12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877 |
- //===- InstCombineMulDivRem.cpp -------------------------------------------===//
- //
- // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
- // See https://llvm.org/LICENSE.txt for license information.
- // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
- //
- //===----------------------------------------------------------------------===//
- //
- // This file implements the visit functions for mul, fmul, sdiv, udiv, fdiv,
- // srem, urem, frem.
- //
- //===----------------------------------------------------------------------===//
- #include "InstCombineInternal.h"
- #include "llvm/ADT/APInt.h"
- #include "llvm/ADT/SmallVector.h"
- #include "llvm/Analysis/InstructionSimplify.h"
- #include "llvm/Analysis/ValueTracking.h"
- #include "llvm/IR/BasicBlock.h"
- #include "llvm/IR/Constant.h"
- #include "llvm/IR/Constants.h"
- #include "llvm/IR/InstrTypes.h"
- #include "llvm/IR/Instruction.h"
- #include "llvm/IR/Instructions.h"
- #include "llvm/IR/IntrinsicInst.h"
- #include "llvm/IR/Intrinsics.h"
- #include "llvm/IR/Operator.h"
- #include "llvm/IR/PatternMatch.h"
- #include "llvm/IR/Type.h"
- #include "llvm/IR/Value.h"
- #include "llvm/Support/Casting.h"
- #include "llvm/Support/ErrorHandling.h"
- #include "llvm/Transforms/InstCombine/InstCombiner.h"
- #include "llvm/Transforms/Utils/BuildLibCalls.h"
- #include <cassert>
- #define DEBUG_TYPE "instcombine"
- #include "llvm/Transforms/Utils/InstructionWorklist.h"
- using namespace llvm;
- using namespace PatternMatch;
- /// The specific integer value is used in a context where it is known to be
- /// non-zero. If this allows us to simplify the computation, do so and return
- /// the new operand, otherwise return null.
- static Value *simplifyValueKnownNonZero(Value *V, InstCombinerImpl &IC,
- Instruction &CxtI) {
- // If V has multiple uses, then we would have to do more analysis to determine
- // if this is safe. For example, the use could be in dynamically unreached
- // code.
- if (!V->hasOneUse()) return nullptr;
- bool MadeChange = false;
- // ((1 << A) >>u B) --> (1 << (A-B))
- // Because V cannot be zero, we know that B is less than A.
- Value *A = nullptr, *B = nullptr, *One = nullptr;
- if (match(V, m_LShr(m_OneUse(m_Shl(m_Value(One), m_Value(A))), m_Value(B))) &&
- match(One, m_One())) {
- A = IC.Builder.CreateSub(A, B);
- return IC.Builder.CreateShl(One, A);
- }
- // (PowerOfTwo >>u B) --> isExact since shifting out the result would make it
- // inexact. Similarly for <<.
- BinaryOperator *I = dyn_cast<BinaryOperator>(V);
- if (I && I->isLogicalShift() &&
- IC.isKnownToBeAPowerOfTwo(I->getOperand(0), false, 0, &CxtI)) {
- // We know that this is an exact/nuw shift and that the input is a
- // non-zero context as well.
- if (Value *V2 = simplifyValueKnownNonZero(I->getOperand(0), IC, CxtI)) {
- IC.replaceOperand(*I, 0, V2);
- MadeChange = true;
- }
- if (I->getOpcode() == Instruction::LShr && !I->isExact()) {
- I->setIsExact();
- MadeChange = true;
- }
- if (I->getOpcode() == Instruction::Shl && !I->hasNoUnsignedWrap()) {
- I->setHasNoUnsignedWrap();
- MadeChange = true;
- }
- }
- // TODO: Lots more we could do here:
- // If V is a phi node, we can call this on each of its operands.
- // "select cond, X, 0" can simplify to "X".
- return MadeChange ? V : nullptr;
- }
- // TODO: This is a specific form of a much more general pattern.
- // We could detect a select with any binop identity constant, or we
- // could use SimplifyBinOp to see if either arm of the select reduces.
- // But that needs to be done carefully and/or while removing potential
- // reverse canonicalizations as in InstCombiner::foldSelectIntoOp().
- static Value *foldMulSelectToNegate(BinaryOperator &I,
- InstCombiner::BuilderTy &Builder) {
- Value *Cond, *OtherOp;
- // mul (select Cond, 1, -1), OtherOp --> select Cond, OtherOp, -OtherOp
- // mul OtherOp, (select Cond, 1, -1) --> select Cond, OtherOp, -OtherOp
- if (match(&I, m_c_Mul(m_OneUse(m_Select(m_Value(Cond), m_One(), m_AllOnes())),
- m_Value(OtherOp)))) {
- bool HasAnyNoWrap = I.hasNoSignedWrap() || I.hasNoUnsignedWrap();
- Value *Neg = Builder.CreateNeg(OtherOp, "", false, HasAnyNoWrap);
- return Builder.CreateSelect(Cond, OtherOp, Neg);
- }
- // mul (select Cond, -1, 1), OtherOp --> select Cond, -OtherOp, OtherOp
- // mul OtherOp, (select Cond, -1, 1) --> select Cond, -OtherOp, OtherOp
- if (match(&I, m_c_Mul(m_OneUse(m_Select(m_Value(Cond), m_AllOnes(), m_One())),
- m_Value(OtherOp)))) {
- bool HasAnyNoWrap = I.hasNoSignedWrap() || I.hasNoUnsignedWrap();
- Value *Neg = Builder.CreateNeg(OtherOp, "", false, HasAnyNoWrap);
- return Builder.CreateSelect(Cond, Neg, OtherOp);
- }
- // fmul (select Cond, 1.0, -1.0), OtherOp --> select Cond, OtherOp, -OtherOp
- // fmul OtherOp, (select Cond, 1.0, -1.0) --> select Cond, OtherOp, -OtherOp
- if (match(&I, m_c_FMul(m_OneUse(m_Select(m_Value(Cond), m_SpecificFP(1.0),
- m_SpecificFP(-1.0))),
- m_Value(OtherOp)))) {
- IRBuilder<>::FastMathFlagGuard FMFGuard(Builder);
- Builder.setFastMathFlags(I.getFastMathFlags());
- return Builder.CreateSelect(Cond, OtherOp, Builder.CreateFNeg(OtherOp));
- }
- // fmul (select Cond, -1.0, 1.0), OtherOp --> select Cond, -OtherOp, OtherOp
- // fmul OtherOp, (select Cond, -1.0, 1.0) --> select Cond, -OtherOp, OtherOp
- if (match(&I, m_c_FMul(m_OneUse(m_Select(m_Value(Cond), m_SpecificFP(-1.0),
- m_SpecificFP(1.0))),
- m_Value(OtherOp)))) {
- IRBuilder<>::FastMathFlagGuard FMFGuard(Builder);
- Builder.setFastMathFlags(I.getFastMathFlags());
- return Builder.CreateSelect(Cond, Builder.CreateFNeg(OtherOp), OtherOp);
- }
- return nullptr;
- }
- /// Reduce integer multiplication patterns that contain a (+/-1 << Z) factor.
- /// Callers are expected to call this twice to handle commuted patterns.
- static Value *foldMulShl1(BinaryOperator &Mul, bool CommuteOperands,
- InstCombiner::BuilderTy &Builder) {
- Value *X = Mul.getOperand(0), *Y = Mul.getOperand(1);
- if (CommuteOperands)
- std::swap(X, Y);
- const bool HasNSW = Mul.hasNoSignedWrap();
- const bool HasNUW = Mul.hasNoUnsignedWrap();
- // X * (1 << Z) --> X << Z
- Value *Z;
- if (match(Y, m_Shl(m_One(), m_Value(Z)))) {
- bool PropagateNSW = HasNSW && cast<ShlOperator>(Y)->hasNoSignedWrap();
- return Builder.CreateShl(X, Z, Mul.getName(), HasNUW, PropagateNSW);
- }
- // Similar to above, but an increment of the shifted value becomes an add:
- // X * ((1 << Z) + 1) --> (X * (1 << Z)) + X --> (X << Z) + X
- // This increases uses of X, so it may require a freeze, but that is still
- // expected to be an improvement because it removes the multiply.
- BinaryOperator *Shift;
- if (match(Y, m_OneUse(m_Add(m_BinOp(Shift), m_One()))) &&
- match(Shift, m_OneUse(m_Shl(m_One(), m_Value(Z))))) {
- bool PropagateNSW = HasNSW && Shift->hasNoSignedWrap();
- Value *FrX = Builder.CreateFreeze(X, X->getName() + ".fr");
- Value *Shl = Builder.CreateShl(FrX, Z, "mulshl", HasNUW, PropagateNSW);
- return Builder.CreateAdd(Shl, FrX, Mul.getName(), HasNUW, PropagateNSW);
- }
- // Similar to above, but a decrement of the shifted value is disguised as
- // 'not' and becomes a sub:
- // X * (~(-1 << Z)) --> X * ((1 << Z) - 1) --> (X << Z) - X
- // This increases uses of X, so it may require a freeze, but that is still
- // expected to be an improvement because it removes the multiply.
- if (match(Y, m_OneUse(m_Not(m_OneUse(m_Shl(m_AllOnes(), m_Value(Z))))))) {
- Value *FrX = Builder.CreateFreeze(X, X->getName() + ".fr");
- Value *Shl = Builder.CreateShl(FrX, Z, "mulshl");
- return Builder.CreateSub(Shl, FrX, Mul.getName());
- }
- return nullptr;
- }
- Instruction *InstCombinerImpl::visitMul(BinaryOperator &I) {
- Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
- if (Value *V =
- simplifyMulInst(Op0, Op1, I.hasNoSignedWrap(), I.hasNoUnsignedWrap(),
- SQ.getWithInstruction(&I)))
- return replaceInstUsesWith(I, V);
- if (SimplifyAssociativeOrCommutative(I))
- return &I;
- if (Instruction *X = foldVectorBinop(I))
- return X;
- if (Instruction *Phi = foldBinopWithPhiOperands(I))
- return Phi;
- if (Value *V = foldUsingDistributiveLaws(I))
- return replaceInstUsesWith(I, V);
- Type *Ty = I.getType();
- const unsigned BitWidth = Ty->getScalarSizeInBits();
- const bool HasNSW = I.hasNoSignedWrap();
- const bool HasNUW = I.hasNoUnsignedWrap();
- // X * -1 --> 0 - X
- if (match(Op1, m_AllOnes())) {
- return HasNSW ? BinaryOperator::CreateNSWNeg(Op0)
- : BinaryOperator::CreateNeg(Op0);
- }
- // Also allow combining multiply instructions on vectors.
- {
- Value *NewOp;
- Constant *C1, *C2;
- const APInt *IVal;
- if (match(&I, m_Mul(m_Shl(m_Value(NewOp), m_Constant(C2)),
- m_Constant(C1))) &&
- match(C1, m_APInt(IVal))) {
- // ((X << C2)*C1) == (X * (C1 << C2))
- Constant *Shl = ConstantExpr::getShl(C1, C2);
- BinaryOperator *Mul = cast<BinaryOperator>(I.getOperand(0));
- BinaryOperator *BO = BinaryOperator::CreateMul(NewOp, Shl);
- if (HasNUW && Mul->hasNoUnsignedWrap())
- BO->setHasNoUnsignedWrap();
- if (HasNSW && Mul->hasNoSignedWrap() && Shl->isNotMinSignedValue())
- BO->setHasNoSignedWrap();
- return BO;
- }
- if (match(&I, m_Mul(m_Value(NewOp), m_Constant(C1)))) {
- // Replace X*(2^C) with X << C, where C is either a scalar or a vector.
