12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368 |
- //===-- Verifier.cpp - Implement the Module Verifier -----------------------==//
- //
- // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
- // See https://llvm.org/LICENSE.txt for license information.
- // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
- //
- //===----------------------------------------------------------------------===//
- //
- // This file defines the function verifier interface, that can be used for some
- // basic correctness checking of input to the system.
- //
- // Note that this does not provide full `Java style' security and verifications,
- // instead it just tries to ensure that code is well-formed.
- //
- // * Both of a binary operator's parameters are of the same type
- // * Verify that the indices of mem access instructions match other operands
- // * Verify that arithmetic and other things are only performed on first-class
- // types. Verify that shifts & logicals only happen on integrals f.e.
- // * All of the constants in a switch statement are of the correct type
- // * The code is in valid SSA form
- // * It should be illegal to put a label into any other type (like a structure)
- // or to return one. [except constant arrays!]
- // * Only phi nodes can be self referential: 'add i32 %0, %0 ; <int>:0' is bad
- // * PHI nodes must have an entry for each predecessor, with no extras.
- // * PHI nodes must be the first thing in a basic block, all grouped together
- // * PHI nodes must have at least one entry
- // * All basic blocks should only end with terminator insts, not contain them
- // * The entry node to a function must not have predecessors
- // * All Instructions must be embedded into a basic block
- // * Functions cannot take a void-typed parameter
- // * Verify that a function's argument list agrees with it's declared type.
- // * It is illegal to specify a name for a void value.
- // * It is illegal to have a internal global value with no initializer
- // * It is illegal to have a ret instruction that returns a value that does not
- // agree with the function return value type.
- // * Function call argument types match the function prototype
- // * A landing pad is defined by a landingpad instruction, and can be jumped to
- // only by the unwind edge of an invoke instruction.
- // * A landingpad instruction must be the first non-PHI instruction in the
- // block.
- // * Landingpad instructions must be in a function with a personality function.
- // * All other things that are tested by asserts spread about the code...
- //
- //===----------------------------------------------------------------------===//
- #include "llvm/IR/Verifier.h"
- #include "llvm/ADT/APFloat.h"
- #include "llvm/ADT/APInt.h"
- #include "llvm/ADT/ArrayRef.h"
- #include "llvm/ADT/DenseMap.h"
- #include "llvm/ADT/MapVector.h"
- #include "llvm/ADT/Optional.h"
- #include "llvm/ADT/STLExtras.h"
- #include "llvm/ADT/SmallPtrSet.h"
- #include "llvm/ADT/SmallSet.h"
- #include "llvm/ADT/SmallVector.h"
- #include "llvm/ADT/StringExtras.h"
- #include "llvm/ADT/StringMap.h"
- #include "llvm/ADT/StringRef.h"
- #include "llvm/ADT/Twine.h"
- #include "llvm/BinaryFormat/Dwarf.h"
- #include "llvm/IR/Argument.h"
- #include "llvm/IR/Attributes.h"
- #include "llvm/IR/BasicBlock.h"
- #include "llvm/IR/CFG.h"
- #include "llvm/IR/CallingConv.h"
- #include "llvm/IR/Comdat.h"
- #include "llvm/IR/Constant.h"
- #include "llvm/IR/ConstantRange.h"
- #include "llvm/IR/Constants.h"
- #include "llvm/IR/DataLayout.h"
- #include "llvm/IR/DebugInfoMetadata.h"
- #include "llvm/IR/DebugLoc.h"
- #include "llvm/IR/DerivedTypes.h"
- #include "llvm/IR/Dominators.h"
- #include "llvm/IR/Function.h"
- #include "llvm/IR/GlobalAlias.h"
- #include "llvm/IR/GlobalValue.h"
- #include "llvm/IR/GlobalVariable.h"
- #include "llvm/IR/InlineAsm.h"
- #include "llvm/IR/InstVisitor.h"
- #include "llvm/IR/InstrTypes.h"
- #include "llvm/IR/Instruction.h"
- #include "llvm/IR/Instructions.h"
- #include "llvm/IR/IntrinsicInst.h"
- #include "llvm/IR/Intrinsics.h"
- #include "llvm/IR/IntrinsicsWebAssembly.h"
- #include "llvm/IR/LLVMContext.h"
- #include "llvm/IR/Metadata.h"
- #include "llvm/IR/Module.h"
- #include "llvm/IR/ModuleSlotTracker.h"
- #include "llvm/IR/PassManager.h"
- #include "llvm/IR/Statepoint.h"
- #include "llvm/IR/Type.h"
- #include "llvm/IR/Use.h"
- #include "llvm/IR/User.h"
- #include "llvm/IR/Value.h"
- #include "llvm/InitializePasses.h"
- #include "llvm/Pass.h"
- #include "llvm/Support/AtomicOrdering.h"
- #include "llvm/Support/Casting.h"
- #include "llvm/Support/CommandLine.h"
- #include "llvm/Support/Debug.h"
- #include "llvm/Support/ErrorHandling.h"
- #include "llvm/Support/MathExtras.h"
- #include "llvm/Support/raw_ostream.h"
- #include <algorithm>
- #include <cassert>
- #include <cstdint>
- #include <memory>
- #include <string>
- #include <utility>
- using namespace llvm;
- static cl::opt<bool> VerifyNoAliasScopeDomination(
- "verify-noalias-scope-decl-dom", cl::Hidden, cl::init(false),
- cl::desc("Ensure that llvm.experimental.noalias.scope.decl for identical "
- "scopes are not dominating"));
- namespace llvm {
- struct VerifierSupport {
- raw_ostream *OS;
- const Module &M;
- ModuleSlotTracker MST;
- Triple TT;
- const DataLayout &DL;
- LLVMContext &Context;
- /// Track the brokenness of the module while recursively visiting.
- bool Broken = false;
- /// Broken debug info can be "recovered" from by stripping the debug info.
- bool BrokenDebugInfo = false;
- /// Whether to treat broken debug info as an error.
- bool TreatBrokenDebugInfoAsError = true;
- explicit VerifierSupport(raw_ostream *OS, const Module &M)
- : OS(OS), M(M), MST(&M), TT(M.getTargetTriple()), DL(M.getDataLayout()),
- Context(M.getContext()) {}
- private:
- void Write(const Module *M) {
- *OS << "; ModuleID = '" << M->getModuleIdentifier() << "'\n";
- }
- void Write(const Value *V) {
- if (V)
- Write(*V);
- }
- void Write(const Value &V) {
- if (isa<Instruction>(V)) {
- V.print(*OS, MST);
- *OS << '\n';
- } else {
- V.printAsOperand(*OS, true, MST);
- *OS << '\n';
- }
- }
- void Write(const Metadata *MD) {
- if (!MD)
- return;
- MD->print(*OS, MST, &M);
- *OS << '\n';
- }
- template <class T> void Write(const MDTupleTypedArrayWrapper<T> &MD) {
- Write(MD.get());
- }
- void Write(const NamedMDNode *NMD) {
- if (!NMD)
- return;
- NMD->print(*OS, MST);
- *OS << '\n';
- }
- void Write(Type *T) {
- if (!T)
- return;
- *OS << ' ' << *T;
- }
- void Write(const Comdat *C) {
- if (!C)
- return;
- *OS << *C;
- }
- void Write(const APInt *AI) {
- if (!AI)
- return;
- *OS << *AI << '\n';
- }
- void Write(const unsigned i) { *OS << i << '\n'; }
- // NOLINTNEXTLINE(readability-identifier-naming)
- void Write(const Attribute *A) {
- if (!A)
- return;
- *OS << A->getAsString() << '\n';
- }
- // NOLINTNEXTLINE(readability-identifier-naming)
- void Write(const AttributeSet *AS) {
- if (!AS)
- return;
- *OS << AS->getAsString() << '\n';
- }
- // NOLINTNEXTLINE(readability-identifier-naming)
- void Write(const AttributeList *AL) {
- if (!AL)
- return;
- AL->print(*OS);
- }
- template <typename T> void Write(ArrayRef<T> Vs) {
- for (const T &V : Vs)
- Write(V);
- }
- template <typename T1, typename... Ts>
- void WriteTs(const T1 &V1, const Ts &... Vs) {
- Write(V1);
- WriteTs(Vs...);
- }
- template <typename... Ts> void WriteTs() {}
- public:
- /// A check failed, so printout out the condition and the message.
- ///
- /// This provides a nice place to put a breakpoint if you want to see why
- /// something is not correct.
- void CheckFailed(const Twine &Message) {
- if (OS)
- *OS << Message << '\n';
- Broken = true;
- }
- /// A check failed (with values to print).
- ///
- /// This calls the Message-only version so that the above is easier to set a
- /// breakpoint on.
- template <typename T1, typename... Ts>
- void CheckFailed(const Twine &Message, const T1 &V1, const Ts &... Vs) {
- CheckFailed(Message);
- if (OS)
- WriteTs(V1, Vs...);
- }
- /// A debug info check failed.
- void DebugInfoCheckFailed(const Twine &Message) {
- if (OS)
- *OS << Message << '\n';
- Broken |= TreatBrokenDebugInfoAsError;
- BrokenDebugInfo = true;
- }
- /// A debug info check failed (with values to print).
- template <typename T1, typename... Ts>
- void DebugInfoCheckFailed(const Twine &Message, const T1 &V1,
- const Ts &... Vs) {
- DebugInfoCheckFailed(Message);
- if (OS)
- WriteTs(V1, Vs...);
- }
- };
- } // namespace llvm
- namespace {
- class Verifier : public InstVisitor<Verifier>, VerifierSupport {
- friend class InstVisitor<Verifier>;
- DominatorTree DT;
- /// When verifying a basic block, keep track of all of the
- /// instructions we have seen so far.
- ///
- /// This allows us to do efficient dominance checks for the case when an
- /// instruction has an operand that is an instruction in the same block.
- SmallPtrSet<Instruction *, 16> InstsInThisBlock;
- /// Keep track of the metadata nodes that have been checked already.
- SmallPtrSet<const Metadata *, 32> MDNodes;
- /// Keep track which DISubprogram is attached to which function.
- DenseMap<const DISubprogram *, const Function *> DISubprogramAttachments;
- /// Track all DICompileUnits visited.
- SmallPtrSet<const Metadata *, 2> CUVisited;
- /// The result type for a landingpad.
- Type *LandingPadResultTy;
- /// Whether we've seen a call to @llvm.localescape in this function
- /// already.
- bool SawFrameEscape;
- /// Whether the current function has a DISubprogram attached to it.
- bool HasDebugInfo = false;
- /// The current source language.
- dwarf::SourceLanguage CurrentSourceLang = dwarf::DW_LANG_lo_user;
- /// Whether source was present on the first DIFile encountered in each CU.
- DenseMap<const DICompileUnit *, bool> HasSourceDebugInfo;
- /// Stores the count of how many objects were passed to llvm.localescape for a
- /// given function and the largest index passed to llvm.localrecover.
- DenseMap<Function *, std::pair<unsigned, unsigned>> FrameEscapeInfo;
- // Maps catchswitches and cleanuppads that unwind to siblings to the
- // terminators that indicate the unwind, used to detect cycles therein.
- MapVector<Instruction *, Instruction *> SiblingFuncletInfo;
- /// Cache of constants visited in search of ConstantExprs.
- SmallPtrSet<const Constant *, 32> ConstantExprVisited;
- /// Cache of declarations of the llvm.experimental.deoptimize.<ty> intrinsic.
- SmallVector<const Function *, 4> DeoptimizeDeclarations;
- /// Cache of attribute lists verified.
- SmallPtrSet<const void *, 32> AttributeListsVisited;
- // Verify that this GlobalValue is only used in this module.
- // This map is used to avoid visiting uses twice. We can arrive at a user
- // twice, if they have multiple operands. In particular for very large
- // constant expressions, we can arrive at a particular user many times.
- SmallPtrSet<const Value *, 32> GlobalValueVisited;
- // Keeps track of duplicate function argument debug info.
- SmallVector<const DILocalVariable *, 16> DebugFnArgs;
- TBAAVerifier TBAAVerifyHelper;
- SmallVector<IntrinsicInst *, 4> NoAliasScopeDecls;
- void checkAtomicMemAccessSize(Type *Ty, const Instruction *I);
- public:
- explicit Verifier(raw_ostream *OS, bool ShouldTreatBrokenDebugInfoAsError,
- const Module &M)
- : VerifierSupport(OS, M), LandingPadResultTy(nullptr),
- SawFrameEscape(false), TBAAVerifyHelper(this) {
- TreatBrokenDebugInfoAsError = ShouldTreatBrokenDebugInfoAsError;
- }
- bool hasBrokenDebugInfo() const { return BrokenDebugInfo; }
- bool verify(const Function &F) {
- assert(F.getParent() == &M &&
- "An instance of this class only works with a specific module!");
- // First ensure the function is well-enough formed to compute dominance
- // information, and directly compute a dominance tree. We don't rely on the
- // pass manager to provide this as it isolates us from a potentially
- // out-of-date dominator tree and makes it significantly more complex to run
- // this code outside of a pass manager.
- // FIXME: It's really gross that we have to cast away constness here.
- if (!F.empty())
- DT.recalculate(const_cast<Function &>(F));
- for (const BasicBlock &BB : F) {
- if (!BB.empty() && BB.back().isTerminator())
- continue;
- if (OS) {
- *OS << "Basic Block in function '" << F.getName()
- << "' does not have terminator!\n";
- BB.printAsOperand(*OS, true, MST);
- *OS << "\n";
- }
- return false;
- }
- Broken = false;
- // FIXME: We strip const here because the inst visitor strips const.
- visit(const_cast<Function &>(F));
- verifySiblingFuncletUnwinds();
- InstsInThisBlock.clear();
- DebugFnArgs.clear();
- LandingPadResultTy = nullptr;
- SawFrameEscape = false;
- SiblingFuncletInfo.clear();
- verifyNoAliasScopeDecl();
- NoAliasScopeDecls.clear();
- return !Broken;
- }
- /// Verify the module that this instance of \c Verifier was initialized with.
- bool verify() {
- Broken = false;
- // Collect all declarations of the llvm.experimental.deoptimize intrinsic.
- for (const Function &F : M)
- if (F.getIntrinsicID() == Intrinsic::experimental_deoptimize)
- DeoptimizeDeclarations.push_back(&F);
- // Now that we've visited every function, verify that we never asked to
- // recover a frame index that wasn't escaped.
- verifyFrameRecoverIndices();
- for (const GlobalVariable &GV : M.globals())
- visitGlobalVariable(GV);
- for (const GlobalAlias &GA : M.aliases())
- visitGlobalAlias(GA);
- for (const GlobalIFunc &GI : M.ifuncs())
- visitGlobalIFunc(GI);
- for (const NamedMDNode &NMD : M.named_metadata())
- visitNamedMDNode(NMD);
- for (const StringMapEntry<Comdat> &SMEC : M.getComdatSymbolTable())
- visitComdat(SMEC.getValue());
- visitModuleFlags();
- visitModuleIdents();
- visitModuleCommandLines();
- verifyCompileUnits();
- verifyDeoptimizeCallingConvs();
- DISubprogramAttachments.clear();
- return !Broken;
- }
- private:
- /// Whether a metadata node is allowed to be, or contain, a DILocation.
- enum class AreDebugLocsAllowed { No, Yes };
- // Verification methods...
- void visitGlobalValue(const GlobalValue &GV);
- void visitGlobalVariable(const GlobalVariable &GV);
- void visitGlobalAlias(const GlobalAlias &GA);
- void visitGlobalIFunc(const GlobalIFunc &GI);
- void visitAliaseeSubExpr(const GlobalAlias &A, const Constant &C);
- void visitAliaseeSubExpr(SmallPtrSetImpl<const GlobalAlias *> &Visited,
- const GlobalAlias &A, const Constant &C);
- void visitNamedMDNode(const NamedMDNode &NMD);
- void visitMDNode(const MDNode &MD, AreDebugLocsAllowed AllowLocs);
- void visitMetadataAsValue(const MetadataAsValue &MD, Function *F);
- void visitValueAsMetadata(const ValueAsMetadata &MD, Function *F);
- void visitComdat(const Comdat &C);
- void visitModuleIdents();
- void visitModuleCommandLines();
- void visitModuleFlags();
- void visitModuleFlag(const MDNode *Op,
- DenseMap<const MDString *, const MDNode *> &SeenIDs,
- SmallVectorImpl<const MDNode *> &Requirements);
- void visitModuleFlagCGProfileEntry(const MDOperand &MDO);
- void visitFunction(const Function &F);
- void visitBasicBlock(BasicBlock &BB);
- void visitRangeMetadata(Instruction &I, MDNode *Range, Type *Ty);
- void visitDereferenceableMetadata(Instruction &I, MDNode *MD);
- void visitProfMetadata(Instruction &I, MDNode *MD);
- void visitAnnotationMetadata(MDNode *Annotation);
- void visitAliasScopeMetadata(const MDNode *MD);
- void visitAliasScopeListMetadata(const MDNode *MD);
- template <class Ty> bool isValidMetadataArray(const MDTuple &N);
- #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS) void visit##CLASS(const CLASS &N);
- #include "llvm/IR/Metadata.def"
- void visitDIScope(const DIScope &N);
- void visitDIVariable(const DIVariable &N);
- void visitDILexicalBlockBase(const DILexicalBlockBase &N);
- void visitDITemplateParameter(const DITemplateParameter &N);
- void visitTemplateParams(const MDNode &N, const Metadata &RawParams);
- // InstVisitor overrides...
- using InstVisitor<Verifier>::visit;
- void visit(Instruction &I);
- void visitTruncInst(TruncInst &I);
- void visitZExtInst(ZExtInst &I);
- void visitSExtInst(SExtInst &I);
- void visitFPTruncInst(FPTruncInst &I);
- void visitFPExtInst(FPExtInst &I);
- void visitFPToUIInst(FPToUIInst &I);
- void visitFPToSIInst(FPToSIInst &I);
- void visitUIToFPInst(UIToFPInst &I);
- void visitSIToFPInst(SIToFPInst &I);
- void visitIntToPtrInst(IntToPtrInst &I);
- void visitPtrToIntInst(PtrToIntInst &I);
- void visitBitCastInst(BitCastInst &I);
- void visitAddrSpaceCastInst(AddrSpaceCastInst &I);
- void visitPHINode(PHINode &PN);
- void visitCallBase(CallBase &Call);
- void visitUnaryOperator(UnaryOperator &U);
- void visitBinaryOperator(BinaryOperator &B);
- void visitICmpInst(ICmpInst &IC);
- void visitFCmpInst(FCmpInst &FC);
- void visitExtractElementInst(ExtractElementInst &EI);
- void visitInsertElementInst(InsertElementInst &EI);
- void visitShuffleVectorInst(ShuffleVectorInst &EI);
- void visitVAArgInst(VAArgInst &VAA) { visitInstruction(VAA); }
- void visitCallInst(CallInst &CI);
- void visitInvokeInst(InvokeInst &II);
- void visitGetElementPtrInst(GetElementPtrInst &GEP);
- void visitLoadInst(LoadInst &LI);
- void visitStoreInst(StoreInst &SI);
- void verifyDominatesUse(Instruction &I, unsigned i);
- void visitInstruction(Instruction &I);
- void visitTerminator(Instruction &I);
- void visitBranchInst(BranchInst &BI);
- void visitReturnInst(ReturnInst &RI);
- void visitSwitchInst(SwitchInst &SI);
- void visitIndirectBrInst(IndirectBrInst &BI);
- void visitCallBrInst(CallBrInst &CBI);
- void visitSelectInst(SelectInst &SI);
- void visitUserOp1(Instruction &I);
- void visitUserOp2(Instruction &I) { visitUserOp1(I); }
- void visitIntrinsicCall(Intrinsic::ID ID, CallBase &Call);
- void visitConstrainedFPIntrinsic(ConstrainedFPIntrinsic &FPI);
- void visitDbgIntrinsic(StringRef Kind, DbgVariableIntrinsic &DII);
- void visitDbgLabelIntrinsic(StringRef Kind, DbgLabelInst &DLI);
- void visitAtomicCmpXchgInst(AtomicCmpXchgInst &CXI);
- void visitAtomicRMWInst(AtomicRMWInst &RMWI);
- void visitFenceInst(FenceInst &FI);
- void visitAllocaInst(AllocaInst &AI);
- void visitExtractValueInst(ExtractValueInst &EVI);
- void visitInsertValueInst(InsertValueInst &IVI);
- void visitEHPadPredecessors(Instruction &I);
- void visitLandingPadInst(LandingPadInst &LPI);
- void visitResumeInst(ResumeInst &RI);
- void visitCatchPadInst(CatchPadInst &CPI);
- void visitCatchReturnInst(CatchReturnInst &CatchReturn);
- void visitCleanupPadInst(CleanupPadInst &CPI);
- void visitFuncletPadInst(FuncletPadInst &FPI);
- void visitCatchSwitchInst(CatchSwitchInst &CatchSwitch);
- void visitCleanupReturnInst(CleanupReturnInst &CRI);
- void verifySwiftErrorCall(CallBase &Call, const Value *SwiftErrorVal);
- void verifySwiftErrorValue(const Value *SwiftErrorVal);
- void verifyTailCCMustTailAttrs(const AttrBuilder &Attrs, StringRef Context);
- void verifyMustTailCall(CallInst &CI);
- bool verifyAttributeCount(AttributeList Attrs, unsigned Params);
- void verifyAttributeTypes(AttributeSet Attrs, const Value *V);
- void verifyParameterAttrs(AttributeSet Attrs, Type *Ty, const Value *V);
- void checkUnsignedBaseTenFuncAttr(AttributeList Attrs, StringRef Attr,
- const Value *V);
- void verifyFunctionAttrs(FunctionType *FT, AttributeList Attrs,
- const Value *V, bool IsIntrinsic, bool IsInlineAsm);
- void verifyFunctionMetadata(ArrayRef<std::pair<unsigned, MDNode *>> MDs);
- void visitConstantExprsRecursively(const Constant *EntryC);
- void visitConstantExpr(const ConstantExpr *CE);
- void verifyInlineAsmCall(const CallBase &Call);
- void verifyStatepoint(const CallBase &Call);
- void verifyFrameRecoverIndices();
- void verifySiblingFuncletUnwinds();
- void verifyFragmentExpression(const DbgVariableIntrinsic &I);
- template <typename ValueOrMetadata>
- void verifyFragmentExpression(const DIVariable &V,
- DIExpression::FragmentInfo Fragment,
- ValueOrMetadata *Desc);
- void verifyFnArgs(const DbgVariableIntrinsic &I);
- void verifyNotEntryValue(const DbgVariableIntrinsic &I);
- /// Module-level debug info verification...
- void verifyCompileUnits();
- /// Module-level verification that all @llvm.experimental.deoptimize
- /// declarations share the same calling convention.
- void verifyDeoptimizeCallingConvs();
- void verifyAttachedCallBundle(const CallBase &Call,
- const OperandBundleUse &BU);
- /// Verify all-or-nothing property of DIFile source attribute within a CU.
- void verifySourceDebugInfo(const DICompileUnit &U, const DIFile &F);
- /// Verify the llvm.experimental.noalias.scope.decl declarations
- void verifyNoAliasScopeDecl();
- };
- } // end anonymous namespace
- /// We know that cond should be true, if not print an error message.
- #define Assert(C, ...) \
- do { if (!(C)) { CheckFailed(__VA_ARGS__); return; } } while (false)
- /// We know that a debug info condition should be true, if not print
- /// an error message.
- #define AssertDI(C, ...) \
- do { if (!(C)) { DebugInfoCheckFailed(__VA_ARGS__); return; } } while (false)
- void Verifier::visit(Instruction &I) {
- for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
- Assert(I.getOperand(i) != nullptr, "Operand is null", &I);
- InstVisitor<Verifier>::visit(I);
- }
- // Helper to iterate over indirect users. By returning false, the callback can ask to stop traversing further.
- static void forEachUser(const Value *User,
- SmallPtrSet<const Value *, 32> &Visited,
- llvm::function_ref<bool(const Value *)> Callback) {
- if (!Visited.insert(User).second)
- return;
- SmallVector<const Value *> WorkList;
- append_range(WorkList, User->materialized_users());
- while (!WorkList.empty()) {
- const Value *Cur = WorkList.pop_back_val();
- if (!Visited.insert(Cur).second)
- continue;
- if (Callback(Cur))
- append_range(WorkList, Cur->materialized_users());
- }
- }
- void Verifier::visitGlobalValue(const GlobalValue &GV) {
- Assert(!GV.isDeclaration() || GV.hasValidDeclarationLinkage(),
- "Global is external, but doesn't have external or weak linkage!", &GV);
- if (const GlobalObject *GO = dyn_cast<GlobalObject>(&GV)) {
- if (MaybeAlign A = GO->getAlign()) {
- Assert(A->value() <= Value::MaximumAlignment,
- "huge alignment values are unsupported", GO);
- }
- }
- Assert(!GV.hasAppendingLinkage() || isa<GlobalVariable>(GV),
- "Only global variables can have appending linkage!", &GV);
- if (GV.hasAppendingLinkage()) {
- const GlobalVariable *GVar = dyn_cast<GlobalVariable>(&GV);
- Assert(GVar && GVar->getValueType()->isArrayTy(),
- "Only global arrays can have appending linkage!", GVar);
- }
- if (GV.isDeclarationForLinker())
- Assert(!GV.hasComdat(), "Declaration may not be in a Comdat!", &GV);
- if (GV.hasDLLImportStorageClass()) {
- Assert(!GV.isDSOLocal(),
- "GlobalValue with DLLImport Storage is dso_local!", &GV);
- Assert((GV.isDeclaration() &&
- (GV.hasExternalLinkage() || GV.hasExternalWeakLinkage())) ||
- GV.hasAvailableExternallyLinkage(),
- "Global is marked as dllimport, but not external", &GV);
- }
- if (GV.isImplicitDSOLocal())
- Assert(GV.isDSOLocal(),
- "GlobalValue with local linkage or non-default "
- "visibility must be dso_local!",
- &GV);
- forEachUser(&GV, GlobalValueVisited, [&](const Value *V) -> bool {
- if (const Instruction *I = dyn_cast<Instruction>(V)) {
- if (!I->getParent() || !I->getParent()->getParent())
- CheckFailed("Global is referenced by parentless instruction!", &GV, &M,
- I);
- else if (I->getParent()->getParent()->getParent() != &M)
- CheckFailed("Global is referenced in a different module!", &GV, &M, I,
- I->getParent()->getParent(),
- I->getParent()->getParent()->getParent());
- return false;
- } else if (const Function *F = dyn_cast<Function>(V)) {
- if (F->getParent() != &M)
- CheckFailed("Global is used by function in a different module", &GV, &M,
- F, F->getParent());
- return false;
- }
- return true;
- });
- }
- void Verifier::visitGlobalVariable(const GlobalVariable &GV) {
- if (GV.hasInitializer()) {
- Assert(GV.getInitializer()->getType() == GV.getValueType(),
- "Global variable initializer type does not match global "
- "variable type!",
- &GV);
- // If the global has common linkage, it must have a zero initializer and
- // cannot be constant.
- if (GV.hasCommonLinkage()) {
- Assert(GV.getInitializer()->isNullValue(),
- "'common' global must have a zero initializer!", &GV);
- Assert(!GV.isConstant(), "'common' global may not be marked constant!",
- &GV);
- Assert(!GV.hasComdat(), "'common' global may not be in a Comdat!", &GV);
- }
- }
- if (GV.hasName() && (GV.getName() == "llvm.global_ctors" ||
- GV.getName() == "llvm.global_dtors")) {
- Assert(!GV.hasInitializer() || GV.hasAppendingLinkage(),
- "invalid linkage for intrinsic global variable", &GV);
- // Don't worry about emitting an error for it not being an array,
- // visitGlobalValue will complain on appending non-array.
- if (ArrayType *ATy = dyn_cast<ArrayType>(GV.getValueType())) {
- StructType *STy = dyn_cast<StructType>(ATy->getElementType());
- PointerType *FuncPtrTy =
- FunctionType::get(Type::getVoidTy(Context), false)->
- getPointerTo(DL.getProgramAddressSpace());
- Assert(STy &&
- (STy->getNumElements() == 2 || STy->getNumElements() == 3) &&
- STy->getTypeAtIndex(0u)->isIntegerTy(32) &&
- STy->getTypeAtIndex(1) == FuncPtrTy,
- "wrong type for intrinsic global variable", &GV);
- Assert(STy->getNumElements() == 3,
- "the third field of the element type is mandatory, "
- "specify i8* null to migrate from the obsoleted 2-field form");
- Type *ETy = STy->getTypeAtIndex(2);
- Type *Int8Ty = Type::getInt8Ty(ETy->getContext());
- Assert(ETy->isPointerTy() &&
- cast<PointerType>(ETy)->isOpaqueOrPointeeTypeMatches(Int8Ty),
- "wrong type for intrinsic global variable", &GV);
- }
- }
- if (GV.hasName() && (GV.getName() == "llvm.used" ||
- GV.getName() == "llvm.compiler.used")) {
- Assert(!GV.hasInitializer() || GV.hasAppendingLinkage(),
- "invalid linkage for intrinsic global variable", &GV);
- Type *GVType = GV.getValueType();
- if (ArrayType *ATy = dyn_cast<ArrayType>(GVType)) {
- PointerType *PTy = dyn_cast<PointerType>(ATy->getElementType());
- Assert(PTy, "wrong type for intrinsic global variable", &GV);
- if (GV.hasInitializer()) {
- const Constant *Init = GV.getInitializer();
- const ConstantArray *InitArray = dyn_cast<ConstantArray>(Init);
- Assert(InitArray, "wrong initalizer for intrinsic global variable",
- Init);
- for (Value *Op : InitArray->operands()) {
- Value *V = Op->stripPointerCasts();
- Assert(isa<GlobalVariable>(V) || isa<Function>(V) ||
- isa<GlobalAlias>(V),
- Twine("invalid ") + GV.getName() + " member", V);
- Assert(V->hasName(),
- Twine("members of ") + GV.getName() + " must be named", V);
- }
- }
- }
- }
- // Visit any debug info attachments.
- SmallVector<MDNode *, 1> MDs;
- GV.getMetadata(LLVMContext::MD_dbg, MDs);
- for (auto *MD : MDs) {
- if (auto *GVE = dyn_cast<DIGlobalVariableExpression>(MD))
- visitDIGlobalVariableExpression(*GVE);
- else
- AssertDI(false, "!dbg attachment of global variable must be a "
- "DIGlobalVariableExpression");
- }
- // Scalable vectors cannot be global variables, since we don't know
- // the runtime size. If the global is an array containing scalable vectors,
- // that will be caught by the isValidElementType methods in StructType or
- // ArrayType instead.
- Assert(!isa<ScalableVectorType>(GV.getValueType()),
- "Globals cannot contain scalable vectors", &GV);
- if (auto *STy = dyn_cast<StructType>(GV.getValueType()))
- Assert(!STy->containsScalableVectorType(),
- "Globals cannot contain scalable vectors", &GV);
- if (!GV.hasInitializer()) {
- visitGlobalValue(GV);
- return;
- }
- // Walk any aggregate initializers looking for bitcasts between address spaces
- visitConstantExprsRecursively(GV.getInitializer());
- visitGlobalValue(GV);
- }
- void Verifier::visitAliaseeSubExpr(const GlobalAlias &GA, const Constant &C) {
- SmallPtrSet<const GlobalAlias*, 4> Visited;
- Visited.insert(&GA);
- visitAliaseeSubExpr(Visited, GA, C);
- }
- void Verifier::visitAliaseeSubExpr(SmallPtrSetImpl<const GlobalAlias*> &Visited,
- const GlobalAlias &GA, const Constant &C) {
- if (const auto *GV = dyn_cast<GlobalValue>(&C)) {
- Assert(!GV->isDeclarationForLinker(), "Alias must point to a definition",
- &GA);
- if (const auto *GA2 = dyn_cast<GlobalAlias>(GV)) {
- Assert(Visited.insert(GA2).second, "Aliases cannot form a cycle", &GA);
- Assert(!GA2->isInterposable(), "Alias cannot point to an interposable alias",
- &GA);
- } else {
- // Only continue verifying subexpressions of GlobalAliases.
