123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512 |
- ///////////////////////////////////////////////////////////////////////////////
- //
- /// \file crc64.c
- /// \brief CRC64 calculation
- ///
- /// There are two methods in this file. crc64_generic uses the
- /// the slice-by-four algorithm. This is the same idea that is
- /// used in crc32_fast.c, but for CRC64 we use only four tables
- /// instead of eight to avoid increasing CPU cache usage.
- ///
- /// crc64_clmul uses 32/64-bit x86 SSSE3, SSE4.1, and CLMUL instructions.
- /// It was derived from
- /// https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/fast-crc-computation-generic-polynomials-pclmulqdq-paper.pdf
- /// and the public domain code from https://github.com/rawrunprotected/crc
- /// (URLs were checked on 2022-11-07).
- ///
- /// FIXME: Builds for 32-bit x86 use crc64_x86.S by default instead
- /// of this file and thus CLMUL version isn't available on 32-bit x86
- /// unless configured with --disable-assembler. Even then the lookup table
- /// isn't omitted in crc64_table.c since it doesn't know that assembly
- /// code has been disabled.
- //
- // Authors: Lasse Collin
- // Ilya Kurdyukov
- //
- // This file has been put into the public domain.
- // You can do whatever you want with this file.
- //
- ///////////////////////////////////////////////////////////////////////////////
- #include "check.h"
- #undef CRC_GENERIC
- #undef CRC_CLMUL
- #undef CRC_USE_GENERIC_FOR_SMALL_INPUTS
- // If CLMUL cannot be used then only the generic slice-by-four is built.
- #if !defined(HAVE_USABLE_CLMUL)
- # define CRC_GENERIC 1
- // If CLMUL is allowed unconditionally in the compiler options then the
- // generic version can be omitted. Note that this doesn't work with MSVC
- // as I don't know how to detect the features here.
- //
- // NOTE: Keep this this in sync with crc64_table.c.
- #elif (defined(__SSSE3__) && defined(__SSE4_1__) && defined(__PCLMUL__)) \
- || (defined(__e2k__) && __iset__ >= 6)
- # define CRC_CLMUL 1
- // Otherwise build both and detect at runtime which version to use.
- #else
- # define CRC_GENERIC 1
- # define CRC_CLMUL 1
- /*
- // The generic code is much faster with 1-8-byte inputs and has
- // similar performance up to 16 bytes at least in microbenchmarks
- // (it depends on input buffer alignment too). If both versions are
- // built, this #define will use the generic version for inputs up to
- // 16 bytes and CLMUL for bigger inputs. It saves a little in code
- // size since the special cases for 0-16-byte inputs will be omitted
- // from the CLMUL code.
- # define CRC_USE_GENERIC_FOR_SMALL_INPUTS 1
- */
- # if defined(_MSC_VER)
- # include <intrin.h>
- # elif defined(HAVE_CPUID_H)
- # include <cpuid.h>
- # endif
- #endif
- /////////////////////////////////
- // Generic slice-by-four CRC64 //
- /////////////////////////////////
- #ifdef CRC_GENERIC
- #include "crc_macros.h"
- #ifdef WORDS_BIGENDIAN
- # define A1(x) ((x) >> 56)
- #else
- # define A1 A
- #endif
- // See the comments in crc32_fast.c. They aren't duplicated here.