- if (Constant *NewCst = ConstantExpr::getExactLogBase2(C1)) {
- BinaryOperator *Shl = BinaryOperator::CreateShl(NewOp, NewCst);
- if (HasNUW)
- Shl->setHasNoUnsignedWrap();
- if (HasNSW) {
- const APInt *V;
- if (match(NewCst, m_APInt(V)) && *V != V->getBitWidth() - 1)
- Shl->setHasNoSignedWrap();
- }
- return Shl;
- }
- }
- }
- if (Op0->hasOneUse() && match(Op1, m_NegatedPower2())) {
- // Interpret X * (-1<<C) as (-X) * (1<<C) and try to sink the negation.
- // The "* (1<<C)" thus becomes a potential shifting opportunity.
- if (Value *NegOp0 = Negator::Negate(/*IsNegation*/ true, Op0, *this))
- return BinaryOperator::CreateMul(
- NegOp0, ConstantExpr::getNeg(cast<Constant>(Op1)), I.getName());
- // Try to convert multiply of extended operand to narrow negate and shift
- // for better analysis.
- // This is valid if the shift amount (trailing zeros in the multiplier
- // constant) clears more high bits than the bitwidth difference between
- // source and destination types:
- // ({z/s}ext X) * (-1<<C) --> (zext (-X)) << C
- const APInt *NegPow2C;
- Value *X;
- if (match(Op0, m_ZExtOrSExt(m_Value(X))) &&
- match(Op1, m_APIntAllowUndef(NegPow2C))) {
- unsigned SrcWidth = X->getType()->getScalarSizeInBits();
- unsigned ShiftAmt = NegPow2C->countTrailingZeros();
- if (ShiftAmt >= BitWidth - SrcWidth) {
- Value *N = Builder.CreateNeg(X, X->getName() + ".neg");
- Value *Z = Builder.CreateZExt(N, Ty, N->getName() + ".z");
- return BinaryOperator::CreateShl(Z, ConstantInt::get(Ty, ShiftAmt));
- }
- }
- }
- if (Instruction *FoldedMul = foldBinOpIntoSelectOrPhi(I))
- return FoldedMul;
- if (Value *FoldedMul = foldMulSelectToNegate(I, Builder))
- return replaceInstUsesWith(I, FoldedMul);
- // Simplify mul instructions with a constant RHS.
- Constant *MulC;
- if (match(Op1, m_ImmConstant(MulC))) {
- // Canonicalize (X+C1)*MulC -> X*MulC+C1*MulC.
- // Canonicalize (X|C1)*MulC -> X*MulC+C1*MulC.
- Value *X;
- Constant *C1;
- if ((match(Op0, m_OneUse(m_Add(m_Value(X), m_ImmConstant(C1))))) ||
- (match(Op0, m_OneUse(m_Or(m_Value(X), m_ImmConstant(C1)))) &&
- haveNoCommonBitsSet(X, C1, DL, &AC, &I, &DT))) {
- // C1*MulC simplifies to a tidier constant.
- Value *NewC = Builder.CreateMul(C1, MulC);
- auto *BOp0 = cast<BinaryOperator>(Op0);
- bool Op0NUW =
- (BOp0->getOpcode() == Instruction::Or || BOp0->hasNoUnsignedWrap());
- Value *NewMul = Builder.CreateMul(X, MulC);
- auto *BO = BinaryOperator::CreateAdd(NewMul, NewC);
- if (HasNUW && Op0NUW) {
- // If NewMulBO is constant we also can set BO to nuw.
- if (auto *NewMulBO = dyn_cast<BinaryOperator>(NewMul))
- NewMulBO->setHasNoUnsignedWrap();
- BO->setHasNoUnsignedWrap();
- }
- return BO;
- }
- }
- // abs(X) * abs(X) -> X * X
- // nabs(X) * nabs(X) -> X * X
- if (Op0 == Op1) {
- Value *X, *Y;
- SelectPatternFlavor SPF = matchSelectPattern(Op0, X, Y).Flavor;
- if (SPF == SPF_ABS || SPF == SPF_NABS)
- return BinaryOperator::CreateMul(X, X);
- if (match(Op0, m_Intrinsic<Intrinsic::abs>(m_Value(X))))
- return BinaryOperator::CreateMul(X, X);
- }
- // -X * C --> X * -C
- Value *X, *Y;
- Constant *Op1C;
- if (match(Op0, m_Neg(m_Value(X))) && match(Op1, m_Constant(Op1C)))
- return BinaryOperator::CreateMul(X, ConstantExpr::getNeg(Op1C));
- // -X * -Y --> X * Y
- if (match(Op0, m_Neg(m_Value(X))) && match(Op1, m_Neg(m_Value(Y)))) {
- auto *NewMul = BinaryOperator::CreateMul(X, Y);
- if (HasNSW && cast<OverflowingBinaryOperator>(Op0)->hasNoSignedWrap() &&
- cast<OverflowingBinaryOperator>(Op1)->hasNoSignedWrap())
- NewMul->setHasNoSignedWrap();
- return NewMul;
- }
- // -X * Y --> -(X * Y)
- // X * -Y --> -(X * Y)
- if (match(&I, m_c_Mul(m_OneUse(m_Neg(m_Value(X))), m_Value(Y))))
- return BinaryOperator::CreateNeg(Builder.CreateMul(X, Y));
- // (X / Y) * Y = X - (X % Y)
- // (X / Y) * -Y = (X % Y) - X
- {
- Value *Y = Op1;
- BinaryOperator *Div = dyn_cast<BinaryOperator>(Op0);
- if (!Div || (Div->getOpcode() != Instruction::UDiv &&
- Div->getOpcode() != Instruction::SDiv)) {
- Y = Op0;
- Div = dyn_cast<BinaryOperator>(Op1);
- }
- Value *Neg = dyn_castNegVal(Y);
- if (Div && Div->hasOneUse() &&
- (Div->getOperand(1) == Y || Div->getOperand(1) == Neg) &&
- (Div->getOpcode() == Instruction::UDiv ||
- Div->getOpcode() == Instruction::SDiv)) {
- Value *X = Div->getOperand(0), *DivOp1 = Div->getOperand(1);
- // If the division is exact, X % Y is zero, so we end up with X or -X.
- if (Div->isExact()) {
- if (DivOp1 == Y)
- return replaceInstUsesWith(I, X);
- return BinaryOperator::CreateNeg(X);
- }
- auto RemOpc = Div->getOpcode() == Instruction::UDiv ? Instruction::URem
- : Instruction::SRem;
- // X must be frozen because we are increasing its number of uses.
- Value *XFreeze = Builder.CreateFreeze(X, X->getName() + ".fr");
- Value *Rem = Builder.CreateBinOp(RemOpc, XFreeze, DivOp1);
- if (DivOp1 == Y)
- return BinaryOperator::CreateSub(XFreeze, Rem);
- return BinaryOperator::CreateSub(Rem, XFreeze);
- }
- }
- // Fold the following two scenarios:
- // 1) i1 mul -> i1 and.
- // 2) X * Y --> X & Y, iff X, Y can be only {0,1}.
- // Note: We could use known bits to generalize this and related patterns with
- // shifts/truncs
- if (Ty->isIntOrIntVectorTy(1) ||
- (match(Op0, m_And(m_Value(), m_One())) &&
- match(Op1, m_And(m_Value(), m_One()))))
- return BinaryOperator::CreateAnd(Op0, Op1);
- if (Value *R = foldMulShl1(I, /* CommuteOperands */ false, Builder))
- return replaceInstUsesWith(I, R);
- if (Value *R = foldMulShl1(I, /* CommuteOperands */ true, Builder))
- return replaceInstUsesWith(I, R);
- // (zext bool X) * (zext bool Y) --> zext (and X, Y)
- // (sext bool X) * (sext bool Y) --> zext (and X, Y)
- // Note: -1 * -1 == 1 * 1 == 1 (if the extends match, the result is the same)
- if (((match(Op0, m_ZExt(m_Value(X))) && match(Op1, m_ZExt(m_Value(Y)))) ||
- (match(Op0, m_SExt(m_Value(X))) && match(Op1, m_SExt(m_Value(Y))))) &&
- X->getType()->isIntOrIntVectorTy(1) && X->getType() == Y->getType() &&
- (Op0->hasOneUse() || Op1->hasOneUse() || X == Y)) {
- Value *And = Builder.CreateAnd(X, Y, "mulbool");
- return CastInst::Create(Instruction::ZExt, And, Ty);
- }
- // (sext bool X) * (zext bool Y) --> sext (and X, Y)
- // (zext bool X) * (sext bool Y) --> sext (and X, Y)
- // Note: -1 * 1 == 1 * -1 == -1
- if (((match(Op0, m_SExt(m_Value(X))) && match(Op1, m_ZExt(m_Value(Y)))) ||
- (match(Op0, m_ZExt(m_Value(X))) && match(Op1, m_SExt(m_Value(Y))))) &&
- X->getType()->isIntOrIntVectorTy(1) && X->getType() == Y->getType() &&
- (Op0->hasOneUse() || Op1->hasOneUse())) {
- Value *And = Builder.CreateAnd(X, Y, "mulbool");
- return CastInst::Create(Instruction::SExt, And, Ty);
- }
- // (zext bool X) * Y --> X ? Y : 0
- // Y * (zext bool X) --> X ? Y : 0
- if (match(Op0, m_ZExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1))
- return SelectInst::Create(X, Op1, ConstantInt::getNullValue(Ty));
- if (match(Op1, m_ZExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1))
- return SelectInst::Create(X, Op0, ConstantInt::getNullValue(Ty));
- Constant *ImmC;
- if (match(Op1, m_ImmConstant(ImmC))) {
- // (sext bool X) * C --> X ? -C : 0
- if (match(Op0, m_SExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1)) {
- Constant *NegC = ConstantExpr::getNeg(ImmC);
- return SelectInst::Create(X, NegC, ConstantInt::getNullValue(Ty));
- }
- // (ashr i32 X, 31) * C --> (X < 0) ? -C : 0
- const APInt *C;
- if (match(Op0, m_OneUse(m_AShr(m_Value(X), m_APInt(C)))) &&
- *C == C->getBitWidth() - 1) {
- Constant *NegC = ConstantExpr::getNeg(ImmC);
- Value *IsNeg = Builder.CreateIsNeg(X, "isneg");
- return SelectInst::Create(IsNeg, NegC, ConstantInt::getNullValue(Ty));
- }
- }
- // (lshr X, 31) * Y --> (X < 0) ? Y : 0
- // TODO: We are not checking one-use because the elimination of the multiply
- // is better for analysis?
