123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437 |
- //===- CalledValuePropagation.cpp - Propagate called values -----*- C++ -*-===//
- //
- // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
- // See https://llvm.org/LICENSE.txt for license information.
- // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
- //
- //===----------------------------------------------------------------------===//
- //
- // This file implements a transformation that attaches !callees metadata to
- // indirect call sites. For a given call site, the metadata, if present,
- // indicates the set of functions the call site could possibly target at
- // run-time. This metadata is added to indirect call sites when the set of
- // possible targets can be determined by analysis and is known to be small. The
- // analysis driving the transformation is similar to constant propagation and
- // makes uses of the generic sparse propagation solver.
- //
- //===----------------------------------------------------------------------===//
- #include "llvm/Transforms/IPO/CalledValuePropagation.h"
- #include "llvm/Analysis/SparsePropagation.h"
- #include "llvm/Analysis/ValueLatticeUtils.h"
- #include "llvm/IR/Constants.h"
- #include "llvm/IR/MDBuilder.h"
- #include "llvm/InitializePasses.h"
- #include "llvm/Pass.h"
- #include "llvm/Support/CommandLine.h"
- #include "llvm/Transforms/IPO.h"
- using namespace llvm;
- #define DEBUG_TYPE "called-value-propagation"
- /// The maximum number of functions to track per lattice value. Once the number
- /// of functions a call site can possibly target exceeds this threshold, it's
- /// lattice value becomes overdefined. The number of possible lattice values is
- /// bounded by Ch(F, M), where F is the number of functions in the module and M
- /// is MaxFunctionsPerValue. As such, this value should be kept very small. We
- /// likely can't do anything useful for call sites with a large number of
- /// possible targets, anyway.
- static cl::opt<unsigned> MaxFunctionsPerValue(
- "cvp-max-functions-per-value", cl::Hidden, cl::init(4),
- cl::desc("The maximum number of functions to track per lattice value"));
- namespace {
- /// To enable interprocedural analysis, we assign LLVM values to the following
- /// groups. The register group represents SSA registers, the return group
- /// represents the return values of functions, and the memory group represents
- /// in-memory values. An LLVM Value can technically be in more than one group.
- /// It's necessary to distinguish these groups so we can, for example, track a
- /// global variable separately from the value stored at its location.
- enum class IPOGrouping { Register, Return, Memory };
- /// Our LatticeKeys are PointerIntPairs composed of LLVM values and groupings.
- using CVPLatticeKey = PointerIntPair<Value *, 2, IPOGrouping>;
- /// The lattice value type used by our custom lattice function. It holds the
- /// lattice state, and a set of functions.
- class CVPLatticeVal {
- public:
- /// The states of the lattice values. Only the FunctionSet state is
- /// interesting. It indicates the set of functions to which an LLVM value may
- /// refer.
- enum CVPLatticeStateTy { Undefined, FunctionSet, Overdefined, Untracked };
- /// Comparator for sorting the functions set. We want to keep the order
- /// deterministic for testing, etc.
- struct Compare {
- bool operator()(const Function *LHS, const Function *RHS) const {
- return LHS->getName() < RHS->getName();
- }
- };
- CVPLatticeVal() = default;
- CVPLatticeVal(CVPLatticeStateTy LatticeState) : LatticeState(LatticeState) {}
- CVPLatticeVal(std::vector<Function *> &&Functions)
- : LatticeState(FunctionSet), Functions(std::move(Functions)) {
- assert(llvm::is_sorted(this->Functions, Compare()));
- }
- /// Get a reference to the functions held by this lattice value. The number
- /// of functions will be zero for states other than FunctionSet.
- const std::vector<Function *> &getFunctions() const {
- return Functions;
- }
- /// Returns true if the lattice value is in the FunctionSet state.
- bool isFunctionSet() const { return LatticeState == FunctionSet; }
- bool operator==(const CVPLatticeVal &RHS) const {
- return LatticeState == RHS.LatticeState && Functions == RHS.Functions;
- }
- bool operator!=(const CVPLatticeVal &RHS) const {
- return LatticeState != RHS.LatticeState || Functions != RHS.Functions;
- }
- private:
- /// Holds the state this lattice value is in.
- CVPLatticeStateTy LatticeState = Undefined;
- /// Holds functions indicating the possible targets of call sites. This set
- /// is empty for lattice values in the undefined, overdefined, and untracked
- /// states. The maximum size of the set is controlled by
- /// MaxFunctionsPerValue. Since most LLVM values are expected to be in
- /// uninteresting states (i.e., overdefined), CVPLatticeVal objects should be
- /// small and efficiently copyable.
- // FIXME: This could be a TinyPtrVector and/or merge with LatticeState.
- std::vector<Function *> Functions;
- };
- /// The custom lattice function used by the generic sparse propagation solver.
