {
- // Okay, we have *some* definitions of the value. This means that the value
- // is available in some of our (transitive) predecessors. Lets think about
- // doing PRE of this load. This will involve inserting a new load into the
- // predecessor when it's not available. We could do this in general, but
- // prefer to not increase code size. As such, we only do this when we know
- // that we only have to insert *one* load (which means we're basically moving
- // the load, not inserting a new one).
- SmallPtrSet<BasicBlock *, 4> Blockers(UnavailableBlocks.begin(),
- UnavailableBlocks.end());
- // Let's find the first basic block with more than one predecessor. Walk
- // backwards through predecessors if needed.
- BasicBlock *LoadBB = Load->getParent();
- BasicBlock *TmpBB = LoadBB;
- // Check that there is no implicit control flow instructions above our load in
- // its block. If there is an instruction that doesn't always pass the
- // execution to the following instruction, then moving through it may become
- // invalid. For example:
- //
- // int arr[LEN];
- // int index = ???;
- // ...
- // guard(0 <= index && index < LEN);
- // use(arr[index]);
- //
- // It is illegal to move the array access to any point above the guard,
- // because if the index is out of bounds we should deoptimize rather than
- // access the array.
- // Check that there is no guard in this block above our instruction.
- bool MustEnsureSafetyOfSpeculativeExecution =
- ICF->isDominatedByICFIFromSameBlock(Load);
- while (TmpBB->getSinglePredecessor()) {
- TmpBB = TmpBB->getSinglePredecessor();
- if (TmpBB == LoadBB) // Infinite (unreachable) loop.
- return false;
- if (Blockers.count(TmpBB))
- return false;
- // If any of these blocks has more than one successor (i.e. if the edge we
- // just traversed was critical), then there are other paths through this
- // block along which the load may not be anticipated. Hoisting the load
- // above this block would be adding the load to execution paths along
- // which it was not previously executed.
- if (TmpBB->getTerminator()->getNumSuccessors() != 1)
- return false;
- // Check that there is no implicit control flow in a block above.
- MustEnsureSafetyOfSpeculativeExecution =
- MustEnsureSafetyOfSpeculativeExecution || ICF->hasICF(TmpBB);
- }
- assert(TmpBB);
- LoadBB = TmpBB;
- // Check to see how many predecessors have the loaded value fully
- // available.
- MapVector<BasicBlock *, Value *> PredLoads;
- DenseMap<BasicBlock *, AvailabilityState> FullyAvailableBlocks;
- for (const AvailableValueInBlock &AV : ValuesPerBlock)
- FullyAvailableBlocks[AV.BB] = AvailabilityState::Available;
- for (BasicBlock *UnavailableBB : UnavailableBlocks)
- FullyAvailableBlocks[UnavailableBB] = AvailabilityState::Unavailable;
- SmallVector<BasicBlock *, 4> CriticalEdgePred;
- for (BasicBlock *Pred : predecessors(LoadBB)) {
- // If any predecessor block is an EH pad that does not allow non-PHI
- // instructions before the terminator, we can't PRE the load.
- if (Pred->getTerminator()->isEHPad()) {
- LLVM_DEBUG(
- dbgs() << "COULD NOT PRE LOAD BECAUSE OF AN EH PAD PREDECESSOR '"
- << Pred->getName() << "': " << *Load << '\n');
- return false;
- }
- if (IsValueFullyAvailableInBlock(Pred, FullyAvailableBlocks)) {
- continue;
- }
- if (Pred->getTerminator()->getNumSuccessors() != 1) {
- if (isa<IndirectBrInst>(Pred->getTerminator())) {
- LLVM_DEBUG(
- dbgs() << "COULD NOT PRE LOAD BECAUSE OF INDBR CRITICAL EDGE '"
- << Pred->getName() << "': " << *Load << '\n');
- return false;
- }
- if (LoadBB->isEHPad()) {
- LLVM_DEBUG(
- dbgs() << "COULD NOT PRE LOAD BECAUSE OF AN EH PAD CRITICAL EDGE '"
- << Pred->getName() << "': " << *Load << '\n');
- return false;
- }
- // Do not split backedge as it will break the canonical loop form.
- if (!isLoadPRESplitBackedgeEnabled())
- if (DT->dominates(LoadBB, Pred)) {
- LLVM_DEBUG(
- dbgs()
- << "COULD NOT PRE LOAD BECAUSE OF A BACKEDGE CRITICAL EDGE '"
- << Pred->getName() << "': " << *Load << '\n');
- return false;
- }
- CriticalEdgePred.push_back(Pred);
- } else {
- // Only add the predecessors that will not be split for now.
- PredLoads[Pred] = nullptr;
- }
- }
- // Decide whether PRE is profitable for this load.
- unsigned NumUnavailablePreds = PredLoads.size() + CriticalEdgePred.size();
- assert(NumUnavailablePreds != 0 &&
- "Fully available value should already be eliminated!");
- // If this load is unavailable in multiple predecessors, reject it.
- // FIXME: If we could restructure the CFG, we could make a common pred with
- // all the preds that don't have an available Load and insert a new load into
- // that one block.
- if (NumUnavailablePreds != 1)
- return false;
- // Now we know where we will insert load. We must ensure that it is safe
- // to speculatively execute the load at that points.
- if (MustEnsureSafetyOfSpeculativeExecution) {
- if (CriticalEdgePred.size())
- if (!isSafeToSpeculativelyExecute(Load, LoadBB->getFirstNonPHI(), AC, DT))
- return false;
- for (auto &PL : PredLoads)
- if (!isSafeToSpeculativelyExecute(Load, PL.first->getTerminator(), AC,
- DT))
- return false;
- }
- // Split critical edges, and update the unavailable predecessors accordingly.
- for (BasicBlock *OrigPred : CriticalEdgePred) {
- BasicBlock *NewPred = splitCriticalEdges(OrigPred, LoadBB);
- assert(!PredLoads.count(OrigPred) && "Split edges shouldn't be in map!");
- PredLoads[NewPred] = nullptr;
- LLVM_DEBUG(dbgs() << "Split critical edge " << OrigPred->getName() << "->"
- << LoadBB->getName() << '\n');
- }
- // Check if the load can safely be moved to all the unavailable predecessors.
- bool CanDoPRE = true;
- const DataLayout &DL = Load->getModule()->getDataLayout();
- SmallVector<Instruction*, 8> NewInsts;
- for (auto &PredLoad : PredLoads) {
- BasicBlock *UnavailablePred = PredLoad.first;
- // Do PHI translation to get its value in the predecessor if necessary. The
- // returned pointer (if non-null) is guaranteed to dominate UnavailablePred.
- // We do the translation for each edge we skipped by going from Load's block
- // to LoadBB, otherwise we might miss pieces needing translation.
- // If all preds have a single successor, then we know it is safe to insert
- // the load on the pred (?!?), so we can insert code to materialize the
- // pointer if it is not available.
- Value *LoadPtr = Load->getPointerOperand();
- BasicBlock *Cur = Load->getParent();
- while (Cur != LoadBB) {
- PHITransAddr Address(LoadPtr, DL, AC);
- LoadPtr = Address.PHITranslateWithInsertion(
- Cur, Cur->getSinglePredecessor(), *DT, NewInsts);
- if (!LoadPtr) {
- CanDoPRE = false;
- break;
- }
- Cur = Cur->getSinglePredecessor();
- }
- if (LoadPtr) {
- PHITransAddr Address(LoadPtr, DL, AC);
- LoadPtr = Address.PHITranslateWithInsertion(LoadBB, UnavailablePred, *DT,
- NewInsts);
- }
- // If we couldn't find or insert a computation of this phi translated value,
- // we fail PRE.
- if (!LoadPtr) {
- LLVM_DEBUG(dbgs() << "COULDN'T INSERT PHI TRANSLATED VALUE OF: "
- << *Load->getPointerOperand() << "\n");
- CanDoPRE = false;
- break;
- }
- PredLoad.second = LoadPtr;
- }
- if (!CanDoPRE) {
- while (!NewInsts.empty()) {
- // Erase instructions generated by the failed PHI translation before
- // trying to number them. PHI translation might insert instructions
- // in basic blocks other than the current one, and we delete them
- // directly, as markInstructionForDeletion only allows removing from the
- // current basic block.
- NewInsts.pop_back_val()->eraseFromParent();
- }
- // HINT: Don't revert the edge-splitting as following transformation may
- // also need to split these critical edges.
- return !CriticalEdgePred.empty();
- }
- // Okay, we can eliminate this load by inserting a reload in the predecessor
- // and using PHI construction to get the value in the other predecessors, do
- // it.
- LLVM_DEBUG(dbgs() << "GVN REMOVING PRE LOAD: " << *Load << '\n');
- LLVM_DEBUG(if (!NewInsts.empty()) dbgs() << "INSERTED " << NewInsts.size()
- << " INSTS: " << *NewInsts.back()
- << '\n');
- // Assign value numbers to the new instructions.
- for (Instruction *I : NewInsts) {
- // Instructions that have been inserted in predecessor(s) to materialize
- // the load address do not retain their original debug locations. Doing
- // so could lead to confusing (but correct) source attributions.