- const APInt *C;
- if (match(&I, m_c_BinOp(m_LShr(m_Value(X), m_APInt(C)), m_Value(Y))) &&
- *C == C->getBitWidth() - 1) {
- Value *IsNeg = Builder.CreateIsNeg(X, "isneg");
- return SelectInst::Create(IsNeg, Y, ConstantInt::getNullValue(Ty));
- }
- // (and X, 1) * Y --> (trunc X) ? Y : 0
- if (match(&I, m_c_BinOp(m_OneUse(m_And(m_Value(X), m_One())), m_Value(Y)))) {
- Value *Tr = Builder.CreateTrunc(X, CmpInst::makeCmpResultType(Ty));
- return SelectInst::Create(Tr, Y, ConstantInt::getNullValue(Ty));
- }
- // ((ashr X, 31) | 1) * X --> abs(X)
- // X * ((ashr X, 31) | 1) --> abs(X)
- if (match(&I, m_c_BinOp(m_Or(m_AShr(m_Value(X),
- m_SpecificIntAllowUndef(BitWidth - 1)),
- m_One()),
- m_Deferred(X)))) {
- Value *Abs = Builder.CreateBinaryIntrinsic(
- Intrinsic::abs, X, ConstantInt::getBool(I.getContext(), HasNSW));
- Abs->takeName(&I);
- return replaceInstUsesWith(I, Abs);
- }
- if (Instruction *Ext = narrowMathIfNoOverflow(I))
- return Ext;
- bool Changed = false;
- if (!HasNSW && willNotOverflowSignedMul(Op0, Op1, I)) {
- Changed = true;
- I.setHasNoSignedWrap(true);
- }
- if (!HasNUW && willNotOverflowUnsignedMul(Op0, Op1, I)) {
- Changed = true;
- I.setHasNoUnsignedWrap(true);
- }
- return Changed ? &I : nullptr;
- }
- Instruction *InstCombinerImpl::foldFPSignBitOps(BinaryOperator &I) {
- BinaryOperator::BinaryOps Opcode = I.getOpcode();
- assert((Opcode == Instruction::FMul || Opcode == Instruction::FDiv) &&
- "Expected fmul or fdiv");
- Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
- Value *X, *Y;
- // -X * -Y --> X * Y
- // -X / -Y --> X / Y
- if (match(Op0, m_FNeg(m_Value(X))) && match(Op1, m_FNeg(m_Value(Y))))
- return BinaryOperator::CreateWithCopiedFlags(Opcode, X, Y, &I);
- // fabs(X) * fabs(X) -> X * X
- // fabs(X) / fabs(X) -> X / X
- if (Op0 == Op1 && match(Op0, m_FAbs(m_Value(X))))
- return BinaryOperator::CreateWithCopiedFlags(Opcode, X, X, &I);
- // fabs(X) * fabs(Y) --> fabs(X * Y)
- // fabs(X) / fabs(Y) --> fabs(X / Y)
- if (match(Op0, m_FAbs(m_Value(X))) && match(Op1, m_FAbs(m_Value(Y))) &&
- (Op0->hasOneUse() || Op1->hasOneUse())) {
- IRBuilder<>::FastMathFlagGuard FMFGuard(Builder);
- Builder.setFastMathFlags(I.getFastMathFlags());
- Value *XY = Builder.CreateBinOp(Opcode, X, Y);
- Value *Fabs = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, XY);
- Fabs->takeName(&I);
- return replaceInstUsesWith(I, Fabs);
- }
- return nullptr;
- }
- Instruction *InstCombinerImpl::visitFMul(BinaryOperator &I) {
- if (Value *V = simplifyFMulInst(I.getOperand(0), I.getOperand(1),
- I.getFastMathFlags(),
- SQ.getWithInstruction(&I)))
- return replaceInstUsesWith(I, V);
- if (SimplifyAssociativeOrCommutative(I))
- return &I;
- if (Instruction *X = foldVectorBinop(I))
- return X;
- if (Instruction *Phi = foldBinopWithPhiOperands(I))
- return Phi;
- if (Instruction *FoldedMul = foldBinOpIntoSelectOrPhi(I))
- return FoldedMul;
- if (Value *FoldedMul = foldMulSelectToNegate(I, Builder))
- return replaceInstUsesWith(I, FoldedMul);
- if (Instruction *R = foldFPSignBitOps(I))
- return R;
- // X * -1.0 --> -X
- Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
- if (match(Op1, m_SpecificFP(-1.0)))
- return UnaryOperator::CreateFNegFMF(Op0, &I);
- // With no-nans: X * 0.0 --> copysign(0.0, X)
- if (I.hasNoNaNs() && match(Op1, m_PosZeroFP())) {
- CallInst *CopySign = Builder.CreateIntrinsic(Intrinsic::copysign,
- {I.getType()}, {Op1, Op0}, &I);
- return replaceInstUsesWith(I, CopySign);
- }
- // -X * C --> X * -C
- Value *X, *Y;
- Constant *C;
- if (match(Op0, m_FNeg(m_Value(X))) && match(Op1, m_Constant(C)))
- if (Constant *NegC = ConstantFoldUnaryOpOperand(Instruction::FNeg, C, DL))
- return BinaryOperator::CreateFMulFMF(X, NegC, &I);
- // (select A, B, C) * (select A, D, E) --> select A, (B*D), (C*E)
- if (Value *V = SimplifySelectsFeedingBinaryOp(I, Op0, Op1))
- return replaceInstUsesWith(I, V);
- if (I.hasAllowReassoc()) {
- // Reassociate constant RHS with another constant to form constant
- // expression.
- if (match(Op1, m_Constant(C)) && C->isFiniteNonZeroFP()) {
- Constant *C1;
- if (match(Op0, m_OneUse(m_FDiv(m_Constant(C1), m_Value(X))))) {
- // (C1 / X) * C --> (C * C1) / X
- Constant *CC1 =
- ConstantFoldBinaryOpOperands(Instruction::FMul, C, C1, DL);
- if (CC1 && CC1->isNormalFP())
- return BinaryOperator::CreateFDivFMF(CC1, X, &I);
- }
- if (match(Op0, m_FDiv(m_Value(X), m_Constant(C1)))) {
- // (X / C1) * C --> X * (C / C1)
- Constant *CDivC1 =
- ConstantFoldBinaryOpOperands(Instruction::FDiv, C, C1, DL);
- if (CDivC1 && CDivC1->isNormalFP())
- return BinaryOperator::CreateFMulFMF(X, CDivC1, &I);
- // If the constant was a denormal, try reassociating differently.
- // (X / C1) * C --> X / (C1 / C)
- Constant *C1DivC =
- ConstantFoldBinaryOpOperands(Instruction::FDiv, C1, C, DL);
- if (C1DivC && Op0->hasOneUse() && C1DivC->isNormalFP())
- return BinaryOperator::CreateFDivFMF(X, C1DivC, &I);
- }
- // We do not need to match 'fadd C, X' and 'fsub X, C' because they are
- // canonicalized to 'fadd X, C'. Distributing the multiply may allow
- // further folds and (X * C) + C2 is 'fma'.
- if (match(Op0, m_OneUse(m_FAdd(m_Value(X), m_Constant(C1))))) {
- // (X + C1) * C --> (X * C) + (C * C1)
- if (Constant *CC1 = ConstantFoldBinaryOpOperands(
- Instruction::FMul, C, C1, DL)) {
- Value *XC = Builder.CreateFMulFMF(X, C, &I);
- return BinaryOperator::CreateFAddFMF(XC, CC1, &I);
- }
- }
- if (match(Op0, m_OneUse(m_FSub(m_Constant(C1), m_Value(X))))) {
- // (C1 - X) * C --> (C * C1) - (X * C)
- if (Constant *CC1 = ConstantFoldBinaryOpOperands(
- Instruction::FMul, C, C1, DL)) {
- Value *XC = Builder.CreateFMulFMF(X, C, &I);
- return BinaryOperator::CreateFSubFMF(CC1, XC, &I);
- }
- }
- }
- Value *Z;
- if (match(&I, m_c_FMul(m_OneUse(m_FDiv(m_Value(X), m_Value(Y))),
- m_Value(Z)))) {
- // Sink division: (X / Y) * Z --> (X * Z) / Y
- Value *NewFMul = Builder.CreateFMulFMF(X, Z, &I);
- return BinaryOperator::CreateFDivFMF(NewFMul, Y, &I);
- }
- // sqrt(X) * sqrt(Y) -> sqrt(X * Y)
- // nnan disallows the possibility of returning a number if both operands are
- // negative (in that case, we should return NaN).
- if (I.hasNoNaNs() && match(Op0, m_OneUse(m_Sqrt(m_Value(X)))) &&
- match(Op1, m_OneUse(m_Sqrt(m_Value(Y))))) {
- Value *XY = Builder.CreateFMulFMF(X, Y, &I);
- Value *Sqrt = Builder.CreateUnaryIntrinsic(Intrinsic::sqrt, XY, &I);
- return replaceInstUsesWith(I, Sqrt);
- }
- // The following transforms are done irrespective of the number of uses
- // for the expression "1.0/sqrt(X)".
- // 1) 1.0/sqrt(X) * X -> X/sqrt(X)
- // 2) X * 1.0/sqrt(X) -> X/sqrt(X)
- // We always expect the backend to reduce X/sqrt(X) to sqrt(X), if it
- // has the necessary (reassoc) fast-math-flags.
- if (I.hasNoSignedZeros() &&
- match(Op0, (m_FDiv(m_SpecificFP(1.0), m_Value(Y)))) &&
- match(Y, m_Sqrt(m_Value(X))) && Op1 == X)
- return BinaryOperator::CreateFDivFMF(X, Y, &I);
- if (I.hasNoSignedZeros() &&
- match(Op1, (m_FDiv(m_SpecificFP(1.0), m_Value(Y)))) &&
- match(Y, m_Sqrt(m_Value(X))) && Op0 == X)
- return BinaryOperator::CreateFDivFMF(X, Y, &I);
- // Like the similar transform in instsimplify, this requires 'nsz' because
- // sqrt(-0.0) = -0.0, and -0.0 * -0.0 does not simplify to -0.0.