- /// It handles merging lattice values and computing new lattice values for
- /// constants, arguments, values returned from trackable functions, and values
- /// located in trackable global variables. It also computes the lattice values
- /// that change as a result of executing instructions.
- class CVPLatticeFunc
- : public AbstractLatticeFunction<CVPLatticeKey, CVPLatticeVal> {
- public:
- CVPLatticeFunc()
- : AbstractLatticeFunction(CVPLatticeVal(CVPLatticeVal::Undefined),
- CVPLatticeVal(CVPLatticeVal::Overdefined),
- CVPLatticeVal(CVPLatticeVal::Untracked)) {}
- /// Compute and return a CVPLatticeVal for the given CVPLatticeKey.
- CVPLatticeVal ComputeLatticeVal(CVPLatticeKey Key) override {
- switch (Key.getInt()) {
- case IPOGrouping::Register:
- if (isa<Instruction>(Key.getPointer())) {
- return getUndefVal();
- } else if (auto *A = dyn_cast<Argument>(Key.getPointer())) {
- if (canTrackArgumentsInterprocedurally(A->getParent()))
- return getUndefVal();
- } else if (auto *C = dyn_cast<Constant>(Key.getPointer())) {
- return computeConstant(C);
- }
- return getOverdefinedVal();
- case IPOGrouping::Memory:
- case IPOGrouping::Return:
- if (auto *GV = dyn_cast<GlobalVariable>(Key.getPointer())) {
- if (canTrackGlobalVariableInterprocedurally(GV))
- return computeConstant(GV->getInitializer());
- } else if (auto *F = cast<Function>(Key.getPointer()))
- if (canTrackReturnsInterprocedurally(F))
- return getUndefVal();
- }
- return getOverdefinedVal();
- }
- /// Merge the two given lattice values. The interesting cases are merging two
- /// FunctionSet values and a FunctionSet value with an Undefined value. For
- /// these cases, we simply union the function sets. If the size of the union
- /// is greater than the maximum functions we track, the merged value is
- /// overdefined.
- CVPLatticeVal MergeValues(CVPLatticeVal X, CVPLatticeVal Y) override {
- if (X == getOverdefinedVal() || Y == getOverdefinedVal())
- return getOverdefinedVal();
- if (X == getUndefVal() && Y == getUndefVal())
- return getUndefVal();
- std::vector<Function *> Union;
- std::set_union(X.getFunctions().begin(), X.getFunctions().end(),
- Y.getFunctions().begin(), Y.getFunctions().end(),
- std::back_inserter(Union), CVPLatticeVal::Compare{});
- if (Union.size() > MaxFunctionsPerValue)
- return getOverdefinedVal();
- return CVPLatticeVal(std::move(Union));
- }
- /// Compute the lattice values that change as a result of executing the given
- /// instruction. The changed values are stored in \p ChangedValues. We handle
- /// just a few kinds of instructions since we're only propagating values that
- /// can be called.
- void ComputeInstructionState(
- Instruction &I, DenseMap<CVPLatticeKey, CVPLatticeVal> &ChangedValues,
- SparseSolver<CVPLatticeKey, CVPLatticeVal> &SS) override {
- switch (I.getOpcode()) {
- case Instruction::Call:
- case Instruction::Invoke:
- return visitCallBase(cast<CallBase>(I), ChangedValues, SS);
- case Instruction::Load:
- return visitLoad(*cast<LoadInst>(&I), ChangedValues, SS);
- case Instruction::Ret:
- return visitReturn(*cast<ReturnInst>(&I), ChangedValues, SS);
- case Instruction::Select:
- return visitSelect(*cast<SelectInst>(&I), ChangedValues, SS);
- case Instruction::Store:
- return visitStore(*cast<StoreInst>(&I), ChangedValues, SS);
- default:
- return visitInst(I, ChangedValues, SS);
- }
- }
- /// Print the given CVPLatticeVal to the specified stream.
- void PrintLatticeVal(CVPLatticeVal LV, raw_ostream &OS) override {
- if (LV == getUndefVal())
- OS << "Undefined ";
- else if (LV == getOverdefinedVal())
- OS << "Overdefined";
- else if (LV == getUntrackedVal())
- OS << "Untracked ";
- else
- OS << "FunctionSet";
- }
- /// Print the given CVPLatticeKey to the specified stream.
- void PrintLatticeKey(CVPLatticeKey Key, raw_ostream &OS) override {
- if (Key.getInt() == IPOGrouping::Register)
- OS << "<reg> ";
- else if (Key.getInt() == IPOGrouping::Memory)
- OS << "<mem> ";
- else if (Key.getInt() == IPOGrouping::Return)
- OS << "<ret> ";
- if (isa<Function>(Key.getPointer()))
- OS << Key.getPointer()->getName();
- else
- OS << *Key.getPointer();
- }
- /// We collect a set of indirect calls when visiting call sites. This method
- /// returns a reference to that set.
