123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196 |
- ///////////////////////////////////////////////////////////////////////////////
- //
- /// \file sha256.c
- /// \brief SHA-256
- ///
- /// \todo Crypto++ has x86 ASM optimizations. They use SSE so if they
- /// are imported to liblzma, SSE instructions need to be used
- /// conditionally to keep the code working on older boxes.
- //
- // This code is based on the code found from 7-Zip, which has a modified
- // version of the SHA-256 found from Crypto++ <http://www.cryptopp.com/>.
- // The code was modified a little to fit into liblzma.
- //
- // Authors: Kevin Springle
- // Wei Dai
- // Igor Pavlov
- // Lasse Collin
- //
- // This file has been put into the public domain.
- // You can do whatever you want with this file.
- //
- ///////////////////////////////////////////////////////////////////////////////
- #include "check.h"
- // Rotate a uint32_t. GCC can optimize this to a rotate instruction
- // at least on x86.
- static inline uint32_t
- rotr_32(uint32_t num, unsigned amount)
- {
- return (num >> amount) | (num << (32 - amount));
- }
- #define blk0(i) (W[i] = conv32be(data[i]))
- #define blk2(i) (W[i & 15] += s1(W[(i - 2) & 15]) + W[(i - 7) & 15] \
- + s0(W[(i - 15) & 15]))
- #define Ch(x, y, z) (z ^ (x & (y ^ z)))
- #define Maj(x, y, z) ((x & (y ^ z)) + (y & z))
- #define a(i) T[(0 - i) & 7]
- #define b(i) T[(1 - i) & 7]
- #define c(i) T[(2 - i) & 7]
- #define d(i) T[(3 - i) & 7]
- #define e(i) T[(4 - i) & 7]
- #define f(i) T[(5 - i) & 7]
- #define g(i) T[(6 - i) & 7]
- #define h(i) T[(7 - i) & 7]
- #define R(i, j, blk) \
- h(i) += S1(e(i)) + Ch(e(i), f(i), g(i)) + SHA256_K[i + j] + blk; \
- d(i) += h(i); \
- h(i) += S0(a(i)) + Maj(a(i), b(i), c(i))
- #define R0(i) R(i, 0, blk0(i))
- #define R2(i) R(i, j, blk2(i))
- #define S0(x) rotr_32(x ^ rotr_32(x ^ rotr_32(x, 9), 11), 2)
- #define S1(x) rotr_32(x ^ rotr_32(x ^ rotr_32(x, 14), 5), 6)
- #define s0(x) (rotr_32(x ^ rotr_32(x, 11), 7) ^ (x >> 3))
- #define s1(x) (rotr_32(x ^ rotr_32(x, 2), 17) ^ (x >> 10))
- static const uint32_t SHA256_K[64] = {
- 0x428A2F98, 0x71374491, 0xB5C0FBCF, 0xE9B5DBA5,
- 0x3956C25B, 0x59F111F1, 0x923F82A4, 0xAB1C5ED5,
- 0xD807AA98, 0x12835B01, 0x243185BE, 0x550C7DC3,
- 0x72BE5D74, 0x80DEB1FE, 0x9BDC06A7, 0xC19BF174,
- 0xE49B69C1, 0xEFBE4786, 0x0FC19DC6, 0x240CA1CC,
- 0x2DE92C6F, 0x4A7484AA, 0x5CB0A9DC, 0x76F988DA,
- 0x983E5152, 0xA831C66D, 0xB00327C8, 0xBF597FC7,
- 0xC6E00BF3, 0xD5A79147, 0x06CA6351, 0x14292967,
- 0x27B70A85, 0x2E1B2138, 0x4D2C6DFC, 0x53380D13,
- 0x650A7354, 0x766A0ABB, 0x81C2C92E, 0x92722C85,
- 0xA2BFE8A1, 0xA81A664B, 0xC24B8B70, 0xC76C51A3,
- 0xD192E819, 0xD6990624, 0xF40E3585, 0x106AA070,
- 0x19A4C116, 0x1E376C08, 0x2748774C, 0x34B0BCB5,
- 0x391C0CB3, 0x4ED8AA4A, 0x5B9CCA4F, 0x682E6FF3,
- 0x748F82EE, 0x78A5636F, 0x84C87814, 0x8CC70208,
- 0x90BEFFFA, 0xA4506CEB, 0xBEF9A3F7, 0xC67178F2,
- };
- static void
- transform(uint32_t state[8], const uint32_t data[16])
- {
- uint32_t W[16];
- uint32_t T[8];
- // Copy state[] to working vars.
- memcpy(T, state, sizeof(T));
- // The first 16 operations unrolled
- R0( 0); R0( 1); R0( 2); R0( 3);
- R0( 4); R0( 5); R0( 6); R0( 7);
- R0( 8); R0( 9); R0(10); R0(11);
- R0(12); R0(13); R0(14); R0(15);
- // The remaining 48 operations partially unrolled
- for (unsigned int j = 16; j < 64; j += 16) {
- R2( 0); R2( 1); R2( 2); R2( 3);
- R2( 4); R2( 5); R2( 6); R2( 7);
- R2( 8); R2( 9); R2(10); R2(11);
- R2(12); R2(13); R2(14); R2(15);
- }
- // Add the working vars back into state[].
- state[0] += a(0);
- state[1] += b(0);
- state[2] += c(0);
- state[3] += d(0);
- state[4] += e(0);
- state[5] += f(0);
- state[6] += g(0);
- state[7] += h(0);
- }
- static void
- process(lzma_check_state *check)
- {
- transform(check->state.sha256.state, check->buffer.u32);
- return;
- }
- extern void
- lzma_sha256_init(lzma_check_state *check)
- {
- static const uint32_t s[8] = {
- 0x6A09E667, 0xBB67AE85, 0x3C6EF372, 0xA54FF53A,
- 0x510E527F, 0x9B05688C, 0x1F83D9AB, 0x5BE0CD19,
- };
- memcpy(check->state.sha256.state, s, sizeof(s));
- check->state.sha256.size = 0;
- return;
- }
- extern void
- lzma_sha256_update(const uint8_t *buf, size_t size, lzma_check_state *check)
- {
- // Copy the input data into a properly aligned temporary buffer.
- // This way we can be called with arbitrarily sized buffers
- // (no need to be multiple of 64 bytes), and the code works also
- // on architectures that don't allow unaligned memory access.
- while (size > 0) {
- const size_t copy_start = check->state.sha256.size & 0x3F;
- size_t copy_size = 64 - copy_start;
- if (copy_size > size)
- copy_size = size;
- memcpy(check->buffer.u8 + copy_start, buf, copy_size);
- buf += copy_size;
- size -= copy_size;
- check->state.sha256.size += copy_size;
- if ((check->state.sha256.size & 0x3F) == 0)
- process(check);
- }
- return;
- }
- extern void
- lzma_sha256_finish(lzma_check_state *check)
- {
- // Add padding as described in RFC 3174 (it describes SHA-1 but
- // the same padding style is used for SHA-256 too).
- size_t pos = check->state.sha256.size & 0x3F;
- check->buffer.u8[pos++] = 0x80;
- while (pos != 64 - 8) {
- if (pos == 64) {
- process(check);
- pos = 0;
- }
- check->buffer.u8[pos++] = 0x00;
- }
- // Convert the message size from bytes to bits.
- check->state.sha256.size *= 8;
- check->buffer.u64[(64 - 8) / 8] = conv64be(check->state.sha256.size);
- process(check);
- for (size_t i = 0; i < 8; ++i)
- check->buffer.u32[i] = conv32be(check->state.sha256.state[i]);
- return;
- }
|