- if (I.hasNoNaNs() && I.hasNoSignedZeros() && Op0 == Op1 &&
- Op0->hasNUses(2)) {
- // Peek through fdiv to find squaring of square root:
- // (X / sqrt(Y)) * (X / sqrt(Y)) --> (X * X) / Y
- if (match(Op0, m_FDiv(m_Value(X), m_Sqrt(m_Value(Y))))) {
- Value *XX = Builder.CreateFMulFMF(X, X, &I);
- return BinaryOperator::CreateFDivFMF(XX, Y, &I);
- }
- // (sqrt(Y) / X) * (sqrt(Y) / X) --> Y / (X * X)
- if (match(Op0, m_FDiv(m_Sqrt(m_Value(Y)), m_Value(X)))) {
- Value *XX = Builder.CreateFMulFMF(X, X, &I);
- return BinaryOperator::CreateFDivFMF(Y, XX, &I);
- }
- }
- // pow(X, Y) * X --> pow(X, Y+1)
- // X * pow(X, Y) --> pow(X, Y+1)
- if (match(&I, m_c_FMul(m_OneUse(m_Intrinsic<Intrinsic::pow>(m_Value(X),
- m_Value(Y))),
- m_Deferred(X)))) {
- Value *Y1 =
- Builder.CreateFAddFMF(Y, ConstantFP::get(I.getType(), 1.0), &I);
- Value *Pow = Builder.CreateBinaryIntrinsic(Intrinsic::pow, X, Y1, &I);
- return replaceInstUsesWith(I, Pow);
- }
- if (I.isOnlyUserOfAnyOperand()) {
- // pow(X, Y) * pow(X, Z) -> pow(X, Y + Z)
- if (match(Op0, m_Intrinsic<Intrinsic::pow>(m_Value(X), m_Value(Y))) &&
- match(Op1, m_Intrinsic<Intrinsic::pow>(m_Specific(X), m_Value(Z)))) {
- auto *YZ = Builder.CreateFAddFMF(Y, Z, &I);
- auto *NewPow = Builder.CreateBinaryIntrinsic(Intrinsic::pow, X, YZ, &I);
- return replaceInstUsesWith(I, NewPow);
- }
- // pow(X, Y) * pow(Z, Y) -> pow(X * Z, Y)
- if (match(Op0, m_Intrinsic<Intrinsic::pow>(m_Value(X), m_Value(Y))) &&
- match(Op1, m_Intrinsic<Intrinsic::pow>(m_Value(Z), m_Specific(Y)))) {
- auto *XZ = Builder.CreateFMulFMF(X, Z, &I);
- auto *NewPow = Builder.CreateBinaryIntrinsic(Intrinsic::pow, XZ, Y, &I);
- return replaceInstUsesWith(I, NewPow);
- }
- // powi(x, y) * powi(x, z) -> powi(x, y + z)
- if (match(Op0, m_Intrinsic<Intrinsic::powi>(m_Value(X), m_Value(Y))) &&
- match(Op1, m_Intrinsic<Intrinsic::powi>(m_Specific(X), m_Value(Z))) &&
- Y->getType() == Z->getType()) {
- auto *YZ = Builder.CreateAdd(Y, Z);
- auto *NewPow = Builder.CreateIntrinsic(
- Intrinsic::powi, {X->getType(), YZ->getType()}, {X, YZ}, &I);
- return replaceInstUsesWith(I, NewPow);
- }
- // exp(X) * exp(Y) -> exp(X + Y)
- if (match(Op0, m_Intrinsic<Intrinsic::exp>(m_Value(X))) &&
- match(Op1, m_Intrinsic<Intrinsic::exp>(m_Value(Y)))) {
- Value *XY = Builder.CreateFAddFMF(X, Y, &I);
- Value *Exp = Builder.CreateUnaryIntrinsic(Intrinsic::exp, XY, &I);
- return replaceInstUsesWith(I, Exp);
- }
- // exp2(X) * exp2(Y) -> exp2(X + Y)
- if (match(Op0, m_Intrinsic<Intrinsic::exp2>(m_Value(X))) &&
- match(Op1, m_Intrinsic<Intrinsic::exp2>(m_Value(Y)))) {
- Value *XY = Builder.CreateFAddFMF(X, Y, &I);
- Value *Exp2 = Builder.CreateUnaryIntrinsic(Intrinsic::exp2, XY, &I);
- return replaceInstUsesWith(I, Exp2);
- }
- }
- // (X*Y) * X => (X*X) * Y where Y != X
- // The purpose is two-fold:
- // 1) to form a power expression (of X).
- // 2) potentially shorten the critical path: After transformation, the
- // latency of the instruction Y is amortized by the expression of X*X,
- // and therefore Y is in a "less critical" position compared to what it
- // was before the transformation.
- if (match(Op0, m_OneUse(m_c_FMul(m_Specific(Op1), m_Value(Y)))) &&
- Op1 != Y) {
- Value *XX = Builder.CreateFMulFMF(Op1, Op1, &I);
- return BinaryOperator::CreateFMulFMF(XX, Y, &I);
- }
- if (match(Op1, m_OneUse(m_c_FMul(m_Specific(Op0), m_Value(Y)))) &&
- Op0 != Y) {
- Value *XX = Builder.CreateFMulFMF(Op0, Op0, &I);
- return BinaryOperator::CreateFMulFMF(XX, Y, &I);
- }
- }
- // log2(X * 0.5) * Y = log2(X) * Y - Y
- if (I.isFast()) {
- IntrinsicInst *Log2 = nullptr;
- if (match(Op0, m_OneUse(m_Intrinsic<Intrinsic::log2>(
- m_OneUse(m_FMul(m_Value(X), m_SpecificFP(0.5))))))) {
- Log2 = cast<IntrinsicInst>(Op0);
- Y = Op1;
- }
- if (match(Op1, m_OneUse(m_Intrinsic<Intrinsic::log2>(
- m_OneUse(m_FMul(m_Value(X), m_SpecificFP(0.5))))))) {
- Log2 = cast<IntrinsicInst>(Op1);
- Y = Op0;
- }
- if (Log2) {
- Value *Log2 = Builder.CreateUnaryIntrinsic(Intrinsic::log2, X, &I);
- Value *LogXTimesY = Builder.CreateFMulFMF(Log2, Y, &I);
- return BinaryOperator::CreateFSubFMF(LogXTimesY, Y, &I);
- }
- }
- // Simplify FMUL recurrences starting with 0.0 to 0.0 if nnan and nsz are set.
- // Given a phi node with entry value as 0 and it used in fmul operation,
- // we can replace fmul with 0 safely and eleminate loop operation.
- PHINode *PN = nullptr;
- Value *Start = nullptr, *Step = nullptr;
- if (matchSimpleRecurrence(&I, PN, Start, Step) && I.hasNoNaNs() &&
- I.hasNoSignedZeros() && match(Start, m_Zero()))
- return replaceInstUsesWith(I, Start);
- return nullptr;
- }
- /// Fold a divide or remainder with a select instruction divisor when one of the
- /// select operands is zero. In that case, we can use the other select operand
- /// because div/rem by zero is undefined.
- bool InstCombinerImpl::simplifyDivRemOfSelectWithZeroOp(BinaryOperator &I) {
- SelectInst *SI = dyn_cast<SelectInst>(I.getOperand(1));
- if (!SI)
- return false;
- int NonNullOperand;
- if (match(SI->getTrueValue(), m_Zero()))
- // div/rem X, (Cond ? 0 : Y) -> div/rem X, Y
- NonNullOperand = 2;
- else if (match(SI->getFalseValue(), m_Zero()))
- // div/rem X, (Cond ? Y : 0) -> div/rem X, Y
- NonNullOperand = 1;
- else
- return false;
- // Change the div/rem to use 'Y' instead of the select.
- replaceOperand(I, 1, SI->getOperand(NonNullOperand));
- // Okay, we know we replace the operand of the div/rem with 'Y' with no
- // problem. However, the select, or the condition of the select may have
- // multiple uses. Based on our knowledge that the operand must be non-zero,
- // propagate the known value for the select into other uses of it, and
- // propagate a known value of the condition into its other users.
- // If the select and condition only have a single use, don't bother with this,
- // early exit.
- Value *SelectCond = SI->getCondition();
- if (SI->use_empty() && SelectCond->hasOneUse())
- return true;
- // Scan the current block backward, looking for other uses of SI.
- BasicBlock::iterator BBI = I.getIterator(), BBFront = I.getParent()->begin();
- Type *CondTy = SelectCond->getType();
- while (BBI != BBFront) {
- --BBI;
- // If we found an instruction that we can't assume will return, so
- // information from below it cannot be propagated above it.
- if (!isGuaranteedToTransferExecutionToSuccessor(&*BBI))
- break;
- // Replace uses of the select or its condition with the known values.
- for (Use &Op : BBI->operands()) {
- if (Op == SI) {
- replaceUse(Op, SI->getOperand(NonNullOperand));
- Worklist.push(&*BBI);
- } else if (Op == SelectCond) {
- replaceUse(Op, NonNullOperand == 1 ? ConstantInt::getTrue(CondTy)
- : ConstantInt::getFalse(CondTy));
- Worklist.push(&*BBI);
- }
- }
- // If we past the instruction, quit looking for it.
- if (&*BBI == SI)
- SI = nullptr;
- if (&*BBI == SelectCond)
- SelectCond = nullptr;
- // If we ran out of things to eliminate, break out of the loop.
- if (!SelectCond && !SI)
- break;
- }
- return true;
- }
- /// True if the multiply can not be expressed in an int this size.
- static bool multiplyOverflows(const APInt &C1, const APInt &C2, APInt &Product,
- bool IsSigned) {
- bool Overflow;
- Product = IsSigned ? C1.smul_ov(C2, Overflow) : C1.umul_ov(C2, Overflow);
- return Overflow;
- }
- /// True if C1 is a multiple of C2. Quotient contains C1/C2.
- static bool isMultiple(const APInt &C1, const APInt &C2, APInt &Quotient,
- bool IsSigned) {
- assert(C1.getBitWidth() == C2.getBitWidth() && "Constant widths not equal");
- // Bail if we will divide by zero.
- if (C2.isZero())
- return false;
- // Bail if we would divide INT_MIN by -1.
- if (IsSigned && C1.isMinSignedValue() && C2.isAllOnes())
- return false;
- APInt Remainder(C1.getBitWidth(), /*val=*/0ULL, IsSigned);
- if (IsSigned)
- APInt::sdivrem(C1, C2, Quotient, Remainder);
- else
- APInt::udivrem(C1, C2, Quotient, Remainder);
- return Remainder.isMinValue();
- }
- static Instruction *foldIDivShl(BinaryOperator &I,
- InstCombiner::BuilderTy &Builder) {
- assert((I.getOpcode() == Instruction::SDiv ||
- I.getOpcode() == Instruction::UDiv) &&
- "Expected integer divide");
- bool IsSigned = I.getOpcode() == Instruction::SDiv;
- Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
- Type *Ty = I.getType();
- Instruction *Ret = nullptr;
- Value *X, *Y, *Z;
- // With appropriate no-wrap constraints, remove a common factor in the
- // dividend and divisor that is disguised as a left-shifted value.
- if (match(Op1, m_Shl(m_Value(X), m_Value(Z))) &&
- match(Op0, m_c_Mul(m_Specific(X), m_Value(Y)))) {
- // Both operands must have the matching no-wrap for this kind of division.
- auto *Mul = cast<OverflowingBinaryOperator>(Op0);
- auto *Shl = cast<OverflowingBinaryOperator>(Op1);
- bool HasNUW = Mul->hasNoUnsignedWrap() && Shl->hasNoUnsignedWrap();
- bool HasNSW = Mul->hasNoSignedWrap() && Shl->hasNoSignedWrap();
- // (X * Y) u/ (X << Z) --> Y u>> Z
- if (!IsSigned && HasNUW)
- Ret = BinaryOperator::CreateLShr(Y, Z);
- // (X * Y) s/ (X << Z) --> Y s/ (1 << Z)
- if (IsSigned && HasNSW && (Op0->hasOneUse() || Op1->hasOneUse())) {
- Value *Shl = Builder.CreateShl(ConstantInt::get(Ty, 1), Z);
- Ret = BinaryOperator::CreateSDiv(Y, Shl);
- }
- }
- // With appropriate no-wrap constraints, remove a common factor in the
- // dividend and divisor that is disguised as a left-shift amount.
- if (match(Op0, m_Shl(m_Value(X), m_Value(Z))) &&
- match(Op1, m_Shl(m_Value(Y), m_Specific(Z)))) {
- auto *Shl0 = cast<OverflowingBinaryOperator>(Op0);
- auto *Shl1 = cast<OverflowingBinaryOperator>(Op1);
- // For unsigned div, we need 'nuw' on both shifts or
- // 'nsw' on both shifts + 'nuw' on the dividend.