- // Do not recurse into global initializers.
- return;
- }
- }
- if (const auto *CE = dyn_cast<ConstantExpr>(&C))
- visitConstantExprsRecursively(CE);
- for (const Use &U : C.operands()) {
- Value *V = &*U;
- if (const auto *GA2 = dyn_cast<GlobalAlias>(V))
- visitAliaseeSubExpr(Visited, GA, *GA2->getAliasee());
- else if (const auto *C2 = dyn_cast<Constant>(V))
- visitAliaseeSubExpr(Visited, GA, *C2);
- }
- }
- void Verifier::visitGlobalAlias(const GlobalAlias &GA) {
- Assert(GlobalAlias::isValidLinkage(GA.getLinkage()),
- "Alias should have private, internal, linkonce, weak, linkonce_odr, "
- "weak_odr, or external linkage!",
- &GA);
- const Constant *Aliasee = GA.getAliasee();
- Assert(Aliasee, "Aliasee cannot be NULL!", &GA);
- Assert(GA.getType() == Aliasee->getType(),
- "Alias and aliasee types should match!", &GA);
- Assert(isa<GlobalValue>(Aliasee) || isa<ConstantExpr>(Aliasee),
- "Aliasee should be either GlobalValue or ConstantExpr", &GA);
- visitAliaseeSubExpr(GA, *Aliasee);
- visitGlobalValue(GA);
- }
- void Verifier::visitGlobalIFunc(const GlobalIFunc &GI) {
- // Pierce through ConstantExprs and GlobalAliases and check that the resolver
- // has a Function
- const Function *Resolver = GI.getResolverFunction();
- Assert(Resolver, "IFunc must have a Function resolver", &GI);
- // Check that the immediate resolver operand (prior to any bitcasts) has the
- // correct type
- const Type *ResolverTy = GI.getResolver()->getType();
- const Type *ResolverFuncTy =
- GlobalIFunc::getResolverFunctionType(GI.getValueType());
- Assert(ResolverTy == ResolverFuncTy->getPointerTo(),
- "IFunc resolver has incorrect type", &GI);
- }
- void Verifier::visitNamedMDNode(const NamedMDNode &NMD) {
- // There used to be various other llvm.dbg.* nodes, but we don't support
- // upgrading them and we want to reserve the namespace for future uses.
- if (NMD.getName().startswith("llvm.dbg."))
- AssertDI(NMD.getName() == "llvm.dbg.cu",
- "unrecognized named metadata node in the llvm.dbg namespace",
- &NMD);
- for (const MDNode *MD : NMD.operands()) {
- if (NMD.getName() == "llvm.dbg.cu")
- AssertDI(MD && isa<DICompileUnit>(MD), "invalid compile unit", &NMD, MD);
- if (!MD)
- continue;
- visitMDNode(*MD, AreDebugLocsAllowed::Yes);
- }
- }
- void Verifier::visitMDNode(const MDNode &MD, AreDebugLocsAllowed AllowLocs) {
- // Only visit each node once. Metadata can be mutually recursive, so this
- // avoids infinite recursion here, as well as being an optimization.
- if (!MDNodes.insert(&MD).second)
- return;
- Assert(&MD.getContext() == &Context,
- "MDNode context does not match Module context!", &MD);
- switch (MD.getMetadataID()) {
- default:
- llvm_unreachable("Invalid MDNode subclass");
- case Metadata::MDTupleKind:
- break;
- #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS) \
- case Metadata::CLASS##Kind: \
- visit##CLASS(cast<CLASS>(MD)); \
- break;
- #include "llvm/IR/Metadata.def"
- }
- for (const Metadata *Op : MD.operands()) {
- if (!Op)
- continue;
- Assert(!isa<LocalAsMetadata>(Op), "Invalid operand for global metadata!",
- &MD, Op);
- AssertDI(!isa<DILocation>(Op) || AllowLocs == AreDebugLocsAllowed::Yes,
- "DILocation not allowed within this metadata node", &MD, Op);
- if (auto *N = dyn_cast<MDNode>(Op)) {
- visitMDNode(*N, AllowLocs);
- continue;
- }
- if (auto *V = dyn_cast<ValueAsMetadata>(Op)) {
- visitValueAsMetadata(*V, nullptr);
- continue;
- }
- }
- // Check these last, so we diagnose problems in operands first.
- Assert(!MD.isTemporary(), "Expected no forward declarations!", &MD);
- Assert(MD.isResolved(), "All nodes should be resolved!", &MD);
- }
- void Verifier::visitValueAsMetadata(const ValueAsMetadata &MD, Function *F) {
- Assert(MD.getValue(), "Expected valid value", &MD);
- Assert(!MD.getValue()->getType()->isMetadataTy(),
- "Unexpected metadata round-trip through values", &MD, MD.getValue());
- auto *L = dyn_cast<LocalAsMetadata>(&MD);
- if (!L)
- return;
- Assert(F, "function-local metadata used outside a function", L);
- // If this was an instruction, bb, or argument, verify that it is in the
- // function that we expect.
- Function *ActualF = nullptr;
- if (Instruction *I = dyn_cast<Instruction>(L->getValue())) {
- Assert(I->getParent(), "function-local metadata not in basic block", L, I);
- ActualF = I->getParent()->getParent();
- } else if (BasicBlock *BB = dyn_cast<BasicBlock>(L->getValue()))
- ActualF = BB->getParent();
- else if (Argument *A = dyn_cast<Argument>(L->getValue()))
- ActualF = A->getParent();
- assert(ActualF && "Unimplemented function local metadata case!");
- Assert(ActualF == F, "function-local metadata used in wrong function", L);
- }
- void Verifier::visitMetadataAsValue(const MetadataAsValue &MDV, Function *F) {
- Metadata *MD = MDV.getMetadata();
- if (auto *N = dyn_cast<MDNode>(MD)) {
- visitMDNode(*N, AreDebugLocsAllowed::No);
- return;
- }
- // Only visit each node once. Metadata can be mutually recursive, so this
- // avoids infinite recursion here, as well as being an optimization.
- if (!MDNodes.insert(MD).second)
- return;
- if (auto *V = dyn_cast<ValueAsMetadata>(MD))
- visitValueAsMetadata(*V, F);
- }
- static bool isType(const Metadata *MD) { return !MD || isa<DIType>(MD); }
- static bool isScope(const Metadata *MD) { return !MD || isa<DIScope>(MD); }
- static bool isDINode(const Metadata *MD) { return !MD || isa<DINode>(MD); }
- void Verifier::visitDILocation(const DILocation &N) {
- AssertDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()),
- "location requires a valid scope", &N, N.getRawScope());
- if (auto *IA = N.getRawInlinedAt())
- AssertDI(isa<DILocation>(IA), "inlined-at should be a location", &N, IA);
- if (auto *SP = dyn_cast<DISubprogram>(N.getRawScope()))
- AssertDI(SP->isDefinition(), "scope points into the type hierarchy", &N);
- }
- void Verifier::visitGenericDINode(const GenericDINode &N) {
- AssertDI(N.getTag(), "invalid tag", &N);
- }
- void Verifier::visitDIScope(const DIScope &N) {
- if (auto *F = N.getRawFile())
- AssertDI(isa<DIFile>(F), "invalid file", &N, F);
- }
- void Verifier::visitDISubrange(const DISubrange &N) {
- AssertDI(N.getTag() == dwarf::DW_TAG_subrange_type, "invalid tag", &N);
- bool HasAssumedSizedArraySupport = dwarf::isFortran(CurrentSourceLang);
- AssertDI(HasAssumedSizedArraySupport || N.getRawCountNode() ||
- N.getRawUpperBound(),
- "Subrange must contain count or upperBound", &N);
- AssertDI(!N.getRawCountNode() || !N.getRawUpperBound(),
- "Subrange can have any one of count or upperBound", &N);
- auto *CBound = N.getRawCountNode();
- AssertDI(!CBound || isa<ConstantAsMetadata>(CBound) ||
- isa<DIVariable>(CBound) || isa<DIExpression>(CBound),
- "Count must be signed constant or DIVariable or DIExpression", &N);
- auto Count = N.getCount();
- AssertDI(!Count || !Count.is<ConstantInt *>() ||
- Count.get<ConstantInt *>()->getSExtValue() >= -1,
- "invalid subrange count", &N);
- auto *LBound = N.getRawLowerBound();
- AssertDI(!LBound || isa<ConstantAsMetadata>(LBound) ||
- isa<DIVariable>(LBound) || isa<DIExpression>(LBound),
- "LowerBound must be signed constant or DIVariable or DIExpression",
- &N);
- auto *UBound = N.getRawUpperBound();
- AssertDI(!UBound || isa<ConstantAsMetadata>(UBound) ||
- isa<DIVariable>(UBound) || isa<DIExpression>(UBound),
- "UpperBound must be signed constant or DIVariable or DIExpression",
- &N);
- auto *Stride = N.getRawStride();
- AssertDI(!Stride || isa<ConstantAsMetadata>(Stride) ||
- isa<DIVariable>(Stride) || isa<DIExpression>(Stride),
- "Stride must be signed constant or DIVariable or DIExpression", &N);
- }
- void Verifier::visitDIGenericSubrange(const DIGenericSubrange &N) {
- AssertDI(N.getTag() == dwarf::DW_TAG_generic_subrange, "invalid tag", &N);
- AssertDI(N.getRawCountNode() || N.getRawUpperBound(),
- "GenericSubrange must contain count or upperBound", &N);
- AssertDI(!N.getRawCountNode() || !N.getRawUpperBound(),
- "GenericSubrange can have any one of count or upperBound", &N);
- auto *CBound = N.getRawCountNode();
- AssertDI(!CBound || isa<DIVariable>(CBound) || isa<DIExpression>(CBound),
- "Count must be signed constant or DIVariable or DIExpression", &N);
- auto *LBound = N.getRawLowerBound();
- AssertDI(LBound, "GenericSubrange must contain lowerBound", &N);
- AssertDI(isa<DIVariable>(LBound) || isa<DIExpression>(LBound),
- "LowerBound must be signed constant or DIVariable or DIExpression",
- &N);
- auto *UBound = N.getRawUpperBound();
- AssertDI(!UBound || isa<DIVariable>(UBound) || isa<DIExpression>(UBound),
- "UpperBound must be signed constant or DIVariable or DIExpression",
- &N);
- auto *Stride = N.getRawStride();
- AssertDI(Stride, "GenericSubrange must contain stride", &N);
- AssertDI(isa<DIVariable>(Stride) || isa<DIExpression>(Stride),
- "Stride must be signed constant or DIVariable or DIExpression", &N);
- }
- void Verifier::visitDIEnumerator(const DIEnumerator &N) {
- AssertDI(N.getTag() == dwarf::DW_TAG_enumerator, "invalid tag", &N);
- }
- void Verifier::visitDIBasicType(const DIBasicType &N) {
- AssertDI(N.getTag() == dwarf::DW_TAG_base_type ||
- N.getTag() == dwarf::DW_TAG_unspecified_type ||
- N.getTag() == dwarf::DW_TAG_string_type,
- "invalid tag", &N);
- }
- void Verifier::visitDIStringType(const DIStringType &N) {
- AssertDI(N.getTag() == dwarf::DW_TAG_string_type, "invalid tag", &N);
- AssertDI(!(N.isBigEndian() && N.isLittleEndian()) ,
- "has conflicting flags", &N);
- }
- void Verifier::visitDIDerivedType(const DIDerivedType &N) {
- // Common scope checks.
- visitDIScope(N);
- AssertDI(N.getTag() == dwarf::DW_TAG_typedef ||
- N.getTag() == dwarf::DW_TAG_pointer_type ||
- N.getTag() == dwarf::DW_TAG_ptr_to_member_type ||
- N.getTag() == dwarf::DW_TAG_reference_type ||
- N.getTag() == dwarf::DW_TAG_rvalue_reference_type ||
- N.getTag() == dwarf::DW_TAG_const_type ||
- N.getTag() == dwarf::DW_TAG_immutable_type ||
- N.getTag() == dwarf::DW_TAG_volatile_type ||
- N.getTag() == dwarf::DW_TAG_restrict_type ||
- N.getTag() == dwarf::DW_TAG_atomic_type ||
- N.getTag() == dwarf::DW_TAG_member ||
- N.getTag() == dwarf::DW_TAG_inheritance ||
- N.getTag() == dwarf::DW_TAG_friend ||
- N.getTag() == dwarf::DW_TAG_set_type,
- "invalid tag", &N);
- if (N.getTag() == dwarf::DW_TAG_ptr_to_member_type) {
- AssertDI(isType(N.getRawExtraData()), "invalid pointer to member type", &N,
- N.getRawExtraData());
- }
- if (N.getTag() == dwarf::DW_TAG_set_type) {
- if (auto *T = N.getRawBaseType()) {
- auto *Enum = dyn_cast_or_null<DICompositeType>(T);
- auto *Basic = dyn_cast_or_null<DIBasicType>(T);
- AssertDI(
- (Enum && Enum->getTag() == dwarf::DW_TAG_enumeration_type) ||
- (Basic && (Basic->getEncoding() == dwarf::DW_ATE_unsigned ||
- Basic->getEncoding() == dwarf::DW_ATE_signed ||
- Basic->getEncoding() == dwarf::DW_ATE_unsigned_char ||
- Basic->getEncoding() == dwarf::DW_ATE_signed_char ||
- Basic->getEncoding() == dwarf::DW_ATE_boolean)),
- "invalid set base type", &N, T);
- }
- }
- AssertDI(isScope(N.getRawScope()), "invalid scope", &N, N.getRawScope());
- AssertDI(isType(N.getRawBaseType()), "invalid base type", &N,
- N.getRawBaseType());
- if (N.getDWARFAddressSpace()) {
- AssertDI(N.getTag() == dwarf::DW_TAG_pointer_type ||
- N.getTag() == dwarf::DW_TAG_reference_type ||
- N.getTag() == dwarf::DW_TAG_rvalue_reference_type,
- "DWARF address space only applies to pointer or reference types",
- &N);
- }
- }
- /// Detect mutually exclusive flags.
- static bool hasConflictingReferenceFlags(unsigned Flags) {
- return ((Flags & DINode::FlagLValueReference) &&
- (Flags & DINode::FlagRValueReference)) ||
- ((Flags & DINode::FlagTypePassByValue) &&
- (Flags & DINode::FlagTypePassByReference));
- }
- void Verifier::visitTemplateParams(const MDNode &N, const Metadata &RawParams) {
- auto *Params = dyn_cast<MDTuple>(&RawParams);
- AssertDI(Params, "invalid template params", &N, &RawParams);
- for (Metadata *Op : Params->operands()) {
- AssertDI(Op && isa<DITemplateParameter>(Op), "invalid template parameter",
- &N, Params, Op);
- }
- }
- void Verifier::visitDICompositeType(const DICompositeType &N) {
- // Common scope checks.
- visitDIScope(N);
- AssertDI(N.getTag() == dwarf::DW_TAG_array_type ||
- N.getTag() == dwarf::DW_TAG_structure_type ||
- N.getTag() == dwarf::DW_TAG_union_type ||
- N.getTag() == dwarf::DW_TAG_enumeration_type ||
- N.getTag() == dwarf::DW_TAG_class_type ||
- N.getTag() == dwarf::DW_TAG_variant_part ||
- N.getTag() == dwarf::DW_TAG_namelist,
- "invalid tag", &N);
- AssertDI(isScope(N.getRawScope()), "invalid scope", &N, N.getRawScope());
- AssertDI(isType(N.getRawBaseType()), "invalid base type", &N,
- N.getRawBaseType());
- AssertDI(!N.getRawElements() || isa<MDTuple>(N.getRawElements()),
- "invalid composite elements", &N, N.getRawElements());
- AssertDI(isType(N.getRawVTableHolder()), "invalid vtable holder", &N,
- N.getRawVTableHolder());
- AssertDI(!hasConflictingReferenceFlags(N.getFlags()),
- "invalid reference flags", &N);
- unsigned DIBlockByRefStruct = 1 << 4;
- AssertDI((N.getFlags() & DIBlockByRefStruct) == 0,
- "DIBlockByRefStruct on DICompositeType is no longer supported", &N);
- if (N.isVector()) {
- const DINodeArray Elements = N.getElements();
- AssertDI(Elements.size() == 1 &&
- Elements[0]->getTag() == dwarf::DW_TAG_subrange_type,
- "invalid vector, expected one element of type subrange", &N);
- }
- if (auto *Params = N.getRawTemplateParams())
- visitTemplateParams(N, *Params);
- if (auto *D = N.getRawDiscriminator()) {
- AssertDI(isa<DIDerivedType>(D) && N.getTag() == dwarf::DW_TAG_variant_part,
- "discriminator can only appear on variant part");
- }
- if (N.getRawDataLocation()) {
- AssertDI(N.getTag() == dwarf::DW_TAG_array_type,
- "dataLocation can only appear in array type");
- }
- if (N.getRawAssociated()) {
- AssertDI(N.getTag() == dwarf::DW_TAG_array_type,
- "associated can only appear in array type");
- }
- if (N.getRawAllocated()) {
- AssertDI(N.getTag() == dwarf::DW_TAG_array_type,
- "allocated can only appear in array type");
- }
- if (N.getRawRank()) {
- AssertDI(N.getTag() == dwarf::DW_TAG_array_type,
- "rank can only appear in array type");
- }
- }
- void Verifier::visitDISubroutineType(const DISubroutineType &N) {
- AssertDI(N.getTag() == dwarf::DW_TAG_subroutine_type, "invalid tag", &N);
- if (auto *Types = N.getRawTypeArray()) {
- AssertDI(isa<MDTuple>(Types), "invalid composite elements", &N, Types);
- for (Metadata *Ty : N.getTypeArray()->operands()) {
- AssertDI(isType(Ty), "invalid subroutine type ref", &N, Types, Ty);
- }
- }
- AssertDI(!hasConflictingReferenceFlags(N.getFlags()),
- "invalid reference flags", &N);
- }
- void Verifier::visitDIFile(const DIFile &N) {
- AssertDI(N.getTag() == dwarf::DW_TAG_file_type, "invalid tag", &N);
- Optional<DIFile::ChecksumInfo<StringRef>> Checksum = N.getChecksum();
- if (Checksum) {
- AssertDI(Checksum->Kind <= DIFile::ChecksumKind::CSK_Last,
- "invalid checksum kind", &N);
- size_t Size;
- switch (Checksum->Kind) {
- case DIFile::CSK_MD5:
- Size = 32;
- break;
- case DIFile::CSK_SHA1:
- Size = 40;
- break;
- case DIFile::CSK_SHA256:
- Size = 64;
- break;
- }
- AssertDI(Checksum->Value.size() == Size, "invalid checksum length", &N);
- AssertDI(Checksum->Value.find_if_not(llvm::isHexDigit) == StringRef::npos,
- "invalid checksum", &N);
- }
- }
- void Verifier::visitDICompileUnit(const DICompileUnit &N) {
- AssertDI(N.isDistinct(), "compile units must be distinct", &N);
- AssertDI(N.getTag() == dwarf::DW_TAG_compile_unit, "invalid tag", &N);
- // Don't bother verifying the compilation directory or producer string
- // as those could be empty.
- AssertDI(N.getRawFile() && isa<DIFile>(N.getRawFile()), "invalid file", &N,
- N.getRawFile());
- AssertDI(!N.getFile()->getFilename().empty(), "invalid filename", &N,
- N.getFile());
- CurrentSourceLang = (dwarf::SourceLanguage)N.getSourceLanguage();
- verifySourceDebugInfo(N, *N.getFile());
- AssertDI((N.getEmissionKind() <= DICompileUnit::LastEmissionKind),
- "invalid emission kind", &N);
- if (auto *Array = N.getRawEnumTypes()) {
- AssertDI(isa<MDTuple>(Array), "invalid enum list", &N, Array);
- for (Metadata *Op : N.getEnumTypes()->operands()) {
- auto *Enum = dyn_cast_or_null<DICompositeType>(Op);
- AssertDI(Enum && Enum->getTag() == dwarf::DW_TAG_enumeration_type,
- "invalid enum type", &N, N.getEnumTypes(), Op);
- }
- }
- if (auto *Array = N.getRawRetainedTypes()) {
- AssertDI(isa<MDTuple>(Array), "invalid retained type list", &N, Array);
- for (Metadata *Op : N.getRetainedTypes()->operands()) {
- AssertDI(Op && (isa<DIType>(Op) ||
- (isa<DISubprogram>(Op) &&
- !cast<DISubprogram>(Op)->isDefinition())),
- "invalid retained type", &N, Op);
- }
- }
- if (auto *Array = N.getRawGlobalVariables()) {
- AssertDI(isa<MDTuple>(Array), "invalid global variable list", &N, Array);
- for (Metadata *Op : N.getGlobalVariables()->operands()) {
- AssertDI(Op && (isa<DIGlobalVariableExpression>(Op)),
- "invalid global variable ref", &N, Op);
- }
- }
- if (auto *Array = N.getRawImportedEntities()) {
- AssertDI(isa<MDTuple>(Array), "invalid imported entity list", &N, Array);
- for (Metadata *Op : N.getImportedEntities()->operands()) {
- AssertDI(Op && isa<DIImportedEntity>(Op), "invalid imported entity ref",
- &N, Op);
- }
- }
- if (auto *Array = N.getRawMacros()) {
- AssertDI(isa<MDTuple>(Array), "invalid macro list", &N, Array);
- for (Metadata *Op : N.getMacros()->operands()) {
- AssertDI(Op && isa<DIMacroNode>(Op), "invalid macro ref", &N, Op);
- }
- }
- CUVisited.insert(&N);
- }
- void Verifier::visitDISubprogram(const DISubprogram &N) {
- AssertDI(N.getTag() == dwarf::DW_TAG_subprogram, "invalid tag", &N);
- AssertDI(isScope(N.getRawScope()), "invalid scope", &N, N.getRawScope());
- if (auto *F = N.getRawFile())
- AssertDI(isa<DIFile>(F), "invalid file", &N, F);
- else
- AssertDI(N.getLine() == 0, "line specified with no file", &N, N.getLine());
- if (auto *T = N.getRawType())
- AssertDI(isa<DISubroutineType>(T), "invalid subroutine type", &N, T);
- AssertDI(isType(N.getRawContainingType()), "invalid containing type", &N,
- N.getRawContainingType());
- if (auto *Params = N.getRawTemplateParams())
- visitTemplateParams(N, *Params);
- if (auto *S = N.getRawDeclaration())
- AssertDI(isa<DISubprogram>(S) && !cast<DISubprogram>(S)->isDefinition(),
- "invalid subprogram declaration", &N, S);
- if (auto *RawNode = N.getRawRetainedNodes()) {
- auto *Node = dyn_cast<MDTuple>(RawNode);
- AssertDI(Node, "invalid retained nodes list", &N, RawNode);
- for (Metadata *Op : Node->operands()) {
- AssertDI(Op && (isa<DILocalVariable>(Op) || isa<DILabel>(Op)),
- "invalid retained nodes, expected DILocalVariable or DILabel",
- &N, Node, Op);
- }
- }
- AssertDI(!hasConflictingReferenceFlags(N.getFlags()),
- "invalid reference flags", &N);
- auto *Unit = N.getRawUnit();
- if (N.isDefinition()) {
- // Subprogram definitions (not part of the type hierarchy).
- AssertDI(N.isDistinct(), "subprogram definitions must be distinct", &N);
- AssertDI(Unit, "subprogram definitions must have a compile unit", &N);
- AssertDI(isa<DICompileUnit>(Unit), "invalid unit type", &N, Unit);
- if (N.getFile())
- verifySourceDebugInfo(*N.getUnit(), *N.getFile());
- } else {
- // Subprogram declarations (part of the type hierarchy).
- AssertDI(!Unit, "subprogram declarations must not have a compile unit", &N);
- }
- if (auto *RawThrownTypes = N.getRawThrownTypes()) {
- auto *ThrownTypes = dyn_cast<MDTuple>(RawThrownTypes);
- AssertDI(ThrownTypes, "invalid thrown types list", &N, RawThrownTypes);
- for (Metadata *Op : ThrownTypes->operands())
- AssertDI(Op && isa<DIType>(Op), "invalid thrown type", &N, ThrownTypes,
- Op);
- }
- if (N.areAllCallsDescribed())
- AssertDI(N.isDefinition(),
- "DIFlagAllCallsDescribed must be attached to a definition");
- }
- void Verifier::visitDILexicalBlockBase(const DILexicalBlockBase &N) {
- AssertDI(N.getTag() == dwarf::DW_TAG_lexical_block, "invalid tag", &N);
- AssertDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()),
- "invalid local scope", &N, N.getRawScope());
- if (auto *SP = dyn_cast<DISubprogram>(N.getRawScope()))
- AssertDI(SP->isDefinition(), "scope points into the type hierarchy", &N);
- }
- void Verifier::visitDILexicalBlock(const DILexicalBlock &N) {
- visitDILexicalBlockBase(N);
- AssertDI(N.getLine() || !N.getColumn(),
- "cannot have column info without line info", &N);
- }
- void Verifier::visitDILexicalBlockFile(const DILexicalBlockFile &N) {
- visitDILexicalBlockBase(N);
- }
- void Verifier::visitDICommonBlock(const DICommonBlock &N) {
- AssertDI(N.getTag() == dwarf::DW_TAG_common_block, "invalid tag", &N);
- if (auto *S = N.getRawScope())
- AssertDI(isa<DIScope>(S), "invalid scope ref", &N, S);
- if (auto *S = N.getRawDecl())
- AssertDI(isa<DIGlobalVariable>(S), "invalid declaration", &N, S);
- }
- void Verifier::visitDINamespace(const DINamespace &N) {
- AssertDI(N.getTag() == dwarf::DW_TAG_namespace, "invalid tag", &N);
- if (auto *S = N.getRawScope())
- AssertDI(isa<DIScope>(S), "invalid scope ref", &N, S);
- }
- void Verifier::visitDIMacro(const DIMacro &N) {
- AssertDI(N.getMacinfoType() == dwarf::DW_MACINFO_define ||
- N.getMacinfoType() == dwarf::DW_MACINFO_undef,
- "invalid macinfo type", &N);
- AssertDI(!N.getName().empty(), "anonymous macro", &N);
- if (!N.getValue().empty()) {
- assert(N.getValue().data()[0] != ' ' && "Macro value has a space prefix");
- }
- }
- void Verifier::visitDIMacroFile(const DIMacroFile &N) {
- AssertDI(N.getMacinfoType() == dwarf::DW_MACINFO_start_file,
- "invalid macinfo type", &N);
- if (auto *F = N.getRawFile())
- AssertDI(isa<DIFile>(F), "invalid file", &N, F);
- if (auto *Array = N.getRawElements()) {
- AssertDI(isa<MDTuple>(Array), "invalid macro list", &N, Array);
- for (Metadata *Op : N.getElements()->operands()) {
- AssertDI(Op && isa<DIMacroNode>(Op), "invalid macro ref", &N, Op);
- }
- }
- }
- void Verifier::visitDIArgList(const DIArgList &N) {
- AssertDI(!N.getNumOperands(),
- "DIArgList should have no operands other than a list of "
- "ValueAsMetadata",
- &N);
- }
- void Verifier::visitDIModule(const DIModule &N) {
- AssertDI(N.getTag() == dwarf::DW_TAG_module, "invalid tag", &N);
- AssertDI(!N.getName().empty(), "anonymous module", &N);
- }
- void Verifier::visitDITemplateParameter(const DITemplateParameter &N) {
- AssertDI(isType(N.getRawType()), "invalid type ref", &N, N.getRawType());
- }
- void Verifier::visitDITemplateTypeParameter(const DITemplateTypeParameter &N) {
- visitDITemplateParameter(N);
- AssertDI(N.getTag() == dwarf::DW_TAG_template_type_parameter, "invalid tag",
- &N);
- }
- void Verifier::visitDITemplateValueParameter(
- const DITemplateValueParameter &N) {
- visitDITemplateParameter(N);
- AssertDI(N.getTag() == dwarf::DW_TAG_template_value_parameter ||
- N.getTag() == dwarf::DW_TAG_GNU_template_template_param ||
- N.getTag() == dwarf::DW_TAG_GNU_template_parameter_pack,
- "invalid tag", &N);
- }
- void Verifier::visitDIVariable(const DIVariable &N) {
- if (auto *S = N.getRawScope())
- AssertDI(isa<DIScope>(S), "invalid scope", &N, S);
- if (auto *F = N.getRawFile())
- AssertDI(isa<DIFile>(F), "invalid file", &N, F);
- }
- void Verifier::visitDIGlobalVariable(const DIGlobalVariable &N) {
- // Checks common to all variables.
- visitDIVariable(N);
- AssertDI(N.getTag() == dwarf::DW_TAG_variable, "invalid tag", &N);
- AssertDI(isType(N.getRawType()), "invalid type ref", &N, N.getRawType());
- // Assert only if the global variable is not an extern
- if (N.isDefinition())
- AssertDI(N.getType(), "missing global variable type", &N);
- if (auto *Member = N.getRawStaticDataMemberDeclaration()) {
- AssertDI(isa<DIDerivedType>(Member),
- "invalid static data member declaration", &N, Member);
- }
- }
- void Verifier::visitDILocalVariable(const DILocalVariable &N) {
- // Checks common to all variables.
- visitDIVariable(N);
- AssertDI(isType(N.getRawType()), "invalid type ref", &N, N.getRawType());
- AssertDI(N.getTag() == dwarf::DW_TAG_variable, "invalid tag", &N);
- AssertDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()),
- "local variable requires a valid scope", &N, N.getRawScope());
- if (auto Ty = N.getType())
- AssertDI(!isa<DISubroutineType>(Ty), "invalid type", &N, N.getType());
- }
- void Verifier::visitDILabel(const DILabel &N) {
- if (auto *S = N.getRawScope())
- AssertDI(isa<DIScope>(S), "invalid scope", &N, S);
- if (auto *F = N.getRawFile())
- AssertDI(isa<DIFile>(F), "invalid file", &N, F);
- AssertDI(N.getTag() == dwarf::DW_TAG_label, "invalid tag", &N);
- AssertDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()),
- "label requires a valid scope", &N, N.getRawScope());
- }
- void Verifier::visitDIExpression(const DIExpression &N) {
- AssertDI(N.isValid(), "invalid expression", &N);
- }
- void Verifier::visitDIGlobalVariableExpression(
- const DIGlobalVariableExpression &GVE) {
- AssertDI(GVE.getVariable(), "missing variable");
- if (auto *Var = GVE.getVariable())
- visitDIGlobalVariable(*Var);
- if (auto *Expr = GVE.getExpression()) {
- visitDIExpression(*Expr);
- if (auto Fragment = Expr->getFragmentInfo())
- verifyFragmentExpression(*GVE.getVariable(), *Fragment, &GVE);
- }
- }
- void Verifier::visitDIObjCProperty(const DIObjCProperty &N) {
- AssertDI(N.getTag() == dwarf::DW_TAG_APPLE_property, "invalid tag", &N);
- if (auto *T = N.getRawType())
- AssertDI(isType(T), "invalid type ref", &N, T);
- if (auto *F = N.getRawFile())
- AssertDI(isa<DIFile>(F), "invalid file", &N, F);
- }
- void Verifier::visitDIImportedEntity(const DIImportedEntity &N) {
- AssertDI(N.getTag() == dwarf::DW_TAG_imported_module ||
- N.getTag() == dwarf::DW_TAG_imported_declaration,
- "invalid tag", &N);
- if (auto *S = N.getRawScope())
- AssertDI(isa<DIScope>(S), "invalid scope for imported entity", &N, S);
- AssertDI(isDINode(N.getRawEntity()), "invalid imported entity", &N,
- N.getRawEntity());
- }
- void Verifier::visitComdat(const Comdat &C) {
- // In COFF the Module is invalid if the GlobalValue has private linkage.