- static uint64_t
- crc64_generic(const uint8_t *buf, size_t size, uint64_t crc)
- {
- crc = ~crc;
- #ifdef WORDS_BIGENDIAN
- crc = bswap64(crc);
- #endif
- if (size > 4) {
- while ((uintptr_t)(buf) & 3) {
- crc = lzma_crc64_table[0][*buf++ ^ A1(crc)] ^ S8(crc);
- --size;
- }
- const uint8_t *const limit = buf + (size & ~(size_t)(3));
- size &= (size_t)(3);
- while (buf < limit) {
- #ifdef WORDS_BIGENDIAN
- const uint32_t tmp = (uint32_t)(crc >> 32)
- ^ aligned_read32ne(buf);
- #else
- const uint32_t tmp = (uint32_t)crc
- ^ aligned_read32ne(buf);
- #endif
- buf += 4;
- crc = lzma_crc64_table[3][A(tmp)]
- ^ lzma_crc64_table[2][B(tmp)]
- ^ S32(crc)
- ^ lzma_crc64_table[1][C(tmp)]
- ^ lzma_crc64_table[0][D(tmp)];
- }
- }
- while (size-- != 0)
- crc = lzma_crc64_table[0][*buf++ ^ A1(crc)] ^ S8(crc);
- #ifdef WORDS_BIGENDIAN
- crc = bswap64(crc);
- #endif
- return ~crc;
- }
- #endif
- /////////////////////
- // x86 CLMUL CRC64 //
- /////////////////////
- #ifdef CRC_CLMUL
- #include <immintrin.h>
- /*
- // These functions were used to generate the constants
- // at the top of crc64_clmul().
- static uint64_t
- calc_lo(uint64_t poly)
- {
- uint64_t a = poly;
- uint64_t b = 0;
- for (unsigned i = 0; i < 64; ++i) {
- b = (b >> 1) | (a << 63);
- a = (a >> 1) ^ (a & 1 ? poly : 0);
- }
- return b;
- }
- static uint64_t
- calc_hi(uint64_t poly, uint64_t a)
- {
- for (unsigned i = 0; i < 64; ++i)
- a = (a >> 1) ^ (a & 1 ? poly : 0);
- return a;
- }
- */
- #define MASK_L(in, mask, r) \
- r = _mm_shuffle_epi8(in, mask)
- #define MASK_H(in, mask, r) \
- r = _mm_shuffle_epi8(in, _mm_xor_si128(mask, vsign))
- #define MASK_LH(in, mask, low, high) \
- MASK_L(in, mask, low); \
- MASK_H(in, mask, high)
- // EDG-based compilers (Intel's classic compiler and compiler for E2K) can
- // define __GNUC__ but the attribute must not be used with them.
- // The new Clang-based ICX needs the attribute.
- //
- // NOTE: Build systems check for this too, keep them in sync with this.
- #if (defined(__GNUC__) || defined(__clang__)) && !defined(__EDG__)
- __attribute__((__target__("ssse3,sse4.1,pclmul")))
- #endif
- static uint64_t
- crc64_clmul(const uint8_t *buf, size_t size, uint64_t crc)
- {
- // The prototypes of the intrinsics use signed types while most of
- // the values are treated as unsigned here. These warnings in this
- // function have been checked and found to be harmless so silence them.
- #if TUKLIB_GNUC_REQ(4, 6) || defined(__clang__)
- # pragma GCC diagnostic push
- # pragma GCC diagnostic ignored "-Wsign-conversion"
- # pragma GCC diagnostic ignored "-Wconversion"
- #endif
- #ifndef CRC_USE_GENERIC_FOR_SMALL_INPUTS
- // The code assumes that there is at least one byte of input.
- if (size == 0)
- return crc;
- #endif
- // const uint64_t poly = 0xc96c5795d7870f42; // CRC polynomial
- const uint64_t p = 0x92d8af2baf0e1e85; // (poly << 1) | 1
- const uint64_t mu = 0x9c3e466c172963d5; // (calc_lo(poly) << 1) | 1
- const uint64_t k2 = 0xdabe95afc7875f40; // calc_hi(poly, 1)
- const uint64_t k1 = 0xe05dd497ca393ae4; // calc_hi(poly, k2)
- const __m128i vfold0 = _mm_set_epi64x(p, mu);
- const __m128i vfold1 = _mm_set_epi64x(k2, k1);
- // Create a vector with 8-bit values 0 to 15. This is used to
- // construct control masks for _mm_blendv_epi8 and _mm_shuffle_epi8.
- const __m128i vramp = _mm_setr_epi32(
- 0x03020100, 0x07060504, 0x0b0a0908, 0x0f0e0d0c);
- // This is used to inverse the control mask of _mm_shuffle_epi8
- // so that bytes that wouldn't be picked with the original mask
- // will be picked and vice versa.