- // (X << Z) / (Y << Z) --> X / Y
- if (!IsSigned &&
- ((Shl0->hasNoUnsignedWrap() && Shl1->hasNoUnsignedWrap()) ||
- (Shl0->hasNoUnsignedWrap() && Shl0->hasNoSignedWrap() &&
- Shl1->hasNoSignedWrap())))
- Ret = BinaryOperator::CreateUDiv(X, Y);
- // For signed div, we need 'nsw' on both shifts + 'nuw' on the divisor.
- // (X << Z) / (Y << Z) --> X / Y
- if (IsSigned && Shl0->hasNoSignedWrap() && Shl1->hasNoSignedWrap() &&
- Shl1->hasNoUnsignedWrap())
- Ret = BinaryOperator::CreateSDiv(X, Y);
- }
- if (!Ret)
- return nullptr;
- Ret->setIsExact(I.isExact());
- return Ret;
- }
- /// This function implements the transforms common to both integer division
- /// instructions (udiv and sdiv). It is called by the visitors to those integer
- /// division instructions.
- /// Common integer divide transforms
- Instruction *InstCombinerImpl::commonIDivTransforms(BinaryOperator &I) {
- if (Instruction *Phi = foldBinopWithPhiOperands(I))
- return Phi;
- Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
- bool IsSigned = I.getOpcode() == Instruction::SDiv;
- Type *Ty = I.getType();
- // The RHS is known non-zero.
- if (Value *V = simplifyValueKnownNonZero(I.getOperand(1), *this, I))
- return replaceOperand(I, 1, V);
- // Handle cases involving: [su]div X, (select Cond, Y, Z)
- // This does not apply for fdiv.
- if (simplifyDivRemOfSelectWithZeroOp(I))
- return &I;
- // If the divisor is a select-of-constants, try to constant fold all div ops:
- // C / (select Cond, TrueC, FalseC) --> select Cond, (C / TrueC), (C / FalseC)
- // TODO: Adapt simplifyDivRemOfSelectWithZeroOp to allow this and other folds.
- if (match(Op0, m_ImmConstant()) &&
- match(Op1, m_Select(m_Value(), m_ImmConstant(), m_ImmConstant()))) {
- if (Instruction *R = FoldOpIntoSelect(I, cast<SelectInst>(Op1),
- /*FoldWithMultiUse*/ true))
- return R;
- }
- const APInt *C2;
- if (match(Op1, m_APInt(C2))) {
- Value *X;
- const APInt *C1;
- // (X / C1) / C2 -> X / (C1*C2)
- if ((IsSigned && match(Op0, m_SDiv(m_Value(X), m_APInt(C1)))) ||
- (!IsSigned && match(Op0, m_UDiv(m_Value(X), m_APInt(C1))))) {
- APInt Product(C1->getBitWidth(), /*val=*/0ULL, IsSigned);
- if (!multiplyOverflows(*C1, *C2, Product, IsSigned))
- return BinaryOperator::Create(I.getOpcode(), X,
- ConstantInt::get(Ty, Product));
- }
- if ((IsSigned && match(Op0, m_NSWMul(m_Value(X), m_APInt(C1)))) ||
- (!IsSigned && match(Op0, m_NUWMul(m_Value(X), m_APInt(C1))))) {
- APInt Quotient(C1->getBitWidth(), /*val=*/0ULL, IsSigned);
- // (X * C1) / C2 -> X / (C2 / C1) if C2 is a multiple of C1.
- if (isMultiple(*C2, *C1, Quotient, IsSigned)) {
- auto *NewDiv = BinaryOperator::Create(I.getOpcode(), X,
- ConstantInt::get(Ty, Quotient));
- NewDiv->setIsExact(I.isExact());
- return NewDiv;
- }
- // (X * C1) / C2 -> X * (C1 / C2) if C1 is a multiple of C2.
- if (isMultiple(*C1, *C2, Quotient, IsSigned)) {
- auto *Mul = BinaryOperator::Create(Instruction::Mul, X,
- ConstantInt::get(Ty, Quotient));
- auto *OBO = cast<OverflowingBinaryOperator>(Op0);
- Mul->setHasNoUnsignedWrap(!IsSigned && OBO->hasNoUnsignedWrap());
- Mul->setHasNoSignedWrap(OBO->hasNoSignedWrap());
- return Mul;
- }
- }
- if ((IsSigned && match(Op0, m_NSWShl(m_Value(X), m_APInt(C1))) &&
- C1->ult(C1->getBitWidth() - 1)) ||
- (!IsSigned && match(Op0, m_NUWShl(m_Value(X), m_APInt(C1))) &&
- C1->ult(C1->getBitWidth()))) {
- APInt Quotient(C1->getBitWidth(), /*val=*/0ULL, IsSigned);
- APInt C1Shifted = APInt::getOneBitSet(
- C1->getBitWidth(), static_cast<unsigned>(C1->getZExtValue()));
- // (X << C1) / C2 -> X / (C2 >> C1) if C2 is a multiple of 1 << C1.
- if (isMultiple(*C2, C1Shifted, Quotient, IsSigned)) {
- auto *BO = BinaryOperator::Create(I.getOpcode(), X,
- ConstantInt::get(Ty, Quotient));
- BO->setIsExact(I.isExact());
- return BO;
- }
- // (X << C1) / C2 -> X * ((1 << C1) / C2) if 1 << C1 is a multiple of C2.
- if (isMultiple(C1Shifted, *C2, Quotient, IsSigned)) {
- auto *Mul = BinaryOperator::Create(Instruction::Mul, X,
- ConstantInt::get(Ty, Quotient));
- auto *OBO = cast<OverflowingBinaryOperator>(Op0);
- Mul->setHasNoUnsignedWrap(!IsSigned && OBO->hasNoUnsignedWrap());
- Mul->setHasNoSignedWrap(OBO->hasNoSignedWrap());
- return Mul;
- }
- }
- if (!C2->isZero()) // avoid X udiv 0
- if (Instruction *FoldedDiv = foldBinOpIntoSelectOrPhi(I))
- return FoldedDiv;
- }
- if (match(Op0, m_One())) {
- assert(!Ty->isIntOrIntVectorTy(1) && "i1 divide not removed?");
- if (IsSigned) {
- // 1 / 0 --> undef ; 1 / 1 --> 1 ; 1 / -1 --> -1 ; 1 / anything else --> 0
- // (Op1 + 1) u< 3 ? Op1 : 0
- // Op1 must be frozen because we are increasing its number of uses.
- Value *F1 = Builder.CreateFreeze(Op1, Op1->getName() + ".fr");
- Value *Inc = Builder.CreateAdd(F1, Op0);
- Value *Cmp = Builder.CreateICmpULT(Inc, ConstantInt::get(Ty, 3));
- return SelectInst::Create(Cmp, F1, ConstantInt::get(Ty, 0));
- } else {
- // If Op1 is 0 then it's undefined behaviour. If Op1 is 1 then the
- // result is one, otherwise it's zero.
- return new ZExtInst(Builder.CreateICmpEQ(Op1, Op0), Ty);
- }
- }
- // See if we can fold away this div instruction.
- if (SimplifyDemandedInstructionBits(I))
- return &I;
- // (X - (X rem Y)) / Y -> X / Y; usually originates as ((X / Y) * Y) / Y
- Value *X, *Z;
- if (match(Op0, m_Sub(m_Value(X), m_Value(Z)))) // (X - Z) / Y; Y = Op1
- if ((IsSigned && match(Z, m_SRem(m_Specific(X), m_Specific(Op1)))) ||
- (!IsSigned && match(Z, m_URem(m_Specific(X), m_Specific(Op1)))))
- return BinaryOperator::Create(I.getOpcode(), X, Op1);
- // (X << Y) / X -> 1 << Y
- Value *Y;
- if (IsSigned && match(Op0, m_NSWShl(m_Specific(Op1), m_Value(Y))))
- return BinaryOperator::CreateNSWShl(ConstantInt::get(Ty, 1), Y);
- if (!IsSigned && match(Op0, m_NUWShl(m_Specific(Op1), m_Value(Y))))
- return BinaryOperator::CreateNUWShl(ConstantInt::get(Ty, 1), Y);
- // X / (X * Y) -> 1 / Y if the multiplication does not overflow.
- if (match(Op1, m_c_Mul(m_Specific(Op0), m_Value(Y)))) {
- bool HasNSW = cast<OverflowingBinaryOperator>(Op1)->hasNoSignedWrap();
- bool HasNUW = cast<OverflowingBinaryOperator>(Op1)->hasNoUnsignedWrap();
- if ((IsSigned && HasNSW) || (!IsSigned && HasNUW)) {
- replaceOperand(I, 0, ConstantInt::get(Ty, 1));
- replaceOperand(I, 1, Y);
- return &I;
- }
- }
- // (X << Z) / (X * Y) -> (1 << Z) / Y
- // TODO: Handle sdiv.
- if (!IsSigned && Op1->hasOneUse() &&
- match(Op0, m_NUWShl(m_Value(X), m_Value(Z))) &&
- match(Op1, m_c_Mul(m_Specific(X), m_Value(Y))))
- if (cast<OverflowingBinaryOperator>(Op1)->hasNoUnsignedWrap()) {
- Instruction *NewDiv = BinaryOperator::CreateUDiv(
- Builder.CreateShl(ConstantInt::get(Ty, 1), Z, "", /*NUW*/ true), Y);
- NewDiv->setIsExact(I.isExact());
- return NewDiv;
- }
- if (Instruction *R = foldIDivShl(I, Builder))
- return R;
- // With the appropriate no-wrap constraint, remove a multiply by the divisor
- // after peeking through another divide:
- // ((Op1 * X) / Y) / Op1 --> X / Y
- if (match(Op0, m_BinOp(I.getOpcode(), m_c_Mul(m_Specific(Op1), m_Value(X)),
- m_Value(Y)))) {
- auto *InnerDiv = cast<PossiblyExactOperator>(Op0);
- auto *Mul = cast<OverflowingBinaryOperator>(InnerDiv->getOperand(0));
- Instruction *NewDiv = nullptr;
- if (!IsSigned && Mul->hasNoUnsignedWrap())
- NewDiv = BinaryOperator::CreateUDiv(X, Y);
- else if (IsSigned && Mul->hasNoSignedWrap())
- NewDiv = BinaryOperator::CreateSDiv(X, Y);
- // Exact propagates only if both of the original divides are exact.
- if (NewDiv) {
- NewDiv->setIsExact(I.isExact() && InnerDiv->isExact());
- return NewDiv;
- }
- }
- return nullptr;
- }
- static const unsigned MaxDepth = 6;
- // Take the exact integer log2 of the value. If DoFold is true, create the
- // actual instructions, otherwise return a non-null dummy value. Return nullptr
- // on failure.
- static Value *takeLog2(IRBuilderBase &Builder, Value *Op, unsigned Depth,
- bool DoFold) {
- auto IfFold = [DoFold](function_ref<Value *()> Fn) {
- if (!DoFold)
- return reinterpret_cast<Value *>(-1);
- return Fn();
- };
- // FIXME: assert that Op1 isn't/doesn't contain undef.
- // log2(2^C) -> C
- if (match(Op, m_Power2()))
- return IfFold([&]() {
- Constant *C = ConstantExpr::getExactLogBase2(cast<Constant>(Op));
- if (!C)
- llvm_unreachable("Failed to constant fold udiv -> logbase2");
- return C;
- });
- // The remaining tests are all recursive, so bail out if we hit the limit.