- // Entities with private linkage don't have entries in the symbol table.
- if (TT.isOSBinFormatCOFF())
- if (const GlobalValue *GV = M.getNamedValue(C.getName()))
- Assert(!GV->hasPrivateLinkage(),
- "comdat global value has private linkage", GV);
- }
- void Verifier::visitModuleIdents() {
- const NamedMDNode *Idents = M.getNamedMetadata("llvm.ident");
- if (!Idents)
- return;
- // llvm.ident takes a list of metadata entry. Each entry has only one string.
- // Scan each llvm.ident entry and make sure that this requirement is met.
- for (const MDNode *N : Idents->operands()) {
- Assert(N->getNumOperands() == 1,
- "incorrect number of operands in llvm.ident metadata", N);
- Assert(dyn_cast_or_null<MDString>(N->getOperand(0)),
- ("invalid value for llvm.ident metadata entry operand"
- "(the operand should be a string)"),
- N->getOperand(0));
- }
- }
- void Verifier::visitModuleCommandLines() {
- const NamedMDNode *CommandLines = M.getNamedMetadata("llvm.commandline");
- if (!CommandLines)
- return;
- // llvm.commandline takes a list of metadata entry. Each entry has only one
- // string. Scan each llvm.commandline entry and make sure that this
- // requirement is met.
- for (const MDNode *N : CommandLines->operands()) {
- Assert(N->getNumOperands() == 1,
- "incorrect number of operands in llvm.commandline metadata", N);
- Assert(dyn_cast_or_null<MDString>(N->getOperand(0)),
- ("invalid value for llvm.commandline metadata entry operand"
- "(the operand should be a string)"),
- N->getOperand(0));
- }
- }
- void Verifier::visitModuleFlags() {
- const NamedMDNode *Flags = M.getModuleFlagsMetadata();
- if (!Flags) return;
- // Scan each flag, and track the flags and requirements.
- DenseMap<const MDString*, const MDNode*> SeenIDs;
- SmallVector<const MDNode*, 16> Requirements;
- for (const MDNode *MDN : Flags->operands())
- visitModuleFlag(MDN, SeenIDs, Requirements);
- // Validate that the requirements in the module are valid.
- for (const MDNode *Requirement : Requirements) {
- const MDString *Flag = cast<MDString>(Requirement->getOperand(0));
- const Metadata *ReqValue = Requirement->getOperand(1);
- const MDNode *Op = SeenIDs.lookup(Flag);
- if (!Op) {
- CheckFailed("invalid requirement on flag, flag is not present in module",
- Flag);
- continue;
- }
- if (Op->getOperand(2) != ReqValue) {
- CheckFailed(("invalid requirement on flag, "
- "flag does not have the required value"),
- Flag);
- continue;
- }
- }
- }
- void
- Verifier::visitModuleFlag(const MDNode *Op,
- DenseMap<const MDString *, const MDNode *> &SeenIDs,
- SmallVectorImpl<const MDNode *> &Requirements) {
- // Each module flag should have three arguments, the merge behavior (a
- // constant int), the flag ID (an MDString), and the value.
- Assert(Op->getNumOperands() == 3,
- "incorrect number of operands in module flag", Op);
- Module::ModFlagBehavior MFB;
- if (!Module::isValidModFlagBehavior(Op->getOperand(0), MFB)) {
- Assert(
- mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(0)),
- "invalid behavior operand in module flag (expected constant integer)",
- Op->getOperand(0));
- Assert(false,
- "invalid behavior operand in module flag (unexpected constant)",
- Op->getOperand(0));
- }
- MDString *ID = dyn_cast_or_null<MDString>(Op->getOperand(1));
- Assert(ID, "invalid ID operand in module flag (expected metadata string)",
- Op->getOperand(1));
- // Check the values for behaviors with additional requirements.
- switch (MFB) {
- case Module::Error:
- case Module::Warning:
- case Module::Override:
- // These behavior types accept any value.
- break;
- case Module::Max: {
- Assert(mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(2)),
- "invalid value for 'max' module flag (expected constant integer)",
- Op->getOperand(2));
- break;
- }
- case Module::Require: {
- // The value should itself be an MDNode with two operands, a flag ID (an
- // MDString), and a value.
- MDNode *Value = dyn_cast<MDNode>(Op->getOperand(2));
- Assert(Value && Value->getNumOperands() == 2,
- "invalid value for 'require' module flag (expected metadata pair)",
- Op->getOperand(2));
- Assert(isa<MDString>(Value->getOperand(0)),
- ("invalid value for 'require' module flag "
- "(first value operand should be a string)"),
- Value->getOperand(0));
- // Append it to the list of requirements, to check once all module flags are
- // scanned.
- Requirements.push_back(Value);
- break;
- }
- case Module::Append:
- case Module::AppendUnique: {
- // These behavior types require the operand be an MDNode.
- Assert(isa<MDNode>(Op->getOperand(2)),
- "invalid value for 'append'-type module flag "
- "(expected a metadata node)",
- Op->getOperand(2));
- break;
- }
- }
- // Unless this is a "requires" flag, check the ID is unique.
- if (MFB != Module::Require) {
- bool Inserted = SeenIDs.insert(std::make_pair(ID, Op)).second;
- Assert(Inserted,
- "module flag identifiers must be unique (or of 'require' type)", ID);
- }
- if (ID->getString() == "wchar_size") {
- ConstantInt *Value
- = mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(2));
- Assert(Value, "wchar_size metadata requires constant integer argument");
- }
- if (ID->getString() == "Linker Options") {
- // If the llvm.linker.options named metadata exists, we assume that the
- // bitcode reader has upgraded the module flag. Otherwise the flag might
- // have been created by a client directly.
- Assert(M.getNamedMetadata("llvm.linker.options"),
- "'Linker Options' named metadata no longer supported");
- }
- if (ID->getString() == "SemanticInterposition") {
- ConstantInt *Value =
- mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(2));
- Assert(Value,
- "SemanticInterposition metadata requires constant integer argument");
- }
- if (ID->getString() == "CG Profile") {
- for (const MDOperand &MDO : cast<MDNode>(Op->getOperand(2))->operands())
- visitModuleFlagCGProfileEntry(MDO);
- }
- }
- void Verifier::visitModuleFlagCGProfileEntry(const MDOperand &MDO) {
- auto CheckFunction = [&](const MDOperand &FuncMDO) {
- if (!FuncMDO)
- return;
- auto F = dyn_cast<ValueAsMetadata>(FuncMDO);
- Assert(F && isa<Function>(F->getValue()->stripPointerCasts()),
- "expected a Function or null", FuncMDO);
- };
- auto Node = dyn_cast_or_null<MDNode>(MDO);
- Assert(Node && Node->getNumOperands() == 3, "expected a MDNode triple", MDO);
- CheckFunction(Node->getOperand(0));
- CheckFunction(Node->getOperand(1));
- auto Count = dyn_cast_or_null<ConstantAsMetadata>(Node->getOperand(2));
- Assert(Count && Count->getType()->isIntegerTy(),
- "expected an integer constant", Node->getOperand(2));
- }
- void Verifier::verifyAttributeTypes(AttributeSet Attrs, const Value *V) {
- for (Attribute A : Attrs) {
- if (A.isStringAttribute()) {
- #define GET_ATTR_NAMES
- #define ATTRIBUTE_ENUM(ENUM_NAME, DISPLAY_NAME)
- #define ATTRIBUTE_STRBOOL(ENUM_NAME, DISPLAY_NAME) \
- if (A.getKindAsString() == #DISPLAY_NAME) { \
- auto V = A.getValueAsString(); \
- if (!(V.empty() || V == "true" || V == "false")) \
- CheckFailed("invalid value for '" #DISPLAY_NAME "' attribute: " + V + \
- ""); \
- }
- #include "llvm/IR/Attributes.inc"
- continue;
- }
- if (A.isIntAttribute() != Attribute::isIntAttrKind(A.getKindAsEnum())) {
- CheckFailed("Attribute '" + A.getAsString() + "' should have an Argument",
- V);
- return;
- }
- }
- }
- // VerifyParameterAttrs - Check the given attributes for an argument or return
- // value of the specified type. The value V is printed in error messages.
- void Verifier::verifyParameterAttrs(AttributeSet Attrs, Type *Ty,
- const Value *V) {
- if (!Attrs.hasAttributes())
- return;
- verifyAttributeTypes(Attrs, V);
- for (Attribute Attr : Attrs)
- Assert(Attr.isStringAttribute() ||
- Attribute::canUseAsParamAttr(Attr.getKindAsEnum()),
- "Attribute '" + Attr.getAsString() +
- "' does not apply to parameters",
- V);
- if (Attrs.hasAttribute(Attribute::ImmArg)) {
- Assert(Attrs.getNumAttributes() == 1,
- "Attribute 'immarg' is incompatible with other attributes", V);
- }
- // Check for mutually incompatible attributes. Only inreg is compatible with
- // sret.
- unsigned AttrCount = 0;
- AttrCount += Attrs.hasAttribute(Attribute::ByVal);
- AttrCount += Attrs.hasAttribute(Attribute::InAlloca);
- AttrCount += Attrs.hasAttribute(Attribute::Preallocated);
- AttrCount += Attrs.hasAttribute(Attribute::StructRet) ||
- Attrs.hasAttribute(Attribute::InReg);
- AttrCount += Attrs.hasAttribute(Attribute::Nest);
- AttrCount += Attrs.hasAttribute(Attribute::ByRef);
- Assert(AttrCount <= 1,
- "Attributes 'byval', 'inalloca', 'preallocated', 'inreg', 'nest', "
- "'byref', and 'sret' are incompatible!",
- V);
- Assert(!(Attrs.hasAttribute(Attribute::InAlloca) &&
- Attrs.hasAttribute(Attribute::ReadOnly)),
- "Attributes "
- "'inalloca and readonly' are incompatible!",
- V);
- Assert(!(Attrs.hasAttribute(Attribute::StructRet) &&
- Attrs.hasAttribute(Attribute::Returned)),
- "Attributes "
- "'sret and returned' are incompatible!",
- V);
- Assert(!(Attrs.hasAttribute(Attribute::ZExt) &&
- Attrs.hasAttribute(Attribute::SExt)),
- "Attributes "
- "'zeroext and signext' are incompatible!",
- V);
- Assert(!(Attrs.hasAttribute(Attribute::ReadNone) &&
- Attrs.hasAttribute(Attribute::ReadOnly)),
- "Attributes "
- "'readnone and readonly' are incompatible!",
- V);
- Assert(!(Attrs.hasAttribute(Attribute::ReadNone) &&
- Attrs.hasAttribute(Attribute::WriteOnly)),
- "Attributes "
- "'readnone and writeonly' are incompatible!",
- V);
- Assert(!(Attrs.hasAttribute(Attribute::ReadOnly) &&
- Attrs.hasAttribute(Attribute::WriteOnly)),
- "Attributes "
- "'readonly and writeonly' are incompatible!",
- V);
- Assert(!(Attrs.hasAttribute(Attribute::NoInline) &&
- Attrs.hasAttribute(Attribute::AlwaysInline)),
- "Attributes "
- "'noinline and alwaysinline' are incompatible!",
- V);
- AttributeMask IncompatibleAttrs = AttributeFuncs::typeIncompatible(Ty);
- for (Attribute Attr : Attrs) {
- if (!Attr.isStringAttribute() &&
- IncompatibleAttrs.contains(Attr.getKindAsEnum())) {
- CheckFailed("Attribute '" + Attr.getAsString() +
- "' applied to incompatible type!", V);
- return;
- }
- }
- if (PointerType *PTy = dyn_cast<PointerType>(Ty)) {
- if (Attrs.hasAttribute(Attribute::ByVal)) {
- SmallPtrSet<Type *, 4> Visited;
- Assert(Attrs.getByValType()->isSized(&Visited),
- "Attribute 'byval' does not support unsized types!", V);
- }
- if (Attrs.hasAttribute(Attribute::ByRef)) {
- SmallPtrSet<Type *, 4> Visited;
- Assert(Attrs.getByRefType()->isSized(&Visited),
- "Attribute 'byref' does not support unsized types!", V);
- }
- if (Attrs.hasAttribute(Attribute::InAlloca)) {
- SmallPtrSet<Type *, 4> Visited;
- Assert(Attrs.getInAllocaType()->isSized(&Visited),
- "Attribute 'inalloca' does not support unsized types!", V);
- }
- if (Attrs.hasAttribute(Attribute::Preallocated)) {
- SmallPtrSet<Type *, 4> Visited;
- Assert(Attrs.getPreallocatedType()->isSized(&Visited),
- "Attribute 'preallocated' does not support unsized types!", V);
- }
- if (!PTy->isOpaque()) {
- if (!isa<PointerType>(PTy->getNonOpaquePointerElementType()))
- Assert(!Attrs.hasAttribute(Attribute::SwiftError),
- "Attribute 'swifterror' only applies to parameters "
- "with pointer to pointer type!",
- V);
- if (Attrs.hasAttribute(Attribute::ByRef)) {
- Assert(Attrs.getByRefType() == PTy->getNonOpaquePointerElementType(),
- "Attribute 'byref' type does not match parameter!", V);
- }
- if (Attrs.hasAttribute(Attribute::ByVal) && Attrs.getByValType()) {
- Assert(Attrs.getByValType() == PTy->getNonOpaquePointerElementType(),
- "Attribute 'byval' type does not match parameter!", V);
- }
- if (Attrs.hasAttribute(Attribute::Preallocated)) {
- Assert(Attrs.getPreallocatedType() ==
- PTy->getNonOpaquePointerElementType(),
- "Attribute 'preallocated' type does not match parameter!", V);
- }
- if (Attrs.hasAttribute(Attribute::InAlloca)) {
- Assert(Attrs.getInAllocaType() == PTy->getNonOpaquePointerElementType(),
- "Attribute 'inalloca' type does not match parameter!", V);
- }
- if (Attrs.hasAttribute(Attribute::ElementType)) {
- Assert(Attrs.getElementType() == PTy->getNonOpaquePointerElementType(),
- "Attribute 'elementtype' type does not match parameter!", V);
- }
- }
- }
- }
- void Verifier::checkUnsignedBaseTenFuncAttr(AttributeList Attrs, StringRef Attr,
- const Value *V) {
- if (Attrs.hasFnAttr(Attr)) {
- StringRef S = Attrs.getFnAttr(Attr).getValueAsString();
- unsigned N;
- if (S.getAsInteger(10, N))
- CheckFailed("\"" + Attr + "\" takes an unsigned integer: " + S, V);
- }
- }
- // Check parameter attributes against a function type.
- // The value V is printed in error messages.
- void Verifier::verifyFunctionAttrs(FunctionType *FT, AttributeList Attrs,
- const Value *V, bool IsIntrinsic,
- bool IsInlineAsm) {
- if (Attrs.isEmpty())
- return;
- if (AttributeListsVisited.insert(Attrs.getRawPointer()).second) {
- Assert(Attrs.hasParentContext(Context),
- "Attribute list does not match Module context!", &Attrs, V);
- for (const auto &AttrSet : Attrs) {
- Assert(!AttrSet.hasAttributes() || AttrSet.hasParentContext(Context),
- "Attribute set does not match Module context!", &AttrSet, V);
- for (const auto &A : AttrSet) {
- Assert(A.hasParentContext(Context),
- "Attribute does not match Module context!", &A, V);
- }
- }
- }
- bool SawNest = false;
- bool SawReturned = false;
- bool SawSRet = false;
- bool SawSwiftSelf = false;
- bool SawSwiftAsync = false;
- bool SawSwiftError = false;
- // Verify return value attributes.
- AttributeSet RetAttrs = Attrs.getRetAttrs();
- for (Attribute RetAttr : RetAttrs)
- Assert(RetAttr.isStringAttribute() ||
- Attribute::canUseAsRetAttr(RetAttr.getKindAsEnum()),
- "Attribute '" + RetAttr.getAsString() +
- "' does not apply to function return values",
- V);
- verifyParameterAttrs(RetAttrs, FT->getReturnType(), V);
- // Verify parameter attributes.
- for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) {
- Type *Ty = FT->getParamType(i);
- AttributeSet ArgAttrs = Attrs.getParamAttrs(i);
- if (!IsIntrinsic) {
- Assert(!ArgAttrs.hasAttribute(Attribute::ImmArg),
- "immarg attribute only applies to intrinsics",V);
- if (!IsInlineAsm)
- Assert(!ArgAttrs.hasAttribute(Attribute::ElementType),
- "Attribute 'elementtype' can only be applied to intrinsics"
- " and inline asm.", V);
- }
- verifyParameterAttrs(ArgAttrs, Ty, V);
- if (ArgAttrs.hasAttribute(Attribute::Nest)) {
- Assert(!SawNest, "More than one parameter has attribute nest!", V);
- SawNest = true;
- }
- if (ArgAttrs.hasAttribute(Attribute::Returned)) {
- Assert(!SawReturned, "More than one parameter has attribute returned!",
- V);
- Assert(Ty->canLosslesslyBitCastTo(FT->getReturnType()),
- "Incompatible argument and return types for 'returned' attribute",
- V);
- SawReturned = true;
- }
- if (ArgAttrs.hasAttribute(Attribute::StructRet)) {
- Assert(!SawSRet, "Cannot have multiple 'sret' parameters!", V);
- Assert(i == 0 || i == 1,
- "Attribute 'sret' is not on first or second parameter!", V);
- SawSRet = true;
- }
- if (ArgAttrs.hasAttribute(Attribute::SwiftSelf)) {
- Assert(!SawSwiftSelf, "Cannot have multiple 'swiftself' parameters!", V);
- SawSwiftSelf = true;
- }
- if (ArgAttrs.hasAttribute(Attribute::SwiftAsync)) {
- Assert(!SawSwiftAsync, "Cannot have multiple 'swiftasync' parameters!", V);
- SawSwiftAsync = true;
- }
- if (ArgAttrs.hasAttribute(Attribute::SwiftError)) {
- Assert(!SawSwiftError, "Cannot have multiple 'swifterror' parameters!",
- V);
- SawSwiftError = true;
- }
- if (ArgAttrs.hasAttribute(Attribute::InAlloca)) {
- Assert(i == FT->getNumParams() - 1,
- "inalloca isn't on the last parameter!", V);
- }
- }
- if (!Attrs.hasFnAttrs())
- return;
- verifyAttributeTypes(Attrs.getFnAttrs(), V);
- for (Attribute FnAttr : Attrs.getFnAttrs())
- Assert(FnAttr.isStringAttribute() ||
- Attribute::canUseAsFnAttr(FnAttr.getKindAsEnum()),
- "Attribute '" + FnAttr.getAsString() +
- "' does not apply to functions!",
- V);
- Assert(!(Attrs.hasFnAttr(Attribute::ReadNone) &&
- Attrs.hasFnAttr(Attribute::ReadOnly)),
- "Attributes 'readnone and readonly' are incompatible!", V);
- Assert(!(Attrs.hasFnAttr(Attribute::ReadNone) &&
- Attrs.hasFnAttr(Attribute::WriteOnly)),
- "Attributes 'readnone and writeonly' are incompatible!", V);
- Assert(!(Attrs.hasFnAttr(Attribute::ReadOnly) &&
- Attrs.hasFnAttr(Attribute::WriteOnly)),
- "Attributes 'readonly and writeonly' are incompatible!", V);
- Assert(!(Attrs.hasFnAttr(Attribute::ReadNone) &&
- Attrs.hasFnAttr(Attribute::InaccessibleMemOrArgMemOnly)),
- "Attributes 'readnone and inaccessiblemem_or_argmemonly' are "
- "incompatible!",
- V);
- Assert(!(Attrs.hasFnAttr(Attribute::ReadNone) &&
- Attrs.hasFnAttr(Attribute::InaccessibleMemOnly)),
- "Attributes 'readnone and inaccessiblememonly' are incompatible!", V);
- Assert(!(Attrs.hasFnAttr(Attribute::NoInline) &&
- Attrs.hasFnAttr(Attribute::AlwaysInline)),
- "Attributes 'noinline and alwaysinline' are incompatible!", V);
- if (Attrs.hasFnAttr(Attribute::OptimizeNone)) {
- Assert(Attrs.hasFnAttr(Attribute::NoInline),
- "Attribute 'optnone' requires 'noinline'!", V);
- Assert(!Attrs.hasFnAttr(Attribute::OptimizeForSize),
- "Attributes 'optsize and optnone' are incompatible!", V);
- Assert(!Attrs.hasFnAttr(Attribute::MinSize),
- "Attributes 'minsize and optnone' are incompatible!", V);
- }
- if (Attrs.hasFnAttr(Attribute::JumpTable)) {
- const GlobalValue *GV = cast<GlobalValue>(V);
- Assert(GV->hasGlobalUnnamedAddr(),
- "Attribute 'jumptable' requires 'unnamed_addr'", V);
- }
- if (Attrs.hasFnAttr(Attribute::AllocSize)) {
- std::pair<unsigned, Optional<unsigned>> Args =
- Attrs.getFnAttrs().getAllocSizeArgs();
- auto CheckParam = [&](StringRef Name, unsigned ParamNo) {
- if (ParamNo >= FT->getNumParams()) {
- CheckFailed("'allocsize' " + Name + " argument is out of bounds", V);
- return false;
- }
- if (!FT->getParamType(ParamNo)->isIntegerTy()) {
- CheckFailed("'allocsize' " + Name +
- " argument must refer to an integer parameter",
- V);
- return false;
- }
- return true;
- };
- if (!CheckParam("element size", Args.first))
- return;
- if (Args.second && !CheckParam("number of elements", *Args.second))
- return;
- }
- if (Attrs.hasFnAttr(Attribute::VScaleRange)) {
- unsigned VScaleMin = Attrs.getFnAttrs().getVScaleRangeMin();
- if (VScaleMin == 0)
- CheckFailed("'vscale_range' minimum must be greater than 0", V);
- Optional<unsigned> VScaleMax = Attrs.getFnAttrs().getVScaleRangeMax();
- if (VScaleMax && VScaleMin > VScaleMax)
- CheckFailed("'vscale_range' minimum cannot be greater than maximum", V);
- }
- if (Attrs.hasFnAttr("frame-pointer")) {
- StringRef FP = Attrs.getFnAttr("frame-pointer").getValueAsString();
- if (FP != "all" && FP != "non-leaf" && FP != "none")
- CheckFailed("invalid value for 'frame-pointer' attribute: " + FP, V);
- }
- checkUnsignedBaseTenFuncAttr(Attrs, "patchable-function-prefix", V);
- checkUnsignedBaseTenFuncAttr(Attrs, "patchable-function-entry", V);
- checkUnsignedBaseTenFuncAttr(Attrs, "warn-stack-size", V);
- }
- void Verifier::verifyFunctionMetadata(
- ArrayRef<std::pair<unsigned, MDNode *>> MDs) {
- for (const auto &Pair : MDs) {
- if (Pair.first == LLVMContext::MD_prof) {
- MDNode *MD = Pair.second;
- Assert(MD->getNumOperands() >= 2,
- "!prof annotations should have no less than 2 operands", MD);
- // Check first operand.
- Assert(MD->getOperand(0) != nullptr, "first operand should not be null",
- MD);
- Assert(isa<MDString>(MD->getOperand(0)),
- "expected string with name of the !prof annotation", MD);
- MDString *MDS = cast<MDString>(MD->getOperand(0));
- StringRef ProfName = MDS->getString();
- Assert(ProfName.equals("function_entry_count") ||
- ProfName.equals("synthetic_function_entry_count"),
- "first operand should be 'function_entry_count'"
- " or 'synthetic_function_entry_count'",
- MD);
- // Check second operand.
- Assert(MD->getOperand(1) != nullptr, "second operand should not be null",
- MD);
- Assert(isa<ConstantAsMetadata>(MD->getOperand(1)),
- "expected integer argument to function_entry_count", MD);
- }
- }
- }
- void Verifier::visitConstantExprsRecursively(const Constant *EntryC) {
- if (!ConstantExprVisited.insert(EntryC).second)
- return;
- SmallVector<const Constant *, 16> Stack;
- Stack.push_back(EntryC);
- while (!Stack.empty()) {
- const Constant *C = Stack.pop_back_val();
- // Check this constant expression.
- if (const auto *CE = dyn_cast<ConstantExpr>(C))
- visitConstantExpr(CE);
- if (const auto *GV = dyn_cast<GlobalValue>(C)) {
- // Global Values get visited separately, but we do need to make sure
- // that the global value is in the correct module
- Assert(GV->getParent() == &M, "Referencing global in another module!",
- EntryC, &M, GV, GV->getParent());
- continue;
- }
- // Visit all sub-expressions.
- for (const Use &U : C->operands()) {
- const auto *OpC = dyn_cast<Constant>(U);
- if (!OpC)
- continue;
- if (!ConstantExprVisited.insert(OpC).second)
- continue;
- Stack.push_back(OpC);
- }
- }
- }
- void Verifier::visitConstantExpr(const ConstantExpr *CE) {
- if (CE->getOpcode() == Instruction::BitCast)
- Assert(CastInst::castIsValid(Instruction::BitCast, CE->getOperand(0),
- CE->getType()),
- "Invalid bitcast", CE);
- }
- bool Verifier::verifyAttributeCount(AttributeList Attrs, unsigned Params) {
- // There shouldn't be more attribute sets than there are parameters plus the
- // function and return value.
- return Attrs.getNumAttrSets() <= Params + 2;
- }
- void Verifier::verifyInlineAsmCall(const CallBase &Call) {
- const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand());
- unsigned ArgNo = 0;
- for (const InlineAsm::ConstraintInfo &CI : IA->ParseConstraints()) {
- // Only deal with constraints that correspond to call arguments.
- if (!CI.hasArg())
- continue;
- if (CI.isIndirect) {
- const Value *Arg = Call.getArgOperand(ArgNo);
- Assert(Arg->getType()->isPointerTy(),
- "Operand for indirect constraint must have pointer type",
- &Call);
- Assert(Call.getAttributes().getParamElementType(ArgNo),
- "Operand for indirect constraint must have elementtype attribute",
- &Call);
- } else {
- Assert(!Call.paramHasAttr(ArgNo, Attribute::ElementType),
- "Elementtype attribute can only be applied for indirect "
- "constraints", &Call);
- }
- ArgNo++;
- }
- }
- /// Verify that statepoint intrinsic is well formed.
- void Verifier::verifyStatepoint(const CallBase &Call) {
- assert(Call.getCalledFunction() &&
- Call.getCalledFunction()->getIntrinsicID() ==
- Intrinsic::experimental_gc_statepoint);
- Assert(!Call.doesNotAccessMemory() && !Call.onlyReadsMemory() &&
- !Call.onlyAccessesArgMemory(),
- "gc.statepoint must read and write all memory to preserve "
- "reordering restrictions required by safepoint semantics",
- Call);
- const int64_t NumPatchBytes =
- cast<ConstantInt>(Call.getArgOperand(1))->getSExtValue();
- assert(isInt<32>(NumPatchBytes) && "NumPatchBytesV is an i32!");
- Assert(NumPatchBytes >= 0,
- "gc.statepoint number of patchable bytes must be "
- "positive",
- Call);
- const Value *Target = Call.getArgOperand(2);
- auto *PT = dyn_cast<PointerType>(Target->getType());
- Assert(PT && PT->getPointerElementType()->isFunctionTy(),
- "gc.statepoint callee must be of function pointer type", Call, Target);
- FunctionType *TargetFuncType =
- cast<FunctionType>(PT->getPointerElementType());
- const int NumCallArgs = cast<ConstantInt>(Call.getArgOperand(3))->getZExtValue();
- Assert(NumCallArgs >= 0,
- "gc.statepoint number of arguments to underlying call "
- "must be positive",
- Call);
- const int NumParams = (int)TargetFuncType->getNumParams();
- if (TargetFuncType->isVarArg()) {
- Assert(NumCallArgs >= NumParams,
- "gc.statepoint mismatch in number of vararg call args", Call);
- // TODO: Remove this limitation
- Assert(TargetFuncType->getReturnType()->isVoidTy(),
- "gc.statepoint doesn't support wrapping non-void "
- "vararg functions yet",
- Call);
- } else
- Assert(NumCallArgs == NumParams,
- "gc.statepoint mismatch in number of call args", Call);
- const uint64_t Flags
- = cast<ConstantInt>(Call.getArgOperand(4))->getZExtValue();
- Assert((Flags & ~(uint64_t)StatepointFlags::MaskAll) == 0,
- "unknown flag used in gc.statepoint flags argument", Call);
- // Verify that the types of the call parameter arguments match
- // the type of the wrapped callee.
- AttributeList Attrs = Call.getAttributes();
- for (int i = 0; i < NumParams; i++) {
- Type *ParamType = TargetFuncType->getParamType(i);
- Type *ArgType = Call.getArgOperand(5 + i)->getType();
- Assert(ArgType == ParamType,
- "gc.statepoint call argument does not match wrapped "
- "function type",
- Call);
- if (TargetFuncType->isVarArg()) {
- AttributeSet ArgAttrs = Attrs.getParamAttrs(5 + i);
- Assert(!ArgAttrs.hasAttribute(Attribute::StructRet),
- "Attribute 'sret' cannot be used for vararg call arguments!",
- Call);
- }
- }
- const int EndCallArgsInx = 4 + NumCallArgs;
- const Value *NumTransitionArgsV = Call.getArgOperand(EndCallArgsInx + 1);
- Assert(isa<ConstantInt>(NumTransitionArgsV),
- "gc.statepoint number of transition arguments "
- "must be constant integer",
- Call);
- const int NumTransitionArgs =
- cast<ConstantInt>(NumTransitionArgsV)->getZExtValue();
- Assert(NumTransitionArgs == 0,
- "gc.statepoint w/inline transition bundle is deprecated", Call);
- const int EndTransitionArgsInx = EndCallArgsInx + 1 + NumTransitionArgs;
- const Value *NumDeoptArgsV = Call.getArgOperand(EndTransitionArgsInx + 1);
- Assert(isa<ConstantInt>(NumDeoptArgsV),
- "gc.statepoint number of deoptimization arguments "
- "must be constant integer",
- Call);
- const int NumDeoptArgs = cast<ConstantInt>(NumDeoptArgsV)->getZExtValue();
- Assert(NumDeoptArgs == 0,
- "gc.statepoint w/inline deopt operands is deprecated", Call);
- const int ExpectedNumArgs = 7 + NumCallArgs;
- Assert(ExpectedNumArgs == (int)Call.arg_size(),
- "gc.statepoint too many arguments", Call);
- // Check that the only uses of this gc.statepoint are gc.result or
- // gc.relocate calls which are tied to this statepoint and thus part
- // of the same statepoint sequence
- for (const User *U : Call.users()) {
- const CallInst *UserCall = dyn_cast<const CallInst>(U);
- Assert(UserCall, "illegal use of statepoint token", Call, U);
- if (!UserCall)
- continue;
- Assert(isa<GCRelocateInst>(UserCall) || isa<GCResultInst>(UserCall),
- "gc.result or gc.relocate are the only value uses "
- "of a gc.statepoint",
- Call, U);
- if (isa<GCResultInst>(UserCall)) {
- Assert(UserCall->getArgOperand(0) == &Call,
- "gc.result connected to wrong gc.statepoint", Call, UserCall);
- } else if (isa<GCRelocateInst>(Call)) {
- Assert(UserCall->getArgOperand(0) == &Call,
- "gc.relocate connected to wrong gc.statepoint", Call, UserCall);
- }
- }
- // Note: It is legal for a single derived pointer to be listed multiple
- // times. It's non-optimal, but it is legal. It can also happen after
- // insertion if we strip a bitcast away.