- SmallPtrSetImpl<CallBase *> &getIndirectCalls() { return IndirectCalls; }
- private:
- /// Holds the indirect calls we encounter during the analysis. We will attach
- /// metadata to these calls after the analysis indicating the functions the
- /// calls can possibly target.
- SmallPtrSet<CallBase *, 32> IndirectCalls;
- /// Compute a new lattice value for the given constant. The constant, after
- /// stripping any pointer casts, should be a Function. We ignore null
- /// pointers as an optimization, since calling these values is undefined
- /// behavior.
- CVPLatticeVal computeConstant(Constant *C) {
- if (isa<ConstantPointerNull>(C))
- return CVPLatticeVal(CVPLatticeVal::FunctionSet);
- if (auto *F = dyn_cast<Function>(C->stripPointerCasts()))
- return CVPLatticeVal({F});
- return getOverdefinedVal();
- }
- /// Handle return instructions. The function's return state is the merge of
- /// the returned value state and the function's return state.
- void visitReturn(ReturnInst &I,
- DenseMap<CVPLatticeKey, CVPLatticeVal> &ChangedValues,
- SparseSolver<CVPLatticeKey, CVPLatticeVal> &SS) {
- Function *F = I.getParent()->getParent();
- if (F->getReturnType()->isVoidTy())
- return;
- auto RegI = CVPLatticeKey(I.getReturnValue(), IPOGrouping::Register);
- auto RetF = CVPLatticeKey(F, IPOGrouping::Return);
- ChangedValues[RetF] =
- MergeValues(SS.getValueState(RegI), SS.getValueState(RetF));
- }
- /// Handle call sites. The state of a called function's formal arguments is
- /// the merge of the argument state with the call sites corresponding actual
- /// argument state. The call site state is the merge of the call site state
- /// with the returned value state of the called function.
- void visitCallBase(CallBase &CB,
- DenseMap<CVPLatticeKey, CVPLatticeVal> &ChangedValues,
- SparseSolver<CVPLatticeKey, CVPLatticeVal> &SS) {
- Function *F = CB.getCalledFunction();
- auto RegI = CVPLatticeKey(&CB, IPOGrouping::Register);
- // If this is an indirect call, save it so we can quickly revisit it when
- // attaching metadata.
- if (!F)
- IndirectCalls.insert(&CB);
- // If we can't track the function's return values, there's nothing to do.
- if (!F || !canTrackReturnsInterprocedurally(F)) {
- // Void return, No need to create and update CVPLattice state as no one
- // can use it.
- if (CB.getType()->isVoidTy())
- return;
- ChangedValues[RegI] = getOverdefinedVal();
- return;
- }
- // Inform the solver that the called function is executable, and perform
- // the merges for the arguments and return value.
- SS.MarkBlockExecutable(&F->front());
- auto RetF = CVPLatticeKey(F, IPOGrouping::Return);
- for (Argument &A : F->args()) {
- auto RegFormal = CVPLatticeKey(&A, IPOGrouping::Register);
- auto RegActual =
- CVPLatticeKey(CB.getArgOperand(A.getArgNo()), IPOGrouping::Register);
- ChangedValues[RegFormal] =
- MergeValues(SS.getValueState(RegFormal), SS.getValueState(RegActual));
- }
- // Void return, No need to create and update CVPLattice state as no one can
- // use it.
- if (CB.getType()->isVoidTy())
- return;
- ChangedValues[RegI] =
- MergeValues(SS.getValueState(RegI), SS.getValueState(RetF));
- }
- /// Handle select instructions. The select instruction state is the merge the
- /// true and false value states.
- void visitSelect(SelectInst &I,
- DenseMap<CVPLatticeKey, CVPLatticeVal> &ChangedValues,
- SparseSolver<CVPLatticeKey, CVPLatticeVal> &SS) {
- auto RegI = CVPLatticeKey(&I, IPOGrouping::Register);
- auto RegT = CVPLatticeKey(I.getTrueValue(), IPOGrouping::Register);
- auto RegF = CVPLatticeKey(I.getFalseValue(), IPOGrouping::Register);
- ChangedValues[RegI] =
- MergeValues(SS.getValueState(RegT), SS.getValueState(RegF));
- }
- /// Handle load instructions. If the pointer operand of the load is a global
- /// variable, we attempt to track the value. The loaded value state is the
- /// merge of the loaded value state with the global variable state.