- if (Depth++ == MaxDepth)
- return nullptr;
- // log2(zext X) -> zext log2(X)
- // FIXME: Require one use?
- Value *X, *Y;
- if (match(Op, m_ZExt(m_Value(X))))
- if (Value *LogX = takeLog2(Builder, X, Depth, DoFold))
- return IfFold([&]() { return Builder.CreateZExt(LogX, Op->getType()); });
- // log2(X << Y) -> log2(X) + Y
- // FIXME: Require one use unless X is 1?
- if (match(Op, m_Shl(m_Value(X), m_Value(Y))))
- if (Value *LogX = takeLog2(Builder, X, Depth, DoFold))
- return IfFold([&]() { return Builder.CreateAdd(LogX, Y); });
- // log2(Cond ? X : Y) -> Cond ? log2(X) : log2(Y)
- // FIXME: missed optimization: if one of the hands of select is/contains
- // undef, just directly pick the other one.
- // FIXME: can both hands contain undef?
- // FIXME: Require one use?
- if (SelectInst *SI = dyn_cast<SelectInst>(Op))
- if (Value *LogX = takeLog2(Builder, SI->getOperand(1), Depth, DoFold))
- if (Value *LogY = takeLog2(Builder, SI->getOperand(2), Depth, DoFold))
- return IfFold([&]() {
- return Builder.CreateSelect(SI->getOperand(0), LogX, LogY);
- });
- // log2(umin(X, Y)) -> umin(log2(X), log2(Y))
- // log2(umax(X, Y)) -> umax(log2(X), log2(Y))
- auto *MinMax = dyn_cast<MinMaxIntrinsic>(Op);
- if (MinMax && MinMax->hasOneUse() && !MinMax->isSigned())
- if (Value *LogX = takeLog2(Builder, MinMax->getLHS(), Depth, DoFold))
- if (Value *LogY = takeLog2(Builder, MinMax->getRHS(), Depth, DoFold))
- return IfFold([&]() {
- return Builder.CreateBinaryIntrinsic(
- MinMax->getIntrinsicID(), LogX, LogY);
- });
- return nullptr;
- }
- /// If we have zero-extended operands of an unsigned div or rem, we may be able
- /// to narrow the operation (sink the zext below the math).
- static Instruction *narrowUDivURem(BinaryOperator &I,
- InstCombiner::BuilderTy &Builder) {
- Instruction::BinaryOps Opcode = I.getOpcode();
- Value *N = I.getOperand(0);
- Value *D = I.getOperand(1);
- Type *Ty = I.getType();
- Value *X, *Y;
- if (match(N, m_ZExt(m_Value(X))) && match(D, m_ZExt(m_Value(Y))) &&
- X->getType() == Y->getType() && (N->hasOneUse() || D->hasOneUse())) {
- // udiv (zext X), (zext Y) --> zext (udiv X, Y)
- // urem (zext X), (zext Y) --> zext (urem X, Y)
- Value *NarrowOp = Builder.CreateBinOp(Opcode, X, Y);
- return new ZExtInst(NarrowOp, Ty);
- }
- Constant *C;
- if (isa<Instruction>(N) && match(N, m_OneUse(m_ZExt(m_Value(X)))) &&
- match(D, m_Constant(C))) {
- // If the constant is the same in the smaller type, use the narrow version.
- Constant *TruncC = ConstantExpr::getTrunc(C, X->getType());
- if (ConstantExpr::getZExt(TruncC, Ty) != C)
- return nullptr;
- // udiv (zext X), C --> zext (udiv X, C')
- // urem (zext X), C --> zext (urem X, C')
- return new ZExtInst(Builder.CreateBinOp(Opcode, X, TruncC), Ty);
- }
- if (isa<Instruction>(D) && match(D, m_OneUse(m_ZExt(m_Value(X)))) &&
- match(N, m_Constant(C))) {
- // If the constant is the same in the smaller type, use the narrow version.
- Constant *TruncC = ConstantExpr::getTrunc(C, X->getType());
- if (ConstantExpr::getZExt(TruncC, Ty) != C)
- return nullptr;
- // udiv C, (zext X) --> zext (udiv C', X)
- // urem C, (zext X) --> zext (urem C', X)
- return new ZExtInst(Builder.CreateBinOp(Opcode, TruncC, X), Ty);
- }
- return nullptr;
- }
- Instruction *InstCombinerImpl::visitUDiv(BinaryOperator &I) {
- if (Value *V = simplifyUDivInst(I.getOperand(0), I.getOperand(1), I.isExact(),
- SQ.getWithInstruction(&I)))
- return replaceInstUsesWith(I, V);
- if (Instruction *X = foldVectorBinop(I))
- return X;
- // Handle the integer div common cases
- if (Instruction *Common = commonIDivTransforms(I))
- return Common;
- Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
- Value *X;
- const APInt *C1, *C2;
- if (match(Op0, m_LShr(m_Value(X), m_APInt(C1))) && match(Op1, m_APInt(C2))) {
- // (X lshr C1) udiv C2 --> X udiv (C2 << C1)
- bool Overflow;
- APInt C2ShlC1 = C2->ushl_ov(*C1, Overflow);
- if (!Overflow) {
- bool IsExact = I.isExact() && match(Op0, m_Exact(m_Value()));
- BinaryOperator *BO = BinaryOperator::CreateUDiv(
- X, ConstantInt::get(X->getType(), C2ShlC1));
- if (IsExact)
- BO->setIsExact();
- return BO;
- }
- }
- // Op0 / C where C is large (negative) --> zext (Op0 >= C)
- // TODO: Could use isKnownNegative() to handle non-constant values.
- Type *Ty = I.getType();
- if (match(Op1, m_Negative())) {
- Value *Cmp = Builder.CreateICmpUGE(Op0, Op1);
- return CastInst::CreateZExtOrBitCast(Cmp, Ty);
- }
- // Op0 / (sext i1 X) --> zext (Op0 == -1) (if X is 0, the div is undefined)
- if (match(Op1, m_SExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1)) {
- Value *Cmp = Builder.CreateICmpEQ(Op0, ConstantInt::getAllOnesValue(Ty));
- return CastInst::CreateZExtOrBitCast(Cmp, Ty);
- }
- if (Instruction *NarrowDiv = narrowUDivURem(I, Builder))
- return NarrowDiv;
- // If the udiv operands are non-overflowing multiplies with a common operand,
- // then eliminate the common factor:
- // (A * B) / (A * X) --> B / X (and commuted variants)
- // TODO: The code would be reduced if we had m_c_NUWMul pattern matching.
- // TODO: If -reassociation handled this generally, we could remove this.
- Value *A, *B;
- if (match(Op0, m_NUWMul(m_Value(A), m_Value(B)))) {
- if (match(Op1, m_NUWMul(m_Specific(A), m_Value(X))) ||
- match(Op1, m_NUWMul(m_Value(X), m_Specific(A))))
- return BinaryOperator::CreateUDiv(B, X);
- if (match(Op1, m_NUWMul(m_Specific(B), m_Value(X))) ||
- match(Op1, m_NUWMul(m_Value(X), m_Specific(B))))
- return BinaryOperator::CreateUDiv(A, X);
- }
- // Look through a right-shift to find the common factor:
- // ((Op1 *nuw A) >> B) / Op1 --> A >> B
- if (match(Op0, m_LShr(m_NUWMul(m_Specific(Op1), m_Value(A)), m_Value(B))) ||
- match(Op0, m_LShr(m_NUWMul(m_Value(A), m_Specific(Op1)), m_Value(B)))) {
- Instruction *Lshr = BinaryOperator::CreateLShr(A, B);
- if (I.isExact() && cast<PossiblyExactOperator>(Op0)->isExact())
- Lshr->setIsExact();
- return Lshr;
- }
- // Op1 udiv Op2 -> Op1 lshr log2(Op2), if log2() folds away.
- if (takeLog2(Builder, Op1, /*Depth*/0, /*DoFold*/false)) {
- Value *Res = takeLog2(Builder, Op1, /*Depth*/0, /*DoFold*/true);
- return replaceInstUsesWith(
- I, Builder.CreateLShr(Op0, Res, I.getName(), I.isExact()));
- }
- return nullptr;
- }
- Instruction *InstCombinerImpl::visitSDiv(BinaryOperator &I) {
- if (Value *V = simplifySDivInst(I.getOperand(0), I.getOperand(1), I.isExact(),
- SQ.getWithInstruction(&I)))
- return replaceInstUsesWith(I, V);
- if (Instruction *X = foldVectorBinop(I))
- return X;
- // Handle the integer div common cases
- if (Instruction *Common = commonIDivTransforms(I))
- return Common;
- Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
- Type *Ty = I.getType();
- Value *X;
- // sdiv Op0, -1 --> -Op0
- // sdiv Op0, (sext i1 X) --> -Op0 (because if X is 0, the op is undefined)
- if (match(Op1, m_AllOnes()) ||
- (match(Op1, m_SExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1)))
- return BinaryOperator::CreateNeg(Op0);
- // X / INT_MIN --> X == INT_MIN
- if (match(Op1, m_SignMask()))
- return new ZExtInst(Builder.CreateICmpEQ(Op0, Op1), Ty);
- if (I.isExact()) {
- // sdiv exact X, 1<<C --> ashr exact X, C iff 1<<C is non-negative
- if (match(Op1, m_Power2()) && match(Op1, m_NonNegative())) {
- Constant *C = ConstantExpr::getExactLogBase2(cast<Constant>(Op1));
- return BinaryOperator::CreateExactAShr(Op0, C);
- }
- // sdiv exact X, (1<<ShAmt) --> ashr exact X, ShAmt (if shl is non-negative)
- Value *ShAmt;
- if (match(Op1, m_NSWShl(m_One(), m_Value(ShAmt))))
- return BinaryOperator::CreateExactAShr(Op0, ShAmt);
- // sdiv exact X, -1<<C --> -(ashr exact X, C)
- if (match(Op1, m_NegatedPower2())) {
- Constant *NegPow2C = ConstantExpr::getNeg(cast<Constant>(Op1));
- Constant *C = ConstantExpr::getExactLogBase2(NegPow2C);
- Value *Ashr = Builder.CreateAShr(Op0, C, I.getName() + ".neg", true);
- return BinaryOperator::CreateNeg(Ashr);
- }
- }
- const APInt *Op1C;
- if (match(Op1, m_APInt(Op1C))) {
- // If the dividend is sign-extended and the constant divisor is small enough
- // to fit in the source type, shrink the division to the narrower type:
- // (sext X) sdiv C --> sext (X sdiv C)
- Value *Op0Src;
- if (match(Op0, m_OneUse(m_SExt(m_Value(Op0Src)))) &&
- Op0Src->getType()->getScalarSizeInBits() >= Op1C->getMinSignedBits()) {
- // In the general case, we need to make sure that the dividend is not the
- // minimum signed value because dividing that by -1 is UB. But here, we
- // know that the -1 divisor case is already handled above.
- Constant *NarrowDivisor =
- ConstantExpr::getTrunc(cast<Constant>(Op1), Op0Src->getType());
- Value *NarrowOp = Builder.CreateSDiv(Op0Src, NarrowDivisor);
- return new SExtInst(NarrowOp, Ty);
- }
- // -X / C --> X / -C (if the negation doesn't overflow).