- // Note: It is really tempting to check that each base is relocated and
- // that a derived pointer is never reused as a base pointer. This turns
- // out to be problematic since optimizations run after safepoint insertion
- // can recognize equality properties that the insertion logic doesn't know
- // about. See example statepoint.ll in the verifier subdirectory
- }
- void Verifier::verifyFrameRecoverIndices() {
- for (auto &Counts : FrameEscapeInfo) {
- Function *F = Counts.first;
- unsigned EscapedObjectCount = Counts.second.first;
- unsigned MaxRecoveredIndex = Counts.second.second;
- Assert(MaxRecoveredIndex <= EscapedObjectCount,
- "all indices passed to llvm.localrecover must be less than the "
- "number of arguments passed to llvm.localescape in the parent "
- "function",
- F);
- }
- }
- static Instruction *getSuccPad(Instruction *Terminator) {
- BasicBlock *UnwindDest;
- if (auto *II = dyn_cast<InvokeInst>(Terminator))
- UnwindDest = II->getUnwindDest();
- else if (auto *CSI = dyn_cast<CatchSwitchInst>(Terminator))
- UnwindDest = CSI->getUnwindDest();
- else
- UnwindDest = cast<CleanupReturnInst>(Terminator)->getUnwindDest();
- return UnwindDest->getFirstNonPHI();
- }
- void Verifier::verifySiblingFuncletUnwinds() {
- SmallPtrSet<Instruction *, 8> Visited;
- SmallPtrSet<Instruction *, 8> Active;
- for (const auto &Pair : SiblingFuncletInfo) {
- Instruction *PredPad = Pair.first;
- if (Visited.count(PredPad))
- continue;
- Active.insert(PredPad);
- Instruction *Terminator = Pair.second;
- do {
- Instruction *SuccPad = getSuccPad(Terminator);
- if (Active.count(SuccPad)) {
- // Found a cycle; report error
- Instruction *CyclePad = SuccPad;
- SmallVector<Instruction *, 8> CycleNodes;
- do {
- CycleNodes.push_back(CyclePad);
- Instruction *CycleTerminator = SiblingFuncletInfo[CyclePad];
- if (CycleTerminator != CyclePad)
- CycleNodes.push_back(CycleTerminator);
- CyclePad = getSuccPad(CycleTerminator);
- } while (CyclePad != SuccPad);
- Assert(false, "EH pads can't handle each other's exceptions",
- ArrayRef<Instruction *>(CycleNodes));
- }
- // Don't re-walk a node we've already checked
- if (!Visited.insert(SuccPad).second)
- break;
- // Walk to this successor if it has a map entry.
- PredPad = SuccPad;
- auto TermI = SiblingFuncletInfo.find(PredPad);
- if (TermI == SiblingFuncletInfo.end())
- break;
- Terminator = TermI->second;
- Active.insert(PredPad);
- } while (true);
- // Each node only has one successor, so we've walked all the active
- // nodes' successors.
- Active.clear();
- }
- }
- // visitFunction - Verify that a function is ok.
- //
- void Verifier::visitFunction(const Function &F) {
- visitGlobalValue(F);
- // Check function arguments.
- FunctionType *FT = F.getFunctionType();
- unsigned NumArgs = F.arg_size();
- Assert(&Context == &F.getContext(),
- "Function context does not match Module context!", &F);
- Assert(!F.hasCommonLinkage(), "Functions may not have common linkage", &F);
- Assert(FT->getNumParams() == NumArgs,
- "# formal arguments must match # of arguments for function type!", &F,
- FT);
- Assert(F.getReturnType()->isFirstClassType() ||
- F.getReturnType()->isVoidTy() || F.getReturnType()->isStructTy(),
- "Functions cannot return aggregate values!", &F);
- Assert(!F.hasStructRetAttr() || F.getReturnType()->isVoidTy(),
- "Invalid struct return type!", &F);
- AttributeList Attrs = F.getAttributes();
- Assert(verifyAttributeCount(Attrs, FT->getNumParams()),
- "Attribute after last parameter!", &F);
- bool IsIntrinsic = F.isIntrinsic();
- // Check function attributes.
- verifyFunctionAttrs(FT, Attrs, &F, IsIntrinsic, /* IsInlineAsm */ false);
- // On function declarations/definitions, we do not support the builtin
- // attribute. We do not check this in VerifyFunctionAttrs since that is
- // checking for Attributes that can/can not ever be on functions.
- Assert(!Attrs.hasFnAttr(Attribute::Builtin),
- "Attribute 'builtin' can only be applied to a callsite.", &F);
- Assert(!Attrs.hasAttrSomewhere(Attribute::ElementType),
- "Attribute 'elementtype' can only be applied to a callsite.", &F);
- // Check that this function meets the restrictions on this calling convention.
- // Sometimes varargs is used for perfectly forwarding thunks, so some of these
- // restrictions can be lifted.
- switch (F.getCallingConv()) {
- default:
- case CallingConv::C:
- break;
- case CallingConv::X86_INTR: {
- Assert(F.arg_empty() || Attrs.hasParamAttr(0, Attribute::ByVal),
- "Calling convention parameter requires byval", &F);
- break;
- }
- case CallingConv::AMDGPU_KERNEL:
- case CallingConv::SPIR_KERNEL:
- Assert(F.getReturnType()->isVoidTy(),
- "Calling convention requires void return type", &F);
- LLVM_FALLTHROUGH;
- case CallingConv::AMDGPU_VS:
- case CallingConv::AMDGPU_HS:
- case CallingConv::AMDGPU_GS:
- case CallingConv::AMDGPU_PS:
- case CallingConv::AMDGPU_CS:
- Assert(!F.hasStructRetAttr(),
- "Calling convention does not allow sret", &F);
- if (F.getCallingConv() != CallingConv::SPIR_KERNEL) {
- const unsigned StackAS = DL.getAllocaAddrSpace();
- unsigned i = 0;
- for (const Argument &Arg : F.args()) {
- Assert(!Attrs.hasParamAttr(i, Attribute::ByVal),
- "Calling convention disallows byval", &F);
- Assert(!Attrs.hasParamAttr(i, Attribute::Preallocated),
- "Calling convention disallows preallocated", &F);
- Assert(!Attrs.hasParamAttr(i, Attribute::InAlloca),
- "Calling convention disallows inalloca", &F);
- if (Attrs.hasParamAttr(i, Attribute::ByRef)) {
- // FIXME: Should also disallow LDS and GDS, but we don't have the enum
- // value here.
- Assert(Arg.getType()->getPointerAddressSpace() != StackAS,
- "Calling convention disallows stack byref", &F);
- }
- ++i;
- }
- }
- LLVM_FALLTHROUGH;
- case CallingConv::Fast:
- case CallingConv::Cold:
- case CallingConv::Intel_OCL_BI:
- case CallingConv::PTX_Kernel:
- case CallingConv::PTX_Device:
- Assert(!F.isVarArg(), "Calling convention does not support varargs or "
- "perfect forwarding!",
- &F);
- break;
- }
- // Check that the argument values match the function type for this function...
- unsigned i = 0;
- for (const Argument &Arg : F.args()) {
- Assert(Arg.getType() == FT->getParamType(i),
- "Argument value does not match function argument type!", &Arg,
- FT->getParamType(i));
- Assert(Arg.getType()->isFirstClassType(),
- "Function arguments must have first-class types!", &Arg);
- if (!IsIntrinsic) {
- Assert(!Arg.getType()->isMetadataTy(),
- "Function takes metadata but isn't an intrinsic", &Arg, &F);
- Assert(!Arg.getType()->isTokenTy(),
- "Function takes token but isn't an intrinsic", &Arg, &F);
- Assert(!Arg.getType()->isX86_AMXTy(),
- "Function takes x86_amx but isn't an intrinsic", &Arg, &F);
- }
- // Check that swifterror argument is only used by loads and stores.
- if (Attrs.hasParamAttr(i, Attribute::SwiftError)) {
- verifySwiftErrorValue(&Arg);
- }
- ++i;
- }
- if (!IsIntrinsic) {
- Assert(!F.getReturnType()->isTokenTy(),
- "Function returns a token but isn't an intrinsic", &F);
- Assert(!F.getReturnType()->isX86_AMXTy(),
- "Function returns a x86_amx but isn't an intrinsic", &F);
- }
- // Get the function metadata attachments.
- SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
- F.getAllMetadata(MDs);
- assert(F.hasMetadata() != MDs.empty() && "Bit out-of-sync");
- verifyFunctionMetadata(MDs);
- // Check validity of the personality function
- if (F.hasPersonalityFn()) {
- auto *Per = dyn_cast<Function>(F.getPersonalityFn()->stripPointerCasts());
- if (Per)
- Assert(Per->getParent() == F.getParent(),
- "Referencing personality function in another module!",
- &F, F.getParent(), Per, Per->getParent());
- }
- if (F.isMaterializable()) {
- // Function has a body somewhere we can't see.
- Assert(MDs.empty(), "unmaterialized function cannot have metadata", &F,
- MDs.empty() ? nullptr : MDs.front().second);
- } else if (F.isDeclaration()) {
- for (const auto &I : MDs) {
- // This is used for call site debug information.
- AssertDI(I.first != LLVMContext::MD_dbg ||
- !cast<DISubprogram>(I.second)->isDistinct(),
- "function declaration may only have a unique !dbg attachment",
- &F);
- Assert(I.first != LLVMContext::MD_prof,
- "function declaration may not have a !prof attachment", &F);
- // Verify the metadata itself.
- visitMDNode(*I.second, AreDebugLocsAllowed::Yes);
- }
- Assert(!F.hasPersonalityFn(),
- "Function declaration shouldn't have a personality routine", &F);
- } else {
- // Verify that this function (which has a body) is not named "llvm.*". It
- // is not legal to define intrinsics.
- Assert(!IsIntrinsic, "llvm intrinsics cannot be defined!", &F);
- // Check the entry node
- const BasicBlock *Entry = &F.getEntryBlock();
- Assert(pred_empty(Entry),
- "Entry block to function must not have predecessors!", Entry);
- // The address of the entry block cannot be taken, unless it is dead.
- if (Entry->hasAddressTaken()) {
- Assert(!BlockAddress::lookup(Entry)->isConstantUsed(),
- "blockaddress may not be used with the entry block!", Entry);
- }
- unsigned NumDebugAttachments = 0, NumProfAttachments = 0;
- // Visit metadata attachments.
- for (const auto &I : MDs) {
- // Verify that the attachment is legal.
- auto AllowLocs = AreDebugLocsAllowed::No;
- switch (I.first) {
- default:
- break;
- case LLVMContext::MD_dbg: {
- ++NumDebugAttachments;
- AssertDI(NumDebugAttachments == 1,
- "function must have a single !dbg attachment", &F, I.second);
- AssertDI(isa<DISubprogram>(I.second),
- "function !dbg attachment must be a subprogram", &F, I.second);
- AssertDI(cast<DISubprogram>(I.second)->isDistinct(),
- "function definition may only have a distinct !dbg attachment",
- &F);
- auto *SP = cast<DISubprogram>(I.second);
- const Function *&AttachedTo = DISubprogramAttachments[SP];
- AssertDI(!AttachedTo || AttachedTo == &F,
- "DISubprogram attached to more than one function", SP, &F);
- AttachedTo = &F;
- AllowLocs = AreDebugLocsAllowed::Yes;
- break;
- }
- case LLVMContext::MD_prof:
- ++NumProfAttachments;
- Assert(NumProfAttachments == 1,
- "function must have a single !prof attachment", &F, I.second);
- break;
- }
- // Verify the metadata itself.
- visitMDNode(*I.second, AllowLocs);
- }
- }
- // If this function is actually an intrinsic, verify that it is only used in
- // direct call/invokes, never having its "address taken".
- // Only do this if the module is materialized, otherwise we don't have all the
- // uses.
- if (F.isIntrinsic() && F.getParent()->isMaterialized()) {
- const User *U;
- if (F.hasAddressTaken(&U, false, true, false,
- /*IgnoreARCAttachedCall=*/true))
- Assert(false, "Invalid user of intrinsic instruction!", U);
- }
- // Check intrinsics' signatures.
- switch (F.getIntrinsicID()) {
- case Intrinsic::experimental_gc_get_pointer_base: {
- FunctionType *FT = F.getFunctionType();
- Assert(FT->getNumParams() == 1, "wrong number of parameters", F);
- Assert(isa<PointerType>(F.getReturnType()),
- "gc.get.pointer.base must return a pointer", F);
- Assert(FT->getParamType(0) == F.getReturnType(),
- "gc.get.pointer.base operand and result must be of the same type",
- F);
- break;
- }
- case Intrinsic::experimental_gc_get_pointer_offset: {
- FunctionType *FT = F.getFunctionType();
- Assert(FT->getNumParams() == 1, "wrong number of parameters", F);
- Assert(isa<PointerType>(FT->getParamType(0)),
- "gc.get.pointer.offset operand must be a pointer", F);
- Assert(F.getReturnType()->isIntegerTy(),
- "gc.get.pointer.offset must return integer", F);
- break;
- }
- }
- auto *N = F.getSubprogram();
- HasDebugInfo = (N != nullptr);
- if (!HasDebugInfo)
- return;
- // Check that all !dbg attachments lead to back to N.
- //
- // FIXME: Check this incrementally while visiting !dbg attachments.
- // FIXME: Only check when N is the canonical subprogram for F.
- SmallPtrSet<const MDNode *, 32> Seen;
- auto VisitDebugLoc = [&](const Instruction &I, const MDNode *Node) {
- // Be careful about using DILocation here since we might be dealing with
- // broken code (this is the Verifier after all).
- const DILocation *DL = dyn_cast_or_null<DILocation>(Node);
- if (!DL)
- return;
- if (!Seen.insert(DL).second)
- return;
- Metadata *Parent = DL->getRawScope();
- AssertDI(Parent && isa<DILocalScope>(Parent),
- "DILocation's scope must be a DILocalScope", N, &F, &I, DL,
- Parent);
- DILocalScope *Scope = DL->getInlinedAtScope();
- Assert(Scope, "Failed to find DILocalScope", DL);
- if (!Seen.insert(Scope).second)
- return;
- DISubprogram *SP = Scope->getSubprogram();
- // Scope and SP could be the same MDNode and we don't want to skip
- // validation in that case
- if (SP && ((Scope != SP) && !Seen.insert(SP).second))
- return;
- AssertDI(SP->describes(&F),
- "!dbg attachment points at wrong subprogram for function", N, &F,
- &I, DL, Scope, SP);
- };
- for (auto &BB : F)
- for (auto &I : BB) {
- VisitDebugLoc(I, I.getDebugLoc().getAsMDNode());
- // The llvm.loop annotations also contain two DILocations.
- if (auto MD = I.getMetadata(LLVMContext::MD_loop))
- for (unsigned i = 1; i < MD->getNumOperands(); ++i)
- VisitDebugLoc(I, dyn_cast_or_null<MDNode>(MD->getOperand(i)));
- if (BrokenDebugInfo)
- return;
- }
- }
- // verifyBasicBlock - Verify that a basic block is well formed...
- //
- void Verifier::visitBasicBlock(BasicBlock &BB) {
- InstsInThisBlock.clear();
- // Ensure that basic blocks have terminators!
- Assert(BB.getTerminator(), "Basic Block does not have terminator!", &BB);
- // Check constraints that this basic block imposes on all of the PHI nodes in
- // it.
- if (isa<PHINode>(BB.front())) {
- SmallVector<BasicBlock *, 8> Preds(predecessors(&BB));
- SmallVector<std::pair<BasicBlock*, Value*>, 8> Values;
- llvm::sort(Preds);
- for (const PHINode &PN : BB.phis()) {
- Assert(PN.getNumIncomingValues() == Preds.size(),
- "PHINode should have one entry for each predecessor of its "
- "parent basic block!",
- &PN);
- // Get and sort all incoming values in the PHI node...
- Values.clear();
- Values.reserve(PN.getNumIncomingValues());
- for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i)
- Values.push_back(
- std::make_pair(PN.getIncomingBlock(i), PN.getIncomingValue(i)));
- llvm::sort(Values);
- for (unsigned i = 0, e = Values.size(); i != e; ++i) {
- // Check to make sure that if there is more than one entry for a
- // particular basic block in this PHI node, that the incoming values are
- // all identical.
- //
- Assert(i == 0 || Values[i].first != Values[i - 1].first ||
- Values[i].second == Values[i - 1].second,
- "PHI node has multiple entries for the same basic block with "
- "different incoming values!",
- &PN, Values[i].first, Values[i].second, Values[i - 1].second);
- // Check to make sure that the predecessors and PHI node entries are
- // matched up.
- Assert(Values[i].first == Preds[i],
- "PHI node entries do not match predecessors!", &PN,
- Values[i].first, Preds[i]);
- }
- }
- }
- // Check that all instructions have their parent pointers set up correctly.
- for (auto &I : BB)
- {
- Assert(I.getParent() == &BB, "Instruction has bogus parent pointer!");
- }
- }
- void Verifier::visitTerminator(Instruction &I) {
- // Ensure that terminators only exist at the end of the basic block.
- Assert(&I == I.getParent()->getTerminator(),
- "Terminator found in the middle of a basic block!", I.getParent());
- visitInstruction(I);
- }
- void Verifier::visitBranchInst(BranchInst &BI) {
- if (BI.isConditional()) {
- Assert(BI.getCondition()->getType()->isIntegerTy(1),
- "Branch condition is not 'i1' type!", &BI, BI.getCondition());
- }
- visitTerminator(BI);
- }
- void Verifier::visitReturnInst(ReturnInst &RI) {
- Function *F = RI.getParent()->getParent();
- unsigned N = RI.getNumOperands();
- if (F->getReturnType()->isVoidTy())
- Assert(N == 0,
- "Found return instr that returns non-void in Function of void "
- "return type!",
- &RI, F->getReturnType());
- else
- Assert(N == 1 && F->getReturnType() == RI.getOperand(0)->getType(),
- "Function return type does not match operand "
- "type of return inst!",
- &RI, F->getReturnType());
- // Check to make sure that the return value has necessary properties for
- // terminators...
- visitTerminator(RI);
- }
- void Verifier::visitSwitchInst(SwitchInst &SI) {
- Assert(SI.getType()->isVoidTy(), "Switch must have void result type!", &SI);
- // Check to make sure that all of the constants in the switch instruction
- // have the same type as the switched-on value.
- Type *SwitchTy = SI.getCondition()->getType();
- SmallPtrSet<ConstantInt*, 32> Constants;
- for (auto &Case : SI.cases()) {
- Assert(Case.getCaseValue()->getType() == SwitchTy,
- "Switch constants must all be same type as switch value!", &SI);
- Assert(Constants.insert(Case.getCaseValue()).second,
- "Duplicate integer as switch case", &SI, Case.getCaseValue());
- }
- visitTerminator(SI);
- }
- void Verifier::visitIndirectBrInst(IndirectBrInst &BI) {
- Assert(BI.getAddress()->getType()->isPointerTy(),
- "Indirectbr operand must have pointer type!", &BI);
- for (unsigned i = 0, e = BI.getNumDestinations(); i != e; ++i)
- Assert(BI.getDestination(i)->getType()->isLabelTy(),
- "Indirectbr destinations must all have pointer type!", &BI);
- visitTerminator(BI);
- }
- void Verifier::visitCallBrInst(CallBrInst &CBI) {
- Assert(CBI.isInlineAsm(), "Callbr is currently only used for asm-goto!",
- &CBI);
- const InlineAsm *IA = cast<InlineAsm>(CBI.getCalledOperand());
- Assert(!IA->canThrow(), "Unwinding from Callbr is not allowed");
- for (unsigned i = 0, e = CBI.getNumSuccessors(); i != e; ++i)
- Assert(CBI.getSuccessor(i)->getType()->isLabelTy(),
- "Callbr successors must all have pointer type!", &CBI);
- for (unsigned i = 0, e = CBI.getNumOperands(); i != e; ++i) {
- Assert(i >= CBI.arg_size() || !isa<BasicBlock>(CBI.getOperand(i)),
- "Using an unescaped label as a callbr argument!", &CBI);
- if (isa<BasicBlock>(CBI.getOperand(i)))
- for (unsigned j = i + 1; j != e; ++j)
- Assert(CBI.getOperand(i) != CBI.getOperand(j),
- "Duplicate callbr destination!", &CBI);
- }
- {
- SmallPtrSet<BasicBlock *, 4> ArgBBs;
- for (Value *V : CBI.args())
- if (auto *BA = dyn_cast<BlockAddress>(V))
- ArgBBs.insert(BA->getBasicBlock());
- for (BasicBlock *BB : CBI.getIndirectDests())
- Assert(ArgBBs.count(BB), "Indirect label missing from arglist.", &CBI);
- }
- verifyInlineAsmCall(CBI);
- visitTerminator(CBI);
- }
- void Verifier::visitSelectInst(SelectInst &SI) {
- Assert(!SelectInst::areInvalidOperands(SI.getOperand(0), SI.getOperand(1),
- SI.getOperand(2)),
- "Invalid operands for select instruction!", &SI);
- Assert(SI.getTrueValue()->getType() == SI.getType(),
- "Select values must have same type as select instruction!", &SI);
- visitInstruction(SI);
- }
- /// visitUserOp1 - User defined operators shouldn't live beyond the lifetime of
- /// a pass, if any exist, it's an error.
- ///
- void Verifier::visitUserOp1(Instruction &I) {
- Assert(false, "User-defined operators should not live outside of a pass!", &I);
- }
- void Verifier::visitTruncInst(TruncInst &I) {
- // Get the source and destination types
- Type *SrcTy = I.getOperand(0)->getType();
- Type *DestTy = I.getType();
- // Get the size of the types in bits, we'll need this later
- unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
- unsigned DestBitSize = DestTy->getScalarSizeInBits();
- Assert(SrcTy->isIntOrIntVectorTy(), "Trunc only operates on integer", &I);
- Assert(DestTy->isIntOrIntVectorTy(), "Trunc only produces integer", &I);
- Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),
- "trunc source and destination must both be a vector or neither", &I);
- Assert(SrcBitSize > DestBitSize, "DestTy too big for Trunc", &I);
- visitInstruction(I);
- }
- void Verifier::visitZExtInst(ZExtInst &I) {
- // Get the source and destination types
- Type *SrcTy = I.getOperand(0)->getType();
- Type *DestTy = I.getType();
- // Get the size of the types in bits, we'll need this later
- Assert(SrcTy->isIntOrIntVectorTy(), "ZExt only operates on integer", &I);
- Assert(DestTy->isIntOrIntVectorTy(), "ZExt only produces an integer", &I);
- Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),
- "zext source and destination must both be a vector or neither", &I);
- unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
- unsigned DestBitSize = DestTy->getScalarSizeInBits();
- Assert(SrcBitSize < DestBitSize, "Type too small for ZExt", &I);
- visitInstruction(I);
- }
- void Verifier::visitSExtInst(SExtInst &I) {
- // Get the source and destination types
- Type *SrcTy = I.getOperand(0)->getType();
- Type *DestTy = I.getType();
- // Get the size of the types in bits, we'll need this later
- unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
- unsigned DestBitSize = DestTy->getScalarSizeInBits();
- Assert(SrcTy->isIntOrIntVectorTy(), "SExt only operates on integer", &I);
- Assert(DestTy->isIntOrIntVectorTy(), "SExt only produces an integer", &I);
- Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),
- "sext source and destination must both be a vector or neither", &I);
- Assert(SrcBitSize < DestBitSize, "Type too small for SExt", &I);
- visitInstruction(I);
- }
- void Verifier::visitFPTruncInst(FPTruncInst &I) {
- // Get the source and destination types
- Type *SrcTy = I.getOperand(0)->getType();
- Type *DestTy = I.getType();
- // Get the size of the types in bits, we'll need this later
- unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
- unsigned DestBitSize = DestTy->getScalarSizeInBits();
- Assert(SrcTy->isFPOrFPVectorTy(), "FPTrunc only operates on FP", &I);
- Assert(DestTy->isFPOrFPVectorTy(), "FPTrunc only produces an FP", &I);
- Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),
- "fptrunc source and destination must both be a vector or neither", &I);
- Assert(SrcBitSize > DestBitSize, "DestTy too big for FPTrunc", &I);
- visitInstruction(I);
- }
- void Verifier::visitFPExtInst(FPExtInst &I) {
- // Get the source and destination types
- Type *SrcTy = I.getOperand(0)->getType();
- Type *DestTy = I.getType();
- // Get the size of the types in bits, we'll need this later
- unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
- unsigned DestBitSize = DestTy->getScalarSizeInBits();
- Assert(SrcTy->isFPOrFPVectorTy(), "FPExt only operates on FP", &I);
- Assert(DestTy->isFPOrFPVectorTy(), "FPExt only produces an FP", &I);
- Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),
- "fpext source and destination must both be a vector or neither", &I);
- Assert(SrcBitSize < DestBitSize, "DestTy too small for FPExt", &I);
- visitInstruction(I);
- }
- void Verifier::visitUIToFPInst(UIToFPInst &I) {
- // Get the source and destination types
- Type *SrcTy = I.getOperand(0)->getType();
- Type *DestTy = I.getType();
- bool SrcVec = SrcTy->isVectorTy();
- bool DstVec = DestTy->isVectorTy();
- Assert(SrcVec == DstVec,
- "UIToFP source and dest must both be vector or scalar", &I);
- Assert(SrcTy->isIntOrIntVectorTy(),
- "UIToFP source must be integer or integer vector", &I);
- Assert(DestTy->isFPOrFPVectorTy(), "UIToFP result must be FP or FP vector",
- &I);
- if (SrcVec && DstVec)
- Assert(cast<VectorType>(SrcTy)->getElementCount() ==
- cast<VectorType>(DestTy)->getElementCount(),
- "UIToFP source and dest vector length mismatch", &I);
- visitInstruction(I);
- }
- void Verifier::visitSIToFPInst(SIToFPInst &I) {
- // Get the source and destination types
- Type *SrcTy = I.getOperand(0)->getType();
- Type *DestTy = I.getType();
- bool SrcVec = SrcTy->isVectorTy();
- bool DstVec = DestTy->isVectorTy();
- Assert(SrcVec == DstVec,
- "SIToFP source and dest must both be vector or scalar", &I);
- Assert(SrcTy->isIntOrIntVectorTy(),
- "SIToFP source must be integer or integer vector", &I);
- Assert(DestTy->isFPOrFPVectorTy(), "SIToFP result must be FP or FP vector",
- &I);
- if (SrcVec && DstVec)
- Assert(cast<VectorType>(SrcTy)->getElementCount() ==
- cast<VectorType>(DestTy)->getElementCount(),
- "SIToFP source and dest vector length mismatch", &I);
- visitInstruction(I);
- }
- void Verifier::visitFPToUIInst(FPToUIInst &I) {
- // Get the source and destination types
- Type *SrcTy = I.getOperand(0)->getType();
- Type *DestTy = I.getType();
- bool SrcVec = SrcTy->isVectorTy();
- bool DstVec = DestTy->isVectorTy();
- Assert(SrcVec == DstVec,
- "FPToUI source and dest must both be vector or scalar", &I);
- Assert(SrcTy->isFPOrFPVectorTy(), "FPToUI source must be FP or FP vector",
- &I);
- Assert(DestTy->isIntOrIntVectorTy(),
- "FPToUI result must be integer or integer vector", &I);
- if (SrcVec && DstVec)
- Assert(cast<VectorType>(SrcTy)->getElementCount() ==
- cast<VectorType>(DestTy)->getElementCount(),
- "FPToUI source and dest vector length mismatch", &I);
- visitInstruction(I);
- }
- void Verifier::visitFPToSIInst(FPToSIInst &I) {
- // Get the source and destination types
- Type *SrcTy = I.getOperand(0)->getType();
- Type *DestTy = I.getType();
- bool SrcVec = SrcTy->isVectorTy();
- bool DstVec = DestTy->isVectorTy();
- Assert(SrcVec == DstVec,
- "FPToSI source and dest must both be vector or scalar", &I);
- Assert(SrcTy->isFPOrFPVectorTy(), "FPToSI source must be FP or FP vector",
- &I);
- Assert(DestTy->isIntOrIntVectorTy(),
- "FPToSI result must be integer or integer vector", &I);
- if (SrcVec && DstVec)
- Assert(cast<VectorType>(SrcTy)->getElementCount() ==
- cast<VectorType>(DestTy)->getElementCount(),
- "FPToSI source and dest vector length mismatch", &I);
- visitInstruction(I);
- }
- void Verifier::visitPtrToIntInst(PtrToIntInst &I) {
- // Get the source and destination types
- Type *SrcTy = I.getOperand(0)->getType();
- Type *DestTy = I.getType();
- Assert(SrcTy->isPtrOrPtrVectorTy(), "PtrToInt source must be pointer", &I);
- Assert(DestTy->isIntOrIntVectorTy(), "PtrToInt result must be integral", &I);
- Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), "PtrToInt type mismatch",
- &I);
- if (SrcTy->isVectorTy()) {
- auto *VSrc = cast<VectorType>(SrcTy);
- auto *VDest = cast<VectorType>(DestTy);
- Assert(VSrc->getElementCount() == VDest->getElementCount(),
- "PtrToInt Vector width mismatch", &I);
- }
- visitInstruction(I);
- }
- void Verifier::visitIntToPtrInst(IntToPtrInst &I) {
- // Get the source and destination types
- Type *SrcTy = I.getOperand(0)->getType();
- Type *DestTy = I.getType();
- Assert(SrcTy->isIntOrIntVectorTy(),
- "IntToPtr source must be an integral", &I);
- Assert(DestTy->isPtrOrPtrVectorTy(), "IntToPtr result must be a pointer", &I);
- Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), "IntToPtr type mismatch",
- &I);
- if (SrcTy->isVectorTy()) {
- auto *VSrc = cast<VectorType>(SrcTy);
- auto *VDest = cast<VectorType>(DestTy);
- Assert(VSrc->getElementCount() == VDest->getElementCount(),
- "IntToPtr Vector width mismatch", &I);
- }
- visitInstruction(I);
- }
- void Verifier::visitBitCastInst(BitCastInst &I) {
- Assert(
- CastInst::castIsValid(Instruction::BitCast, I.getOperand(0), I.getType()),
- "Invalid bitcast", &I);
- visitInstruction(I);
- }
- void Verifier::visitAddrSpaceCastInst(AddrSpaceCastInst &I) {
- Type *SrcTy = I.getOperand(0)->getType();
- Type *DestTy = I.getType();
- Assert(SrcTy->isPtrOrPtrVectorTy(), "AddrSpaceCast source must be a pointer",
- &I);
- Assert(DestTy->isPtrOrPtrVectorTy(), "AddrSpaceCast result must be a pointer",
- &I);
- Assert(SrcTy->getPointerAddressSpace() != DestTy->getPointerAddressSpace(),
- "AddrSpaceCast must be between different address spaces", &I);
- if (auto *SrcVTy = dyn_cast<VectorType>(SrcTy))
- Assert(SrcVTy->getElementCount() ==
- cast<VectorType>(DestTy)->getElementCount(),
- "AddrSpaceCast vector pointer number of elements mismatch", &I);
- visitInstruction(I);
- }
- /// visitPHINode - Ensure that a PHI node is well formed.
- ///
- void Verifier::visitPHINode(PHINode &PN) {
- // Ensure that the PHI nodes are all grouped together at the top of the block.
- // This can be tested by checking whether the instruction before this is
- // either nonexistent (because this is begin()) or is a PHI node. If not,
- // then there is some other instruction before a PHI.
- Assert(&PN == &PN.getParent()->front() ||
- isa<PHINode>(--BasicBlock::iterator(&PN)),
- "PHI nodes not grouped at top of basic block!", &PN, PN.getParent());
- // Check that a PHI doesn't yield a Token.
- Assert(!PN.getType()->isTokenTy(), "PHI nodes cannot have token type!");
- // Check that all of the values of the PHI node have the same type as the
- // result, and that the incoming blocks are really basic blocks.