- I->updateLocationAfterHoist();
- // FIXME: We really _ought_ to insert these value numbers into their
- // parent's availability map. However, in doing so, we risk getting into
- // ordering issues. If a block hasn't been processed yet, we would be
- // marking a value as AVAIL-IN, which isn't what we intend.
- VN.lookupOrAdd(I);
- }
- eliminatePartiallyRedundantLoad(Load, ValuesPerBlock, PredLoads);
- ++NumPRELoad;
- return true;
- }
- bool GVNPass::performLoopLoadPRE(LoadInst *Load,
- AvailValInBlkVect &ValuesPerBlock,
- UnavailBlkVect &UnavailableBlocks) {
- if (!LI)
- return false;
- const Loop *L = LI->getLoopFor(Load->getParent());
- // TODO: Generalize to other loop blocks that dominate the latch.
- if (!L || L->getHeader() != Load->getParent())
- return false;
- BasicBlock *Preheader = L->getLoopPreheader();
- BasicBlock *Latch = L->getLoopLatch();
- if (!Preheader || !Latch)
- return false;
- Value *LoadPtr = Load->getPointerOperand();
- // Must be available in preheader.
- if (!L->isLoopInvariant(LoadPtr))
- return false;
- // We plan to hoist the load to preheader without introducing a new fault.
- // In order to do it, we need to prove that we cannot side-exit the loop
- // once loop header is first entered before execution of the load.
- if (ICF->isDominatedByICFIFromSameBlock(Load))
- return false;
- BasicBlock *LoopBlock = nullptr;
- for (auto *Blocker : UnavailableBlocks) {
- // Blockers from outside the loop are handled in preheader.
- if (!L->contains(Blocker))
- continue;
- // Only allow one loop block. Loop header is not less frequently executed
- // than each loop block, and likely it is much more frequently executed. But
- // in case of multiple loop blocks, we need extra information (such as block
- // frequency info) to understand whether it is profitable to PRE into
- // multiple loop blocks.
- if (LoopBlock)
- return false;
- // Do not sink into inner loops. This may be non-profitable.
- if (L != LI->getLoopFor(Blocker))
- return false;
- // Blocks that dominate the latch execute on every single iteration, maybe
- // except the last one. So PREing into these blocks doesn't make much sense
- // in most cases. But the blocks that do not necessarily execute on each
- // iteration are sometimes much colder than the header, and this is when
- // PRE is potentially profitable.
- if (DT->dominates(Blocker, Latch))
- return false;
- // Make sure that the terminator itself doesn't clobber.
- if (Blocker->getTerminator()->mayWriteToMemory())
- return false;
- LoopBlock = Blocker;
- }
- if (!LoopBlock)
- return false;
- // Make sure the memory at this pointer cannot be freed, therefore we can
- // safely reload from it after clobber.
- if (LoadPtr->canBeFreed())
- return false;
- // TODO: Support critical edge splitting if blocker has more than 1 successor.
- MapVector<BasicBlock *, Value *> AvailableLoads;
- AvailableLoads[LoopBlock] = LoadPtr;
- AvailableLoads[Preheader] = LoadPtr;
- LLVM_DEBUG(dbgs() << "GVN REMOVING PRE LOOP LOAD: " << *Load << '\n');
- eliminatePartiallyRedundantLoad(Load, ValuesPerBlock, AvailableLoads);
- ++NumPRELoopLoad;
- return true;
- }
- static void reportLoadElim(LoadInst *Load, Value *AvailableValue,
- OptimizationRemarkEmitter *ORE) {
- using namespace ore;
- ORE->emit([&]() {
- return OptimizationRemark(DEBUG_TYPE, "LoadElim", Load)
- << "load of type " << NV("Type", Load->getType()) << " eliminated"
- << setExtraArgs() << " in favor of "
- << NV("InfavorOfValue", AvailableValue);
- });
- }
- /// Attempt to eliminate a load whose dependencies are
- /// non-local by performing PHI construction.
- bool GVNPass::processNonLocalLoad(LoadInst *Load) {
- // non-local speculations are not allowed under asan.
- if (Load->getParent()->getParent()->hasFnAttribute(
- Attribute::SanitizeAddress) ||
- Load->getParent()->getParent()->hasFnAttribute(
- Attribute::SanitizeHWAddress))
- return false;
- // Step 1: Find the non-local dependencies of the load.
- LoadDepVect Deps;
- MD->getNonLocalPointerDependency(Load, Deps);
- // If we had to process more than one hundred blocks to find the
- // dependencies, this load isn't worth worrying about. Optimizing
- // it will be too expensive.
- unsigned NumDeps = Deps.size();
- if (NumDeps > MaxNumDeps)
- return false;
- // If we had a phi translation failure, we'll have a single entry which is a
- // clobber in the current block. Reject this early.
- if (NumDeps == 1 &&
- !Deps[0].getResult().isDef() && !Deps[0].getResult().isClobber()) {
- LLVM_DEBUG(dbgs() << "GVN: non-local load "; Load->printAsOperand(dbgs());
- dbgs() << " has unknown dependencies\n";);
- return false;
- }
- bool Changed = false;
- // If this load follows a GEP, see if we can PRE the indices before analyzing.
- if (GetElementPtrInst *GEP =
- dyn_cast<GetElementPtrInst>(Load->getOperand(0))) {
- for (Use &U : GEP->indices())
- if (Instruction *I = dyn_cast<Instruction>(U.get()))
- Changed |= performScalarPRE(I);
- }
- // Step 2: Analyze the availability of the load
- AvailValInBlkVect ValuesPerBlock;
- UnavailBlkVect UnavailableBlocks;
- AnalyzeLoadAvailability(Load, Deps, ValuesPerBlock, UnavailableBlocks);
- // If we have no predecessors that produce a known value for this load, exit
- // early.
- if (ValuesPerBlock.empty())
- return Changed;
- // Step 3: Eliminate fully redundancy.
- //
- // If all of the instructions we depend on produce a known value for this
- // load, then it is fully redundant and we can use PHI insertion to compute
- // its value. Insert PHIs and remove the fully redundant value now.
- if (UnavailableBlocks.empty()) {
- LLVM_DEBUG(dbgs() << "GVN REMOVING NONLOCAL LOAD: " << *Load << '\n');
- // Perform PHI construction.
- Value *V = ConstructSSAForLoadSet(Load, ValuesPerBlock, *this);
- Load->replaceAllUsesWith(V);
- if (isa<PHINode>(V))
- V->takeName(Load);
- if (Instruction *I = dyn_cast<Instruction>(V))
- // If instruction I has debug info, then we should not update it.
- // Also, if I has a null DebugLoc, then it is still potentially incorrect
- // to propagate Load's DebugLoc because Load may not post-dominate I.
- if (Load->getDebugLoc() && Load->getParent() == I->getParent())
- I->setDebugLoc(Load->getDebugLoc());
- if (V->getType()->isPtrOrPtrVectorTy())
- MD->invalidateCachedPointerInfo(V);
- markInstructionForDeletion(Load);
- ++NumGVNLoad;
- reportLoadElim(Load, V, ORE);
- return true;
- }
- // Step 4: Eliminate partial redundancy.
- if (!isPREEnabled() || !isLoadPREEnabled())
- return Changed;
- if (!isLoadInLoopPREEnabled() && LI && LI->getLoopFor(Load->getParent()))
- return Changed;
- if (performLoopLoadPRE(Load, ValuesPerBlock, UnavailableBlocks) ||
- PerformLoadPRE(Load, ValuesPerBlock, UnavailableBlocks))
- return true;
- return Changed;
- }
- static bool impliesEquivalanceIfTrue(CmpInst* Cmp) {
- if (Cmp->getPredicate() == CmpInst::Predicate::ICMP_EQ)
- return true;
- // Floating point comparisons can be equal, but not equivalent. Cases:
- // NaNs for unordered operators
- // +0.0 vs 0.0 for all operators
- if (Cmp->getPredicate() == CmpInst::Predicate::FCMP_OEQ ||
- (Cmp->getPredicate() == CmpInst::Predicate::FCMP_UEQ &&
- Cmp->getFastMathFlags().noNaNs())) {
- Value *LHS = Cmp->getOperand(0);
- Value *RHS = Cmp->getOperand(1);
- // If we can prove either side non-zero, then equality must imply
- // equivalence.
- // FIXME: We should do this optimization if 'no signed zeros' is
- // applicable via an instruction-level fast-math-flag or some other
- // indicator that relaxed FP semantics are being used.
- if (isa<ConstantFP>(LHS) && !cast<ConstantFP>(LHS)->isZero())
- return true;
- if (isa<ConstantFP>(RHS) && !cast<ConstantFP>(RHS)->isZero())
- return true;;
- // TODO: Handle vector floating point constants
- }
- return false;
- }
- static bool impliesEquivalanceIfFalse(CmpInst* Cmp) {
- if (Cmp->getPredicate() == CmpInst::Predicate::ICMP_NE)
- return true;
- // Floating point comparisons can be equal, but not equivelent. Cases:
- // NaNs for unordered operators
- // +0.0 vs 0.0 for all operators
- if ((Cmp->getPredicate() == CmpInst::Predicate::FCMP_ONE &&
- Cmp->getFastMathFlags().noNaNs()) ||
- Cmp->getPredicate() == CmpInst::Predicate::FCMP_UNE) {
- Value *LHS = Cmp->getOperand(0);
- Value *RHS = Cmp->getOperand(1);
- // If we can prove either side non-zero, then equality must imply
- // equivalence.