- // TODO: This could be enhanced to handle arbitrary vector constants by
- // checking if all elements are not the min-signed-val.
- if (!Op1C->isMinSignedValue() &&
- match(Op0, m_NSWSub(m_Zero(), m_Value(X)))) {
- Constant *NegC = ConstantInt::get(Ty, -(*Op1C));
- Instruction *BO = BinaryOperator::CreateSDiv(X, NegC);
- BO->setIsExact(I.isExact());
- return BO;
- }
- }
- // -X / Y --> -(X / Y)
- Value *Y;
- if (match(&I, m_SDiv(m_OneUse(m_NSWSub(m_Zero(), m_Value(X))), m_Value(Y))))
- return BinaryOperator::CreateNSWNeg(
- Builder.CreateSDiv(X, Y, I.getName(), I.isExact()));
- // abs(X) / X --> X > -1 ? 1 : -1
- // X / abs(X) --> X > -1 ? 1 : -1
- if (match(&I, m_c_BinOp(
- m_OneUse(m_Intrinsic<Intrinsic::abs>(m_Value(X), m_One())),
- m_Deferred(X)))) {
- Value *Cond = Builder.CreateIsNotNeg(X);
- return SelectInst::Create(Cond, ConstantInt::get(Ty, 1),
- ConstantInt::getAllOnesValue(Ty));
- }
- KnownBits KnownDividend = computeKnownBits(Op0, 0, &I);
- if (!I.isExact() &&
- (match(Op1, m_Power2(Op1C)) || match(Op1, m_NegatedPower2(Op1C))) &&
- KnownDividend.countMinTrailingZeros() >= Op1C->countTrailingZeros()) {
- I.setIsExact();
- return &I;
- }
- if (KnownDividend.isNonNegative()) {
- // If both operands are unsigned, turn this into a udiv.
- if (isKnownNonNegative(Op1, DL, 0, &AC, &I, &DT)) {
- auto *BO = BinaryOperator::CreateUDiv(Op0, Op1, I.getName());
- BO->setIsExact(I.isExact());
- return BO;
- }
- if (match(Op1, m_NegatedPower2())) {
- // X sdiv (-(1 << C)) -> -(X sdiv (1 << C)) ->
- // -> -(X udiv (1 << C)) -> -(X u>> C)
- Constant *CNegLog2 = ConstantExpr::getExactLogBase2(
- ConstantExpr::getNeg(cast<Constant>(Op1)));
- Value *Shr = Builder.CreateLShr(Op0, CNegLog2, I.getName(), I.isExact());
- return BinaryOperator::CreateNeg(Shr);
- }
- if (isKnownToBeAPowerOfTwo(Op1, /*OrZero*/ true, 0, &I)) {
- // X sdiv (1 << Y) -> X udiv (1 << Y) ( -> X u>> Y)
- // Safe because the only negative value (1 << Y) can take on is
- // INT_MIN, and X sdiv INT_MIN == X udiv INT_MIN == 0 if X doesn't have
- // the sign bit set.
- auto *BO = BinaryOperator::CreateUDiv(Op0, Op1, I.getName());
- BO->setIsExact(I.isExact());
- return BO;
- }
- }
- return nullptr;
- }
- /// Remove negation and try to convert division into multiplication.
- Instruction *InstCombinerImpl::foldFDivConstantDivisor(BinaryOperator &I) {
- Constant *C;
- if (!match(I.getOperand(1), m_Constant(C)))
- return nullptr;
- // -X / C --> X / -C
- Value *X;
- const DataLayout &DL = I.getModule()->getDataLayout();
- if (match(I.getOperand(0), m_FNeg(m_Value(X))))
- if (Constant *NegC = ConstantFoldUnaryOpOperand(Instruction::FNeg, C, DL))
- return BinaryOperator::CreateFDivFMF(X, NegC, &I);
- // nnan X / +0.0 -> copysign(inf, X)
- if (I.hasNoNaNs() && match(I.getOperand(1), m_Zero())) {
- IRBuilder<> B(&I);
- // TODO: nnan nsz X / -0.0 -> copysign(inf, X)
- CallInst *CopySign = B.CreateIntrinsic(
- Intrinsic::copysign, {C->getType()},
- {ConstantFP::getInfinity(I.getType()), I.getOperand(0)}, &I);
- CopySign->takeName(&I);
- return replaceInstUsesWith(I, CopySign);
- }
- // If the constant divisor has an exact inverse, this is always safe. If not,
- // then we can still create a reciprocal if fast-math-flags allow it and the
- // constant is a regular number (not zero, infinite, or denormal).
- if (!(C->hasExactInverseFP() || (I.hasAllowReciprocal() && C->isNormalFP())))
- return nullptr;
- // Disallow denormal constants because we don't know what would happen
- // on all targets.
- // TODO: Use Intrinsic::canonicalize or let function attributes tell us that
- // denorms are flushed?
- auto *RecipC = ConstantFoldBinaryOpOperands(
- Instruction::FDiv, ConstantFP::get(I.getType(), 1.0), C, DL);
- if (!RecipC || !RecipC->isNormalFP())
- return nullptr;
- // X / C --> X * (1 / C)
- return BinaryOperator::CreateFMulFMF(I.getOperand(0), RecipC, &I);
- }
- /// Remove negation and try to reassociate constant math.
- static Instruction *foldFDivConstantDividend(BinaryOperator &I) {
- Constant *C;
- if (!match(I.getOperand(0), m_Constant(C)))
- return nullptr;
- // C / -X --> -C / X
- Value *X;
- const DataLayout &DL = I.getModule()->getDataLayout();
- if (match(I.getOperand(1), m_FNeg(m_Value(X))))
- if (Constant *NegC = ConstantFoldUnaryOpOperand(Instruction::FNeg, C, DL))
- return BinaryOperator::CreateFDivFMF(NegC, X, &I);
- if (!I.hasAllowReassoc() || !I.hasAllowReciprocal())
- return nullptr;
- // Try to reassociate C / X expressions where X includes another constant.
- Constant *C2, *NewC = nullptr;
- if (match(I.getOperand(1), m_FMul(m_Value(X), m_Constant(C2)))) {
- // C / (X * C2) --> (C / C2) / X
- NewC = ConstantFoldBinaryOpOperands(Instruction::FDiv, C, C2, DL);
- } else if (match(I.getOperand(1), m_FDiv(m_Value(X), m_Constant(C2)))) {
- // C / (X / C2) --> (C * C2) / X
- NewC = ConstantFoldBinaryOpOperands(Instruction::FMul, C, C2, DL);
- }
- // Disallow denormal constants because we don't know what would happen
- // on all targets.
- // TODO: Use Intrinsic::canonicalize or let function attributes tell us that
- // denorms are flushed?
- if (!NewC || !NewC->isNormalFP())
- return nullptr;
- return BinaryOperator::CreateFDivFMF(NewC, X, &I);
- }
- /// Negate the exponent of pow/exp to fold division-by-pow() into multiply.
- static Instruction *foldFDivPowDivisor(BinaryOperator &I,
- InstCombiner::BuilderTy &Builder) {
- Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
- auto *II = dyn_cast<IntrinsicInst>(Op1);
- if (!II || !II->hasOneUse() || !I.hasAllowReassoc() ||
- !I.hasAllowReciprocal())
- return nullptr;
- // Z / pow(X, Y) --> Z * pow(X, -Y)
- // Z / exp{2}(Y) --> Z * exp{2}(-Y)
- // In the general case, this creates an extra instruction, but fmul allows
- // for better canonicalization and optimization than fdiv.
- Intrinsic::ID IID = II->getIntrinsicID();
- SmallVector<Value *> Args;
- switch (IID) {
- case Intrinsic::pow:
- Args.push_back(II->getArgOperand(0));
- Args.push_back(Builder.CreateFNegFMF(II->getArgOperand(1), &I));
- break;
- case Intrinsic::powi: {
- // Require 'ninf' assuming that makes powi(X, -INT_MIN) acceptable.
- // That is, X ** (huge negative number) is 0.0, ~1.0, or INF and so
- // dividing by that is INF, ~1.0, or 0.0. Code that uses powi allows
- // non-standard results, so this corner case should be acceptable if the
- // code rules out INF values.
- if (!I.hasNoInfs())
- return nullptr;
- Args.push_back(II->getArgOperand(0));
- Args.push_back(Builder.CreateNeg(II->getArgOperand(1)));
- Type *Tys[] = {I.getType(), II->getArgOperand(1)->getType()};
- Value *Pow = Builder.CreateIntrinsic(IID, Tys, Args, &I);
- return BinaryOperator::CreateFMulFMF(Op0, Pow, &I);
- }
- case Intrinsic::exp:
- case Intrinsic::exp2:
- Args.push_back(Builder.CreateFNegFMF(II->getArgOperand(0), &I));
- break;
- default:
- return nullptr;
- }
- Value *Pow = Builder.CreateIntrinsic(IID, I.getType(), Args, &I);
- return BinaryOperator::CreateFMulFMF(Op0, Pow, &I);
- }
- Instruction *InstCombinerImpl::visitFDiv(BinaryOperator &I) {
- Module *M = I.getModule();
- if (Value *V = simplifyFDivInst(I.getOperand(0), I.getOperand(1),
- I.getFastMathFlags(),
- SQ.getWithInstruction(&I)))
- return replaceInstUsesWith(I, V);
- if (Instruction *X = foldVectorBinop(I))
- return X;
- if (Instruction *Phi = foldBinopWithPhiOperands(I))
- return Phi;
- if (Instruction *R = foldFDivConstantDivisor(I))
- return R;
- if (Instruction *R = foldFDivConstantDividend(I))
- return R;
- if (Instruction *R = foldFPSignBitOps(I))
- return R;
- Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
- if (isa<Constant>(Op0))
- if (SelectInst *SI = dyn_cast<SelectInst>(Op1))
- if (Instruction *R = FoldOpIntoSelect(I, SI))
- return R;
- if (isa<Constant>(Op1))
- if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
- if (Instruction *R = FoldOpIntoSelect(I, SI))
- return R;
- if (I.hasAllowReassoc() && I.hasAllowReciprocal()) {
- Value *X, *Y;
- if (match(Op0, m_OneUse(m_FDiv(m_Value(X), m_Value(Y)))) &&
- (!isa<Constant>(Y) || !isa<Constant>(Op1))) {
- // (X / Y) / Z => X / (Y * Z)
- Value *YZ = Builder.CreateFMulFMF(Y, Op1, &I);
- return BinaryOperator::CreateFDivFMF(X, YZ, &I);
- }
- if (match(Op1, m_OneUse(m_FDiv(m_Value(X), m_Value(Y)))) &&
- (!isa<Constant>(Y) || !isa<Constant>(Op0))) {
- // Z / (X / Y) => (Y * Z) / X
- Value *YZ = Builder.CreateFMulFMF(Y, Op0, &I);
- return BinaryOperator::CreateFDivFMF(YZ, X, &I);
- }
- // Z / (1.0 / Y) => (Y * Z)
- //
- // This is a special case of Z / (X / Y) => (Y * Z) / X, with X = 1.0. The
- // m_OneUse check is avoided because even in the case of the multiple uses
- // for 1.0/Y, the number of instructions remain the same and a division is
- // replaced by a multiplication.
