123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271 |
- //===--- NoRecursionCheck.cpp - clang-tidy --------------------------------===//
- //
- // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
- // See https://llvm.org/LICENSE.txt for license information.
- // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
- //
- //===----------------------------------------------------------------------===//
- #include "NoRecursionCheck.h"
- #include "clang/AST/ASTContext.h"
- #include "clang/ASTMatchers/ASTMatchFinder.h"
- #include "clang/Analysis/CallGraph.h"
- #include "llvm/ADT/DenseMapInfo.h"
- #include "llvm/ADT/SCCIterator.h"
- using namespace clang::ast_matchers;
- namespace clang::tidy::misc {
- namespace {
- /// Much like SmallSet, with two differences:
- /// 1. It can *only* be constructed from an ArrayRef<>. If the element count
- /// is small, there is no copy and said storage *must* outlive us.
- /// 2. it is immutable, the way it was constructed it will stay.
- template <typename T, unsigned SmallSize> class ImmutableSmallSet {
- ArrayRef<T> Vector;
- llvm::DenseSet<T> Set;
- static_assert(SmallSize <= 32, "N should be small");
- bool isSmall() const { return Set.empty(); }
- public:
- using size_type = size_t;
- ImmutableSmallSet() = delete;
- ImmutableSmallSet(const ImmutableSmallSet &) = delete;
- ImmutableSmallSet(ImmutableSmallSet &&) = delete;
- T &operator=(const ImmutableSmallSet &) = delete;
- T &operator=(ImmutableSmallSet &&) = delete;
- // WARNING: Storage *must* outlive us if we decide that the size is small.
- ImmutableSmallSet(ArrayRef<T> Storage) {
- // Is size small-enough to just keep using the existing storage?
- if (Storage.size() <= SmallSize) {
- Vector = Storage;
- return;
- }
- // We've decided that it isn't performant to keep using vector.
- // Let's migrate the data into Set.
- Set.reserve(Storage.size());
- Set.insert(Storage.begin(), Storage.end());
- }
- /// count - Return 1 if the element is in the set, 0 otherwise.
- size_type count(const T &V) const {
- if (isSmall()) {
- // Since the collection is small, just do a linear search.
- return llvm::is_contained(Vector, V) ? 1 : 0;
- }
- return Set.count(V);
- }
- };
- /// Much like SmallSetVector, but with one difference:
- /// when the size is \p SmallSize or less, when checking whether an element is
- /// already in the set or not, we perform linear search over the vector,
- /// but if the size is larger than \p SmallSize, we look in set.
- /// FIXME: upstream this into SetVector/SmallSetVector itself.
- template <typename T, unsigned SmallSize> class SmartSmallSetVector {
- public:
- using size_type = size_t;
- private:
- SmallVector<T, SmallSize> Vector;
- llvm::DenseSet<T> Set;
- static_assert(SmallSize <= 32, "N should be small");
- // Are we still using Vector for uniqness tracking?
- bool isSmall() const { return Set.empty(); }
- // Will one more entry cause Vector to switch away from small-size storage?
- bool entiretyOfVectorSmallSizeIsOccupied() const {
- assert(isSmall() && Vector.size() <= SmallSize &&
- "Shouldn't ask if we have already [should have] migrated into Set.");
- return Vector.size() == SmallSize;
- }
- void populateSet() {
- assert(Set.empty() && "Should not have already utilized the Set.");
- // Magical growth factor prediction - to how many elements do we expect to
- // sanely grow after switching away from small-size storage?
- const size_t NewMaxElts = 4 * Vector.size();
- Vector.reserve(NewMaxElts);
- Set.reserve(NewMaxElts);
- Set.insert(Vector.begin(), Vector.end());
- }
- /// count - Return 1 if the element is in the set, 0 otherwise.
- size_type count(const T &V) const {
- if (isSmall()) {
- // Since the collection is small, just do a linear search.
- return llvm::is_contained(Vector, V) ? 1 : 0;
- }
- // Look-up in the Set.
- return Set.count(V);
- }
- bool setInsert(const T &V) {
- if (count(V) != 0)
- return false; // Already exists.
- // Does not exist, Can/need to record it.
- if (isSmall()) { // Are we still using Vector for uniqness tracking?
- // Will one more entry fit within small-sized Vector?
- if (!entiretyOfVectorSmallSizeIsOccupied())
- return true; // We'll insert into vector right afterwards anyway.
- // Time to switch to Set.
- populateSet();
- }
- // Set time!
- // Note that this must be after `populateSet()` might have been called.
- bool SetInsertionSucceeded = Set.insert(V).second;
- (void)SetInsertionSucceeded;
- assert(SetInsertionSucceeded && "We did check that no such value existed");
- return true;
- }
- public:
- /// Insert a new element into the SmartSmallSetVector.
- /// \returns true if the element was inserted into the SmartSmallSetVector.
- bool insert(const T &X) {
- bool Result = setInsert(X);
- if (Result)
- Vector.push_back(X);
- return Result;
- }
- /// Clear the SmartSmallSetVector and return the underlying vector.
- decltype(Vector) takeVector() {
- Set.clear();
- return std::move(Vector);
- }
- };
- constexpr unsigned SmallCallStackSize = 16;
- constexpr unsigned SmallSCCSize = 32;
- using CallStackTy =
- llvm::SmallVector<CallGraphNode::CallRecord, SmallCallStackSize>;
- // In given SCC, find *some* call stack that will be cyclic.