- // FIXME: We should do this optimization if 'no signed zeros' is
- // applicable via an instruction-level fast-math-flag or some other
- // indicator that relaxed FP semantics are being used.
- if (isa<ConstantFP>(LHS) && !cast<ConstantFP>(LHS)->isZero())
- return true;
- if (isa<ConstantFP>(RHS) && !cast<ConstantFP>(RHS)->isZero())
- return true;;
- // TODO: Handle vector floating point constants
- }
- return false;
- }
- static bool hasUsersIn(Value *V, BasicBlock *BB) {
- return llvm::any_of(V->users(), [BB](User *U) {
- auto *I = dyn_cast<Instruction>(U);
- return I && I->getParent() == BB;
- });
- }
- bool GVNPass::processAssumeIntrinsic(AssumeInst *IntrinsicI) {
- Value *V = IntrinsicI->getArgOperand(0);
- if (ConstantInt *Cond = dyn_cast<ConstantInt>(V)) {
- if (Cond->isZero()) {
- Type *Int8Ty = Type::getInt8Ty(V->getContext());
- // Insert a new store to null instruction before the load to indicate that
- // this code is not reachable. FIXME: We could insert unreachable
- // instruction directly because we can modify the CFG.
- auto *NewS = new StoreInst(PoisonValue::get(Int8Ty),
- Constant::getNullValue(Int8Ty->getPointerTo()),
- IntrinsicI);
- if (MSSAU) {
- const MemoryUseOrDef *FirstNonDom = nullptr;
- const auto *AL =
- MSSAU->getMemorySSA()->getBlockAccesses(IntrinsicI->getParent());
- // If there are accesses in the current basic block, find the first one
- // that does not come before NewS. The new memory access is inserted
- // after the found access or before the terminator if no such access is
- // found.
- if (AL) {
- for (const auto &Acc : *AL) {
- if (auto *Current = dyn_cast<MemoryUseOrDef>(&Acc))
- if (!Current->getMemoryInst()->comesBefore(NewS)) {
- FirstNonDom = Current;
- break;
- }
- }
- }
- // This added store is to null, so it will never executed and we can
- // just use the LiveOnEntry def as defining access.
- auto *NewDef =
- FirstNonDom ? MSSAU->createMemoryAccessBefore(
- NewS, MSSAU->getMemorySSA()->getLiveOnEntryDef(),
- const_cast<MemoryUseOrDef *>(FirstNonDom))
- : MSSAU->createMemoryAccessInBB(
- NewS, MSSAU->getMemorySSA()->getLiveOnEntryDef(),
- NewS->getParent(), MemorySSA::BeforeTerminator);
- MSSAU->insertDef(cast<MemoryDef>(NewDef), /*RenameUses=*/false);
- }
- }
- if (isAssumeWithEmptyBundle(*IntrinsicI))
- markInstructionForDeletion(IntrinsicI);
- return false;
- } else if (isa<Constant>(V)) {
- // If it's not false, and constant, it must evaluate to true. This means our
- // assume is assume(true), and thus, pointless, and we don't want to do
- // anything more here.
- return false;
- }
- Constant *True = ConstantInt::getTrue(V->getContext());
- bool Changed = false;
- for (BasicBlock *Successor : successors(IntrinsicI->getParent())) {
- BasicBlockEdge Edge(IntrinsicI->getParent(), Successor);
- // This property is only true in dominated successors, propagateEquality
- // will check dominance for us.
- Changed |= propagateEquality(V, True, Edge, false);
- }
- // We can replace assume value with true, which covers cases like this:
- // call void @llvm.assume(i1 %cmp)
- // br i1 %cmp, label %bb1, label %bb2 ; will change %cmp to true
- ReplaceOperandsWithMap[V] = True;
- // Similarly, after assume(!NotV) we know that NotV == false.
- Value *NotV;
- if (match(V, m_Not(m_Value(NotV))))
- ReplaceOperandsWithMap[NotV] = ConstantInt::getFalse(V->getContext());
- // If we find an equality fact, canonicalize all dominated uses in this block
- // to one of the two values. We heuristically choice the "oldest" of the
- // two where age is determined by value number. (Note that propagateEquality
- // above handles the cross block case.)
- //
- // Key case to cover are:
- // 1)
- // %cmp = fcmp oeq float 3.000000e+00, %0 ; const on lhs could happen
- // call void @llvm.assume(i1 %cmp)
- // ret float %0 ; will change it to ret float 3.000000e+00
- // 2)
- // %load = load float, float* %addr
- // %cmp = fcmp oeq float %load, %0
- // call void @llvm.assume(i1 %cmp)
- // ret float %load ; will change it to ret float %0
- if (auto *CmpI = dyn_cast<CmpInst>(V)) {
- if (impliesEquivalanceIfTrue(CmpI)) {
- Value *CmpLHS = CmpI->getOperand(0);
- Value *CmpRHS = CmpI->getOperand(1);
- // Heuristically pick the better replacement -- the choice of heuristic
- // isn't terribly important here, but the fact we canonicalize on some
- // replacement is for exposing other simplifications.
- // TODO: pull this out as a helper function and reuse w/existing
- // (slightly different) logic.
- if (isa<Constant>(CmpLHS) && !isa<Constant>(CmpRHS))
- std::swap(CmpLHS, CmpRHS);
- if (!isa<Instruction>(CmpLHS) && isa<Instruction>(CmpRHS))
- std::swap(CmpLHS, CmpRHS);
- if ((isa<Argument>(CmpLHS) && isa<Argument>(CmpRHS)) ||
- (isa<Instruction>(CmpLHS) && isa<Instruction>(CmpRHS))) {
- // Move the 'oldest' value to the right-hand side, using the value
- // number as a proxy for age.
- uint32_t LVN = VN.lookupOrAdd(CmpLHS);
- uint32_t RVN = VN.lookupOrAdd(CmpRHS);
- if (LVN < RVN)
- std::swap(CmpLHS, CmpRHS);
- }
- // Handle degenerate case where we either haven't pruned a dead path or a
- // removed a trivial assume yet.
- if (isa<Constant>(CmpLHS) && isa<Constant>(CmpRHS))
- return Changed;
- LLVM_DEBUG(dbgs() << "Replacing dominated uses of "
- << *CmpLHS << " with "
- << *CmpRHS << " in block "
- << IntrinsicI->getParent()->getName() << "\n");
- // Setup the replacement map - this handles uses within the same block
- if (hasUsersIn(CmpLHS, IntrinsicI->getParent()))
- ReplaceOperandsWithMap[CmpLHS] = CmpRHS;
- // NOTE: The non-block local cases are handled by the call to
- // propagateEquality above; this block is just about handling the block
- // local cases. TODO: There's a bunch of logic in propagateEqualiy which
- // isn't duplicated for the block local case, can we share it somehow?
- }
- }
- return Changed;
- }
- static void patchAndReplaceAllUsesWith(Instruction *I, Value *Repl) {
- patchReplacementInstruction(I, Repl);
- I->replaceAllUsesWith(Repl);
- }
- /// Attempt to eliminate a load, first by eliminating it
- /// locally, and then attempting non-local elimination if that fails.
- bool GVNPass::processLoad(LoadInst *L) {
- if (!MD)
- return false;
- // This code hasn't been audited for ordered or volatile memory access
- if (!L->isUnordered())
- return false;
- if (L->use_empty()) {
- markInstructionForDeletion(L);
- return true;
- }
- // ... to a pointer that has been loaded from before...
- MemDepResult Dep = MD->getDependency(L);
- // If it is defined in another block, try harder.
- if (Dep.isNonLocal())
- return processNonLocalLoad(L);
- // Only handle the local case below
- if (!Dep.isLocal()) {
- // This might be a NonFuncLocal or an Unknown
- LLVM_DEBUG(
- // fast print dep, using operator<< on instruction is too slow.
- dbgs() << "GVN: load "; L->printAsOperand(dbgs());
- dbgs() << " has unknown dependence\n";);
- return false;
- }
- auto AV = AnalyzeLoadAvailability(L, Dep, L->getPointerOperand());
- if (!AV)
- return false;
- Value *AvailableValue = AV->MaterializeAdjustedValue(L, L, *this);
- // Replace the load!
- patchAndReplaceAllUsesWith(L, AvailableValue);
- markInstructionForDeletion(L);
- if (MSSAU)
- MSSAU->removeMemoryAccess(L);
- ++NumGVNLoad;
- reportLoadElim(L, AvailableValue, ORE);
- // Tell MDA to reexamine the reused pointer since we might have more
- // information after forwarding it.