- for (Value *IncValue : PN.incoming_values()) {
- Assert(PN.getType() == IncValue->getType(),
- "PHI node operands are not the same type as the result!", &PN);
- }
- // All other PHI node constraints are checked in the visitBasicBlock method.
- visitInstruction(PN);
- }
- void Verifier::visitCallBase(CallBase &Call) {
- Assert(Call.getCalledOperand()->getType()->isPointerTy(),
- "Called function must be a pointer!", Call);
- PointerType *FPTy = cast<PointerType>(Call.getCalledOperand()->getType());
- Assert(FPTy->isOpaqueOrPointeeTypeMatches(Call.getFunctionType()),
- "Called function is not the same type as the call!", Call);
- FunctionType *FTy = Call.getFunctionType();
- // Verify that the correct number of arguments are being passed
- if (FTy->isVarArg())
- Assert(Call.arg_size() >= FTy->getNumParams(),
- "Called function requires more parameters than were provided!",
- Call);
- else
- Assert(Call.arg_size() == FTy->getNumParams(),
- "Incorrect number of arguments passed to called function!", Call);
- // Verify that all arguments to the call match the function type.
- for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
- Assert(Call.getArgOperand(i)->getType() == FTy->getParamType(i),
- "Call parameter type does not match function signature!",
- Call.getArgOperand(i), FTy->getParamType(i), Call);
- AttributeList Attrs = Call.getAttributes();
- Assert(verifyAttributeCount(Attrs, Call.arg_size()),
- "Attribute after last parameter!", Call);
- Function *Callee =
- dyn_cast<Function>(Call.getCalledOperand()->stripPointerCasts());
- bool IsIntrinsic = Callee && Callee->isIntrinsic();
- if (IsIntrinsic)
- Assert(Callee->getValueType() == FTy,
- "Intrinsic called with incompatible signature", Call);
- if (Attrs.hasFnAttr(Attribute::Speculatable)) {
- // Don't allow speculatable on call sites, unless the underlying function
- // declaration is also speculatable.
- Assert(Callee && Callee->isSpeculatable(),
- "speculatable attribute may not apply to call sites", Call);
- }
- if (Attrs.hasFnAttr(Attribute::Preallocated)) {
- Assert(Call.getCalledFunction()->getIntrinsicID() ==
- Intrinsic::call_preallocated_arg,
- "preallocated as a call site attribute can only be on "
- "llvm.call.preallocated.arg");
- }
- // Verify call attributes.
- verifyFunctionAttrs(FTy, Attrs, &Call, IsIntrinsic, Call.isInlineAsm());
- // Conservatively check the inalloca argument.
- // We have a bug if we can find that there is an underlying alloca without
- // inalloca.
- if (Call.hasInAllocaArgument()) {
- Value *InAllocaArg = Call.getArgOperand(FTy->getNumParams() - 1);
- if (auto AI = dyn_cast<AllocaInst>(InAllocaArg->stripInBoundsOffsets()))
- Assert(AI->isUsedWithInAlloca(),
- "inalloca argument for call has mismatched alloca", AI, Call);
- }
- // For each argument of the callsite, if it has the swifterror argument,
- // make sure the underlying alloca/parameter it comes from has a swifterror as
- // well.
- for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) {
- if (Call.paramHasAttr(i, Attribute::SwiftError)) {
- Value *SwiftErrorArg = Call.getArgOperand(i);
- if (auto AI = dyn_cast<AllocaInst>(SwiftErrorArg->stripInBoundsOffsets())) {
- Assert(AI->isSwiftError(),
- "swifterror argument for call has mismatched alloca", AI, Call);
- continue;
- }
- auto ArgI = dyn_cast<Argument>(SwiftErrorArg);
- Assert(ArgI,
- "swifterror argument should come from an alloca or parameter",
- SwiftErrorArg, Call);
- Assert(ArgI->hasSwiftErrorAttr(),
- "swifterror argument for call has mismatched parameter", ArgI,
- Call);
- }
- if (Attrs.hasParamAttr(i, Attribute::ImmArg)) {
- // Don't allow immarg on call sites, unless the underlying declaration
- // also has the matching immarg.
- Assert(Callee && Callee->hasParamAttribute(i, Attribute::ImmArg),
- "immarg may not apply only to call sites",
- Call.getArgOperand(i), Call);
- }
- if (Call.paramHasAttr(i, Attribute::ImmArg)) {
- Value *ArgVal = Call.getArgOperand(i);
- Assert(isa<ConstantInt>(ArgVal) || isa<ConstantFP>(ArgVal),
- "immarg operand has non-immediate parameter", ArgVal, Call);
- }
- if (Call.paramHasAttr(i, Attribute::Preallocated)) {
- Value *ArgVal = Call.getArgOperand(i);
- bool hasOB =
- Call.countOperandBundlesOfType(LLVMContext::OB_preallocated) != 0;
- bool isMustTail = Call.isMustTailCall();
- Assert(hasOB != isMustTail,
- "preallocated operand either requires a preallocated bundle or "
- "the call to be musttail (but not both)",
- ArgVal, Call);
- }
- }
- if (FTy->isVarArg()) {
- // FIXME? is 'nest' even legal here?
- bool SawNest = false;
- bool SawReturned = false;
- for (unsigned Idx = 0; Idx < FTy->getNumParams(); ++Idx) {
- if (Attrs.hasParamAttr(Idx, Attribute::Nest))
- SawNest = true;
- if (Attrs.hasParamAttr(Idx, Attribute::Returned))
- SawReturned = true;
- }
- // Check attributes on the varargs part.
- for (unsigned Idx = FTy->getNumParams(); Idx < Call.arg_size(); ++Idx) {
- Type *Ty = Call.getArgOperand(Idx)->getType();
- AttributeSet ArgAttrs = Attrs.getParamAttrs(Idx);
- verifyParameterAttrs(ArgAttrs, Ty, &Call);
- if (ArgAttrs.hasAttribute(Attribute::Nest)) {
- Assert(!SawNest, "More than one parameter has attribute nest!", Call);
- SawNest = true;
- }
- if (ArgAttrs.hasAttribute(Attribute::Returned)) {
- Assert(!SawReturned, "More than one parameter has attribute returned!",
- Call);
- Assert(Ty->canLosslesslyBitCastTo(FTy->getReturnType()),
- "Incompatible argument and return types for 'returned' "
- "attribute",
- Call);
- SawReturned = true;
- }
- // Statepoint intrinsic is vararg but the wrapped function may be not.
- // Allow sret here and check the wrapped function in verifyStatepoint.
- if (!Call.getCalledFunction() ||
- Call.getCalledFunction()->getIntrinsicID() !=
- Intrinsic::experimental_gc_statepoint)
- Assert(!ArgAttrs.hasAttribute(Attribute::StructRet),
- "Attribute 'sret' cannot be used for vararg call arguments!",
- Call);
- if (ArgAttrs.hasAttribute(Attribute::InAlloca))
- Assert(Idx == Call.arg_size() - 1,
- "inalloca isn't on the last argument!", Call);
- }
- }
- // Verify that there's no metadata unless it's a direct call to an intrinsic.
- if (!IsIntrinsic) {
- for (Type *ParamTy : FTy->params()) {
- Assert(!ParamTy->isMetadataTy(),
- "Function has metadata parameter but isn't an intrinsic", Call);
- Assert(!ParamTy->isTokenTy(),
- "Function has token parameter but isn't an intrinsic", Call);
- }
- }
- // Verify that indirect calls don't return tokens.
- if (!Call.getCalledFunction()) {
- Assert(!FTy->getReturnType()->isTokenTy(),
- "Return type cannot be token for indirect call!");
- Assert(!FTy->getReturnType()->isX86_AMXTy(),
- "Return type cannot be x86_amx for indirect call!");
- }
- if (Function *F = Call.getCalledFunction())
- if (Intrinsic::ID ID = (Intrinsic::ID)F->getIntrinsicID())
- visitIntrinsicCall(ID, Call);
- // Verify that a callsite has at most one "deopt", at most one "funclet", at
- // most one "gc-transition", at most one "cfguardtarget",
- // and at most one "preallocated" operand bundle.
- bool FoundDeoptBundle = false, FoundFuncletBundle = false,
- FoundGCTransitionBundle = false, FoundCFGuardTargetBundle = false,
- FoundPreallocatedBundle = false, FoundGCLiveBundle = false,
- FoundAttachedCallBundle = false;
- for (unsigned i = 0, e = Call.getNumOperandBundles(); i < e; ++i) {
- OperandBundleUse BU = Call.getOperandBundleAt(i);
- uint32_t Tag = BU.getTagID();
- if (Tag == LLVMContext::OB_deopt) {
- Assert(!FoundDeoptBundle, "Multiple deopt operand bundles", Call);
- FoundDeoptBundle = true;
- } else if (Tag == LLVMContext::OB_gc_transition) {
- Assert(!FoundGCTransitionBundle, "Multiple gc-transition operand bundles",
- Call);
- FoundGCTransitionBundle = true;
- } else if (Tag == LLVMContext::OB_funclet) {
- Assert(!FoundFuncletBundle, "Multiple funclet operand bundles", Call);
- FoundFuncletBundle = true;
- Assert(BU.Inputs.size() == 1,
- "Expected exactly one funclet bundle operand", Call);
- Assert(isa<FuncletPadInst>(BU.Inputs.front()),
- "Funclet bundle operands should correspond to a FuncletPadInst",
- Call);
- } else if (Tag == LLVMContext::OB_cfguardtarget) {
- Assert(!FoundCFGuardTargetBundle,
- "Multiple CFGuardTarget operand bundles", Call);
- FoundCFGuardTargetBundle = true;
- Assert(BU.Inputs.size() == 1,
- "Expected exactly one cfguardtarget bundle operand", Call);
- } else if (Tag == LLVMContext::OB_preallocated) {
- Assert(!FoundPreallocatedBundle, "Multiple preallocated operand bundles",
- Call);
- FoundPreallocatedBundle = true;
- Assert(BU.Inputs.size() == 1,
- "Expected exactly one preallocated bundle operand", Call);
- auto Input = dyn_cast<IntrinsicInst>(BU.Inputs.front());
- Assert(Input &&
- Input->getIntrinsicID() == Intrinsic::call_preallocated_setup,
- "\"preallocated\" argument must be a token from "
- "llvm.call.preallocated.setup",
- Call);
- } else if (Tag == LLVMContext::OB_gc_live) {
- Assert(!FoundGCLiveBundle, "Multiple gc-live operand bundles",
- Call);
- FoundGCLiveBundle = true;
- } else if (Tag == LLVMContext::OB_clang_arc_attachedcall) {
- Assert(!FoundAttachedCallBundle,
- "Multiple \"clang.arc.attachedcall\" operand bundles", Call);
- FoundAttachedCallBundle = true;
- verifyAttachedCallBundle(Call, BU);
- }
- }
- // Verify that each inlinable callsite of a debug-info-bearing function in a
- // debug-info-bearing function has a debug location attached to it. Failure to
- // do so causes assertion failures when the inliner sets up inline scope info.
- if (Call.getFunction()->getSubprogram() && Call.getCalledFunction() &&
- Call.getCalledFunction()->getSubprogram())
- AssertDI(Call.getDebugLoc(),
- "inlinable function call in a function with "
- "debug info must have a !dbg location",
- Call);
- if (Call.isInlineAsm())
- verifyInlineAsmCall(Call);
- visitInstruction(Call);
- }
- void Verifier::verifyTailCCMustTailAttrs(const AttrBuilder &Attrs,
- StringRef Context) {
- Assert(!Attrs.contains(Attribute::InAlloca),
- Twine("inalloca attribute not allowed in ") + Context);
- Assert(!Attrs.contains(Attribute::InReg),
- Twine("inreg attribute not allowed in ") + Context);
- Assert(!Attrs.contains(Attribute::SwiftError),
- Twine("swifterror attribute not allowed in ") + Context);
- Assert(!Attrs.contains(Attribute::Preallocated),
- Twine("preallocated attribute not allowed in ") + Context);
- Assert(!Attrs.contains(Attribute::ByRef),
- Twine("byref attribute not allowed in ") + Context);
- }
- /// Two types are "congruent" if they are identical, or if they are both pointer
- /// types with different pointee types and the same address space.
- static bool isTypeCongruent(Type *L, Type *R) {
- if (L == R)
- return true;
- PointerType *PL = dyn_cast<PointerType>(L);
- PointerType *PR = dyn_cast<PointerType>(R);
- if (!PL || !PR)
- return false;
- return PL->getAddressSpace() == PR->getAddressSpace();
- }
- static AttrBuilder getParameterABIAttributes(LLVMContext& C, unsigned I, AttributeList Attrs) {
- static const Attribute::AttrKind ABIAttrs[] = {
- Attribute::StructRet, Attribute::ByVal, Attribute::InAlloca,
- Attribute::InReg, Attribute::StackAlignment, Attribute::SwiftSelf,
- Attribute::SwiftAsync, Attribute::SwiftError, Attribute::Preallocated,
- Attribute::ByRef};
- AttrBuilder Copy(C);
- for (auto AK : ABIAttrs) {
- Attribute Attr = Attrs.getParamAttrs(I).getAttribute(AK);
- if (Attr.isValid())
- Copy.addAttribute(Attr);
- }
- // `align` is ABI-affecting only in combination with `byval` or `byref`.
- if (Attrs.hasParamAttr(I, Attribute::Alignment) &&
- (Attrs.hasParamAttr(I, Attribute::ByVal) ||
- Attrs.hasParamAttr(I, Attribute::ByRef)))
- Copy.addAlignmentAttr(Attrs.getParamAlignment(I));
- return Copy;
- }
- void Verifier::verifyMustTailCall(CallInst &CI) {
- Assert(!CI.isInlineAsm(), "cannot use musttail call with inline asm", &CI);
- Function *F = CI.getParent()->getParent();
- FunctionType *CallerTy = F->getFunctionType();
- FunctionType *CalleeTy = CI.getFunctionType();
- Assert(CallerTy->isVarArg() == CalleeTy->isVarArg(),
- "cannot guarantee tail call due to mismatched varargs", &CI);
- Assert(isTypeCongruent(CallerTy->getReturnType(), CalleeTy->getReturnType()),
- "cannot guarantee tail call due to mismatched return types", &CI);
- // - The calling conventions of the caller and callee must match.
- Assert(F->getCallingConv() == CI.getCallingConv(),
- "cannot guarantee tail call due to mismatched calling conv", &CI);
- // - The call must immediately precede a :ref:`ret <i_ret>` instruction,
- // or a pointer bitcast followed by a ret instruction.
- // - The ret instruction must return the (possibly bitcasted) value
- // produced by the call or void.
- Value *RetVal = &CI;
- Instruction *Next = CI.getNextNode();
- // Handle the optional bitcast.
- if (BitCastInst *BI = dyn_cast_or_null<BitCastInst>(Next)) {
- Assert(BI->getOperand(0) == RetVal,
- "bitcast following musttail call must use the call", BI);
- RetVal = BI;
- Next = BI->getNextNode();
- }
- // Check the return.
- ReturnInst *Ret = dyn_cast_or_null<ReturnInst>(Next);
- Assert(Ret, "musttail call must precede a ret with an optional bitcast",
- &CI);
- Assert(!Ret->getReturnValue() || Ret->getReturnValue() == RetVal ||
- isa<UndefValue>(Ret->getReturnValue()),
- "musttail call result must be returned", Ret);
- AttributeList CallerAttrs = F->getAttributes();
- AttributeList CalleeAttrs = CI.getAttributes();
- if (CI.getCallingConv() == CallingConv::SwiftTail ||
- CI.getCallingConv() == CallingConv::Tail) {
- StringRef CCName =
- CI.getCallingConv() == CallingConv::Tail ? "tailcc" : "swifttailcc";
- // - Only sret, byval, swiftself, and swiftasync ABI-impacting attributes
- // are allowed in swifttailcc call
- for (unsigned I = 0, E = CallerTy->getNumParams(); I != E; ++I) {
- AttrBuilder ABIAttrs = getParameterABIAttributes(F->getContext(), I, CallerAttrs);
- SmallString<32> Context{CCName, StringRef(" musttail caller")};
- verifyTailCCMustTailAttrs(ABIAttrs, Context);
- }
- for (unsigned I = 0, E = CalleeTy->getNumParams(); I != E; ++I) {
- AttrBuilder ABIAttrs = getParameterABIAttributes(F->getContext(), I, CalleeAttrs);
- SmallString<32> Context{CCName, StringRef(" musttail callee")};
- verifyTailCCMustTailAttrs(ABIAttrs, Context);
- }
- // - Varargs functions are not allowed
- Assert(!CallerTy->isVarArg(), Twine("cannot guarantee ") + CCName +
- " tail call for varargs function");
- return;
- }
- // - The caller and callee prototypes must match. Pointer types of
- // parameters or return types may differ in pointee type, but not
- // address space.
- if (!CI.getCalledFunction() || !CI.getCalledFunction()->isIntrinsic()) {
- Assert(CallerTy->getNumParams() == CalleeTy->getNumParams(),
- "cannot guarantee tail call due to mismatched parameter counts",
- &CI);
- for (unsigned I = 0, E = CallerTy->getNumParams(); I != E; ++I) {
- Assert(
- isTypeCongruent(CallerTy->getParamType(I), CalleeTy->getParamType(I)),
- "cannot guarantee tail call due to mismatched parameter types", &CI);
- }
- }
- // - All ABI-impacting function attributes, such as sret, byval, inreg,
- // returned, preallocated, and inalloca, must match.
- for (unsigned I = 0, E = CallerTy->getNumParams(); I != E; ++I) {
- AttrBuilder CallerABIAttrs = getParameterABIAttributes(F->getContext(), I, CallerAttrs);
- AttrBuilder CalleeABIAttrs = getParameterABIAttributes(F->getContext(), I, CalleeAttrs);
- Assert(CallerABIAttrs == CalleeABIAttrs,
- "cannot guarantee tail call due to mismatched ABI impacting "
- "function attributes",
- &CI, CI.getOperand(I));
- }
- }
- void Verifier::visitCallInst(CallInst &CI) {
- visitCallBase(CI);
- if (CI.isMustTailCall())
- verifyMustTailCall(CI);
- }
- void Verifier::visitInvokeInst(InvokeInst &II) {
- visitCallBase(II);
- // Verify that the first non-PHI instruction of the unwind destination is an
- // exception handling instruction.
- Assert(
- II.getUnwindDest()->isEHPad(),
- "The unwind destination does not have an exception handling instruction!",
- &II);
- visitTerminator(II);
- }
- /// visitUnaryOperator - Check the argument to the unary operator.
- ///
- void Verifier::visitUnaryOperator(UnaryOperator &U) {
- Assert(U.getType() == U.getOperand(0)->getType(),
- "Unary operators must have same type for"
- "operands and result!",
- &U);
- switch (U.getOpcode()) {
- // Check that floating-point arithmetic operators are only used with
- // floating-point operands.
- case Instruction::FNeg:
- Assert(U.getType()->isFPOrFPVectorTy(),
- "FNeg operator only works with float types!", &U);
- break;
- default:
- llvm_unreachable("Unknown UnaryOperator opcode!");
- }
- visitInstruction(U);
- }
- /// visitBinaryOperator - Check that both arguments to the binary operator are
- /// of the same type!
- ///
- void Verifier::visitBinaryOperator(BinaryOperator &B) {
- Assert(B.getOperand(0)->getType() == B.getOperand(1)->getType(),
- "Both operands to a binary operator are not of the same type!", &B);
- switch (B.getOpcode()) {
- // Check that integer arithmetic operators are only used with
- // integral operands.
- case Instruction::Add:
- case Instruction::Sub:
- case Instruction::Mul:
- case Instruction::SDiv:
- case Instruction::UDiv:
- case Instruction::SRem:
- case Instruction::URem:
- Assert(B.getType()->isIntOrIntVectorTy(),
- "Integer arithmetic operators only work with integral types!", &B);
- Assert(B.getType() == B.getOperand(0)->getType(),
- "Integer arithmetic operators must have same type "
- "for operands and result!",
- &B);
- break;
- // Check that floating-point arithmetic operators are only used with
- // floating-point operands.
- case Instruction::FAdd:
- case Instruction::FSub:
- case Instruction::FMul:
- case Instruction::FDiv:
- case Instruction::FRem:
- Assert(B.getType()->isFPOrFPVectorTy(),
- "Floating-point arithmetic operators only work with "
- "floating-point types!",
- &B);
- Assert(B.getType() == B.getOperand(0)->getType(),
- "Floating-point arithmetic operators must have same type "
- "for operands and result!",
- &B);
- break;
- // Check that logical operators are only used with integral operands.
- case Instruction::And:
- case Instruction::Or:
- case Instruction::Xor:
- Assert(B.getType()->isIntOrIntVectorTy(),
- "Logical operators only work with integral types!", &B);
- Assert(B.getType() == B.getOperand(0)->getType(),
- "Logical operators must have same type for operands and result!",
- &B);
- break;
- case Instruction::Shl:
- case Instruction::LShr:
- case Instruction::AShr:
- Assert(B.getType()->isIntOrIntVectorTy(),
- "Shifts only work with integral types!", &B);
- Assert(B.getType() == B.getOperand(0)->getType(),
- "Shift return type must be same as operands!", &B);
- break;
- default:
- llvm_unreachable("Unknown BinaryOperator opcode!");
- }
- visitInstruction(B);
- }
- void Verifier::visitICmpInst(ICmpInst &IC) {
- // Check that the operands are the same type
- Type *Op0Ty = IC.getOperand(0)->getType();
- Type *Op1Ty = IC.getOperand(1)->getType();
- Assert(Op0Ty == Op1Ty,
- "Both operands to ICmp instruction are not of the same type!", &IC);
- // Check that the operands are the right type
- Assert(Op0Ty->isIntOrIntVectorTy() || Op0Ty->isPtrOrPtrVectorTy(),
- "Invalid operand types for ICmp instruction", &IC);
- // Check that the predicate is valid.
- Assert(IC.isIntPredicate(),
- "Invalid predicate in ICmp instruction!", &IC);
- visitInstruction(IC);
- }
- void Verifier::visitFCmpInst(FCmpInst &FC) {
- // Check that the operands are the same type
- Type *Op0Ty = FC.getOperand(0)->getType();
- Type *Op1Ty = FC.getOperand(1)->getType();
- Assert(Op0Ty == Op1Ty,
- "Both operands to FCmp instruction are not of the same type!", &FC);
- // Check that the operands are the right type
- Assert(Op0Ty->isFPOrFPVectorTy(),
- "Invalid operand types for FCmp instruction", &FC);
- // Check that the predicate is valid.
- Assert(FC.isFPPredicate(),
- "Invalid predicate in FCmp instruction!", &FC);
- visitInstruction(FC);
- }
- void Verifier::visitExtractElementInst(ExtractElementInst &EI) {
- Assert(
- ExtractElementInst::isValidOperands(EI.getOperand(0), EI.getOperand(1)),
- "Invalid extractelement operands!", &EI);
- visitInstruction(EI);
- }
- void Verifier::visitInsertElementInst(InsertElementInst &IE) {
- Assert(InsertElementInst::isValidOperands(IE.getOperand(0), IE.getOperand(1),
- IE.getOperand(2)),
- "Invalid insertelement operands!", &IE);
- visitInstruction(IE);
- }
- void Verifier::visitShuffleVectorInst(ShuffleVectorInst &SV) {
- Assert(ShuffleVectorInst::isValidOperands(SV.getOperand(0), SV.getOperand(1),
- SV.getShuffleMask()),
- "Invalid shufflevector operands!", &SV);
- visitInstruction(SV);
- }
- void Verifier::visitGetElementPtrInst(GetElementPtrInst &GEP) {
- Type *TargetTy = GEP.getPointerOperandType()->getScalarType();
- Assert(isa<PointerType>(TargetTy),
- "GEP base pointer is not a vector or a vector of pointers", &GEP);
- Assert(GEP.getSourceElementType()->isSized(), "GEP into unsized type!", &GEP);
- SmallVector<Value *, 16> Idxs(GEP.indices());
- Assert(all_of(
- Idxs, [](Value* V) { return V->getType()->isIntOrIntVectorTy(); }),
- "GEP indexes must be integers", &GEP);
- Type *ElTy =
- GetElementPtrInst::getIndexedType(GEP.getSourceElementType(), Idxs);
- Assert(ElTy, "Invalid indices for GEP pointer type!", &GEP);
- Assert(GEP.getType()->isPtrOrPtrVectorTy() &&
- GEP.getResultElementType() == ElTy,
- "GEP is not of right type for indices!", &GEP, ElTy);
- if (auto *GEPVTy = dyn_cast<VectorType>(GEP.getType())) {
- // Additional checks for vector GEPs.
- ElementCount GEPWidth = GEPVTy->getElementCount();
- if (GEP.getPointerOperandType()->isVectorTy())
- Assert(
- GEPWidth ==
- cast<VectorType>(GEP.getPointerOperandType())->getElementCount(),
- "Vector GEP result width doesn't match operand's", &GEP);
- for (Value *Idx : Idxs) {
- Type *IndexTy = Idx->getType();
- if (auto *IndexVTy = dyn_cast<VectorType>(IndexTy)) {
- ElementCount IndexWidth = IndexVTy->getElementCount();
- Assert(IndexWidth == GEPWidth, "Invalid GEP index vector width", &GEP);
- }
- Assert(IndexTy->isIntOrIntVectorTy(),
- "All GEP indices should be of integer type");
- }
- }
- if (auto *PTy = dyn_cast<PointerType>(GEP.getType())) {
- Assert(GEP.getAddressSpace() == PTy->getAddressSpace(),
- "GEP address space doesn't match type", &GEP);
- }
- visitInstruction(GEP);
- }
- static bool isContiguous(const ConstantRange &A, const ConstantRange &B) {
- return A.getUpper() == B.getLower() || A.getLower() == B.getUpper();
- }
- void Verifier::visitRangeMetadata(Instruction &I, MDNode *Range, Type *Ty) {
- assert(Range && Range == I.getMetadata(LLVMContext::MD_range) &&
- "precondition violation");
- unsigned NumOperands = Range->getNumOperands();
- Assert(NumOperands % 2 == 0, "Unfinished range!", Range);
- unsigned NumRanges = NumOperands / 2;
- Assert(NumRanges >= 1, "It should have at least one range!", Range);
- ConstantRange LastRange(1, true); // Dummy initial value
- for (unsigned i = 0; i < NumRanges; ++i) {
- ConstantInt *Low =
- mdconst::dyn_extract<ConstantInt>(Range->getOperand(2 * i));
- Assert(Low, "The lower limit must be an integer!", Low);
- ConstantInt *High =
- mdconst::dyn_extract<ConstantInt>(Range->getOperand(2 * i + 1));
- Assert(High, "The upper limit must be an integer!", High);
- Assert(High->getType() == Low->getType() && High->getType() == Ty,
- "Range types must match instruction type!", &I);
- APInt HighV = High->getValue();
- APInt LowV = Low->getValue();
- ConstantRange CurRange(LowV, HighV);
- Assert(!CurRange.isEmptySet() && !CurRange.isFullSet(),
- "Range must not be empty!", Range);
- if (i != 0) {
- Assert(CurRange.intersectWith(LastRange).isEmptySet(),
- "Intervals are overlapping", Range);
- Assert(LowV.sgt(LastRange.getLower()), "Intervals are not in order",
- Range);
- Assert(!isContiguous(CurRange, LastRange), "Intervals are contiguous",
- Range);
- }
- LastRange = ConstantRange(LowV, HighV);
- }
- if (NumRanges > 2) {
- APInt FirstLow =
- mdconst::dyn_extract<ConstantInt>(Range->getOperand(0))->getValue();
- APInt FirstHigh =
- mdconst::dyn_extract<ConstantInt>(Range->getOperand(1))->getValue();
- ConstantRange FirstRange(FirstLow, FirstHigh);
- Assert(FirstRange.intersectWith(LastRange).isEmptySet(),
- "Intervals are overlapping", Range);
- Assert(!isContiguous(FirstRange, LastRange), "Intervals are contiguous",
- Range);
- }
- }
- void Verifier::checkAtomicMemAccessSize(Type *Ty, const Instruction *I) {
- unsigned Size = DL.getTypeSizeInBits(Ty);
- Assert(Size >= 8, "atomic memory access' size must be byte-sized", Ty, I);
- Assert(!(Size & (Size - 1)),
- "atomic memory access' operand must have a power-of-two size", Ty, I);
- }
- void Verifier::visitLoadInst(LoadInst &LI) {
- PointerType *PTy = dyn_cast<PointerType>(LI.getOperand(0)->getType());
- Assert(PTy, "Load operand must be a pointer.", &LI);
- Type *ElTy = LI.getType();
- if (MaybeAlign A = LI.getAlign()) {
- Assert(A->value() <= Value::MaximumAlignment,
- "huge alignment values are unsupported", &LI);
- }
- Assert(ElTy->isSized(), "loading unsized types is not allowed", &LI);
- if (LI.isAtomic()) {
- Assert(LI.getOrdering() != AtomicOrdering::Release &&
- LI.getOrdering() != AtomicOrdering::AcquireRelease,
- "Load cannot have Release ordering", &LI);
- Assert(ElTy->isIntOrPtrTy() || ElTy->isFloatingPointTy(),
- "atomic load operand must have integer, pointer, or floating point "
- "type!",
- ElTy, &LI);
- checkAtomicMemAccessSize(ElTy, &LI);
- } else {
- Assert(LI.getSyncScopeID() == SyncScope::System,
- "Non-atomic load cannot have SynchronizationScope specified", &LI);
- }
- visitInstruction(LI);
- }
- void Verifier::visitStoreInst(StoreInst &SI) {
- PointerType *PTy = dyn_cast<PointerType>(SI.getOperand(1)->getType());
- Assert(PTy, "Store operand must be a pointer.", &SI);
- Type *ElTy = SI.getOperand(0)->getType();
- Assert(PTy->isOpaqueOrPointeeTypeMatches(ElTy),
- "Stored value type does not match pointer operand type!", &SI, ElTy);
- if (MaybeAlign A = SI.getAlign()) {
- Assert(A->value() <= Value::MaximumAlignment,
- "huge alignment values are unsupported", &SI);
- }
- Assert(ElTy->isSized(), "storing unsized types is not allowed", &SI);
- if (SI.isAtomic()) {
- Assert(SI.getOrdering() != AtomicOrdering::Acquire &&
- SI.getOrdering() != AtomicOrdering::AcquireRelease,
- "Store cannot have Acquire ordering", &SI);
- Assert(ElTy->isIntOrPtrTy() || ElTy->isFloatingPointTy(),
- "atomic store operand must have integer, pointer, or floating point "
- "type!",
- ElTy, &SI);
- checkAtomicMemAccessSize(ElTy, &SI);
- } else {
- Assert(SI.getSyncScopeID() == SyncScope::System,
- "Non-atomic store cannot have SynchronizationScope specified", &SI);
- }
- visitInstruction(SI);
- }
- /// Check that SwiftErrorVal is used as a swifterror argument in CS.
- void Verifier::verifySwiftErrorCall(CallBase &Call,
- const Value *SwiftErrorVal) {
- for (const auto &I : llvm::enumerate(Call.args())) {
- if (I.value() == SwiftErrorVal) {
- Assert(Call.paramHasAttr(I.index(), Attribute::SwiftError),
- "swifterror value when used in a callsite should be marked "
- "with swifterror attribute",
- SwiftErrorVal, Call);
- }
- }
- }
- void Verifier::verifySwiftErrorValue(const Value *SwiftErrorVal) {
- // Check that swifterror value is only used by loads, stores, or as
- // a swifterror argument.
- for (const User *U : SwiftErrorVal->users()) {
- Assert(isa<LoadInst>(U) || isa<StoreInst>(U) || isa<CallInst>(U) ||
- isa<InvokeInst>(U),
- "swifterror value can only be loaded and stored from, or "
- "as a swifterror argument!",
- SwiftErrorVal, U);
- // If it is used by a store, check it is the second operand.