- // This will only find *one* such stack, it might not be the smallest one,
- // and there may be other loops.
- CallStackTy pathfindSomeCycle(ArrayRef<CallGraphNode *> SCC) {
- // We'll need to be able to performantly look up whether some CallGraphNode
- // is in SCC or not, so cache all the SCC elements in a set.
- const ImmutableSmallSet<CallGraphNode *, SmallSCCSize> SCCElts(SCC);
- // Is node N part if the current SCC?
- auto NodeIsPartOfSCC = [&SCCElts](CallGraphNode *N) {
- return SCCElts.count(N) != 0;
- };
- // Track the call stack that will cause a cycle.
- SmartSmallSetVector<CallGraphNode::CallRecord, SmallCallStackSize>
- CallStackSet;
- // Arbitrarily take the first element of SCC as entry point.
- CallGraphNode::CallRecord EntryNode(SCC.front(), /*CallExpr=*/nullptr);
- // Continue recursing into subsequent callees that are part of this SCC,
- // and are thus known to be part of the call graph loop, until loop forms.
- CallGraphNode::CallRecord *Node = &EntryNode;
- while (true) {
- // Did we see this node before?
- if (!CallStackSet.insert(*Node))
- break; // Cycle completed! Note that didn't insert the node into stack!
- // Else, perform depth-first traversal: out of all callees, pick first one
- // that is part of this SCC. This is not guaranteed to yield shortest cycle.
- Node = llvm::find_if(Node->Callee->callees(), NodeIsPartOfSCC);
- }
- // Note that we failed to insert the last node, that completes the cycle.
- // But we really want to have it. So insert it manually into stack only.
- CallStackTy CallStack = CallStackSet.takeVector();
- CallStack.emplace_back(*Node);
- return CallStack;
- }
- } // namespace
- void NoRecursionCheck::registerMatchers(MatchFinder *Finder) {
- Finder->addMatcher(translationUnitDecl().bind("TUDecl"), this);
- }
- void NoRecursionCheck::handleSCC(ArrayRef<CallGraphNode *> SCC) {
- assert(!SCC.empty() && "Empty SCC does not make sense.");
- // First of all, call out every strongly connected function.
- for (CallGraphNode *N : SCC) {
- FunctionDecl *D = N->getDefinition();
- diag(D->getLocation(), "function %0 is within a recursive call chain") << D;
- }
- // Now, SCC only tells us about strongly connected function declarations in
- // the call graph. It doesn't *really* tell us about the cycles they form.
- // And there may be more than one cycle in SCC.
- // So let's form a call stack that eventually exposes *some* cycle.
- const CallStackTy EventuallyCyclicCallStack = pathfindSomeCycle(SCC);
- assert(!EventuallyCyclicCallStack.empty() && "We should've found the cycle");
- // While last node of the call stack does cause a loop, due to the way we
- // pathfind the cycle, the loop does not necessarily begin at the first node
- // of the call stack, so drop front nodes of the call stack until it does.
- const auto CyclicCallStack =
- ArrayRef<CallGraphNode::CallRecord>(EventuallyCyclicCallStack)
- .drop_until([LastNode = EventuallyCyclicCallStack.back()](
- CallGraphNode::CallRecord FrontNode) {
- return FrontNode == LastNode;
- });
- assert(CyclicCallStack.size() >= 2 && "Cycle requires at least 2 frames");
- // Which function we decided to be the entry point that lead to the recursion?
- FunctionDecl *CycleEntryFn = CyclicCallStack.front().Callee->getDefinition();
- // And now, for ease of understanding, let's print the call sequence that
- // forms the cycle in question.
- diag(CycleEntryFn->getLocation(),
- "example recursive call chain, starting from function %0",
- DiagnosticIDs::Note)
- << CycleEntryFn;
- for (int CurFrame = 1, NumFrames = CyclicCallStack.size();
- CurFrame != NumFrames; ++CurFrame) {
- CallGraphNode::CallRecord PrevNode = CyclicCallStack[CurFrame - 1];
- CallGraphNode::CallRecord CurrNode = CyclicCallStack[CurFrame];
- Decl *PrevDecl = PrevNode.Callee->getDecl();
- Decl *CurrDecl = CurrNode.Callee->getDecl();
- diag(CurrNode.CallExpr->getBeginLoc(),
- "Frame #%0: function %1 calls function %2 here:", DiagnosticIDs::Note)
- << CurFrame << cast<NamedDecl>(PrevDecl) << cast<NamedDecl>(CurrDecl);
- }
- diag(CyclicCallStack.back().CallExpr->getBeginLoc(),
- "... which was the starting point of the recursive call chain; there "
- "may be other cycles",
- DiagnosticIDs::Note);
- }
- void NoRecursionCheck::check(const MatchFinder::MatchResult &Result) {
- // Build call graph for the entire translation unit.
- const auto *TU = Result.Nodes.getNodeAs<TranslationUnitDecl>("TUDecl");
- CallGraph CG;
- CG.addToCallGraph(const_cast<TranslationUnitDecl *>(TU));
- // Look for cycles in call graph,
- // by looking for Strongly Connected Components (SCC's)
- for (llvm::scc_iterator<CallGraph *> SCCI = llvm::scc_begin(&CG),
- SCCE = llvm::scc_end(&CG);
- SCCI != SCCE; ++SCCI) {
- if (!SCCI.hasCycle()) // We only care about cycles, not standalone nodes.
- continue;
- handleSCC(*SCCI);
- }
- }
- } // namespace clang::tidy::misc
|