- if (MD && AvailableValue->getType()->isPtrOrPtrVectorTy())
- MD->invalidateCachedPointerInfo(AvailableValue);
- return true;
- }
- /// Return a pair the first field showing the value number of \p Exp and the
- /// second field showing whether it is a value number newly created.
- std::pair<uint32_t, bool>
- GVNPass::ValueTable::assignExpNewValueNum(Expression &Exp) {
- uint32_t &e = expressionNumbering[Exp];
- bool CreateNewValNum = !e;
- if (CreateNewValNum) {
- Expressions.push_back(Exp);
- if (ExprIdx.size() < nextValueNumber + 1)
- ExprIdx.resize(nextValueNumber * 2);
- e = nextValueNumber;
- ExprIdx[nextValueNumber++] = nextExprNumber++;
- }
- return {e, CreateNewValNum};
- }
- /// Return whether all the values related with the same \p num are
- /// defined in \p BB.
- bool GVNPass::ValueTable::areAllValsInBB(uint32_t Num, const BasicBlock *BB,
- GVNPass &Gvn) {
- LeaderTableEntry *Vals = &Gvn.LeaderTable[Num];
- while (Vals && Vals->BB == BB)
- Vals = Vals->Next;
- return !Vals;
- }
- /// Wrap phiTranslateImpl to provide caching functionality.
- uint32_t GVNPass::ValueTable::phiTranslate(const BasicBlock *Pred,
- const BasicBlock *PhiBlock,
- uint32_t Num, GVNPass &Gvn) {
- auto FindRes = PhiTranslateTable.find({Num, Pred});
- if (FindRes != PhiTranslateTable.end())
- return FindRes->second;
- uint32_t NewNum = phiTranslateImpl(Pred, PhiBlock, Num, Gvn);
- PhiTranslateTable.insert({{Num, Pred}, NewNum});
- return NewNum;
- }
- // Return true if the value number \p Num and NewNum have equal value.
- // Return false if the result is unknown.
- bool GVNPass::ValueTable::areCallValsEqual(uint32_t Num, uint32_t NewNum,
- const BasicBlock *Pred,
- const BasicBlock *PhiBlock,
- GVNPass &Gvn) {
- CallInst *Call = nullptr;
- LeaderTableEntry *Vals = &Gvn.LeaderTable[Num];
- while (Vals) {
- Call = dyn_cast<CallInst>(Vals->Val);
- if (Call && Call->getParent() == PhiBlock)
- break;
- Vals = Vals->Next;
- }
- if (AA->doesNotAccessMemory(Call))
- return true;
- if (!MD || !AA->onlyReadsMemory(Call))
- return false;
- MemDepResult local_dep = MD->getDependency(Call);
- if (!local_dep.isNonLocal())
- return false;
- const MemoryDependenceResults::NonLocalDepInfo &deps =
- MD->getNonLocalCallDependency(Call);
- // Check to see if the Call has no function local clobber.
- for (const NonLocalDepEntry &D : deps) {
- if (D.getResult().isNonFuncLocal())
- return true;
- }
- return false;
- }
- /// Translate value number \p Num using phis, so that it has the values of
- /// the phis in BB.
- uint32_t GVNPass::ValueTable::phiTranslateImpl(const BasicBlock *Pred,
- const BasicBlock *PhiBlock,
- uint32_t Num, GVNPass &Gvn) {
- if (PHINode *PN = NumberingPhi[Num]) {
- for (unsigned i = 0; i != PN->getNumIncomingValues(); ++i) {
- if (PN->getParent() == PhiBlock && PN->getIncomingBlock(i) == Pred)
- if (uint32_t TransVal = lookup(PN->getIncomingValue(i), false))
- return TransVal;
- }
- return Num;
- }
- // If there is any value related with Num is defined in a BB other than
- // PhiBlock, it cannot depend on a phi in PhiBlock without going through
- // a backedge. We can do an early exit in that case to save compile time.
- if (!areAllValsInBB(Num, PhiBlock, Gvn))
- return Num;
- if (Num >= ExprIdx.size() || ExprIdx[Num] == 0)
- return Num;
- Expression Exp = Expressions[ExprIdx[Num]];
- for (unsigned i = 0; i < Exp.varargs.size(); i++) {
- // For InsertValue and ExtractValue, some varargs are index numbers
- // instead of value numbers. Those index numbers should not be
- // translated.
- if ((i > 1 && Exp.opcode == Instruction::InsertValue) ||
- (i > 0 && Exp.opcode == Instruction::ExtractValue) ||
- (i > 1 && Exp.opcode == Instruction::ShuffleVector))
- continue;
- Exp.varargs[i] = phiTranslate(Pred, PhiBlock, Exp.varargs[i], Gvn);
- }
- if (Exp.commutative) {
- assert(Exp.varargs.size() >= 2 && "Unsupported commutative instruction!");
- if (Exp.varargs[0] > Exp.varargs[1]) {
- std::swap(Exp.varargs[0], Exp.varargs[1]);
- uint32_t Opcode = Exp.opcode >> 8;
- if (Opcode == Instruction::ICmp || Opcode == Instruction::FCmp)
- Exp.opcode = (Opcode << 8) |
- CmpInst::getSwappedPredicate(
- static_cast<CmpInst::Predicate>(Exp.opcode & 255));
- }
- }
- if (uint32_t NewNum = expressionNumbering[Exp]) {
- if (Exp.opcode == Instruction::Call && NewNum != Num)
- return areCallValsEqual(Num, NewNum, Pred, PhiBlock, Gvn) ? NewNum : Num;
- return NewNum;
- }
- return Num;
- }
- /// Erase stale entry from phiTranslate cache so phiTranslate can be computed
- /// again.
- void GVNPass::ValueTable::eraseTranslateCacheEntry(
- uint32_t Num, const BasicBlock &CurrBlock) {
- for (const BasicBlock *Pred : predecessors(&CurrBlock))
- PhiTranslateTable.erase({Num, Pred});
- }
- // In order to find a leader for a given value number at a
- // specific basic block, we first obtain the list of all Values for that number,
- // and then scan the list to find one whose block dominates the block in
- // question. This is fast because dominator tree queries consist of only
- // a few comparisons of DFS numbers.
- Value *GVNPass::findLeader(const BasicBlock *BB, uint32_t num) {
- LeaderTableEntry Vals = LeaderTable[num];
- if (!Vals.Val) return nullptr;
- Value *Val = nullptr;
- if (DT->dominates(Vals.BB, BB)) {
- Val = Vals.Val;
- if (isa<Constant>(Val)) return Val;
- }
- LeaderTableEntry* Next = Vals.Next;
- while (Next) {
- if (DT->dominates(Next->BB, BB)) {
- if (isa<Constant>(Next->Val)) return Next->Val;
- if (!Val) Val = Next->Val;
- }
- Next = Next->Next;
- }
- return Val;
- }
- /// There is an edge from 'Src' to 'Dst'. Return
- /// true if every path from the entry block to 'Dst' passes via this edge. In
- /// particular 'Dst' must not be reachable via another edge from 'Src'.
- static bool isOnlyReachableViaThisEdge(const BasicBlockEdge &E,
- DominatorTree *DT) {
- // While in theory it is interesting to consider the case in which Dst has
- // more than one predecessor, because Dst might be part of a loop which is
- // only reachable from Src, in practice it is pointless since at the time
- // GVN runs all such loops have preheaders, which means that Dst will have
- // been changed to have only one predecessor, namely Src.
- const BasicBlock *Pred = E.getEnd()->getSinglePredecessor();
- assert((!Pred || Pred == E.getStart()) &&
- "No edge between these basic blocks!");
- return Pred != nullptr;
- }
- void GVNPass::assignBlockRPONumber(Function &F) {
- BlockRPONumber.clear();
- uint32_t NextBlockNumber = 1;
- ReversePostOrderTraversal<Function *> RPOT(&F);
- for (BasicBlock *BB : RPOT)
- BlockRPONumber[BB] = NextBlockNumber++;
- InvalidBlockRPONumbers = false;
- }
- bool GVNPass::replaceOperandsForInBlockEquality(Instruction *Instr) const {
- bool Changed = false;
- for (unsigned OpNum = 0; OpNum < Instr->getNumOperands(); ++OpNum) {
- Value *Operand = Instr->getOperand(OpNum);
- auto it = ReplaceOperandsWithMap.find(Operand);
- if (it != ReplaceOperandsWithMap.end()) {
- LLVM_DEBUG(dbgs() << "GVN replacing: " << *Operand << " with "
- << *it->second << " in instruction " << *Instr << '\n');
- Instr->setOperand(OpNum, it->second);
- Changed = true;
- }
- }
- return Changed;
- }
- /// The given values are known to be equal in every block
- /// dominated by 'Root'. Exploit this, for example by replacing 'LHS' with
- /// 'RHS' everywhere in the scope. Returns whether a change was made.
- /// If DominatesByEdge is false, then it means that we will propagate the RHS
- /// value starting from the end of Root.Start.