- if (auto StoreI = dyn_cast<StoreInst>(U))
- Assert(StoreI->getOperand(1) == SwiftErrorVal,
- "swifterror value should be the second operand when used "
- "by stores", SwiftErrorVal, U);
- if (auto *Call = dyn_cast<CallBase>(U))
- verifySwiftErrorCall(*const_cast<CallBase *>(Call), SwiftErrorVal);
- }
- }
- void Verifier::visitAllocaInst(AllocaInst &AI) {
- SmallPtrSet<Type*, 4> Visited;
- Assert(AI.getAllocatedType()->isSized(&Visited),
- "Cannot allocate unsized type", &AI);
- Assert(AI.getArraySize()->getType()->isIntegerTy(),
- "Alloca array size must have integer type", &AI);
- if (MaybeAlign A = AI.getAlign()) {
- Assert(A->value() <= Value::MaximumAlignment,
- "huge alignment values are unsupported", &AI);
- }
- if (AI.isSwiftError()) {
- verifySwiftErrorValue(&AI);
- }
- visitInstruction(AI);
- }
- void Verifier::visitAtomicCmpXchgInst(AtomicCmpXchgInst &CXI) {
- Type *ElTy = CXI.getOperand(1)->getType();
- Assert(ElTy->isIntOrPtrTy(),
- "cmpxchg operand must have integer or pointer type", ElTy, &CXI);
- checkAtomicMemAccessSize(ElTy, &CXI);
- visitInstruction(CXI);
- }
- void Verifier::visitAtomicRMWInst(AtomicRMWInst &RMWI) {
- Assert(RMWI.getOrdering() != AtomicOrdering::Unordered,
- "atomicrmw instructions cannot be unordered.", &RMWI);
- auto Op = RMWI.getOperation();
- Type *ElTy = RMWI.getOperand(1)->getType();
- if (Op == AtomicRMWInst::Xchg) {
- Assert(ElTy->isIntegerTy() || ElTy->isFloatingPointTy(), "atomicrmw " +
- AtomicRMWInst::getOperationName(Op) +
- " operand must have integer or floating point type!",
- &RMWI, ElTy);
- } else if (AtomicRMWInst::isFPOperation(Op)) {
- Assert(ElTy->isFloatingPointTy(), "atomicrmw " +
- AtomicRMWInst::getOperationName(Op) +
- " operand must have floating point type!",
- &RMWI, ElTy);
- } else {
- Assert(ElTy->isIntegerTy(), "atomicrmw " +
- AtomicRMWInst::getOperationName(Op) +
- " operand must have integer type!",
- &RMWI, ElTy);
- }
- checkAtomicMemAccessSize(ElTy, &RMWI);
- Assert(AtomicRMWInst::FIRST_BINOP <= Op && Op <= AtomicRMWInst::LAST_BINOP,
- "Invalid binary operation!", &RMWI);
- visitInstruction(RMWI);
- }
- void Verifier::visitFenceInst(FenceInst &FI) {
- const AtomicOrdering Ordering = FI.getOrdering();
- Assert(Ordering == AtomicOrdering::Acquire ||
- Ordering == AtomicOrdering::Release ||
- Ordering == AtomicOrdering::AcquireRelease ||
- Ordering == AtomicOrdering::SequentiallyConsistent,
- "fence instructions may only have acquire, release, acq_rel, or "
- "seq_cst ordering.",
- &FI);
- visitInstruction(FI);
- }
- void Verifier::visitExtractValueInst(ExtractValueInst &EVI) {
- Assert(ExtractValueInst::getIndexedType(EVI.getAggregateOperand()->getType(),
- EVI.getIndices()) == EVI.getType(),
- "Invalid ExtractValueInst operands!", &EVI);
- visitInstruction(EVI);
- }
- void Verifier::visitInsertValueInst(InsertValueInst &IVI) {
- Assert(ExtractValueInst::getIndexedType(IVI.getAggregateOperand()->getType(),
- IVI.getIndices()) ==
- IVI.getOperand(1)->getType(),
- "Invalid InsertValueInst operands!", &IVI);
- visitInstruction(IVI);
- }
- static Value *getParentPad(Value *EHPad) {
- if (auto *FPI = dyn_cast<FuncletPadInst>(EHPad))
- return FPI->getParentPad();
- return cast<CatchSwitchInst>(EHPad)->getParentPad();
- }
- void Verifier::visitEHPadPredecessors(Instruction &I) {
- assert(I.isEHPad());
- BasicBlock *BB = I.getParent();
- Function *F = BB->getParent();
- Assert(BB != &F->getEntryBlock(), "EH pad cannot be in entry block.", &I);
- if (auto *LPI = dyn_cast<LandingPadInst>(&I)) {
- // The landingpad instruction defines its parent as a landing pad block. The
- // landing pad block may be branched to only by the unwind edge of an
- // invoke.
- for (BasicBlock *PredBB : predecessors(BB)) {
- const auto *II = dyn_cast<InvokeInst>(PredBB->getTerminator());
- Assert(II && II->getUnwindDest() == BB && II->getNormalDest() != BB,
- "Block containing LandingPadInst must be jumped to "
- "only by the unwind edge of an invoke.",
- LPI);
- }
- return;
- }
- if (auto *CPI = dyn_cast<CatchPadInst>(&I)) {
- if (!pred_empty(BB))
- Assert(BB->getUniquePredecessor() == CPI->getCatchSwitch()->getParent(),
- "Block containg CatchPadInst must be jumped to "
- "only by its catchswitch.",
- CPI);
- Assert(BB != CPI->getCatchSwitch()->getUnwindDest(),
- "Catchswitch cannot unwind to one of its catchpads",
- CPI->getCatchSwitch(), CPI);
- return;
- }
- // Verify that each pred has a legal terminator with a legal to/from EH
- // pad relationship.
- Instruction *ToPad = &I;
- Value *ToPadParent = getParentPad(ToPad);
- for (BasicBlock *PredBB : predecessors(BB)) {
- Instruction *TI = PredBB->getTerminator();
- Value *FromPad;
- if (auto *II = dyn_cast<InvokeInst>(TI)) {
- Assert(II->getUnwindDest() == BB && II->getNormalDest() != BB,
- "EH pad must be jumped to via an unwind edge", ToPad, II);
- if (auto Bundle = II->getOperandBundle(LLVMContext::OB_funclet))
- FromPad = Bundle->Inputs[0];
- else
- FromPad = ConstantTokenNone::get(II->getContext());
- } else if (auto *CRI = dyn_cast<CleanupReturnInst>(TI)) {
- FromPad = CRI->getOperand(0);
- Assert(FromPad != ToPadParent, "A cleanupret must exit its cleanup", CRI);
- } else if (auto *CSI = dyn_cast<CatchSwitchInst>(TI)) {
- FromPad = CSI;
- } else {
- Assert(false, "EH pad must be jumped to via an unwind edge", ToPad, TI);
- }
- // The edge may exit from zero or more nested pads.
- SmallSet<Value *, 8> Seen;
- for (;; FromPad = getParentPad(FromPad)) {
- Assert(FromPad != ToPad,
- "EH pad cannot handle exceptions raised within it", FromPad, TI);
- if (FromPad == ToPadParent) {
- // This is a legal unwind edge.
- break;
- }
- Assert(!isa<ConstantTokenNone>(FromPad),
- "A single unwind edge may only enter one EH pad", TI);
- Assert(Seen.insert(FromPad).second,
- "EH pad jumps through a cycle of pads", FromPad);
- // This will be diagnosed on the corresponding instruction already. We
- // need the extra check here to make sure getParentPad() works.
- Assert(isa<FuncletPadInst>(FromPad) || isa<CatchSwitchInst>(FromPad),
- "Parent pad must be catchpad/cleanuppad/catchswitch", TI);
- }
- }
- }
- void Verifier::visitLandingPadInst(LandingPadInst &LPI) {
- // The landingpad instruction is ill-formed if it doesn't have any clauses and
- // isn't a cleanup.
- Assert(LPI.getNumClauses() > 0 || LPI.isCleanup(),
- "LandingPadInst needs at least one clause or to be a cleanup.", &LPI);
- visitEHPadPredecessors(LPI);
- if (!LandingPadResultTy)
- LandingPadResultTy = LPI.getType();
- else
- Assert(LandingPadResultTy == LPI.getType(),
- "The landingpad instruction should have a consistent result type "
- "inside a function.",
- &LPI);
- Function *F = LPI.getParent()->getParent();
- Assert(F->hasPersonalityFn(),
- "LandingPadInst needs to be in a function with a personality.", &LPI);
- // The landingpad instruction must be the first non-PHI instruction in the
- // block.
- Assert(LPI.getParent()->getLandingPadInst() == &LPI,
- "LandingPadInst not the first non-PHI instruction in the block.",
- &LPI);
- for (unsigned i = 0, e = LPI.getNumClauses(); i < e; ++i) {
- Constant *Clause = LPI.getClause(i);
- if (LPI.isCatch(i)) {
- Assert(isa<PointerType>(Clause->getType()),
- "Catch operand does not have pointer type!", &LPI);
- } else {
- Assert(LPI.isFilter(i), "Clause is neither catch nor filter!", &LPI);
- Assert(isa<ConstantArray>(Clause) || isa<ConstantAggregateZero>(Clause),
- "Filter operand is not an array of constants!", &LPI);
- }
- }
- visitInstruction(LPI);
- }
- void Verifier::visitResumeInst(ResumeInst &RI) {
- Assert(RI.getFunction()->hasPersonalityFn(),
- "ResumeInst needs to be in a function with a personality.", &RI);
- if (!LandingPadResultTy)
- LandingPadResultTy = RI.getValue()->getType();
- else
- Assert(LandingPadResultTy == RI.getValue()->getType(),
- "The resume instruction should have a consistent result type "
- "inside a function.",
- &RI);
- visitTerminator(RI);
- }
- void Verifier::visitCatchPadInst(CatchPadInst &CPI) {
- BasicBlock *BB = CPI.getParent();
- Function *F = BB->getParent();
- Assert(F->hasPersonalityFn(),
- "CatchPadInst needs to be in a function with a personality.", &CPI);
- Assert(isa<CatchSwitchInst>(CPI.getParentPad()),
- "CatchPadInst needs to be directly nested in a CatchSwitchInst.",
- CPI.getParentPad());
- // The catchpad instruction must be the first non-PHI instruction in the
- // block.
- Assert(BB->getFirstNonPHI() == &CPI,
- "CatchPadInst not the first non-PHI instruction in the block.", &CPI);
- visitEHPadPredecessors(CPI);
- visitFuncletPadInst(CPI);
- }
- void Verifier::visitCatchReturnInst(CatchReturnInst &CatchReturn) {
- Assert(isa<CatchPadInst>(CatchReturn.getOperand(0)),
- "CatchReturnInst needs to be provided a CatchPad", &CatchReturn,
- CatchReturn.getOperand(0));
- visitTerminator(CatchReturn);
- }
- void Verifier::visitCleanupPadInst(CleanupPadInst &CPI) {
- BasicBlock *BB = CPI.getParent();
- Function *F = BB->getParent();
- Assert(F->hasPersonalityFn(),
- "CleanupPadInst needs to be in a function with a personality.", &CPI);
- // The cleanuppad instruction must be the first non-PHI instruction in the
- // block.
- Assert(BB->getFirstNonPHI() == &CPI,
- "CleanupPadInst not the first non-PHI instruction in the block.",
- &CPI);
- auto *ParentPad = CPI.getParentPad();
- Assert(isa<ConstantTokenNone>(ParentPad) || isa<FuncletPadInst>(ParentPad),
- "CleanupPadInst has an invalid parent.", &CPI);
- visitEHPadPredecessors(CPI);
- visitFuncletPadInst(CPI);
- }
- void Verifier::visitFuncletPadInst(FuncletPadInst &FPI) {
- User *FirstUser = nullptr;
- Value *FirstUnwindPad = nullptr;
- SmallVector<FuncletPadInst *, 8> Worklist({&FPI});
- SmallSet<FuncletPadInst *, 8> Seen;
- while (!Worklist.empty()) {
- FuncletPadInst *CurrentPad = Worklist.pop_back_val();
- Assert(Seen.insert(CurrentPad).second,
- "FuncletPadInst must not be nested within itself", CurrentPad);
- Value *UnresolvedAncestorPad = nullptr;
- for (User *U : CurrentPad->users()) {
- BasicBlock *UnwindDest;
- if (auto *CRI = dyn_cast<CleanupReturnInst>(U)) {
- UnwindDest = CRI->getUnwindDest();
- } else if (auto *CSI = dyn_cast<CatchSwitchInst>(U)) {
- // We allow catchswitch unwind to caller to nest
- // within an outer pad that unwinds somewhere else,
- // because catchswitch doesn't have a nounwind variant.
- // See e.g. SimplifyCFGOpt::SimplifyUnreachable.
- if (CSI->unwindsToCaller())
- continue;
- UnwindDest = CSI->getUnwindDest();
- } else if (auto *II = dyn_cast<InvokeInst>(U)) {
- UnwindDest = II->getUnwindDest();
- } else if (isa<CallInst>(U)) {
- // Calls which don't unwind may be found inside funclet
- // pads that unwind somewhere else. We don't *require*
- // such calls to be annotated nounwind.
- continue;
- } else if (auto *CPI = dyn_cast<CleanupPadInst>(U)) {
- // The unwind dest for a cleanup can only be found by
- // recursive search. Add it to the worklist, and we'll
- // search for its first use that determines where it unwinds.
- Worklist.push_back(CPI);
- continue;
- } else {
- Assert(isa<CatchReturnInst>(U), "Bogus funclet pad use", U);
- continue;
- }
- Value *UnwindPad;
- bool ExitsFPI;
- if (UnwindDest) {
- UnwindPad = UnwindDest->getFirstNonPHI();
- if (!cast<Instruction>(UnwindPad)->isEHPad())
- continue;
- Value *UnwindParent = getParentPad(UnwindPad);
- // Ignore unwind edges that don't exit CurrentPad.
- if (UnwindParent == CurrentPad)
- continue;
- // Determine whether the original funclet pad is exited,
- // and if we are scanning nested pads determine how many
- // of them are exited so we can stop searching their
- // children.
- Value *ExitedPad = CurrentPad;
- ExitsFPI = false;
- do {
- if (ExitedPad == &FPI) {
- ExitsFPI = true;
- // Now we can resolve any ancestors of CurrentPad up to
- // FPI, but not including FPI since we need to make sure
- // to check all direct users of FPI for consistency.
- UnresolvedAncestorPad = &FPI;
- break;
- }
- Value *ExitedParent = getParentPad(ExitedPad);
- if (ExitedParent == UnwindParent) {
- // ExitedPad is the ancestor-most pad which this unwind
- // edge exits, so we can resolve up to it, meaning that
- // ExitedParent is the first ancestor still unresolved.
- UnresolvedAncestorPad = ExitedParent;
- break;
- }
- ExitedPad = ExitedParent;
- } while (!isa<ConstantTokenNone>(ExitedPad));
- } else {
- // Unwinding to caller exits all pads.
- UnwindPad = ConstantTokenNone::get(FPI.getContext());
- ExitsFPI = true;
- UnresolvedAncestorPad = &FPI;
- }
- if (ExitsFPI) {
- // This unwind edge exits FPI. Make sure it agrees with other
- // such edges.
- if (FirstUser) {
- Assert(UnwindPad == FirstUnwindPad, "Unwind edges out of a funclet "
- "pad must have the same unwind "
- "dest",
- &FPI, U, FirstUser);
- } else {
- FirstUser = U;
- FirstUnwindPad = UnwindPad;
- // Record cleanup sibling unwinds for verifySiblingFuncletUnwinds
- if (isa<CleanupPadInst>(&FPI) && !isa<ConstantTokenNone>(UnwindPad) &&
- getParentPad(UnwindPad) == getParentPad(&FPI))
- SiblingFuncletInfo[&FPI] = cast<Instruction>(U);
- }
- }
- // Make sure we visit all uses of FPI, but for nested pads stop as
- // soon as we know where they unwind to.
- if (CurrentPad != &FPI)
- break;
- }
- if (UnresolvedAncestorPad) {
- if (CurrentPad == UnresolvedAncestorPad) {
- // When CurrentPad is FPI itself, we don't mark it as resolved even if
- // we've found an unwind edge that exits it, because we need to verify
- // all direct uses of FPI.
- assert(CurrentPad == &FPI);
- continue;
- }
- // Pop off the worklist any nested pads that we've found an unwind
- // destination for. The pads on the worklist are the uncles,
- // great-uncles, etc. of CurrentPad. We've found an unwind destination
- // for all ancestors of CurrentPad up to but not including
- // UnresolvedAncestorPad.
- Value *ResolvedPad = CurrentPad;
- while (!Worklist.empty()) {
- Value *UnclePad = Worklist.back();
- Value *AncestorPad = getParentPad(UnclePad);
- // Walk ResolvedPad up the ancestor list until we either find the
- // uncle's parent or the last resolved ancestor.
- while (ResolvedPad != AncestorPad) {
- Value *ResolvedParent = getParentPad(ResolvedPad);
- if (ResolvedParent == UnresolvedAncestorPad) {
- break;
- }
- ResolvedPad = ResolvedParent;
- }
- // If the resolved ancestor search didn't find the uncle's parent,
- // then the uncle is not yet resolved.
- if (ResolvedPad != AncestorPad)
- break;
- // This uncle is resolved, so pop it from the worklist.
- Worklist.pop_back();
- }
- }
- }
- if (FirstUnwindPad) {
- if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(FPI.getParentPad())) {
- BasicBlock *SwitchUnwindDest = CatchSwitch->getUnwindDest();
- Value *SwitchUnwindPad;
- if (SwitchUnwindDest)
- SwitchUnwindPad = SwitchUnwindDest->getFirstNonPHI();
- else
- SwitchUnwindPad = ConstantTokenNone::get(FPI.getContext());
- Assert(SwitchUnwindPad == FirstUnwindPad,
- "Unwind edges out of a catch must have the same unwind dest as "
- "the parent catchswitch",
- &FPI, FirstUser, CatchSwitch);
- }
- }
- visitInstruction(FPI);
- }
- void Verifier::visitCatchSwitchInst(CatchSwitchInst &CatchSwitch) {
- BasicBlock *BB = CatchSwitch.getParent();
- Function *F = BB->getParent();
- Assert(F->hasPersonalityFn(),
- "CatchSwitchInst needs to be in a function with a personality.",
- &CatchSwitch);
- // The catchswitch instruction must be the first non-PHI instruction in the
- // block.
- Assert(BB->getFirstNonPHI() == &CatchSwitch,
- "CatchSwitchInst not the first non-PHI instruction in the block.",
- &CatchSwitch);
- auto *ParentPad = CatchSwitch.getParentPad();
- Assert(isa<ConstantTokenNone>(ParentPad) || isa<FuncletPadInst>(ParentPad),
- "CatchSwitchInst has an invalid parent.", ParentPad);
- if (BasicBlock *UnwindDest = CatchSwitch.getUnwindDest()) {
- Instruction *I = UnwindDest->getFirstNonPHI();
- Assert(I->isEHPad() && !isa<LandingPadInst>(I),
- "CatchSwitchInst must unwind to an EH block which is not a "
- "landingpad.",
- &CatchSwitch);
- // Record catchswitch sibling unwinds for verifySiblingFuncletUnwinds
- if (getParentPad(I) == ParentPad)
- SiblingFuncletInfo[&CatchSwitch] = &CatchSwitch;
- }
- Assert(CatchSwitch.getNumHandlers() != 0,
- "CatchSwitchInst cannot have empty handler list", &CatchSwitch);
- for (BasicBlock *Handler : CatchSwitch.handlers()) {
- Assert(isa<CatchPadInst>(Handler->getFirstNonPHI()),
- "CatchSwitchInst handlers must be catchpads", &CatchSwitch, Handler);
- }
- visitEHPadPredecessors(CatchSwitch);
- visitTerminator(CatchSwitch);
- }
- void Verifier::visitCleanupReturnInst(CleanupReturnInst &CRI) {
- Assert(isa<CleanupPadInst>(CRI.getOperand(0)),
- "CleanupReturnInst needs to be provided a CleanupPad", &CRI,
- CRI.getOperand(0));
- if (BasicBlock *UnwindDest = CRI.getUnwindDest()) {
- Instruction *I = UnwindDest->getFirstNonPHI();
- Assert(I->isEHPad() && !isa<LandingPadInst>(I),
- "CleanupReturnInst must unwind to an EH block which is not a "
- "landingpad.",
- &CRI);
- }
- visitTerminator(CRI);
- }
- void Verifier::verifyDominatesUse(Instruction &I, unsigned i) {
- Instruction *Op = cast<Instruction>(I.getOperand(i));
- // If the we have an invalid invoke, don't try to compute the dominance.
- // We already reject it in the invoke specific checks and the dominance
- // computation doesn't handle multiple edges.
- if (InvokeInst *II = dyn_cast<InvokeInst>(Op)) {
- if (II->getNormalDest() == II->getUnwindDest())
- return;
- }
- // Quick check whether the def has already been encountered in the same block.
- // PHI nodes are not checked to prevent accepting preceding PHIs, because PHI
- // uses are defined to happen on the incoming edge, not at the instruction.
- //
- // FIXME: If this operand is a MetadataAsValue (wrapping a LocalAsMetadata)
- // wrapping an SSA value, assert that we've already encountered it. See
- // related FIXME in Mapper::mapLocalAsMetadata in ValueMapper.cpp.
- if (!isa<PHINode>(I) && InstsInThisBlock.count(Op))
- return;
- const Use &U = I.getOperandUse(i);
- Assert(DT.dominates(Op, U),
- "Instruction does not dominate all uses!", Op, &I);
- }
- void Verifier::visitDereferenceableMetadata(Instruction& I, MDNode* MD) {
- Assert(I.getType()->isPointerTy(), "dereferenceable, dereferenceable_or_null "
- "apply only to pointer types", &I);
- Assert((isa<LoadInst>(I) || isa<IntToPtrInst>(I)),
- "dereferenceable, dereferenceable_or_null apply only to load"
- " and inttoptr instructions, use attributes for calls or invokes", &I);
- Assert(MD->getNumOperands() == 1, "dereferenceable, dereferenceable_or_null "
- "take one operand!", &I);
- ConstantInt *CI = mdconst::dyn_extract<ConstantInt>(MD->getOperand(0));
- Assert(CI && CI->getType()->isIntegerTy(64), "dereferenceable, "
- "dereferenceable_or_null metadata value must be an i64!", &I);
- }
- void Verifier::visitProfMetadata(Instruction &I, MDNode *MD) {
- Assert(MD->getNumOperands() >= 2,
- "!prof annotations should have no less than 2 operands", MD);
- // Check first operand.
- Assert(MD->getOperand(0) != nullptr, "first operand should not be null", MD);
- Assert(isa<MDString>(MD->getOperand(0)),
- "expected string with name of the !prof annotation", MD);
- MDString *MDS = cast<MDString>(MD->getOperand(0));
- StringRef ProfName = MDS->getString();
- // Check consistency of !prof branch_weights metadata.
- if (ProfName.equals("branch_weights")) {
- if (isa<InvokeInst>(&I)) {
- Assert(MD->getNumOperands() == 2 || MD->getNumOperands() == 3,
- "Wrong number of InvokeInst branch_weights operands", MD);
- } else {
- unsigned ExpectedNumOperands = 0;
- if (BranchInst *BI = dyn_cast<BranchInst>(&I))
- ExpectedNumOperands = BI->getNumSuccessors();
- else if (SwitchInst *SI = dyn_cast<SwitchInst>(&I))
- ExpectedNumOperands = SI->getNumSuccessors();
- else if (isa<CallInst>(&I))
- ExpectedNumOperands = 1;
- else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(&I))
- ExpectedNumOperands = IBI->getNumDestinations();
- else if (isa<SelectInst>(&I))
- ExpectedNumOperands = 2;
- else
- CheckFailed("!prof branch_weights are not allowed for this instruction",
- MD);
- Assert(MD->getNumOperands() == 1 + ExpectedNumOperands,
- "Wrong number of operands", MD);
- }
- for (unsigned i = 1; i < MD->getNumOperands(); ++i) {
- auto &MDO = MD->getOperand(i);
- Assert(MDO, "second operand should not be null", MD);
- Assert(mdconst::dyn_extract<ConstantInt>(MDO),
- "!prof brunch_weights operand is not a const int");
- }
- }
- }
- void Verifier::visitAnnotationMetadata(MDNode *Annotation) {
- Assert(isa<MDTuple>(Annotation), "annotation must be a tuple");
- Assert(Annotation->getNumOperands() >= 1,
- "annotation must have at least one operand");
- for (const MDOperand &Op : Annotation->operands())
- Assert(isa<MDString>(Op.get()), "operands must be strings");
- }
- void Verifier::visitAliasScopeMetadata(const MDNode *MD) {
- unsigned NumOps = MD->getNumOperands();
- Assert(NumOps >= 2 && NumOps <= 3, "scope must have two or three operands",
- MD);
- Assert(MD->getOperand(0).get() == MD || isa<MDString>(MD->getOperand(0)),
- "first scope operand must be self-referential or string", MD);
- if (NumOps == 3)
- Assert(isa<MDString>(MD->getOperand(2)),
- "third scope operand must be string (if used)", MD);
- MDNode *Domain = dyn_cast<MDNode>(MD->getOperand(1));
- Assert(Domain != nullptr, "second scope operand must be MDNode", MD);
- unsigned NumDomainOps = Domain->getNumOperands();
- Assert(NumDomainOps >= 1 && NumDomainOps <= 2,
- "domain must have one or two operands", Domain);
- Assert(Domain->getOperand(0).get() == Domain ||
- isa<MDString>(Domain->getOperand(0)),
- "first domain operand must be self-referential or string", Domain);
- if (NumDomainOps == 2)
- Assert(isa<MDString>(Domain->getOperand(1)),
- "second domain operand must be string (if used)", Domain);
- }
- void Verifier::visitAliasScopeListMetadata(const MDNode *MD) {
- for (const MDOperand &Op : MD->operands()) {
- const MDNode *OpMD = dyn_cast<MDNode>(Op);
- Assert(OpMD != nullptr, "scope list must consist of MDNodes", MD);
- visitAliasScopeMetadata(OpMD);
- }
- }
- /// verifyInstruction - Verify that an instruction is well formed.
- ///
- void Verifier::visitInstruction(Instruction &I) {
- BasicBlock *BB = I.getParent();
- Assert(BB, "Instruction not embedded in basic block!", &I);
- if (!isa<PHINode>(I)) { // Check that non-phi nodes are not self referential
- for (User *U : I.users()) {
- Assert(U != (User *)&I || !DT.isReachableFromEntry(BB),
- "Only PHI nodes may reference their own value!", &I);
- }
- }
- // Check that void typed values don't have names
- Assert(!I.getType()->isVoidTy() || !I.hasName(),
- "Instruction has a name, but provides a void value!", &I);
- // Check that the return value of the instruction is either void or a legal
- // value type.
- Assert(I.getType()->isVoidTy() || I.getType()->isFirstClassType(),
- "Instruction returns a non-scalar type!", &I);
- // Check that the instruction doesn't produce metadata. Calls are already
- // checked against the callee type.
- Assert(!I.getType()->isMetadataTy() || isa<CallInst>(I) || isa<InvokeInst>(I),
- "Invalid use of metadata!", &I);
- // Check that all uses of the instruction, if they are instructions
- // themselves, actually have parent basic blocks. If the use is not an
- // instruction, it is an error!
- for (Use &U : I.uses()) {
- if (Instruction *Used = dyn_cast<Instruction>(U.getUser()))
- Assert(Used->getParent() != nullptr,
- "Instruction referencing"
- " instruction not embedded in a basic block!",
- &I, Used);
- else {
- CheckFailed("Use of instruction is not an instruction!", U);
- return;
- }
- }
- // Get a pointer to the call base of the instruction if it is some form of
- // call.
- const CallBase *CBI = dyn_cast<CallBase>(&I);
- for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
- Assert(I.getOperand(i) != nullptr, "Instruction has null operand!", &I);
- // Check to make sure that only first-class-values are operands to
- // instructions.
- if (!I.getOperand(i)->getType()->isFirstClassType()) {
- Assert(false, "Instruction operands must be first-class values!", &I);
- }
- if (Function *F = dyn_cast<Function>(I.getOperand(i))) {
- // This code checks whether the function is used as the operand of a
- // clang_arc_attachedcall operand bundle.
- auto IsAttachedCallOperand = [](Function *F, const CallBase *CBI,
- int Idx) {
- return CBI && CBI->isOperandBundleOfType(
- LLVMContext::OB_clang_arc_attachedcall, Idx);
- };
- // Check to make sure that the "address of" an intrinsic function is never
- // taken. Ignore cases where the address of the intrinsic function is used
- // as the argument of operand bundle "clang.arc.attachedcall" as those
- // cases are handled in verifyAttachedCallBundle.
- Assert((!F->isIntrinsic() ||
- (CBI && &CBI->getCalledOperandUse() == &I.getOperandUse(i)) ||
- IsAttachedCallOperand(F, CBI, i)),
- "Cannot take the address of an intrinsic!", &I);
- Assert(
- !F->isIntrinsic() || isa<CallInst>(I) ||
- F->getIntrinsicID() == Intrinsic::donothing ||
- F->getIntrinsicID() == Intrinsic::seh_try_begin ||
- F->getIntrinsicID() == Intrinsic::seh_try_end ||
- F->getIntrinsicID() == Intrinsic::seh_scope_begin ||
- F->getIntrinsicID() == Intrinsic::seh_scope_end ||
- F->getIntrinsicID() == Intrinsic::coro_resume ||
- F->getIntrinsicID() == Intrinsic::coro_destroy ||
- F->getIntrinsicID() == Intrinsic::experimental_patchpoint_void ||
- F->getIntrinsicID() == Intrinsic::experimental_patchpoint_i64 ||
- F->getIntrinsicID() == Intrinsic::experimental_gc_statepoint ||
- F->getIntrinsicID() == Intrinsic::wasm_rethrow ||
- IsAttachedCallOperand(F, CBI, i),
- "Cannot invoke an intrinsic other than donothing, patchpoint, "
- "statepoint, coro_resume, coro_destroy or clang.arc.attachedcall",
- &I);
- Assert(F->getParent() == &M, "Referencing function in another module!",
- &I, &M, F, F->getParent());
- } else if (BasicBlock *OpBB = dyn_cast<BasicBlock>(I.getOperand(i))) {
- Assert(OpBB->getParent() == BB->getParent(),
- "Referring to a basic block in another function!", &I);
- } else if (Argument *OpArg = dyn_cast<Argument>(I.getOperand(i))) {
- Assert(OpArg->getParent() == BB->getParent(),
- "Referring to an argument in another function!", &I);
- } else if (GlobalValue *GV = dyn_cast<GlobalValue>(I.getOperand(i))) {
- Assert(GV->getParent() == &M, "Referencing global in another module!", &I,
- &M, GV, GV->getParent());
- } else if (isa<Instruction>(I.getOperand(i))) {
- verifyDominatesUse(I, i);
- } else if (isa<InlineAsm>(I.getOperand(i))) {
- Assert(CBI && &CBI->getCalledOperandUse() == &I.getOperandUse(i),
- "Cannot take the address of an inline asm!", &I);
- } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(I.getOperand(i))) {
- if (CE->getType()->isPtrOrPtrVectorTy()) {
- // If we have a ConstantExpr pointer, we need to see if it came from an
- // illegal bitcast.