- const __m128i vsign = _mm_set1_epi8(0x80);
- // Memory addresses A to D and the distances between them:
- //
- // A B C D
- // [skip_start][size][skip_end]
- // [ size2 ]
- //
- // A and D are 16-byte aligned. B and C are 1-byte aligned.
- // skip_start and skip_end are 0-15 bytes. size is at least 1 byte.
- //
- // A = aligned_buf will initially point to this address.
- // B = The address pointed by the caller-supplied buf.
- // C = buf + size == aligned_buf + size2
- // D = buf + size + skip_end == aligned_buf + size2 + skip_end
- const size_t skip_start = (size_t)((uintptr_t)buf & 15);
- const size_t skip_end = (size_t)(-(uintptr_t)(buf + size) & 15);
- const __m128i *aligned_buf = (const __m128i *)(
- (uintptr_t)buf & ~(uintptr_t)15);
- // If size2 <= 16 then the whole input fits into a single 16-byte
- // vector. If size2 > 16 then at least two 16-byte vectors must
- // be processed. If size2 > 16 && size <= 16 then there is only
- // one 16-byte vector's worth of input but it is unaligned in memory.
- //
- // NOTE: There is no integer overflow here if the arguments are valid.
- // If this overflowed, buf + size would too.
- size_t size2 = skip_start + size;
- // Masks to be used with _mm_blendv_epi8 and _mm_shuffle_epi8:
- // The first skip_start or skip_end bytes in the vectors will have
- // the high bit (0x80) set. _mm_blendv_epi8 and _mm_shuffle_epi8
- // will produce zeros for these positions. (Bitwise-xor of these
- // masks with vsign will produce the opposite behavior.)
- const __m128i mask_start
- = _mm_sub_epi8(vramp, _mm_set1_epi8(skip_start));
- const __m128i mask_end = _mm_sub_epi8(vramp, _mm_set1_epi8(skip_end));
- // Get the first 1-16 bytes into data0. If loading less than 16 bytes,
- // the bytes are loaded to the high bits of the vector and the least
- // significant positions are filled with zeros.
- const __m128i data0 = _mm_blendv_epi8(_mm_load_si128(aligned_buf),
- _mm_setzero_si128(), mask_start);
- ++aligned_buf;
- #if defined(__i386__) || defined(_M_IX86)
- const __m128i initial_crc = _mm_set_epi64x(0, ~crc);
- #else
- // GCC and Clang would produce good code with _mm_set_epi64x
- // but MSVC needs _mm_cvtsi64_si128 on x86-64.
- const __m128i initial_crc = _mm_cvtsi64_si128(~crc);
- #endif
- __m128i v0, v1, v2, v3;
- #ifndef CRC_USE_GENERIC_FOR_SMALL_INPUTS
- if (size <= 16) {
- // Right-shift initial_crc by 1-16 bytes based on "size"
- // and store the result in v1 (high bytes) and v0 (low bytes).
- //
- // NOTE: The highest 8 bytes of initial_crc are zeros so
- // v1 will be filled with zeros if size >= 8. The highest 8
- // bytes of v1 will always become zeros.
- //
- // [ v1 ][ v0 ]
- // [ initial_crc ] size == 1
- // [ initial_crc ] size == 2
- // [ initial_crc ] size == 15
- // [ initial_crc ] size == 16 (all in v0)
- const __m128i mask_low = _mm_add_epi8(
- vramp, _mm_set1_epi8(size - 16));
- MASK_LH(initial_crc, mask_low, v0, v1);
- if (size2 <= 16) {
- // There are 1-16 bytes of input and it is all
- // in data0. Copy the input bytes to v3. If there
- // are fewer than 16 bytes, the low bytes in v3
- // will be filled with zeros. That is, the input
- // bytes are stored to the same position as
- // (part of) initial_crc is in v0.