- bool GVNPass::propagateEquality(Value *LHS, Value *RHS,
- const BasicBlockEdge &Root,
- bool DominatesByEdge) {
- SmallVector<std::pair<Value*, Value*>, 4> Worklist;
- Worklist.push_back(std::make_pair(LHS, RHS));
- bool Changed = false;
- // For speed, compute a conservative fast approximation to
- // DT->dominates(Root, Root.getEnd());
- const bool RootDominatesEnd = isOnlyReachableViaThisEdge(Root, DT);
- while (!Worklist.empty()) {
- std::pair<Value*, Value*> Item = Worklist.pop_back_val();
- LHS = Item.first; RHS = Item.second;
- if (LHS == RHS)
- continue;
- assert(LHS->getType() == RHS->getType() && "Equality but unequal types!");
- // Don't try to propagate equalities between constants.
- if (isa<Constant>(LHS) && isa<Constant>(RHS))
- continue;
- // Prefer a constant on the right-hand side, or an Argument if no constants.
- if (isa<Constant>(LHS) || (isa<Argument>(LHS) && !isa<Constant>(RHS)))
- std::swap(LHS, RHS);
- assert((isa<Argument>(LHS) || isa<Instruction>(LHS)) && "Unexpected value!");
- // If there is no obvious reason to prefer the left-hand side over the
- // right-hand side, ensure the longest lived term is on the right-hand side,
- // so the shortest lived term will be replaced by the longest lived.
- // This tends to expose more simplifications.
- uint32_t LVN = VN.lookupOrAdd(LHS);
- if ((isa<Argument>(LHS) && isa<Argument>(RHS)) ||
- (isa<Instruction>(LHS) && isa<Instruction>(RHS))) {
- // Move the 'oldest' value to the right-hand side, using the value number
- // as a proxy for age.
- uint32_t RVN = VN.lookupOrAdd(RHS);
- if (LVN < RVN) {
- std::swap(LHS, RHS);
- LVN = RVN;
- }
- }
- // If value numbering later sees that an instruction in the scope is equal
- // to 'LHS' then ensure it will be turned into 'RHS'. In order to preserve
- // the invariant that instructions only occur in the leader table for their
- // own value number (this is used by removeFromLeaderTable), do not do this
- // if RHS is an instruction (if an instruction in the scope is morphed into
- // LHS then it will be turned into RHS by the next GVN iteration anyway, so
- // using the leader table is about compiling faster, not optimizing better).
- // The leader table only tracks basic blocks, not edges. Only add to if we
- // have the simple case where the edge dominates the end.
- if (RootDominatesEnd && !isa<Instruction>(RHS))
- addToLeaderTable(LVN, RHS, Root.getEnd());
- // Replace all occurrences of 'LHS' with 'RHS' everywhere in the scope. As
- // LHS always has at least one use that is not dominated by Root, this will
- // never do anything if LHS has only one use.
- if (!LHS->hasOneUse()) {
- unsigned NumReplacements =
- DominatesByEdge
- ? replaceDominatedUsesWith(LHS, RHS, *DT, Root)
- : replaceDominatedUsesWith(LHS, RHS, *DT, Root.getStart());
- Changed |= NumReplacements > 0;
- NumGVNEqProp += NumReplacements;
- // Cached information for anything that uses LHS will be invalid.
- if (MD)
- MD->invalidateCachedPointerInfo(LHS);
- }
- // Now try to deduce additional equalities from this one. For example, if
- // the known equality was "(A != B)" == "false" then it follows that A and B
- // are equal in the scope. Only boolean equalities with an explicit true or
- // false RHS are currently supported.
- if (!RHS->getType()->isIntegerTy(1))
- // Not a boolean equality - bail out.
- continue;
- ConstantInt *CI = dyn_cast<ConstantInt>(RHS);
- if (!CI)
- // RHS neither 'true' nor 'false' - bail out.
- continue;
- // Whether RHS equals 'true'. Otherwise it equals 'false'.
- bool isKnownTrue = CI->isMinusOne();
- bool isKnownFalse = !isKnownTrue;
- // If "A && B" is known true then both A and B are known true. If "A || B"
- // is known false then both A and B are known false.
- Value *A, *B;
- if ((isKnownTrue && match(LHS, m_LogicalAnd(m_Value(A), m_Value(B)))) ||
- (isKnownFalse && match(LHS, m_LogicalOr(m_Value(A), m_Value(B))))) {
- Worklist.push_back(std::make_pair(A, RHS));
- Worklist.push_back(std::make_pair(B, RHS));
- continue;
- }
- // If we are propagating an equality like "(A == B)" == "true" then also
- // propagate the equality A == B. When propagating a comparison such as
- // "(A >= B)" == "true", replace all instances of "A < B" with "false".
- if (CmpInst *Cmp = dyn_cast<CmpInst>(LHS)) {
- Value *Op0 = Cmp->getOperand(0), *Op1 = Cmp->getOperand(1);
- // If "A == B" is known true, or "A != B" is known false, then replace
- // A with B everywhere in the scope. For floating point operations, we
- // have to be careful since equality does not always imply equivalance.
- if ((isKnownTrue && impliesEquivalanceIfTrue(Cmp)) ||
- (isKnownFalse && impliesEquivalanceIfFalse(Cmp)))
- Worklist.push_back(std::make_pair(Op0, Op1));
- // If "A >= B" is known true, replace "A < B" with false everywhere.
- CmpInst::Predicate NotPred = Cmp->getInversePredicate();
- Constant *NotVal = ConstantInt::get(Cmp->getType(), isKnownFalse);
- // Since we don't have the instruction "A < B" immediately to hand, work
- // out the value number that it would have and use that to find an
- // appropriate instruction (if any).
- uint32_t NextNum = VN.getNextUnusedValueNumber();
- uint32_t Num = VN.lookupOrAddCmp(Cmp->getOpcode(), NotPred, Op0, Op1);
- // If the number we were assigned was brand new then there is no point in
- // looking for an instruction realizing it: there cannot be one!
- if (Num < NextNum) {
- Value *NotCmp = findLeader(Root.getEnd(), Num);
- if (NotCmp && isa<Instruction>(NotCmp)) {
- unsigned NumReplacements =
- DominatesByEdge
- ? replaceDominatedUsesWith(NotCmp, NotVal, *DT, Root)
- : replaceDominatedUsesWith(NotCmp, NotVal, *DT,
- Root.getStart());
- Changed |= NumReplacements > 0;
- NumGVNEqProp += NumReplacements;
- // Cached information for anything that uses NotCmp will be invalid.
- if (MD)
- MD->invalidateCachedPointerInfo(NotCmp);
- }
- }
- // Ensure that any instruction in scope that gets the "A < B" value number
- // is replaced with false.
- // The leader table only tracks basic blocks, not edges. Only add to if we
- // have the simple case where the edge dominates the end.
- if (RootDominatesEnd)
- addToLeaderTable(Num, NotVal, Root.getEnd());
- continue;
- }
- }
- return Changed;
- }
- /// When calculating availability, handle an instruction
- /// by inserting it into the appropriate sets
- bool GVNPass::processInstruction(Instruction *I) {
- // Ignore dbg info intrinsics.
- if (isa<DbgInfoIntrinsic>(I))
- return false;
- // If the instruction can be easily simplified then do so now in preference
- // to value numbering it. Value numbering often exposes redundancies, for
- // example if it determines that %y is equal to %x then the instruction
- // "%z = and i32 %x, %y" becomes "%z = and i32 %x, %x" which we now simplify.
- const DataLayout &DL = I->getModule()->getDataLayout();
- if (Value *V = simplifyInstruction(I, {DL, TLI, DT, AC})) {
- bool Changed = false;
- if (!I->use_empty()) {
- // Simplification can cause a special instruction to become not special.
- // For example, devirtualization to a willreturn function.
- ICF->removeUsersOf(I);
- I->replaceAllUsesWith(V);
- Changed = true;
- }
- if (isInstructionTriviallyDead(I, TLI)) {
- markInstructionForDeletion(I);
- Changed = true;
- }
- if (Changed) {
- if (MD && V->getType()->isPtrOrPtrVectorTy())
- MD->invalidateCachedPointerInfo(V);
- ++NumGVNSimpl;
- return true;
- }
- }
- if (auto *Assume = dyn_cast<AssumeInst>(I))
- return processAssumeIntrinsic(Assume);
- if (LoadInst *Load = dyn_cast<LoadInst>(I)) {
- if (processLoad(Load))
- return true;
- unsigned Num = VN.lookupOrAdd(Load);
- addToLeaderTable(Num, Load, Load->getParent());
- return false;
- }
- // For conditional branches, we can perform simple conditional propagation on
- // the condition value itself.
- if (BranchInst *BI = dyn_cast<BranchInst>(I)) {
- if (!BI->isConditional())
- return false;
- if (isa<Constant>(BI->getCondition()))
- return processFoldableCondBr(BI);
- Value *BranchCond = BI->getCondition();
- BasicBlock *TrueSucc = BI->getSuccessor(0);
- BasicBlock *FalseSucc = BI->getSuccessor(1);
- // Avoid multiple edges early.