- visitConstantExprsRecursively(CE);
- }
- }
- }
- if (MDNode *MD = I.getMetadata(LLVMContext::MD_fpmath)) {
- Assert(I.getType()->isFPOrFPVectorTy(),
- "fpmath requires a floating point result!", &I);
- Assert(MD->getNumOperands() == 1, "fpmath takes one operand!", &I);
- if (ConstantFP *CFP0 =
- mdconst::dyn_extract_or_null<ConstantFP>(MD->getOperand(0))) {
- const APFloat &Accuracy = CFP0->getValueAPF();
- Assert(&Accuracy.getSemantics() == &APFloat::IEEEsingle(),
- "fpmath accuracy must have float type", &I);
- Assert(Accuracy.isFiniteNonZero() && !Accuracy.isNegative(),
- "fpmath accuracy not a positive number!", &I);
- } else {
- Assert(false, "invalid fpmath accuracy!", &I);
- }
- }
- if (MDNode *Range = I.getMetadata(LLVMContext::MD_range)) {
- Assert(isa<LoadInst>(I) || isa<CallInst>(I) || isa<InvokeInst>(I),
- "Ranges are only for loads, calls and invokes!", &I);
- visitRangeMetadata(I, Range, I.getType());
- }
- if (I.hasMetadata(LLVMContext::MD_invariant_group)) {
- Assert(isa<LoadInst>(I) || isa<StoreInst>(I),
- "invariant.group metadata is only for loads and stores", &I);
- }
- if (I.getMetadata(LLVMContext::MD_nonnull)) {
- Assert(I.getType()->isPointerTy(), "nonnull applies only to pointer types",
- &I);
- Assert(isa<LoadInst>(I),
- "nonnull applies only to load instructions, use attributes"
- " for calls or invokes",
- &I);
- }
- if (MDNode *MD = I.getMetadata(LLVMContext::MD_dereferenceable))
- visitDereferenceableMetadata(I, MD);
- if (MDNode *MD = I.getMetadata(LLVMContext::MD_dereferenceable_or_null))
- visitDereferenceableMetadata(I, MD);
- if (MDNode *TBAA = I.getMetadata(LLVMContext::MD_tbaa))
- TBAAVerifyHelper.visitTBAAMetadata(I, TBAA);
- if (MDNode *MD = I.getMetadata(LLVMContext::MD_noalias))
- visitAliasScopeListMetadata(MD);
- if (MDNode *MD = I.getMetadata(LLVMContext::MD_alias_scope))
- visitAliasScopeListMetadata(MD);
- if (MDNode *AlignMD = I.getMetadata(LLVMContext::MD_align)) {
- Assert(I.getType()->isPointerTy(), "align applies only to pointer types",
- &I);
- Assert(isa<LoadInst>(I), "align applies only to load instructions, "
- "use attributes for calls or invokes", &I);
- Assert(AlignMD->getNumOperands() == 1, "align takes one operand!", &I);
- ConstantInt *CI = mdconst::dyn_extract<ConstantInt>(AlignMD->getOperand(0));
- Assert(CI && CI->getType()->isIntegerTy(64),
- "align metadata value must be an i64!", &I);
- uint64_t Align = CI->getZExtValue();
- Assert(isPowerOf2_64(Align),
- "align metadata value must be a power of 2!", &I);
- Assert(Align <= Value::MaximumAlignment,
- "alignment is larger that implementation defined limit", &I);
- }
- if (MDNode *MD = I.getMetadata(LLVMContext::MD_prof))
- visitProfMetadata(I, MD);
- if (MDNode *Annotation = I.getMetadata(LLVMContext::MD_annotation))
- visitAnnotationMetadata(Annotation);
- if (MDNode *N = I.getDebugLoc().getAsMDNode()) {
- AssertDI(isa<DILocation>(N), "invalid !dbg metadata attachment", &I, N);
- visitMDNode(*N, AreDebugLocsAllowed::Yes);
- }
- if (auto *DII = dyn_cast<DbgVariableIntrinsic>(&I)) {
- verifyFragmentExpression(*DII);
- verifyNotEntryValue(*DII);
- }
- SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
- I.getAllMetadata(MDs);
- for (auto Attachment : MDs) {
- unsigned Kind = Attachment.first;
- auto AllowLocs =
- (Kind == LLVMContext::MD_dbg || Kind == LLVMContext::MD_loop)
- ? AreDebugLocsAllowed::Yes
- : AreDebugLocsAllowed::No;
- visitMDNode(*Attachment.second, AllowLocs);
- }
- InstsInThisBlock.insert(&I);
- }
- /// Allow intrinsics to be verified in different ways.
- void Verifier::visitIntrinsicCall(Intrinsic::ID ID, CallBase &Call) {
- Function *IF = Call.getCalledFunction();
- Assert(IF->isDeclaration(), "Intrinsic functions should never be defined!",
- IF);
- // Verify that the intrinsic prototype lines up with what the .td files
- // describe.
- FunctionType *IFTy = IF->getFunctionType();
- bool IsVarArg = IFTy->isVarArg();
- SmallVector<Intrinsic::IITDescriptor, 8> Table;
- getIntrinsicInfoTableEntries(ID, Table);
- ArrayRef<Intrinsic::IITDescriptor> TableRef = Table;
- // Walk the descriptors to extract overloaded types.
- SmallVector<Type *, 4> ArgTys;
- Intrinsic::MatchIntrinsicTypesResult Res =
- Intrinsic::matchIntrinsicSignature(IFTy, TableRef, ArgTys);
- Assert(Res != Intrinsic::MatchIntrinsicTypes_NoMatchRet,
- "Intrinsic has incorrect return type!", IF);
- Assert(Res != Intrinsic::MatchIntrinsicTypes_NoMatchArg,
- "Intrinsic has incorrect argument type!", IF);
- // Verify if the intrinsic call matches the vararg property.
- if (IsVarArg)
- Assert(!Intrinsic::matchIntrinsicVarArg(IsVarArg, TableRef),
- "Intrinsic was not defined with variable arguments!", IF);
- else
- Assert(!Intrinsic::matchIntrinsicVarArg(IsVarArg, TableRef),
- "Callsite was not defined with variable arguments!", IF);
- // All descriptors should be absorbed by now.
- Assert(TableRef.empty(), "Intrinsic has too few arguments!", IF);
- // Now that we have the intrinsic ID and the actual argument types (and we
- // know they are legal for the intrinsic!) get the intrinsic name through the
- // usual means. This allows us to verify the mangling of argument types into
- // the name.
- const std::string ExpectedName =
- Intrinsic::getName(ID, ArgTys, IF->getParent(), IFTy);
- Assert(ExpectedName == IF->getName(),
- "Intrinsic name not mangled correctly for type arguments! "
- "Should be: " +
- ExpectedName,
- IF);
- // If the intrinsic takes MDNode arguments, verify that they are either global
- // or are local to *this* function.
- for (Value *V : Call.args()) {
- if (auto *MD = dyn_cast<MetadataAsValue>(V))
- visitMetadataAsValue(*MD, Call.getCaller());
- if (auto *Const = dyn_cast<Constant>(V))
- Assert(!Const->getType()->isX86_AMXTy(),
- "const x86_amx is not allowed in argument!");
- }
- switch (ID) {
- default:
- break;
- case Intrinsic::assume: {
- for (auto &Elem : Call.bundle_op_infos()) {
- Assert(Elem.Tag->getKey() == "ignore" ||
- Attribute::isExistingAttribute(Elem.Tag->getKey()),
- "tags must be valid attribute names", Call);
- Attribute::AttrKind Kind =
- Attribute::getAttrKindFromName(Elem.Tag->getKey());
- unsigned ArgCount = Elem.End - Elem.Begin;
- if (Kind == Attribute::Alignment) {
- Assert(ArgCount <= 3 && ArgCount >= 2,
- "alignment assumptions should have 2 or 3 arguments", Call);
- Assert(Call.getOperand(Elem.Begin)->getType()->isPointerTy(),
- "first argument should be a pointer", Call);
- Assert(Call.getOperand(Elem.Begin + 1)->getType()->isIntegerTy(),
- "second argument should be an integer", Call);
- if (ArgCount == 3)
- Assert(Call.getOperand(Elem.Begin + 2)->getType()->isIntegerTy(),
- "third argument should be an integer if present", Call);
- return;
- }
- Assert(ArgCount <= 2, "too many arguments", Call);
- if (Kind == Attribute::None)
- break;
- if (Attribute::isIntAttrKind(Kind)) {
- Assert(ArgCount == 2, "this attribute should have 2 arguments", Call);
- Assert(isa<ConstantInt>(Call.getOperand(Elem.Begin + 1)),
- "the second argument should be a constant integral value", Call);
- } else if (Attribute::canUseAsParamAttr(Kind)) {
- Assert((ArgCount) == 1, "this attribute should have one argument",
- Call);
- } else if (Attribute::canUseAsFnAttr(Kind)) {
- Assert((ArgCount) == 0, "this attribute has no argument", Call);
- }
- }
- break;
- }
- case Intrinsic::coro_id: {
- auto *InfoArg = Call.getArgOperand(3)->stripPointerCasts();
- if (isa<ConstantPointerNull>(InfoArg))
- break;
- auto *GV = dyn_cast<GlobalVariable>(InfoArg);
- Assert(GV && GV->isConstant() && GV->hasDefinitiveInitializer(),
- "info argument of llvm.coro.id must refer to an initialized "
- "constant");
- Constant *Init = GV->getInitializer();
- Assert(isa<ConstantStruct>(Init) || isa<ConstantArray>(Init),
- "info argument of llvm.coro.id must refer to either a struct or "
- "an array");
- break;
- }
- #define INSTRUCTION(NAME, NARGS, ROUND_MODE, INTRINSIC) \
- case Intrinsic::INTRINSIC:
- #include "llvm/IR/ConstrainedOps.def"
- visitConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(Call));
- break;
- case Intrinsic::dbg_declare: // llvm.dbg.declare
- Assert(isa<MetadataAsValue>(Call.getArgOperand(0)),
- "invalid llvm.dbg.declare intrinsic call 1", Call);
- visitDbgIntrinsic("declare", cast<DbgVariableIntrinsic>(Call));
- break;
- case Intrinsic::dbg_addr: // llvm.dbg.addr
- visitDbgIntrinsic("addr", cast<DbgVariableIntrinsic>(Call));
- break;
- case Intrinsic::dbg_value: // llvm.dbg.value
- visitDbgIntrinsic("value", cast<DbgVariableIntrinsic>(Call));
- break;
- case Intrinsic::dbg_label: // llvm.dbg.label
- visitDbgLabelIntrinsic("label", cast<DbgLabelInst>(Call));
- break;
- case Intrinsic::memcpy:
- case Intrinsic::memcpy_inline:
- case Intrinsic::memmove:
- case Intrinsic::memset: {
- const auto *MI = cast<MemIntrinsic>(&Call);
- auto IsValidAlignment = [&](unsigned Alignment) -> bool {
- return Alignment == 0 || isPowerOf2_32(Alignment);
- };
- Assert(IsValidAlignment(MI->getDestAlignment()),
- "alignment of arg 0 of memory intrinsic must be 0 or a power of 2",
- Call);
- if (const auto *MTI = dyn_cast<MemTransferInst>(MI)) {
- Assert(IsValidAlignment(MTI->getSourceAlignment()),
- "alignment of arg 1 of memory intrinsic must be 0 or a power of 2",
- Call);
- }
- break;
- }
- case Intrinsic::memcpy_element_unordered_atomic:
- case Intrinsic::memmove_element_unordered_atomic:
- case Intrinsic::memset_element_unordered_atomic: {
- const auto *AMI = cast<AtomicMemIntrinsic>(&Call);
- ConstantInt *ElementSizeCI =
- cast<ConstantInt>(AMI->getRawElementSizeInBytes());
- const APInt &ElementSizeVal = ElementSizeCI->getValue();
- Assert(ElementSizeVal.isPowerOf2(),
- "element size of the element-wise atomic memory intrinsic "
- "must be a power of 2",
- Call);
- auto IsValidAlignment = [&](uint64_t Alignment) {
- return isPowerOf2_64(Alignment) && ElementSizeVal.ule(Alignment);
- };
- uint64_t DstAlignment = AMI->getDestAlignment();
- Assert(IsValidAlignment(DstAlignment),
- "incorrect alignment of the destination argument", Call);
- if (const auto *AMT = dyn_cast<AtomicMemTransferInst>(AMI)) {
- uint64_t SrcAlignment = AMT->getSourceAlignment();
- Assert(IsValidAlignment(SrcAlignment),
- "incorrect alignment of the source argument", Call);
- }
- break;
- }
- case Intrinsic::call_preallocated_setup: {
- auto *NumArgs = dyn_cast<ConstantInt>(Call.getArgOperand(0));
- Assert(NumArgs != nullptr,
- "llvm.call.preallocated.setup argument must be a constant");
- bool FoundCall = false;
- for (User *U : Call.users()) {
- auto *UseCall = dyn_cast<CallBase>(U);
- Assert(UseCall != nullptr,
- "Uses of llvm.call.preallocated.setup must be calls");
- const Function *Fn = UseCall->getCalledFunction();
- if (Fn && Fn->getIntrinsicID() == Intrinsic::call_preallocated_arg) {
- auto *AllocArgIndex = dyn_cast<ConstantInt>(UseCall->getArgOperand(1));
- Assert(AllocArgIndex != nullptr,
- "llvm.call.preallocated.alloc arg index must be a constant");
- auto AllocArgIndexInt = AllocArgIndex->getValue();
- Assert(AllocArgIndexInt.sge(0) &&
- AllocArgIndexInt.slt(NumArgs->getValue()),
- "llvm.call.preallocated.alloc arg index must be between 0 and "
- "corresponding "
- "llvm.call.preallocated.setup's argument count");
- } else if (Fn && Fn->getIntrinsicID() ==
- Intrinsic::call_preallocated_teardown) {
- // nothing to do
- } else {
- Assert(!FoundCall, "Can have at most one call corresponding to a "
- "llvm.call.preallocated.setup");
- FoundCall = true;
- size_t NumPreallocatedArgs = 0;
- for (unsigned i = 0; i < UseCall->arg_size(); i++) {
- if (UseCall->paramHasAttr(i, Attribute::Preallocated)) {
- ++NumPreallocatedArgs;
- }
- }
- Assert(NumPreallocatedArgs != 0,
- "cannot use preallocated intrinsics on a call without "
- "preallocated arguments");
- Assert(NumArgs->equalsInt(NumPreallocatedArgs),
- "llvm.call.preallocated.setup arg size must be equal to number "
- "of preallocated arguments "
- "at call site",
- Call, *UseCall);
- // getOperandBundle() cannot be called if more than one of the operand
- // bundle exists. There is already a check elsewhere for this, so skip
- // here if we see more than one.
- if (UseCall->countOperandBundlesOfType(LLVMContext::OB_preallocated) >
- 1) {
- return;
- }
- auto PreallocatedBundle =
- UseCall->getOperandBundle(LLVMContext::OB_preallocated);
- Assert(PreallocatedBundle,
- "Use of llvm.call.preallocated.setup outside intrinsics "
- "must be in \"preallocated\" operand bundle");
- Assert(PreallocatedBundle->Inputs.front().get() == &Call,
- "preallocated bundle must have token from corresponding "
- "llvm.call.preallocated.setup");
- }
- }
- break;
- }
- case Intrinsic::call_preallocated_arg: {
- auto *Token = dyn_cast<CallBase>(Call.getArgOperand(0));
- Assert(Token && Token->getCalledFunction()->getIntrinsicID() ==
- Intrinsic::call_preallocated_setup,
- "llvm.call.preallocated.arg token argument must be a "
- "llvm.call.preallocated.setup");
- Assert(Call.hasFnAttr(Attribute::Preallocated),
- "llvm.call.preallocated.arg must be called with a \"preallocated\" "
- "call site attribute");
- break;
- }
- case Intrinsic::call_preallocated_teardown: {
- auto *Token = dyn_cast<CallBase>(Call.getArgOperand(0));
- Assert(Token && Token->getCalledFunction()->getIntrinsicID() ==
- Intrinsic::call_preallocated_setup,
- "llvm.call.preallocated.teardown token argument must be a "
- "llvm.call.preallocated.setup");
- break;
- }
- case Intrinsic::gcroot:
- case Intrinsic::gcwrite:
- case Intrinsic::gcread:
- if (ID == Intrinsic::gcroot) {
- AllocaInst *AI =
- dyn_cast<AllocaInst>(Call.getArgOperand(0)->stripPointerCasts());
- Assert(AI, "llvm.gcroot parameter #1 must be an alloca.", Call);
- Assert(isa<Constant>(Call.getArgOperand(1)),
- "llvm.gcroot parameter #2 must be a constant.", Call);
- if (!AI->getAllocatedType()->isPointerTy()) {
- Assert(!isa<ConstantPointerNull>(Call.getArgOperand(1)),
- "llvm.gcroot parameter #1 must either be a pointer alloca, "
- "or argument #2 must be a non-null constant.",
- Call);
- }
- }
- Assert(Call.getParent()->getParent()->hasGC(),
- "Enclosing function does not use GC.", Call);
- break;
- case Intrinsic::init_trampoline:
- Assert(isa<Function>(Call.getArgOperand(1)->stripPointerCasts()),
- "llvm.init_trampoline parameter #2 must resolve to a function.",
- Call);
- break;
- case Intrinsic::prefetch:
- Assert(cast<ConstantInt>(Call.getArgOperand(1))->getZExtValue() < 2 &&
- cast<ConstantInt>(Call.getArgOperand(2))->getZExtValue() < 4,
- "invalid arguments to llvm.prefetch", Call);
- break;
- case Intrinsic::stackprotector:
- Assert(isa<AllocaInst>(Call.getArgOperand(1)->stripPointerCasts()),
- "llvm.stackprotector parameter #2 must resolve to an alloca.", Call);
- break;
- case Intrinsic::localescape: {
- BasicBlock *BB = Call.getParent();
- Assert(BB == &BB->getParent()->front(),
- "llvm.localescape used outside of entry block", Call);
- Assert(!SawFrameEscape,
- "multiple calls to llvm.localescape in one function", Call);
- for (Value *Arg : Call.args()) {
- if (isa<ConstantPointerNull>(Arg))
- continue; // Null values are allowed as placeholders.
- auto *AI = dyn_cast<AllocaInst>(Arg->stripPointerCasts());
- Assert(AI && AI->isStaticAlloca(),
- "llvm.localescape only accepts static allocas", Call);
- }
- FrameEscapeInfo[BB->getParent()].first = Call.arg_size();
- SawFrameEscape = true;
- break;
- }
- case Intrinsic::localrecover: {
- Value *FnArg = Call.getArgOperand(0)->stripPointerCasts();
- Function *Fn = dyn_cast<Function>(FnArg);
- Assert(Fn && !Fn->isDeclaration(),
- "llvm.localrecover first "
- "argument must be function defined in this module",
- Call);
- auto *IdxArg = cast<ConstantInt>(Call.getArgOperand(2));
- auto &Entry = FrameEscapeInfo[Fn];
- Entry.second = unsigned(
- std::max(uint64_t(Entry.second), IdxArg->getLimitedValue(~0U) + 1));
- break;
- }
- case Intrinsic::experimental_gc_statepoint:
- if (auto *CI = dyn_cast<CallInst>(&Call))
- Assert(!CI->isInlineAsm(),
- "gc.statepoint support for inline assembly unimplemented", CI);
- Assert(Call.getParent()->getParent()->hasGC(),
- "Enclosing function does not use GC.", Call);
- verifyStatepoint(Call);
- break;
- case Intrinsic::experimental_gc_result: {
- Assert(Call.getParent()->getParent()->hasGC(),
- "Enclosing function does not use GC.", Call);
- // Are we tied to a statepoint properly?
- const auto *StatepointCall = dyn_cast<CallBase>(Call.getArgOperand(0));
- const Function *StatepointFn =
- StatepointCall ? StatepointCall->getCalledFunction() : nullptr;
- Assert(StatepointFn && StatepointFn->isDeclaration() &&
- StatepointFn->getIntrinsicID() ==
- Intrinsic::experimental_gc_statepoint,
- "gc.result operand #1 must be from a statepoint", Call,
- Call.getArgOperand(0));
- // Assert that result type matches wrapped callee.
- const Value *Target = StatepointCall->getArgOperand(2);
- auto *PT = cast<PointerType>(Target->getType());
- auto *TargetFuncType = cast<FunctionType>(PT->getPointerElementType());
- Assert(Call.getType() == TargetFuncType->getReturnType(),
- "gc.result result type does not match wrapped callee", Call);
- break;
- }
- case Intrinsic::experimental_gc_relocate: {
- Assert(Call.arg_size() == 3, "wrong number of arguments", Call);
- Assert(isa<PointerType>(Call.getType()->getScalarType()),
- "gc.relocate must return a pointer or a vector of pointers", Call);
- // Check that this relocate is correctly tied to the statepoint
- // This is case for relocate on the unwinding path of an invoke statepoint
- if (LandingPadInst *LandingPad =
- dyn_cast<LandingPadInst>(Call.getArgOperand(0))) {
- const BasicBlock *InvokeBB =
- LandingPad->getParent()->getUniquePredecessor();
- // Landingpad relocates should have only one predecessor with invoke
- // statepoint terminator
- Assert(InvokeBB, "safepoints should have unique landingpads",
- LandingPad->getParent());
- Assert(InvokeBB->getTerminator(), "safepoint block should be well formed",
- InvokeBB);
- Assert(isa<GCStatepointInst>(InvokeBB->getTerminator()),
- "gc relocate should be linked to a statepoint", InvokeBB);
- } else {
- // In all other cases relocate should be tied to the statepoint directly.
- // This covers relocates on a normal return path of invoke statepoint and
- // relocates of a call statepoint.
- auto Token = Call.getArgOperand(0);
- Assert(isa<GCStatepointInst>(Token),
- "gc relocate is incorrectly tied to the statepoint", Call, Token);
- }
- // Verify rest of the relocate arguments.
- const CallBase &StatepointCall =
- *cast<GCRelocateInst>(Call).getStatepoint();
- // Both the base and derived must be piped through the safepoint.
- Value *Base = Call.getArgOperand(1);
- Assert(isa<ConstantInt>(Base),
- "gc.relocate operand #2 must be integer offset", Call);
- Value *Derived = Call.getArgOperand(2);
- Assert(isa<ConstantInt>(Derived),
- "gc.relocate operand #3 must be integer offset", Call);
- const uint64_t BaseIndex = cast<ConstantInt>(Base)->getZExtValue();
- const uint64_t DerivedIndex = cast<ConstantInt>(Derived)->getZExtValue();
- // Check the bounds
- if (auto Opt = StatepointCall.getOperandBundle(LLVMContext::OB_gc_live)) {
- Assert(BaseIndex < Opt->Inputs.size(),
- "gc.relocate: statepoint base index out of bounds", Call);
- Assert(DerivedIndex < Opt->Inputs.size(),
- "gc.relocate: statepoint derived index out of bounds", Call);
- }
- // Relocated value must be either a pointer type or vector-of-pointer type,
- // but gc_relocate does not need to return the same pointer type as the
- // relocated pointer. It can be casted to the correct type later if it's
- // desired. However, they must have the same address space and 'vectorness'
- GCRelocateInst &Relocate = cast<GCRelocateInst>(Call);
- Assert(Relocate.getDerivedPtr()->getType()->isPtrOrPtrVectorTy(),
- "gc.relocate: relocated value must be a gc pointer", Call);
- auto ResultType = Call.getType();
- auto DerivedType = Relocate.getDerivedPtr()->getType();
- Assert(ResultType->isVectorTy() == DerivedType->isVectorTy(),
- "gc.relocate: vector relocates to vector and pointer to pointer",
- Call);
- Assert(
- ResultType->getPointerAddressSpace() ==
- DerivedType->getPointerAddressSpace(),
- "gc.relocate: relocating a pointer shouldn't change its address space",
- Call);
- break;
- }
- case Intrinsic::eh_exceptioncode:
- case Intrinsic::eh_exceptionpointer: {
- Assert(isa<CatchPadInst>(Call.getArgOperand(0)),
- "eh.exceptionpointer argument must be a catchpad", Call);
- break;
- }
- case Intrinsic::get_active_lane_mask: {
- Assert(Call.getType()->isVectorTy(), "get_active_lane_mask: must return a "
- "vector", Call);
- auto *ElemTy = Call.getType()->getScalarType();
- Assert(ElemTy->isIntegerTy(1), "get_active_lane_mask: element type is not "
- "i1", Call);
- break;
- }
- case Intrinsic::masked_load: {
- Assert(Call.getType()->isVectorTy(), "masked_load: must return a vector",
- Call);
- Value *Ptr = Call.getArgOperand(0);
- ConstantInt *Alignment = cast<ConstantInt>(Call.getArgOperand(1));
- Value *Mask = Call.getArgOperand(2);
- Value *PassThru = Call.getArgOperand(3);
- Assert(Mask->getType()->isVectorTy(), "masked_load: mask must be vector",
- Call);
- Assert(Alignment->getValue().isPowerOf2(),
- "masked_load: alignment must be a power of 2", Call);
- PointerType *PtrTy = cast<PointerType>(Ptr->getType());
- Assert(PtrTy->isOpaqueOrPointeeTypeMatches(Call.getType()),
- "masked_load: return must match pointer type", Call);
- Assert(PassThru->getType() == Call.getType(),
- "masked_load: pass through and return type must match", Call);
- Assert(cast<VectorType>(Mask->getType())->getElementCount() ==
- cast<VectorType>(Call.getType())->getElementCount(),
- "masked_load: vector mask must be same length as return", Call);
- break;
- }
- case Intrinsic::masked_store: {
- Value *Val = Call.getArgOperand(0);
- Value *Ptr = Call.getArgOperand(1);
- ConstantInt *Alignment = cast<ConstantInt>(Call.getArgOperand(2));
- Value *Mask = Call.getArgOperand(3);
- Assert(Mask->getType()->isVectorTy(), "masked_store: mask must be vector",
- Call);
- Assert(Alignment->getValue().isPowerOf2(),
- "masked_store: alignment must be a power of 2", Call);
- PointerType *PtrTy = cast<PointerType>(Ptr->getType());
- Assert(PtrTy->isOpaqueOrPointeeTypeMatches(Val->getType()),
- "masked_store: storee must match pointer type", Call);
- Assert(cast<VectorType>(Mask->getType())->getElementCount() ==
- cast<VectorType>(Val->getType())->getElementCount(),
- "masked_store: vector mask must be same length as value", Call);
- break;
- }
- case Intrinsic::masked_gather: {
- const APInt &Alignment =
- cast<ConstantInt>(Call.getArgOperand(1))->getValue();
- Assert(Alignment.isZero() || Alignment.isPowerOf2(),
- "masked_gather: alignment must be 0 or a power of 2", Call);
- break;
- }
- case Intrinsic::masked_scatter: {
- const APInt &Alignment =
- cast<ConstantInt>(Call.getArgOperand(2))->getValue();
- Assert(Alignment.isZero() || Alignment.isPowerOf2(),
- "masked_scatter: alignment must be 0 or a power of 2", Call);
- break;
- }
- case Intrinsic::experimental_guard: {
- Assert(isa<CallInst>(Call), "experimental_guard cannot be invoked", Call);
- Assert(Call.countOperandBundlesOfType(LLVMContext::OB_deopt) == 1,
- "experimental_guard must have exactly one "
- "\"deopt\" operand bundle");
- break;
- }
- case Intrinsic::experimental_deoptimize: {
- Assert(isa<CallInst>(Call), "experimental_deoptimize cannot be invoked",
- Call);
- Assert(Call.countOperandBundlesOfType(LLVMContext::OB_deopt) == 1,
- "experimental_deoptimize must have exactly one "
- "\"deopt\" operand bundle");
- Assert(Call.getType() == Call.getFunction()->getReturnType(),
- "experimental_deoptimize return type must match caller return type");
- if (isa<CallInst>(Call)) {
- auto *RI = dyn_cast<ReturnInst>(Call.getNextNode());
- Assert(RI,
- "calls to experimental_deoptimize must be followed by a return");
- if (!Call.getType()->isVoidTy() && RI)
- Assert(RI->getReturnValue() == &Call,
- "calls to experimental_deoptimize must be followed by a return "
- "of the value computed by experimental_deoptimize");
- }
- break;
- }
- case Intrinsic::vector_reduce_and:
- case Intrinsic::vector_reduce_or:
- case Intrinsic::vector_reduce_xor:
- case Intrinsic::vector_reduce_add:
- case Intrinsic::vector_reduce_mul:
- case Intrinsic::vector_reduce_smax:
- case Intrinsic::vector_reduce_smin:
- case Intrinsic::vector_reduce_umax:
- case Intrinsic::vector_reduce_umin: {
- Type *ArgTy = Call.getArgOperand(0)->getType();
- Assert(ArgTy->isIntOrIntVectorTy() && ArgTy->isVectorTy(),
- "Intrinsic has incorrect argument type!");
- break;
- }
- case Intrinsic::vector_reduce_fmax:
- case Intrinsic::vector_reduce_fmin: {
- Type *ArgTy = Call.getArgOperand(0)->getType();
- Assert(ArgTy->isFPOrFPVectorTy() && ArgTy->isVectorTy(),
- "Intrinsic has incorrect argument type!");
- break;
- }
- case Intrinsic::vector_reduce_fadd:
- case Intrinsic::vector_reduce_fmul: {
- // Unlike the other reductions, the first argument is a start value. The
- // second argument is the vector to be reduced.