- MASK_L(data0, mask_end, v3);
- } else {
- // There are 2-16 bytes of input but not all bytes
- // are in data0.
- const __m128i data1 = _mm_load_si128(aligned_buf);
- // Collect the 2-16 input bytes from data0 and data1
- // to v2 and v3, and bitwise-xor them with the
- // low bits of initial_crc in v0. Note that the
- // the second xor is below this else-block as it
- // is shared with the other branch.
- MASK_H(data0, mask_end, v2);
- MASK_L(data1, mask_end, v3);
- v0 = _mm_xor_si128(v0, v2);
- }
- v0 = _mm_xor_si128(v0, v3);
- v1 = _mm_alignr_epi8(v1, v0, 8);
- } else
- #endif
- {
- const __m128i data1 = _mm_load_si128(aligned_buf);
- MASK_LH(initial_crc, mask_start, v0, v1);
- v0 = _mm_xor_si128(v0, data0);
- v1 = _mm_xor_si128(v1, data1);
- #define FOLD \
- v1 = _mm_xor_si128(v1, _mm_clmulepi64_si128(v0, vfold1, 0x00)); \
- v0 = _mm_xor_si128(v1, _mm_clmulepi64_si128(v0, vfold1, 0x11));
- while (size2 > 32) {
- ++aligned_buf;
- size2 -= 16;
- FOLD
- v1 = _mm_load_si128(aligned_buf);
- }
- if (size2 < 32) {
- MASK_H(v0, mask_end, v2);
- MASK_L(v0, mask_end, v0);
- MASK_L(v1, mask_end, v3);
- v1 = _mm_or_si128(v2, v3);
- }
- FOLD
- v1 = _mm_srli_si128(v0, 8);
- #undef FOLD
- }
- v1 = _mm_xor_si128(_mm_clmulepi64_si128(v0, vfold1, 0x10), v1);
- v0 = _mm_clmulepi64_si128(v1, vfold0, 0x00);
- v2 = _mm_clmulepi64_si128(v0, vfold0, 0x10);
- v0 = _mm_xor_si128(_mm_xor_si128(v2, _mm_slli_si128(v0, 8)), v1);
- #if defined(__i386__) || defined(_M_IX86)
- return ~(((uint64_t)(uint32_t)_mm_extract_epi32(v0, 3) << 32) |
- (uint64_t)(uint32_t)_mm_extract_epi32(v0, 2));
- #else
- return ~(uint64_t)_mm_extract_epi64(v0, 1);
- #endif
- #if TUKLIB_GNUC_REQ(4, 6) || defined(__clang__)
- # pragma GCC diagnostic pop
- #endif
- }
- #endif
- ////////////////////////
- // Detect CPU support //
- ////////////////////////
- #if defined(CRC_GENERIC) && defined(CRC_CLMUL)
- static inline bool
- is_clmul_supported(void)
- {
- int success = 1;
- uint32_t r[4]; // eax, ebx, ecx, edx
- #if defined(_MSC_VER)
- // This needs <intrin.h> with MSVC. ICC has it as a built-in
- // on all platforms.
- __cpuid(r, 1);
- #elif defined(HAVE_CPUID_H)
- // Compared to just using __asm__ to run CPUID, this also checks
- // that CPUID is supported and saves and restores ebx as that is
- // needed with GCC < 5 with position-independent code (PIC).
- success = __get_cpuid(1, &r[0], &r[1], &r[2], &r[3]);
- #else
- // Just a fallback that shouldn't be needed.
- __asm__("cpuid\n\t"
- : "=a"(r[0]), "=b"(r[1]), "=c"(r[2]), "=d"(r[3])
- : "a"(1), "c"(0));
- #endif
- // Returns true if these are supported:
- // CLMUL (bit 1 in ecx)
- // SSSE3 (bit 9 in ecx)
- // SSE4.1 (bit 19 in ecx)
- const uint32_t ecx_mask = (1 << 1) | (1 << 9) | (1 << 19);
- return success && (r[2] & ecx_mask) == ecx_mask;
- // Alternative methods that weren't used:
- // - ICC's _may_i_use_cpu_feature: the other methods should work too.