- if (TrueSucc == FalseSucc)
- return false;
- BasicBlock *Parent = BI->getParent();
- bool Changed = false;
- Value *TrueVal = ConstantInt::getTrue(TrueSucc->getContext());
- BasicBlockEdge TrueE(Parent, TrueSucc);
- Changed |= propagateEquality(BranchCond, TrueVal, TrueE, true);
- Value *FalseVal = ConstantInt::getFalse(FalseSucc->getContext());
- BasicBlockEdge FalseE(Parent, FalseSucc);
- Changed |= propagateEquality(BranchCond, FalseVal, FalseE, true);
- return Changed;
- }
- // For switches, propagate the case values into the case destinations.
- if (SwitchInst *SI = dyn_cast<SwitchInst>(I)) {
- Value *SwitchCond = SI->getCondition();
- BasicBlock *Parent = SI->getParent();
- bool Changed = false;
- // Remember how many outgoing edges there are to every successor.
- SmallDenseMap<BasicBlock *, unsigned, 16> SwitchEdges;
- for (unsigned i = 0, n = SI->getNumSuccessors(); i != n; ++i)
- ++SwitchEdges[SI->getSuccessor(i)];
- for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end();
- i != e; ++i) {
- BasicBlock *Dst = i->getCaseSuccessor();
- // If there is only a single edge, propagate the case value into it.
- if (SwitchEdges.lookup(Dst) == 1) {
- BasicBlockEdge E(Parent, Dst);
- Changed |= propagateEquality(SwitchCond, i->getCaseValue(), E, true);
- }
- }
- return Changed;
- }
- // Instructions with void type don't return a value, so there's
- // no point in trying to find redundancies in them.
- if (I->getType()->isVoidTy())
- return false;
- uint32_t NextNum = VN.getNextUnusedValueNumber();
- unsigned Num = VN.lookupOrAdd(I);
- // Allocations are always uniquely numbered, so we can save time and memory
- // by fast failing them.
- if (isa<AllocaInst>(I) || I->isTerminator() || isa<PHINode>(I)) {
- addToLeaderTable(Num, I, I->getParent());
- return false;
- }
- // If the number we were assigned was a brand new VN, then we don't
- // need to do a lookup to see if the number already exists
- // somewhere in the domtree: it can't!
- if (Num >= NextNum) {
- addToLeaderTable(Num, I, I->getParent());
- return false;
- }
- // Perform fast-path value-number based elimination of values inherited from
- // dominators.
- Value *Repl = findLeader(I->getParent(), Num);
- if (!Repl) {
- // Failure, just remember this instance for future use.
- addToLeaderTable(Num, I, I->getParent());
- return false;
- } else if (Repl == I) {
- // If I was the result of a shortcut PRE, it might already be in the table
- // and the best replacement for itself. Nothing to do.
- return false;
- }
- // Remove it!
- patchAndReplaceAllUsesWith(I, Repl);
- if (MD && Repl->getType()->isPtrOrPtrVectorTy())
- MD->invalidateCachedPointerInfo(Repl);
- markInstructionForDeletion(I);
- return true;
- }
- /// runOnFunction - This is the main transformation entry point for a function.
- bool GVNPass::runImpl(Function &F, AssumptionCache &RunAC, DominatorTree &RunDT,
- const TargetLibraryInfo &RunTLI, AAResults &RunAA,
- MemoryDependenceResults *RunMD, LoopInfo *LI,
- OptimizationRemarkEmitter *RunORE, MemorySSA *MSSA) {
- AC = &RunAC;
- DT = &RunDT;
- VN.setDomTree(DT);
- TLI = &RunTLI;
- VN.setAliasAnalysis(&RunAA);
- MD = RunMD;
- ImplicitControlFlowTracking ImplicitCFT;
- ICF = &ImplicitCFT;
- this->LI = LI;
- VN.setMemDep(MD);
- ORE = RunORE;
- InvalidBlockRPONumbers = true;
- MemorySSAUpdater Updater(MSSA);
- MSSAU = MSSA ? &Updater : nullptr;
- bool Changed = false;
- bool ShouldContinue = true;
- DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Eager);
- // Merge unconditional branches, allowing PRE to catch more
- // optimization opportunities.
- for (BasicBlock &BB : llvm::make_early_inc_range(F)) {
- bool removedBlock = MergeBlockIntoPredecessor(&BB, &DTU, LI, MSSAU, MD);
- if (removedBlock)
- ++NumGVNBlocks;
- Changed |= removedBlock;
- }
- unsigned Iteration = 0;
- while (ShouldContinue) {
- LLVM_DEBUG(dbgs() << "GVN iteration: " << Iteration << "\n");
- (void) Iteration;
- ShouldContinue = iterateOnFunction(F);
- Changed |= ShouldContinue;
- ++Iteration;
- }
- if (isPREEnabled()) {
- // Fabricate val-num for dead-code in order to suppress assertion in
- // performPRE().
- assignValNumForDeadCode();
- bool PREChanged = true;
- while (PREChanged) {
- PREChanged = performPRE(F);
- Changed |= PREChanged;
- }
- }
- // FIXME: Should perform GVN again after PRE does something. PRE can move
- // computations into blocks where they become fully redundant. Note that
- // we can't do this until PRE's critical edge splitting updates memdep.
- // Actually, when this happens, we should just fully integrate PRE into GVN.
- cleanupGlobalSets();
- // Do not cleanup DeadBlocks in cleanupGlobalSets() as it's called for each
- // iteration.
- DeadBlocks.clear();
- if (MSSA && VerifyMemorySSA)
- MSSA->verifyMemorySSA();
- return Changed;
- }
- bool GVNPass::processBlock(BasicBlock *BB) {
- // FIXME: Kill off InstrsToErase by doing erasing eagerly in a helper function
- // (and incrementing BI before processing an instruction).
- assert(InstrsToErase.empty() &&
- "We expect InstrsToErase to be empty across iterations");
- if (DeadBlocks.count(BB))
- return false;
- // Clearing map before every BB because it can be used only for single BB.
- ReplaceOperandsWithMap.clear();
- bool ChangedFunction = false;
- // Since we may not have visited the input blocks of the phis, we can't
- // use our normal hash approach for phis. Instead, simply look for
- // obvious duplicates. The first pass of GVN will tend to create
- // identical phis, and the second or later passes can eliminate them.
- ChangedFunction |= EliminateDuplicatePHINodes(BB);
- for (BasicBlock::iterator BI = BB->begin(), BE = BB->end();
- BI != BE;) {
- if (!ReplaceOperandsWithMap.empty())
- ChangedFunction |= replaceOperandsForInBlockEquality(&*BI);
- ChangedFunction |= processInstruction(&*BI);
- if (InstrsToErase.empty()) {
- ++BI;
- continue;
- }
- // If we need some instructions deleted, do it now.
- NumGVNInstr += InstrsToErase.size();
- // Avoid iterator invalidation.
- bool AtStart = BI == BB->begin();
- if (!AtStart)
- --BI;
- for (auto *I : InstrsToErase) {
- assert(I->getParent() == BB && "Removing instruction from wrong block?");
- LLVM_DEBUG(dbgs() << "GVN removed: " << *I << '\n');
- salvageKnowledge(I, AC);
- salvageDebugInfo(*I);
- if (MD) MD->removeInstruction(I);
- if (MSSAU)
- MSSAU->removeMemoryAccess(I);
- LLVM_DEBUG(verifyRemoved(I));
- ICF->removeInstruction(I);
- I->eraseFromParent();
- }
- InstrsToErase.clear();
- if (AtStart)
- BI = BB->begin();
- else
- ++BI;
- }
- return ChangedFunction;
- }
- // Instantiate an expression in a predecessor that lacked it.
- bool GVNPass::performScalarPREInsertion(Instruction *Instr, BasicBlock *Pred,
- BasicBlock *Curr, unsigned int ValNo) {
- // Because we are going top-down through the block, all value numbers
- // will be available in the predecessor by the time we need them. Any
- // that weren't originally present will have been instantiated earlier
- // in this loop.
- bool success = true;
- for (unsigned i = 0, e = Instr->getNumOperands(); i != e; ++i) {
- Value *Op = Instr->getOperand(i);
- if (isa<Argument>(Op) || isa<Constant>(Op) || isa<GlobalValue>(Op))
- continue;
- // This could be a newly inserted instruction, in which case, we won't
- // find a value number, and should give up before we hurt ourselves.
- // FIXME: Rewrite the infrastructure to let it easier to value number
- // and process newly inserted instructions.
- if (!VN.exists(Op)) {
- success = false;
- break;
- }
- uint32_t TValNo =
- VN.phiTranslate(Pred, Curr, VN.lookup(Op), *this);
- if (Value *V = findLeader(Pred, TValNo)) {
- Instr->setOperand(i, V);
- } else {
- success = false;
- break;
- }
- }
- // Fail out if we encounter an operand that is not available in
- // the PRE predecessor. This is typically because of loads which
- // are not value numbered precisely.
- if (!success)
- return false;
- Instr->insertBefore(Pred->getTerminator());
- Instr->setName(Instr->getName() + ".pre");
- Instr->setDebugLoc(Instr->getDebugLoc());
- ICF->insertInstructionTo(Instr, Pred);
- unsigned Num = VN.lookupOrAdd(Instr);
- VN.add(Instr, Num);
- // Update the availability map to include the new instruction.