- if (match(Op1, m_FDiv(m_SpecificFP(1.0), m_Value(Y))))
- return BinaryOperator::CreateFMulFMF(Y, Op0, &I);
- }
- if (I.hasAllowReassoc() && Op0->hasOneUse() && Op1->hasOneUse()) {
- // sin(X) / cos(X) -> tan(X)
- // cos(X) / sin(X) -> 1/tan(X) (cotangent)
- Value *X;
- bool IsTan = match(Op0, m_Intrinsic<Intrinsic::sin>(m_Value(X))) &&
- match(Op1, m_Intrinsic<Intrinsic::cos>(m_Specific(X)));
- bool IsCot =
- !IsTan && match(Op0, m_Intrinsic<Intrinsic::cos>(m_Value(X))) &&
- match(Op1, m_Intrinsic<Intrinsic::sin>(m_Specific(X)));
- if ((IsTan || IsCot) && hasFloatFn(M, &TLI, I.getType(), LibFunc_tan,
- LibFunc_tanf, LibFunc_tanl)) {
- IRBuilder<> B(&I);
- IRBuilder<>::FastMathFlagGuard FMFGuard(B);
- B.setFastMathFlags(I.getFastMathFlags());
- AttributeList Attrs =
- cast<CallBase>(Op0)->getCalledFunction()->getAttributes();
- Value *Res = emitUnaryFloatFnCall(X, &TLI, LibFunc_tan, LibFunc_tanf,
- LibFunc_tanl, B, Attrs);
- if (IsCot)
- Res = B.CreateFDiv(ConstantFP::get(I.getType(), 1.0), Res);
- return replaceInstUsesWith(I, Res);
- }
- }
- // X / (X * Y) --> 1.0 / Y
- // Reassociate to (X / X -> 1.0) is legal when NaNs are not allowed.
- // We can ignore the possibility that X is infinity because INF/INF is NaN.
- Value *X, *Y;
- if (I.hasNoNaNs() && I.hasAllowReassoc() &&
- match(Op1, m_c_FMul(m_Specific(Op0), m_Value(Y)))) {
- replaceOperand(I, 0, ConstantFP::get(I.getType(), 1.0));
- replaceOperand(I, 1, Y);
- return &I;
- }
- // X / fabs(X) -> copysign(1.0, X)
- // fabs(X) / X -> copysign(1.0, X)
- if (I.hasNoNaNs() && I.hasNoInfs() &&
- (match(&I, m_FDiv(m_Value(X), m_FAbs(m_Deferred(X)))) ||
- match(&I, m_FDiv(m_FAbs(m_Value(X)), m_Deferred(X))))) {
- Value *V = Builder.CreateBinaryIntrinsic(
- Intrinsic::copysign, ConstantFP::get(I.getType(), 1.0), X, &I);
- return replaceInstUsesWith(I, V);
- }
- if (Instruction *Mul = foldFDivPowDivisor(I, Builder))
- return Mul;
- // pow(X, Y) / X --> pow(X, Y-1)
- if (I.hasAllowReassoc() &&
- match(Op0, m_OneUse(m_Intrinsic<Intrinsic::pow>(m_Specific(Op1),
- m_Value(Y))))) {
- Value *Y1 =
- Builder.CreateFAddFMF(Y, ConstantFP::get(I.getType(), -1.0), &I);
- Value *Pow = Builder.CreateBinaryIntrinsic(Intrinsic::pow, Op1, Y1, &I);
- return replaceInstUsesWith(I, Pow);
- }
- return nullptr;
- }
- /// This function implements the transforms common to both integer remainder
- /// instructions (urem and srem). It is called by the visitors to those integer
- /// remainder instructions.
- /// Common integer remainder transforms
- Instruction *InstCombinerImpl::commonIRemTransforms(BinaryOperator &I) {
- if (Instruction *Phi = foldBinopWithPhiOperands(I))
- return Phi;
- Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
- // The RHS is known non-zero.
- if (Value *V = simplifyValueKnownNonZero(I.getOperand(1), *this, I))
- return replaceOperand(I, 1, V);
- // Handle cases involving: rem X, (select Cond, Y, Z)
- if (simplifyDivRemOfSelectWithZeroOp(I))
- return &I;
- // If the divisor is a select-of-constants, try to constant fold all rem ops:
- // C % (select Cond, TrueC, FalseC) --> select Cond, (C % TrueC), (C % FalseC)
- // TODO: Adapt simplifyDivRemOfSelectWithZeroOp to allow this and other folds.
- if (match(Op0, m_ImmConstant()) &&
- match(Op1, m_Select(m_Value(), m_ImmConstant(), m_ImmConstant()))) {
- if (Instruction *R = FoldOpIntoSelect(I, cast<SelectInst>(Op1),
- /*FoldWithMultiUse*/ true))
- return R;
- }
- if (isa<Constant>(Op1)) {
- if (Instruction *Op0I = dyn_cast<Instruction>(Op0)) {
- if (SelectInst *SI = dyn_cast<SelectInst>(Op0I)) {
- if (Instruction *R = FoldOpIntoSelect(I, SI))
- return R;
- } else if (auto *PN = dyn_cast<PHINode>(Op0I)) {
- const APInt *Op1Int;
- if (match(Op1, m_APInt(Op1Int)) && !Op1Int->isMinValue() &&
- (I.getOpcode() == Instruction::URem ||
- !Op1Int->isMinSignedValue())) {
- // foldOpIntoPhi will speculate instructions to the end of the PHI's
- // predecessor blocks, so do this only if we know the srem or urem
- // will not fault.
- if (Instruction *NV = foldOpIntoPhi(I, PN))
- return NV;
- }
- }
- // See if we can fold away this rem instruction.
- if (SimplifyDemandedInstructionBits(I))
- return &I;
- }
- }
- return nullptr;
- }
- Instruction *InstCombinerImpl::visitURem(BinaryOperator &I) {
- if (Value *V = simplifyURemInst(I.getOperand(0), I.getOperand(1),
- SQ.getWithInstruction(&I)))
- return replaceInstUsesWith(I, V);
- if (Instruction *X = foldVectorBinop(I))
- return X;
- if (Instruction *common = commonIRemTransforms(I))
- return common;
- if (Instruction *NarrowRem = narrowUDivURem(I, Builder))
- return NarrowRem;
- // X urem Y -> X and Y-1, where Y is a power of 2,
- Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
- Type *Ty = I.getType();
- if (isKnownToBeAPowerOfTwo(Op1, /*OrZero*/ true, 0, &I)) {
- // This may increase instruction count, we don't enforce that Y is a
- // constant.
- Constant *N1 = Constant::getAllOnesValue(Ty);
- Value *Add = Builder.CreateAdd(Op1, N1);
- return BinaryOperator::CreateAnd(Op0, Add);
- }
- // 1 urem X -> zext(X != 1)
- if (match(Op0, m_One())) {
- Value *Cmp = Builder.CreateICmpNE(Op1, ConstantInt::get(Ty, 1));
- return CastInst::CreateZExtOrBitCast(Cmp, Ty);
- }
- // Op0 urem C -> Op0 < C ? Op0 : Op0 - C, where C >= signbit.
- // Op0 must be frozen because we are increasing its number of uses.
- if (match(Op1, m_Negative())) {
- Value *F0 = Builder.CreateFreeze(Op0, Op0->getName() + ".fr");
- Value *Cmp = Builder.CreateICmpULT(F0, Op1);
- Value *Sub = Builder.CreateSub(F0, Op1);
- return SelectInst::Create(Cmp, F0, Sub);
- }
- // If the divisor is a sext of a boolean, then the divisor must be max
- // unsigned value (-1). Therefore, the remainder is Op0 unless Op0 is also
- // max unsigned value. In that case, the remainder is 0:
- // urem Op0, (sext i1 X) --> (Op0 == -1) ? 0 : Op0
- Value *X;
- if (match(Op1, m_SExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1)) {
- Value *Cmp = Builder.CreateICmpEQ(Op0, ConstantInt::getAllOnesValue(Ty));
- return SelectInst::Create(Cmp, ConstantInt::getNullValue(Ty), Op0);
- }
- return nullptr;
- }
- Instruction *InstCombinerImpl::visitSRem(BinaryOperator &I) {
- if (Value *V = simplifySRemInst(I.getOperand(0), I.getOperand(1),
- SQ.getWithInstruction(&I)))
- return replaceInstUsesWith(I, V);
- if (Instruction *X = foldVectorBinop(I))
- return X;
- // Handle the integer rem common cases
- if (Instruction *Common = commonIRemTransforms(I))
- return Common;
- Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
- {
- const APInt *Y;
- // X % -Y -> X % Y
- if (match(Op1, m_Negative(Y)) && !Y->isMinSignedValue())
- return replaceOperand(I, 1, ConstantInt::get(I.getType(), -*Y));
- }
- // -X srem Y --> -(X srem Y)
- Value *X, *Y;
- if (match(&I, m_SRem(m_OneUse(m_NSWSub(m_Zero(), m_Value(X))), m_Value(Y))))
- return BinaryOperator::CreateNSWNeg(Builder.CreateSRem(X, Y));
- // If the sign bits of both operands are zero (i.e. we can prove they are
- // unsigned inputs), turn this into a urem.
- APInt Mask(APInt::getSignMask(I.getType()->getScalarSizeInBits()));
- if (MaskedValueIsZero(Op1, Mask, 0, &I) &&
- MaskedValueIsZero(Op0, Mask, 0, &I)) {
- // X srem Y -> X urem Y, iff X and Y don't have sign bit set
- return BinaryOperator::CreateURem(Op0, Op1, I.getName());
- }
- // If it's a constant vector, flip any negative values positive.
- if (isa<ConstantVector>(Op1) || isa<ConstantDataVector>(Op1)) {
- Constant *C = cast<Constant>(Op1);
- unsigned VWidth = cast<FixedVectorType>(C->getType())->getNumElements();
- bool hasNegative = false;
- bool hasMissing = false;
- for (unsigned i = 0; i != VWidth; ++i) {
- Constant *Elt = C->getAggregateElement(i);
- if (!Elt) {
- hasMissing = true;
- break;
- }
- if (ConstantInt *RHS = dyn_cast<ConstantInt>(Elt))
- if (RHS->isNegative())
- hasNegative = true;
- }
- if (hasNegative && !hasMissing) {
- SmallVector<Constant *, 16> Elts(VWidth);
- for (unsigned i = 0; i != VWidth; ++i) {
- Elts[i] = C->getAggregateElement(i); // Handle undef, etc.
- if (ConstantInt *RHS = dyn_cast<ConstantInt>(Elts[i])) {
- if (RHS->isNegative())
- Elts[i] = cast<ConstantInt>(ConstantExpr::getNeg(RHS));
- }
- }
- Constant *NewRHSV = ConstantVector::get(Elts);
- if (NewRHSV != C) // Don't loop on -MININT
- return replaceOperand(I, 1, NewRHSV);
- }
- }
- return nullptr;
- }
- Instruction *InstCombinerImpl::visitFRem(BinaryOperator &I) {
- if (Value *V = simplifyFRemInst(I.getOperand(0), I.getOperand(1),
- I.getFastMathFlags(),
- SQ.getWithInstruction(&I)))
- return replaceInstUsesWith(I, V);
- if (Instruction *X = foldVectorBinop(I))
- return X;
- if (Instruction *Phi = foldBinopWithPhiOperands(I))
- return Phi;
- return nullptr;
- }
|