- // - GCC >= 6 / Clang / ICX __builtin_cpu_supports("pclmul")
- //
- // CPUID decding is needed with MSVC anyway and older GCC. This keeps
- // the feature checks in the build system simpler too. The nice thing
- // about __builtin_cpu_supports would be that it generates very short
- // code as is it only reads a variable set at startup but a few bytes
- // doesn't matter here.
- }
- #ifdef HAVE_FUNC_ATTRIBUTE_CONSTRUCTOR
- # define CRC64_FUNC_INIT
- # define CRC64_SET_FUNC_ATTR __attribute__((__constructor__))
- #else
- # define CRC64_FUNC_INIT = &crc64_dispatch
- # define CRC64_SET_FUNC_ATTR
- static uint64_t crc64_dispatch(const uint8_t *buf, size_t size, uint64_t crc);
- #endif
- // Pointer to the the selected CRC64 method.
- static uint64_t (*crc64_func)(const uint8_t *buf, size_t size, uint64_t crc)
- CRC64_FUNC_INIT;
- CRC64_SET_FUNC_ATTR
- static void
- crc64_set_func(void)
- {
- crc64_func = is_clmul_supported() ? &crc64_clmul : &crc64_generic;
- return;
- }
- #ifndef HAVE_FUNC_ATTRIBUTE_CONSTRUCTOR
- static uint64_t
- crc64_dispatch(const uint8_t *buf, size_t size, uint64_t crc)
- {
- // When __attribute__((__constructor__)) isn't supported, set the
- // function pointer without any locking. If multiple threads run
- // the detection code in parallel, they will all end up setting
- // the pointer to the same value. This avoids the use of
- // mythread_once() on every call to lzma_crc64() but this likely
- // isn't strictly standards compliant. Let's change it if it breaks.
- crc64_set_func();
- return crc64_func(buf, size, crc);
- }
- #endif
- #endif
- extern LZMA_API(uint64_t)
- lzma_crc64(const uint8_t *buf, size_t size, uint64_t crc)
- {
- #if defined(CRC_GENERIC) && defined(CRC_CLMUL)
- // If CLMUL is available, it is the best for non-tiny inputs,
- // being over twice as fast as the generic slice-by-four version.
- // However, for size <= 16 it's different. In the extreme case
- // of size == 1 the generic version can be five times faster.
- // At size >= 8 the CLMUL starts to become reasonable. It
- // varies depending on the alignment of buf too.
- //
- // The above doesn't include the overhead of mythread_once().
- // At least on x86-64 GNU/Linux, pthread_once() is very fast but
- // it still makes lzma_crc64(buf, 1, crc) 50-100 % slower. When
- // size reaches 12-16 bytes the overhead becomes negligible.
- //
- // So using the generic version for size <= 16 may give better
- // performance with tiny inputs but if such inputs happen rarely
- // it's not so obvious because then the lookup table of the
- // generic version may not be in the processor cache.
- #ifdef CRC_USE_GENERIC_FOR_SMALL_INPUTS
- if (size <= 16)
- return crc64_generic(buf, size, crc);
- #endif
- /*
- #ifndef HAVE_FUNC_ATTRIBUTE_CONSTRUCTOR
- // See crc64_dispatch(). This would be the alternative which uses
- // locking and doesn't use crc64_dispatch(). Note that on Windows
- // this method needs Vista threads.
- mythread_once(crc64_set_func);
- #endif
- */
- return crc64_func(buf, size, crc);
- #elif defined(CRC_CLMUL)
- // If CLMUL is used unconditionally without runtime CPU detection
- // then omitting the generic version and its 8 KiB lookup table
- // makes the library smaller.
- //
- // FIXME: Lookup table isn't currently omitted on 32-bit x86,
- // see crc64_table.c.
- return crc64_clmul(buf, size, crc);
- #else
- return crc64_generic(buf, size, crc);
- #endif
- }
|