- addToLeaderTable(Num, Instr, Pred);
- return true;
- }
- bool GVNPass::performScalarPRE(Instruction *CurInst) {
- if (isa<AllocaInst>(CurInst) || CurInst->isTerminator() ||
- isa<PHINode>(CurInst) || CurInst->getType()->isVoidTy() ||
- CurInst->mayReadFromMemory() || CurInst->mayHaveSideEffects() ||
- isa<DbgInfoIntrinsic>(CurInst))
- return false;
- // Don't do PRE on compares. The PHI would prevent CodeGenPrepare from
- // sinking the compare again, and it would force the code generator to
- // move the i1 from processor flags or predicate registers into a general
- // purpose register.
- if (isa<CmpInst>(CurInst))
- return false;
- // Don't do PRE on GEPs. The inserted PHI would prevent CodeGenPrepare from
- // sinking the addressing mode computation back to its uses. Extending the
- // GEP's live range increases the register pressure, and therefore it can
- // introduce unnecessary spills.
- //
- // This doesn't prevent Load PRE. PHI translation will make the GEP available
- // to the load by moving it to the predecessor block if necessary.
- if (isa<GetElementPtrInst>(CurInst))
- return false;
- if (auto *CallB = dyn_cast<CallBase>(CurInst)) {
- // We don't currently value number ANY inline asm calls.
- if (CallB->isInlineAsm())
- return false;
- // Don't do PRE on convergent calls.
- if (CallB->isConvergent())
- return false;
- }
- uint32_t ValNo = VN.lookup(CurInst);
- // Look for the predecessors for PRE opportunities. We're
- // only trying to solve the basic diamond case, where
- // a value is computed in the successor and one predecessor,
- // but not the other. We also explicitly disallow cases
- // where the successor is its own predecessor, because they're
- // more complicated to get right.
- unsigned NumWith = 0;
- unsigned NumWithout = 0;
- BasicBlock *PREPred = nullptr;
- BasicBlock *CurrentBlock = CurInst->getParent();
- // Update the RPO numbers for this function.
- if (InvalidBlockRPONumbers)
- assignBlockRPONumber(*CurrentBlock->getParent());
- SmallVector<std::pair<Value *, BasicBlock *>, 8> predMap;
- for (BasicBlock *P : predecessors(CurrentBlock)) {
- // We're not interested in PRE where blocks with predecessors that are
- // not reachable.
- if (!DT->isReachableFromEntry(P)) {
- NumWithout = 2;
- break;
- }
- // It is not safe to do PRE when P->CurrentBlock is a loop backedge.
- assert(BlockRPONumber.count(P) && BlockRPONumber.count(CurrentBlock) &&
- "Invalid BlockRPONumber map.");
- if (BlockRPONumber[P] >= BlockRPONumber[CurrentBlock]) {
- NumWithout = 2;
- break;
- }
- uint32_t TValNo = VN.phiTranslate(P, CurrentBlock, ValNo, *this);
- Value *predV = findLeader(P, TValNo);
- if (!predV) {
- predMap.push_back(std::make_pair(static_cast<Value *>(nullptr), P));
- PREPred = P;
- ++NumWithout;
- } else if (predV == CurInst) {
- /* CurInst dominates this predecessor. */
- NumWithout = 2;
- break;
- } else {
- predMap.push_back(std::make_pair(predV, P));
- ++NumWith;
- }
- }
- // Don't do PRE when it might increase code size, i.e. when
- // we would need to insert instructions in more than one pred.
- if (NumWithout > 1 || NumWith == 0)
- return false;
- // We may have a case where all predecessors have the instruction,
- // and we just need to insert a phi node. Otherwise, perform
- // insertion.
- Instruction *PREInstr = nullptr;
- if (NumWithout != 0) {
- if (!isSafeToSpeculativelyExecute(CurInst)) {
- // It is only valid to insert a new instruction if the current instruction
- // is always executed. An instruction with implicit control flow could
- // prevent us from doing it. If we cannot speculate the execution, then
- // PRE should be prohibited.
- if (ICF->isDominatedByICFIFromSameBlock(CurInst))
- return false;
- }
- // Don't do PRE across indirect branch.
- if (isa<IndirectBrInst>(PREPred->getTerminator()))
- return false;
- // We can't do PRE safely on a critical edge, so instead we schedule
- // the edge to be split and perform the PRE the next time we iterate
- // on the function.
- unsigned SuccNum = GetSuccessorNumber(PREPred, CurrentBlock);
- if (isCriticalEdge(PREPred->getTerminator(), SuccNum)) {
- toSplit.push_back(std::make_pair(PREPred->getTerminator(), SuccNum));
- return false;
- }
- // We need to insert somewhere, so let's give it a shot
- PREInstr = CurInst->clone();
- if (!performScalarPREInsertion(PREInstr, PREPred, CurrentBlock, ValNo)) {
- // If we failed insertion, make sure we remove the instruction.
- LLVM_DEBUG(verifyRemoved(PREInstr));
- PREInstr->deleteValue();
- return false;
- }
- }
- // Either we should have filled in the PRE instruction, or we should
- // not have needed insertions.
- assert(PREInstr != nullptr || NumWithout == 0);
- ++NumGVNPRE;
- // Create a PHI to make the value available in this block.
- PHINode *Phi =
- PHINode::Create(CurInst->getType(), predMap.size(),
- CurInst->getName() + ".pre-phi", &CurrentBlock->front());
- for (unsigned i = 0, e = predMap.size(); i != e; ++i) {
- if (Value *V = predMap[i].first) {
- // If we use an existing value in this phi, we have to patch the original
- // value because the phi will be used to replace a later value.
- patchReplacementInstruction(CurInst, V);
- Phi->addIncoming(V, predMap[i].second);
- } else
- Phi->addIncoming(PREInstr, PREPred);
- }
- VN.add(Phi, ValNo);
- // After creating a new PHI for ValNo, the phi translate result for ValNo will
- // be changed, so erase the related stale entries in phi translate cache.
- VN.eraseTranslateCacheEntry(ValNo, *CurrentBlock);
- addToLeaderTable(ValNo, Phi, CurrentBlock);
- Phi->setDebugLoc(CurInst->getDebugLoc());
- CurInst->replaceAllUsesWith(Phi);
- if (MD && Phi->getType()->isPtrOrPtrVectorTy())
- MD->invalidateCachedPointerInfo(Phi);
- VN.erase(CurInst);
- removeFromLeaderTable(ValNo, CurInst, CurrentBlock);
- LLVM_DEBUG(dbgs() << "GVN PRE removed: " << *CurInst << '\n');
- if (MD)
- MD->removeInstruction(CurInst);
- if (MSSAU)
- MSSAU->removeMemoryAccess(CurInst);
- LLVM_DEBUG(verifyRemoved(CurInst));
- // FIXME: Intended to be markInstructionForDeletion(CurInst), but it causes
- // some assertion failures.
- ICF->removeInstruction(CurInst);
- CurInst->eraseFromParent();
- ++NumGVNInstr;
- return true;
- }
- /// Perform a purely local form of PRE that looks for diamond
- /// control flow patterns and attempts to perform simple PRE at the join point.
- bool GVNPass::performPRE(Function &F) {
- bool Changed = false;
- for (BasicBlock *CurrentBlock : depth_first(&F.getEntryBlock())) {
- // Nothing to PRE in the entry block.
- if (CurrentBlock == &F.getEntryBlock())
- continue;
- // Don't perform PRE on an EH pad.
- if (CurrentBlock->isEHPad())
- continue;
- for (BasicBlock::iterator BI = CurrentBlock->begin(),
- BE = CurrentBlock->end();
- BI != BE;) {
- Instruction *CurInst = &*BI++;
- Changed |= performScalarPRE(CurInst);
- }
- }
- if (splitCriticalEdges())
- Changed = true;
- return Changed;
- }
- /// Split the critical edge connecting the given two blocks, and return
- /// the block inserted to the critical edge.
- BasicBlock *GVNPass::splitCriticalEdges(BasicBlock *Pred, BasicBlock *Succ) {
- // GVN does not require loop-simplify, do not try to preserve it if it is not
- // possible.
- BasicBlock *BB = SplitCriticalEdge(
- Pred, Succ,
- CriticalEdgeSplittingOptions(DT, LI, MSSAU).unsetPreserveLoopSimplify());
- if (BB) {
- if (MD)
- MD->invalidateCachedPredecessors();
- InvalidBlockRPONumbers = true;
- }
- return BB;
- }
- /// Split critical edges found during the previous
- /// iteration that may enable further optimization.