- void visitLoad(LoadInst &I,
- DenseMap<CVPLatticeKey, CVPLatticeVal> &ChangedValues,
- SparseSolver<CVPLatticeKey, CVPLatticeVal> &SS) {
- auto RegI = CVPLatticeKey(&I, IPOGrouping::Register);
- if (auto *GV = dyn_cast<GlobalVariable>(I.getPointerOperand())) {
- auto MemGV = CVPLatticeKey(GV, IPOGrouping::Memory);
- ChangedValues[RegI] =
- MergeValues(SS.getValueState(RegI), SS.getValueState(MemGV));
- } else {
- ChangedValues[RegI] = getOverdefinedVal();
- }
- }
- /// Handle store instructions. If the pointer operand of the store is a
- /// global variable, we attempt to track the value. The global variable state
- /// is the merge of the stored value state with the global variable state.
- void visitStore(StoreInst &I,
- DenseMap<CVPLatticeKey, CVPLatticeVal> &ChangedValues,
- SparseSolver<CVPLatticeKey, CVPLatticeVal> &SS) {
- auto *GV = dyn_cast<GlobalVariable>(I.getPointerOperand());
- if (!GV)
- return;
- auto RegI = CVPLatticeKey(I.getValueOperand(), IPOGrouping::Register);
- auto MemGV = CVPLatticeKey(GV, IPOGrouping::Memory);
- ChangedValues[MemGV] =
- MergeValues(SS.getValueState(RegI), SS.getValueState(MemGV));
- }
- /// Handle all other instructions. All other instructions are marked
- /// overdefined.
- void visitInst(Instruction &I,
- DenseMap<CVPLatticeKey, CVPLatticeVal> &ChangedValues,
- SparseSolver<CVPLatticeKey, CVPLatticeVal> &SS) {
- // Simply bail if this instruction has no user.
- if (I.use_empty())
- return;
- auto RegI = CVPLatticeKey(&I, IPOGrouping::Register);
- ChangedValues[RegI] = getOverdefinedVal();
- }
- };
- } // namespace
- namespace llvm {
- /// A specialization of LatticeKeyInfo for CVPLatticeKeys. The generic solver
- /// must translate between LatticeKeys and LLVM Values when adding Values to
- /// its work list and inspecting the state of control-flow related values.
- template <> struct LatticeKeyInfo<CVPLatticeKey> {
- static inline Value *getValueFromLatticeKey(CVPLatticeKey Key) {
- return Key.getPointer();
- }
- static inline CVPLatticeKey getLatticeKeyFromValue(Value *V) {
- return CVPLatticeKey(V, IPOGrouping::Register);
- }
- };
- } // namespace llvm
- static bool runCVP(Module &M) {
- // Our custom lattice function and generic sparse propagation solver.
- CVPLatticeFunc Lattice;
- SparseSolver<CVPLatticeKey, CVPLatticeVal> Solver(&Lattice);
- // For each function in the module, if we can't track its arguments, let the
- // generic solver assume it is executable.
- for (Function &F : M)
- if (!F.isDeclaration() && !canTrackArgumentsInterprocedurally(&F))
- Solver.MarkBlockExecutable(&F.front());
- // Solver our custom lattice. In doing so, we will also build a set of
- // indirect call sites.
- Solver.Solve();
- // Attach metadata to the indirect call sites that were collected indicating
- // the set of functions they can possibly target.
- bool Changed = false;
- MDBuilder MDB(M.getContext());
- for (CallBase *C : Lattice.getIndirectCalls()) {
- auto RegI = CVPLatticeKey(C->getCalledOperand(), IPOGrouping::Register);
- CVPLatticeVal LV = Solver.getExistingValueState(RegI);
- if (!LV.isFunctionSet() || LV.getFunctions().empty())
- continue;
- MDNode *Callees = MDB.createCallees(LV.getFunctions());
- C->setMetadata(LLVMContext::MD_callees, Callees);
- Changed = true;
- }
- return Changed;
- }
- PreservedAnalyses CalledValuePropagationPass::run(Module &M,
- ModuleAnalysisManager &) {
- runCVP(M);
- return PreservedAnalyses::all();
- }
- namespace {
- class CalledValuePropagationLegacyPass : public ModulePass {
- public:
- static char ID;
- void getAnalysisUsage(AnalysisUsage &AU) const override {
- AU.setPreservesAll();
- }
- CalledValuePropagationLegacyPass() : ModulePass(ID) {
- initializeCalledValuePropagationLegacyPassPass(
- *PassRegistry::getPassRegistry());
- }
- bool runOnModule(Module &M) override {
- if (skipModule(M))
- return false;
- return runCVP(M);
- }
- };
- } // namespace
- char CalledValuePropagationLegacyPass::ID = 0;
- INITIALIZE_PASS(CalledValuePropagationLegacyPass, "called-value-propagation",
- "Called Value Propagation", false, false)
- ModulePass *llvm::createCalledValuePropagationPass() {
- return new CalledValuePropagationLegacyPass();
- }
|