- bool GVNPass::splitCriticalEdges() {
- if (toSplit.empty())
- return false;
- bool Changed = false;
- do {
- std::pair<Instruction *, unsigned> Edge = toSplit.pop_back_val();
- Changed |= SplitCriticalEdge(Edge.first, Edge.second,
- CriticalEdgeSplittingOptions(DT, LI, MSSAU)) !=
- nullptr;
- } while (!toSplit.empty());
- if (Changed) {
- if (MD)
- MD->invalidateCachedPredecessors();
- InvalidBlockRPONumbers = true;
- }
- return Changed;
- }
- /// Executes one iteration of GVN
- bool GVNPass::iterateOnFunction(Function &F) {
- cleanupGlobalSets();
- // Top-down walk of the dominator tree
- bool Changed = false;
- // Needed for value numbering with phi construction to work.
- // RPOT walks the graph in its constructor and will not be invalidated during
- // processBlock.
- ReversePostOrderTraversal<Function *> RPOT(&F);
- for (BasicBlock *BB : RPOT)
- Changed |= processBlock(BB);
- return Changed;
- }
- void GVNPass::cleanupGlobalSets() {
- VN.clear();
- LeaderTable.clear();
- BlockRPONumber.clear();
- TableAllocator.Reset();
- ICF->clear();
- InvalidBlockRPONumbers = true;
- }
- /// Verify that the specified instruction does not occur in our
- /// internal data structures.
- void GVNPass::verifyRemoved(const Instruction *Inst) const {
- VN.verifyRemoved(Inst);
- // Walk through the value number scope to make sure the instruction isn't
- // ferreted away in it.
- for (const auto &I : LeaderTable) {
- const LeaderTableEntry *Node = &I.second;
- assert(Node->Val != Inst && "Inst still in value numbering scope!");
- while (Node->Next) {
- Node = Node->Next;
- assert(Node->Val != Inst && "Inst still in value numbering scope!");
- }
- }
- }
- /// BB is declared dead, which implied other blocks become dead as well. This
- /// function is to add all these blocks to "DeadBlocks". For the dead blocks'
- /// live successors, update their phi nodes by replacing the operands
- /// corresponding to dead blocks with UndefVal.
- void GVNPass::addDeadBlock(BasicBlock *BB) {
- SmallVector<BasicBlock *, 4> NewDead;
- SmallSetVector<BasicBlock *, 4> DF;
- NewDead.push_back(BB);
- while (!NewDead.empty()) {
- BasicBlock *D = NewDead.pop_back_val();
- if (DeadBlocks.count(D))
- continue;
- // All blocks dominated by D are dead.
- SmallVector<BasicBlock *, 8> Dom;
- DT->getDescendants(D, Dom);
- DeadBlocks.insert(Dom.begin(), Dom.end());
- // Figure out the dominance-frontier(D).
- for (BasicBlock *B : Dom) {
- for (BasicBlock *S : successors(B)) {
- if (DeadBlocks.count(S))
- continue;
- bool AllPredDead = true;
- for (BasicBlock *P : predecessors(S))
- if (!DeadBlocks.count(P)) {
- AllPredDead = false;
- break;
- }
- if (!AllPredDead) {
- // S could be proved dead later on. That is why we don't update phi
- // operands at this moment.
- DF.insert(S);
- } else {
- // While S is not dominated by D, it is dead by now. This could take
- // place if S already have a dead predecessor before D is declared
- // dead.
- NewDead.push_back(S);
- }
- }
- }
- }
- // For the dead blocks' live successors, update their phi nodes by replacing
- // the operands corresponding to dead blocks with UndefVal.
- for (BasicBlock *B : DF) {
- if (DeadBlocks.count(B))
- continue;
- // First, split the critical edges. This might also create additional blocks
- // to preserve LoopSimplify form and adjust edges accordingly.
- SmallVector<BasicBlock *, 4> Preds(predecessors(B));
- for (BasicBlock *P : Preds) {
- if (!DeadBlocks.count(P))
- continue;
- if (llvm::is_contained(successors(P), B) &&
- isCriticalEdge(P->getTerminator(), B)) {
- if (BasicBlock *S = splitCriticalEdges(P, B))
- DeadBlocks.insert(P = S);
- }
- }
- // Now poison the incoming values from the dead predecessors.
- for (BasicBlock *P : predecessors(B)) {
- if (!DeadBlocks.count(P))
- continue;
- for (PHINode &Phi : B->phis()) {
- Phi.setIncomingValueForBlock(P, PoisonValue::get(Phi.getType()));
- if (MD)
- MD->invalidateCachedPointerInfo(&Phi);
- }
- }
- }
- }
- // If the given branch is recognized as a foldable branch (i.e. conditional
- // branch with constant condition), it will perform following analyses and
- // transformation.
- // 1) If the dead out-coming edge is a critical-edge, split it. Let
- // R be the target of the dead out-coming edge.
- // 1) Identify the set of dead blocks implied by the branch's dead outcoming
- // edge. The result of this step will be {X| X is dominated by R}
- // 2) Identify those blocks which haves at least one dead predecessor. The
- // result of this step will be dominance-frontier(R).
- // 3) Update the PHIs in DF(R) by replacing the operands corresponding to
- // dead blocks with "UndefVal" in an hope these PHIs will optimized away.
- //
- // Return true iff *NEW* dead code are found.
- bool GVNPass::processFoldableCondBr(BranchInst *BI) {
- if (!BI || BI->isUnconditional())
- return false;
- // If a branch has two identical successors, we cannot declare either dead.
- if (BI->getSuccessor(0) == BI->getSuccessor(1))
- return false;
- ConstantInt *Cond = dyn_cast<ConstantInt>(BI->getCondition());
- if (!Cond)
- return false;
- BasicBlock *DeadRoot =
- Cond->getZExtValue() ? BI->getSuccessor(1) : BI->getSuccessor(0);
- if (DeadBlocks.count(DeadRoot))
- return false;
- if (!DeadRoot->getSinglePredecessor())
- DeadRoot = splitCriticalEdges(BI->getParent(), DeadRoot);
- addDeadBlock(DeadRoot);
- return true;
- }
- // performPRE() will trigger assert if it comes across an instruction without
- // associated val-num. As it normally has far more live instructions than dead
- // instructions, it makes more sense just to "fabricate" a val-number for the
- // dead code than checking if instruction involved is dead or not.
- void GVNPass::assignValNumForDeadCode() {
- for (BasicBlock *BB : DeadBlocks) {
- for (Instruction &Inst : *BB) {
- unsigned ValNum = VN.lookupOrAdd(&Inst);
- addToLeaderTable(ValNum, &Inst, BB);
- }
- }
- }
- class llvm::gvn::GVNLegacyPass : public FunctionPass {
- public:
- static char ID; // Pass identification, replacement for typeid
- explicit GVNLegacyPass(bool NoMemDepAnalysis = !GVNEnableMemDep)
- : FunctionPass(ID), Impl(GVNOptions().setMemDep(!NoMemDepAnalysis)) {
- initializeGVNLegacyPassPass(*PassRegistry::getPassRegistry());
- }
- bool runOnFunction(Function &F) override {
- if (skipFunction(F))
- return false;
- auto *LIWP = getAnalysisIfAvailable<LoopInfoWrapperPass>();
- auto *MSSAWP = getAnalysisIfAvailable<MemorySSAWrapperPass>();
- return Impl.runImpl(
- F, getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F),
- getAnalysis<DominatorTreeWrapperPass>().getDomTree(),
- getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F),
- getAnalysis<AAResultsWrapperPass>().getAAResults(),
- Impl.isMemDepEnabled()
- ? &getAnalysis<MemoryDependenceWrapperPass>().getMemDep()
- : nullptr,
- LIWP ? &LIWP->getLoopInfo() : nullptr,
- &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(),
- MSSAWP ? &MSSAWP->getMSSA() : nullptr);
- }
- void getAnalysisUsage(AnalysisUsage &AU) const override {
- AU.addRequired<AssumptionCacheTracker>();
- AU.addRequired<DominatorTreeWrapperPass>();
- AU.addRequired<TargetLibraryInfoWrapperPass>();
- AU.addRequired<LoopInfoWrapperPass>();
- if (Impl.isMemDepEnabled())
- AU.addRequired<MemoryDependenceWrapperPass>();
- AU.addRequired<AAResultsWrapperPass>();
- AU.addPreserved<DominatorTreeWrapperPass>();
- AU.addPreserved<GlobalsAAWrapperPass>();
- AU.addPreserved<TargetLibraryInfoWrapperPass>();
- AU.addPreserved<LoopInfoWrapperPass>();
- AU.addRequired<OptimizationRemarkEmitterWrapperPass>();
- AU.addPreserved<MemorySSAWrapperPass>();
- }
- private:
- GVNPass Impl;
- };
- char GVNLegacyPass::ID = 0;
- INITIALIZE_PASS_BEGIN(GVNLegacyPass, "gvn", "Global Value Numbering", false, false)
- INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
- INITIALIZE_PASS_DEPENDENCY(MemoryDependenceWrapperPass)
- INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
- INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
- INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
- INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
- INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass)
- INITIALIZE_PASS_END(GVNLegacyPass, "gvn", "Global Value Numbering", false, false)
- // The public interface to this file...
- FunctionPass *llvm::createGVNPass(bool NoMemDepAnalysis) {
- return new GVNLegacyPass(NoMemDepAnalysis);
- }
|