- Type *ArgTy = Call.getArgOperand(1)->getType();
- Assert(ArgTy->isFPOrFPVectorTy() && ArgTy->isVectorTy(),
- "Intrinsic has incorrect argument type!");
- break;
- }
- case Intrinsic::smul_fix:
- case Intrinsic::smul_fix_sat:
- case Intrinsic::umul_fix:
- case Intrinsic::umul_fix_sat:
- case Intrinsic::sdiv_fix:
- case Intrinsic::sdiv_fix_sat:
- case Intrinsic::udiv_fix:
- case Intrinsic::udiv_fix_sat: {
- Value *Op1 = Call.getArgOperand(0);
- Value *Op2 = Call.getArgOperand(1);
- Assert(Op1->getType()->isIntOrIntVectorTy(),
- "first operand of [us][mul|div]_fix[_sat] must be an int type or "
- "vector of ints");
- Assert(Op2->getType()->isIntOrIntVectorTy(),
- "second operand of [us][mul|div]_fix[_sat] must be an int type or "
- "vector of ints");
- auto *Op3 = cast<ConstantInt>(Call.getArgOperand(2));
- Assert(Op3->getType()->getBitWidth() <= 32,
- "third argument of [us][mul|div]_fix[_sat] must fit within 32 bits");
- if (ID == Intrinsic::smul_fix || ID == Intrinsic::smul_fix_sat ||
- ID == Intrinsic::sdiv_fix || ID == Intrinsic::sdiv_fix_sat) {
- Assert(
- Op3->getZExtValue() < Op1->getType()->getScalarSizeInBits(),
- "the scale of s[mul|div]_fix[_sat] must be less than the width of "
- "the operands");
- } else {
- Assert(Op3->getZExtValue() <= Op1->getType()->getScalarSizeInBits(),
- "the scale of u[mul|div]_fix[_sat] must be less than or equal "
- "to the width of the operands");
- }
- break;
- }
- case Intrinsic::lround:
- case Intrinsic::llround:
- case Intrinsic::lrint:
- case Intrinsic::llrint: {
- Type *ValTy = Call.getArgOperand(0)->getType();
- Type *ResultTy = Call.getType();
- Assert(!ValTy->isVectorTy() && !ResultTy->isVectorTy(),
- "Intrinsic does not support vectors", &Call);
- break;
- }
- case Intrinsic::bswap: {
- Type *Ty = Call.getType();
- unsigned Size = Ty->getScalarSizeInBits();
- Assert(Size % 16 == 0, "bswap must be an even number of bytes", &Call);
- break;
- }
- case Intrinsic::invariant_start: {
- ConstantInt *InvariantSize = dyn_cast<ConstantInt>(Call.getArgOperand(0));
- Assert(InvariantSize &&
- (!InvariantSize->isNegative() || InvariantSize->isMinusOne()),
- "invariant_start parameter must be -1, 0 or a positive number",
- &Call);
- break;
- }
- case Intrinsic::matrix_multiply:
- case Intrinsic::matrix_transpose:
- case Intrinsic::matrix_column_major_load:
- case Intrinsic::matrix_column_major_store: {
- Function *IF = Call.getCalledFunction();
- ConstantInt *Stride = nullptr;
- ConstantInt *NumRows;
- ConstantInt *NumColumns;
- VectorType *ResultTy;
- Type *Op0ElemTy = nullptr;
- Type *Op1ElemTy = nullptr;
- switch (ID) {
- case Intrinsic::matrix_multiply:
- NumRows = cast<ConstantInt>(Call.getArgOperand(2));
- NumColumns = cast<ConstantInt>(Call.getArgOperand(4));
- ResultTy = cast<VectorType>(Call.getType());
- Op0ElemTy =
- cast<VectorType>(Call.getArgOperand(0)->getType())->getElementType();
- Op1ElemTy =
- cast<VectorType>(Call.getArgOperand(1)->getType())->getElementType();
- break;
- case Intrinsic::matrix_transpose:
- NumRows = cast<ConstantInt>(Call.getArgOperand(1));
- NumColumns = cast<ConstantInt>(Call.getArgOperand(2));
- ResultTy = cast<VectorType>(Call.getType());
- Op0ElemTy =
- cast<VectorType>(Call.getArgOperand(0)->getType())->getElementType();
- break;
- case Intrinsic::matrix_column_major_load: {
- Stride = dyn_cast<ConstantInt>(Call.getArgOperand(1));
- NumRows = cast<ConstantInt>(Call.getArgOperand(3));
- NumColumns = cast<ConstantInt>(Call.getArgOperand(4));
- ResultTy = cast<VectorType>(Call.getType());
- PointerType *Op0PtrTy =
- cast<PointerType>(Call.getArgOperand(0)->getType());
- if (!Op0PtrTy->isOpaque())
- Op0ElemTy = Op0PtrTy->getNonOpaquePointerElementType();
- break;
- }
- case Intrinsic::matrix_column_major_store: {
- Stride = dyn_cast<ConstantInt>(Call.getArgOperand(2));
- NumRows = cast<ConstantInt>(Call.getArgOperand(4));
- NumColumns = cast<ConstantInt>(Call.getArgOperand(5));
- ResultTy = cast<VectorType>(Call.getArgOperand(0)->getType());
- Op0ElemTy =
- cast<VectorType>(Call.getArgOperand(0)->getType())->getElementType();
- PointerType *Op1PtrTy =
- cast<PointerType>(Call.getArgOperand(1)->getType());
- if (!Op1PtrTy->isOpaque())
- Op1ElemTy = Op1PtrTy->getNonOpaquePointerElementType();
- break;
- }
- default:
- llvm_unreachable("unexpected intrinsic");
- }
- Assert(ResultTy->getElementType()->isIntegerTy() ||
- ResultTy->getElementType()->isFloatingPointTy(),
- "Result type must be an integer or floating-point type!", IF);
- if (Op0ElemTy)
- Assert(ResultTy->getElementType() == Op0ElemTy,
- "Vector element type mismatch of the result and first operand "
- "vector!", IF);
- if (Op1ElemTy)
- Assert(ResultTy->getElementType() == Op1ElemTy,
- "Vector element type mismatch of the result and second operand "
- "vector!", IF);
- Assert(cast<FixedVectorType>(ResultTy)->getNumElements() ==
- NumRows->getZExtValue() * NumColumns->getZExtValue(),
- "Result of a matrix operation does not fit in the returned vector!");
- if (Stride)
- Assert(Stride->getZExtValue() >= NumRows->getZExtValue(),
- "Stride must be greater or equal than the number of rows!", IF);
- break;
- }
- case Intrinsic::experimental_vector_splice: {
- VectorType *VecTy = cast<VectorType>(Call.getType());
- int64_t Idx = cast<ConstantInt>(Call.getArgOperand(2))->getSExtValue();
- int64_t KnownMinNumElements = VecTy->getElementCount().getKnownMinValue();
- if (Call.getParent() && Call.getParent()->getParent()) {
- AttributeList Attrs = Call.getParent()->getParent()->getAttributes();
- if (Attrs.hasFnAttr(Attribute::VScaleRange))
- KnownMinNumElements *= Attrs.getFnAttrs().getVScaleRangeMin();
- }
- Assert((Idx < 0 && std::abs(Idx) <= KnownMinNumElements) ||
- (Idx >= 0 && Idx < KnownMinNumElements),
- "The splice index exceeds the range [-VL, VL-1] where VL is the "
- "known minimum number of elements in the vector. For scalable "
- "vectors the minimum number of elements is determined from "
- "vscale_range.",
- &Call);
- break;
- }
- case Intrinsic::experimental_stepvector: {
- VectorType *VecTy = dyn_cast<VectorType>(Call.getType());
- Assert(VecTy && VecTy->getScalarType()->isIntegerTy() &&
- VecTy->getScalarSizeInBits() >= 8,
- "experimental_stepvector only supported for vectors of integers "
- "with a bitwidth of at least 8.",
- &Call);
- break;
- }
- case Intrinsic::experimental_vector_insert: {
- Value *Vec = Call.getArgOperand(0);
- Value *SubVec = Call.getArgOperand(1);
- Value *Idx = Call.getArgOperand(2);
- unsigned IdxN = cast<ConstantInt>(Idx)->getZExtValue();
- VectorType *VecTy = cast<VectorType>(Vec->getType());
- VectorType *SubVecTy = cast<VectorType>(SubVec->getType());
- ElementCount VecEC = VecTy->getElementCount();
- ElementCount SubVecEC = SubVecTy->getElementCount();
- Assert(VecTy->getElementType() == SubVecTy->getElementType(),
- "experimental_vector_insert parameters must have the same element "
- "type.",
- &Call);
- Assert(IdxN % SubVecEC.getKnownMinValue() == 0,
- "experimental_vector_insert index must be a constant multiple of "
- "the subvector's known minimum vector length.");
- // If this insertion is not the 'mixed' case where a fixed vector is
- // inserted into a scalable vector, ensure that the insertion of the
- // subvector does not overrun the parent vector.
- if (VecEC.isScalable() == SubVecEC.isScalable()) {
- Assert(
- IdxN < VecEC.getKnownMinValue() &&
- IdxN + SubVecEC.getKnownMinValue() <= VecEC.getKnownMinValue(),
- "subvector operand of experimental_vector_insert would overrun the "
- "vector being inserted into.");
- }
- break;
- }
- case Intrinsic::experimental_vector_extract: {
- Value *Vec = Call.getArgOperand(0);
- Value *Idx = Call.getArgOperand(1);
- unsigned IdxN = cast<ConstantInt>(Idx)->getZExtValue();
- VectorType *ResultTy = cast<VectorType>(Call.getType());
- VectorType *VecTy = cast<VectorType>(Vec->getType());
- ElementCount VecEC = VecTy->getElementCount();
- ElementCount ResultEC = ResultTy->getElementCount();
- Assert(ResultTy->getElementType() == VecTy->getElementType(),
- "experimental_vector_extract result must have the same element "
- "type as the input vector.",
- &Call);
- Assert(IdxN % ResultEC.getKnownMinValue() == 0,
- "experimental_vector_extract index must be a constant multiple of "
- "the result type's known minimum vector length.");
- // If this extraction is not the 'mixed' case where a fixed vector is is
- // extracted from a scalable vector, ensure that the extraction does not
- // overrun the parent vector.
- if (VecEC.isScalable() == ResultEC.isScalable()) {
- Assert(IdxN < VecEC.getKnownMinValue() &&
- IdxN + ResultEC.getKnownMinValue() <= VecEC.getKnownMinValue(),
- "experimental_vector_extract would overrun.");
- }
- break;
- }
- case Intrinsic::experimental_noalias_scope_decl: {
- NoAliasScopeDecls.push_back(cast<IntrinsicInst>(&Call));
- break;
- }
- case Intrinsic::preserve_array_access_index:
- case Intrinsic::preserve_struct_access_index: {
- Type *ElemTy = Call.getAttributes().getParamElementType(0);
- Assert(ElemTy,
- "Intrinsic requires elementtype attribute on first argument.",
- &Call);
- break;
- }
- };
- }
- /// Carefully grab the subprogram from a local scope.
- ///
- /// This carefully grabs the subprogram from a local scope, avoiding the
- /// built-in assertions that would typically fire.
- static DISubprogram *getSubprogram(Metadata *LocalScope) {
- if (!LocalScope)
- return nullptr;
- if (auto *SP = dyn_cast<DISubprogram>(LocalScope))
- return SP;
- if (auto *LB = dyn_cast<DILexicalBlockBase>(LocalScope))
- return getSubprogram(LB->getRawScope());
- // Just return null; broken scope chains are checked elsewhere.
- assert(!isa<DILocalScope>(LocalScope) && "Unknown type of local scope");
- return nullptr;
- }
- void Verifier::visitConstrainedFPIntrinsic(ConstrainedFPIntrinsic &FPI) {
- unsigned NumOperands;
- bool HasRoundingMD;
- switch (FPI.getIntrinsicID()) {
- #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC) \
- case Intrinsic::INTRINSIC: \
- NumOperands = NARG; \
- HasRoundingMD = ROUND_MODE; \
- break;
- #include "llvm/IR/ConstrainedOps.def"
- default:
- llvm_unreachable("Invalid constrained FP intrinsic!");
- }
- NumOperands += (1 + HasRoundingMD);
- // Compare intrinsics carry an extra predicate metadata operand.
- if (isa<ConstrainedFPCmpIntrinsic>(FPI))
- NumOperands += 1;
- Assert((FPI.arg_size() == NumOperands),
- "invalid arguments for constrained FP intrinsic", &FPI);
- switch (FPI.getIntrinsicID()) {
- case Intrinsic::experimental_constrained_lrint:
- case Intrinsic::experimental_constrained_llrint: {
- Type *ValTy = FPI.getArgOperand(0)->getType();
- Type *ResultTy = FPI.getType();
- Assert(!ValTy->isVectorTy() && !ResultTy->isVectorTy(),
- "Intrinsic does not support vectors", &FPI);
- }
- break;
- case Intrinsic::experimental_constrained_lround:
- case Intrinsic::experimental_constrained_llround: {
- Type *ValTy = FPI.getArgOperand(0)->getType();
- Type *ResultTy = FPI.getType();
- Assert(!ValTy->isVectorTy() && !ResultTy->isVectorTy(),
- "Intrinsic does not support vectors", &FPI);
- break;
- }
- case Intrinsic::experimental_constrained_fcmp:
- case Intrinsic::experimental_constrained_fcmps: {
- auto Pred = cast<ConstrainedFPCmpIntrinsic>(&FPI)->getPredicate();
- Assert(CmpInst::isFPPredicate(Pred),
- "invalid predicate for constrained FP comparison intrinsic", &FPI);
- break;
- }
- case Intrinsic::experimental_constrained_fptosi:
- case Intrinsic::experimental_constrained_fptoui: {
- Value *Operand = FPI.getArgOperand(0);
- uint64_t NumSrcElem = 0;
- Assert(Operand->getType()->isFPOrFPVectorTy(),
- "Intrinsic first argument must be floating point", &FPI);
- if (auto *OperandT = dyn_cast<VectorType>(Operand->getType())) {
- NumSrcElem = cast<FixedVectorType>(OperandT)->getNumElements();
- }
- Operand = &FPI;
- Assert((NumSrcElem > 0) == Operand->getType()->isVectorTy(),
- "Intrinsic first argument and result disagree on vector use", &FPI);
- Assert(Operand->getType()->isIntOrIntVectorTy(),
- "Intrinsic result must be an integer", &FPI);
- if (auto *OperandT = dyn_cast<VectorType>(Operand->getType())) {
- Assert(NumSrcElem == cast<FixedVectorType>(OperandT)->getNumElements(),
- "Intrinsic first argument and result vector lengths must be equal",
- &FPI);
- }
- }
- break;
- case Intrinsic::experimental_constrained_sitofp:
- case Intrinsic::experimental_constrained_uitofp: {
- Value *Operand = FPI.getArgOperand(0);
- uint64_t NumSrcElem = 0;
- Assert(Operand->getType()->isIntOrIntVectorTy(),
- "Intrinsic first argument must be integer", &FPI);
- if (auto *OperandT = dyn_cast<VectorType>(Operand->getType())) {
- NumSrcElem = cast<FixedVectorType>(OperandT)->getNumElements();
- }
- Operand = &FPI;
- Assert((NumSrcElem > 0) == Operand->getType()->isVectorTy(),
- "Intrinsic first argument and result disagree on vector use", &FPI);
- Assert(Operand->getType()->isFPOrFPVectorTy(),
- "Intrinsic result must be a floating point", &FPI);
- if (auto *OperandT = dyn_cast<VectorType>(Operand->getType())) {
- Assert(NumSrcElem == cast<FixedVectorType>(OperandT)->getNumElements(),
- "Intrinsic first argument and result vector lengths must be equal",
- &FPI);
- }
- } break;
- case Intrinsic::experimental_constrained_fptrunc:
- case Intrinsic::experimental_constrained_fpext: {
- Value *Operand = FPI.getArgOperand(0);
- Type *OperandTy = Operand->getType();
- Value *Result = &FPI;
- Type *ResultTy = Result->getType();
- Assert(OperandTy->isFPOrFPVectorTy(),
- "Intrinsic first argument must be FP or FP vector", &FPI);
- Assert(ResultTy->isFPOrFPVectorTy(),
- "Intrinsic result must be FP or FP vector", &FPI);
- Assert(OperandTy->isVectorTy() == ResultTy->isVectorTy(),
- "Intrinsic first argument and result disagree on vector use", &FPI);
- if (OperandTy->isVectorTy()) {
- Assert(cast<FixedVectorType>(OperandTy)->getNumElements() ==
- cast<FixedVectorType>(ResultTy)->getNumElements(),
- "Intrinsic first argument and result vector lengths must be equal",
- &FPI);
- }
- if (FPI.getIntrinsicID() == Intrinsic::experimental_constrained_fptrunc) {
- Assert(OperandTy->getScalarSizeInBits() > ResultTy->getScalarSizeInBits(),
- "Intrinsic first argument's type must be larger than result type",
- &FPI);
- } else {
- Assert(OperandTy->getScalarSizeInBits() < ResultTy->getScalarSizeInBits(),
- "Intrinsic first argument's type must be smaller than result type",
- &FPI);
- }
- }
- break;
- default:
- break;
- }
- // If a non-metadata argument is passed in a metadata slot then the
- // error will be caught earlier when the incorrect argument doesn't
- // match the specification in the intrinsic call table. Thus, no
- // argument type check is needed here.
- Assert(FPI.getExceptionBehavior().hasValue(),
- "invalid exception behavior argument", &FPI);
- if (HasRoundingMD) {
- Assert(FPI.getRoundingMode().hasValue(),
- "invalid rounding mode argument", &FPI);
- }
- }
- void Verifier::visitDbgIntrinsic(StringRef Kind, DbgVariableIntrinsic &DII) {
- auto *MD = DII.getRawLocation();
- AssertDI(isa<ValueAsMetadata>(MD) || isa<DIArgList>(MD) ||
- (isa<MDNode>(MD) && !cast<MDNode>(MD)->getNumOperands()),
- "invalid llvm.dbg." + Kind + " intrinsic address/value", &DII, MD);
- AssertDI(isa<DILocalVariable>(DII.getRawVariable()),
- "invalid llvm.dbg." + Kind + " intrinsic variable", &DII,
- DII.getRawVariable());
- AssertDI(isa<DIExpression>(DII.getRawExpression()),
- "invalid llvm.dbg." + Kind + " intrinsic expression", &DII,
- DII.getRawExpression());
- // Ignore broken !dbg attachments; they're checked elsewhere.
- if (MDNode *N = DII.getDebugLoc().getAsMDNode())
- if (!isa<DILocation>(N))
- return;
- BasicBlock *BB = DII.getParent();
- Function *F = BB ? BB->getParent() : nullptr;
- // The scopes for variables and !dbg attachments must agree.
- DILocalVariable *Var = DII.getVariable();
- DILocation *Loc = DII.getDebugLoc();
- AssertDI(Loc, "llvm.dbg." + Kind + " intrinsic requires a !dbg attachment",
- &DII, BB, F);
- DISubprogram *VarSP = getSubprogram(Var->getRawScope());
- DISubprogram *LocSP = getSubprogram(Loc->getRawScope());
- if (!VarSP || !LocSP)
- return; // Broken scope chains are checked elsewhere.
- AssertDI(VarSP == LocSP, "mismatched subprogram between llvm.dbg." + Kind +
- " variable and !dbg attachment",
- &DII, BB, F, Var, Var->getScope()->getSubprogram(), Loc,
- Loc->getScope()->getSubprogram());
- // This check is redundant with one in visitLocalVariable().
- AssertDI(isType(Var->getRawType()), "invalid type ref", Var,
- Var->getRawType());
- verifyFnArgs(DII);
- }
- void Verifier::visitDbgLabelIntrinsic(StringRef Kind, DbgLabelInst &DLI) {
- AssertDI(isa<DILabel>(DLI.getRawLabel()),
- "invalid llvm.dbg." + Kind + " intrinsic variable", &DLI,
- DLI.getRawLabel());
- // Ignore broken !dbg attachments; they're checked elsewhere.
- if (MDNode *N = DLI.getDebugLoc().getAsMDNode())
- if (!isa<DILocation>(N))
- return;
- BasicBlock *BB = DLI.getParent();
- Function *F = BB ? BB->getParent() : nullptr;
- // The scopes for variables and !dbg attachments must agree.
- DILabel *Label = DLI.getLabel();
- DILocation *Loc = DLI.getDebugLoc();
- Assert(Loc, "llvm.dbg." + Kind + " intrinsic requires a !dbg attachment",
- &DLI, BB, F);
- DISubprogram *LabelSP = getSubprogram(Label->getRawScope());
- DISubprogram *LocSP = getSubprogram(Loc->getRawScope());
- if (!LabelSP || !LocSP)
- return;
- AssertDI(LabelSP == LocSP, "mismatched subprogram between llvm.dbg." + Kind +
- " label and !dbg attachment",
- &DLI, BB, F, Label, Label->getScope()->getSubprogram(), Loc,
- Loc->getScope()->getSubprogram());
- }
- void Verifier::verifyFragmentExpression(const DbgVariableIntrinsic &I) {
- DILocalVariable *V = dyn_cast_or_null<DILocalVariable>(I.getRawVariable());
- DIExpression *E = dyn_cast_or_null<DIExpression>(I.getRawExpression());
- // We don't know whether this intrinsic verified correctly.
- if (!V || !E || !E->isValid())
- return;
- // Nothing to do if this isn't a DW_OP_LLVM_fragment expression.
- auto Fragment = E->getFragmentInfo();
- if (!Fragment)
- return;
- // The frontend helps out GDB by emitting the members of local anonymous
- // unions as artificial local variables with shared storage. When SROA splits
- // the storage for artificial local variables that are smaller than the entire
- // union, the overhang piece will be outside of the allotted space for the
- // variable and this check fails.
- // FIXME: Remove this check as soon as clang stops doing this; it hides bugs.
- if (V->isArtificial())
- return;
- verifyFragmentExpression(*V, *Fragment, &I);
- }
- template <typename ValueOrMetadata>
- void Verifier::verifyFragmentExpression(const DIVariable &V,
- DIExpression::FragmentInfo Fragment,
- ValueOrMetadata *Desc) {
- // If there's no size, the type is broken, but that should be checked
- // elsewhere.
- auto VarSize = V.getSizeInBits();
- if (!VarSize)
- return;
- unsigned FragSize = Fragment.SizeInBits;
- unsigned FragOffset = Fragment.OffsetInBits;
- AssertDI(FragSize + FragOffset <= *VarSize,
- "fragment is larger than or outside of variable", Desc, &V);
- AssertDI(FragSize != *VarSize, "fragment covers entire variable", Desc, &V);
- }
- void Verifier::verifyFnArgs(const DbgVariableIntrinsic &I) {
- // This function does not take the scope of noninlined function arguments into
- // account. Don't run it if current function is nodebug, because it may
- // contain inlined debug intrinsics.
- if (!HasDebugInfo)
- return;
- // For performance reasons only check non-inlined ones.
- if (I.getDebugLoc()->getInlinedAt())
- return;
- DILocalVariable *Var = I.getVariable();
- AssertDI(Var, "dbg intrinsic without variable");
- unsigned ArgNo = Var->getArg();
- if (!ArgNo)
- return;
- // Verify there are no duplicate function argument debug info entries.
- // These will cause hard-to-debug assertions in the DWARF backend.
- if (DebugFnArgs.size() < ArgNo)
- DebugFnArgs.resize(ArgNo, nullptr);
- auto *Prev = DebugFnArgs[ArgNo - 1];
- DebugFnArgs[ArgNo - 1] = Var;
- AssertDI(!Prev || (Prev == Var), "conflicting debug info for argument", &I,
- Prev, Var);
- }
- void Verifier::verifyNotEntryValue(const DbgVariableIntrinsic &I) {
- DIExpression *E = dyn_cast_or_null<DIExpression>(I.getRawExpression());
- // We don't know whether this intrinsic verified correctly.
- if (!E || !E->isValid())
- return;
- AssertDI(!E->isEntryValue(), "Entry values are only allowed in MIR", &I);
- }
- void Verifier::verifyCompileUnits() {
- // When more than one Module is imported into the same context, such as during
- // an LTO build before linking the modules, ODR type uniquing may cause types
- // to point to a different CU. This check does not make sense in this case.
- if (M.getContext().isODRUniquingDebugTypes())
- return;
- auto *CUs = M.getNamedMetadata("llvm.dbg.cu");
- SmallPtrSet<const Metadata *, 2> Listed;
- if (CUs)
- Listed.insert(CUs->op_begin(), CUs->op_end());
- for (auto *CU : CUVisited)
- AssertDI(Listed.count(CU), "DICompileUnit not listed in llvm.dbg.cu", CU);
- CUVisited.clear();
- }
- void Verifier::verifyDeoptimizeCallingConvs() {
- if (DeoptimizeDeclarations.empty())
- return;
- const Function *First = DeoptimizeDeclarations[0];
- for (auto *F : makeArrayRef(DeoptimizeDeclarations).slice(1)) {
- Assert(First->getCallingConv() == F->getCallingConv(),
- "All llvm.experimental.deoptimize declarations must have the same "
- "calling convention",
- First, F);
- }
- }
- void Verifier::verifyAttachedCallBundle(const CallBase &Call,
- const OperandBundleUse &BU) {
- FunctionType *FTy = Call.getFunctionType();
- Assert((FTy->getReturnType()->isPointerTy() ||
- (Call.doesNotReturn() && FTy->getReturnType()->isVoidTy())),
- "a call with operand bundle \"clang.arc.attachedcall\" must call a "
- "function returning a pointer or a non-returning function that has a "
- "void return type",
- Call);
- Assert(BU.Inputs.size() == 1 && isa<Function>(BU.Inputs.front()),
- "operand bundle \"clang.arc.attachedcall\" requires one function as "
- "an argument",
- Call);
- auto *Fn = cast<Function>(BU.Inputs.front());
- Intrinsic::ID IID = Fn->getIntrinsicID();
- if (IID) {
- Assert((IID == Intrinsic::objc_retainAutoreleasedReturnValue ||
- IID == Intrinsic::objc_unsafeClaimAutoreleasedReturnValue),
- "invalid function argument", Call);
- } else {
- StringRef FnName = Fn->getName();
- Assert((FnName == "objc_retainAutoreleasedReturnValue" ||
- FnName == "objc_unsafeClaimAutoreleasedReturnValue"),
- "invalid function argument", Call);
- }
- }
- void Verifier::verifySourceDebugInfo(const DICompileUnit &U, const DIFile &F) {
- bool HasSource = F.getSource().hasValue();
- if (!HasSourceDebugInfo.count(&U))
- HasSourceDebugInfo[&U] = HasSource;
- AssertDI(HasSource == HasSourceDebugInfo[&U],
- "inconsistent use of embedded source");
- }
- void Verifier::verifyNoAliasScopeDecl() {
- if (NoAliasScopeDecls.empty())
- return;
- // only a single scope must be declared at a time.
- for (auto *II : NoAliasScopeDecls) {
- assert(II->getIntrinsicID() == Intrinsic::experimental_noalias_scope_decl &&
- "Not a llvm.experimental.noalias.scope.decl ?");
- const auto *ScopeListMV = dyn_cast<MetadataAsValue>(
- II->getOperand(Intrinsic::NoAliasScopeDeclScopeArg));
- Assert(ScopeListMV != nullptr,
- "llvm.experimental.noalias.scope.decl must have a MetadataAsValue "
- "argument",
- II);
- const auto *ScopeListMD = dyn_cast<MDNode>(ScopeListMV->getMetadata());
- Assert(ScopeListMD != nullptr, "!id.scope.list must point to an MDNode",
- II);
- Assert(ScopeListMD->getNumOperands() == 1,
- "!id.scope.list must point to a list with a single scope", II);
- visitAliasScopeListMetadata(ScopeListMD);
- }
- // Only check the domination rule when requested. Once all passes have been
- // adapted this option can go away.
- if (!VerifyNoAliasScopeDomination)
- return;
- // Now sort the intrinsics based on the scope MDNode so that declarations of
- // the same scopes are next to each other.
- auto GetScope = [](IntrinsicInst *II) {
- const auto *ScopeListMV = cast<MetadataAsValue>(
- II->getOperand(Intrinsic::NoAliasScopeDeclScopeArg));
- return &cast<MDNode>(ScopeListMV->getMetadata())->getOperand(0);
- };
- // We are sorting on MDNode pointers here. For valid input IR this is ok.
- // TODO: Sort on Metadata ID to avoid non-deterministic error messages.
- auto Compare = [GetScope](IntrinsicInst *Lhs, IntrinsicInst *Rhs) {
- return GetScope(Lhs) < GetScope(Rhs);
- };
- llvm::sort(NoAliasScopeDecls, Compare);
- // Go over the intrinsics and check that for the same scope, they are not
- // dominating each other.
- auto ItCurrent = NoAliasScopeDecls.begin();
- while (ItCurrent != NoAliasScopeDecls.end()) {
- auto CurScope = GetScope(*ItCurrent);
- auto ItNext = ItCurrent;
- do {
- ++ItNext;
- } while (ItNext != NoAliasScopeDecls.end() &&
- GetScope(*ItNext) == CurScope);
- // [ItCurrent, ItNext) represents the declarations for the same scope.
- // Ensure they are not dominating each other.. but only if it is not too
- // expensive.
- if (ItNext - ItCurrent < 32)
- for (auto *I : llvm::make_range(ItCurrent, ItNext))
- for (auto *J : llvm::make_range(ItCurrent, ItNext))
- if (I != J)
- Assert(!DT.dominates(I, J),
- "llvm.experimental.noalias.scope.decl dominates another one "
- "with the same scope",
- I);
- ItCurrent = ItNext;
- }
- }
- //===----------------------------------------------------------------------===//
- // Implement the public interfaces to this file...
- //===----------------------------------------------------------------------===//
- bool llvm::verifyFunction(const Function &f, raw_ostream *OS) {
- Function &F = const_cast<Function &>(f);
- // Don't use a raw_null_ostream. Printing IR is expensive.
- Verifier V(OS, /*ShouldTreatBrokenDebugInfoAsError=*/true, *f.getParent());
- // Note that this function's return value is inverted from what you would
- // expect of a function called "verify".
- return !V.verify(F);
- }
- bool llvm::verifyModule(const Module &M, raw_ostream *OS,
- bool *BrokenDebugInfo) {
- // Don't use a raw_null_ostream. Printing IR is expensive.
- Verifier V(OS, /*ShouldTreatBrokenDebugInfoAsError=*/!BrokenDebugInfo, M);
- bool Broken = false;
- for (const Function &F : M)
- Broken |= !V.verify(F);
- Broken |= !V.verify();
- if (BrokenDebugInfo)
- *BrokenDebugInfo = V.hasBrokenDebugInfo();
- // Note that this function's return value is inverted from what you would
- // expect of a function called "verify".
- return Broken;
- }
- namespace {
- struct VerifierLegacyPass : public FunctionPass {
- static char ID;
- std::unique_ptr<Verifier> V;
- bool FatalErrors = true;
- VerifierLegacyPass() : FunctionPass(ID) {
- initializeVerifierLegacyPassPass(*PassRegistry::getPassRegistry());
- }
- explicit VerifierLegacyPass(bool FatalErrors)
- : FunctionPass(ID),
- FatalErrors(FatalErrors) {
- initializeVerifierLegacyPassPass(*PassRegistry::getPassRegistry());
- }
- bool doInitialization(Module &M) override {
- V = std::make_unique<Verifier>(
- &dbgs(), /*ShouldTreatBrokenDebugInfoAsError=*/false, M);
- return false;
- }
- bool runOnFunction(Function &F) override {
- if (!V->verify(F) && FatalErrors) {
- errs() << "in function " << F.getName() << '\n';
- report_fatal_error("Broken function found, compilation aborted!");
- }
- return false;
- }
- bool doFinalization(Module &M) override {
- bool HasErrors = false;
- for (Function &F : M)
- if (F.isDeclaration())
- HasErrors |= !V->verify(F);
- HasErrors |= !V->verify();
- if (FatalErrors && (HasErrors || V->hasBrokenDebugInfo()))
- report_fatal_error("Broken module found, compilation aborted!");
- return false;
- }
- void getAnalysisUsage(AnalysisUsage &AU) const override {
- AU.setPreservesAll();
- }
- };
- } // end anonymous namespace
- /// Helper to issue failure from the TBAA verification
- template <typename... Tys> void TBAAVerifier::CheckFailed(Tys &&... Args) {
- if (Diagnostic)
- return Diagnostic->CheckFailed(Args...);
- }
- #define AssertTBAA(C, ...) \
- do { \
- if (!(C)) { \
- CheckFailed(__VA_ARGS__); \
- return false; \
- } \
- } while (false)
- /// Verify that \p BaseNode can be used as the "base type" in the struct-path
- /// TBAA scheme. This means \p BaseNode is either a scalar node, or a
- /// struct-type node describing an aggregate data structure (like a struct).
- TBAAVerifier::TBAABaseNodeSummary
- TBAAVerifier::verifyTBAABaseNode(Instruction &I, const MDNode *BaseNode,
- bool IsNewFormat) {
- if (BaseNode->getNumOperands() < 2) {
- CheckFailed("Base nodes must have at least two operands", &I, BaseNode);
- return {true, ~0u};
- }
- auto Itr = TBAABaseNodes.find(BaseNode);
- if (Itr != TBAABaseNodes.end())
- return Itr->second;
- auto Result = verifyTBAABaseNodeImpl(I, BaseNode, IsNewFormat);
- auto InsertResult = TBAABaseNodes.insert({BaseNode, Result});
- (void)InsertResult;
- assert(InsertResult.second && "We just checked!");
- return Result;
- }
- TBAAVerifier::TBAABaseNodeSummary
- TBAAVerifier::verifyTBAABaseNodeImpl(Instruction &I, const MDNode *BaseNode,
- bool IsNewFormat) {
- const TBAAVerifier::TBAABaseNodeSummary InvalidNode = {true, ~0u};
- if (BaseNode->getNumOperands() == 2) {
- // Scalar nodes can only be accessed at offset 0.
- return isValidScalarTBAANode(BaseNode)
- ? TBAAVerifier::TBAABaseNodeSummary({false, 0})
- : InvalidNode;
- }
- if (IsNewFormat) {
- if (BaseNode->getNumOperands() % 3 != 0) {
- CheckFailed("Access tag nodes must have the number of operands that is a "
- "multiple of 3!", BaseNode);
- return InvalidNode;
- }
- } else {
- if (BaseNode->getNumOperands() % 2 != 1) {
- CheckFailed("Struct tag nodes must have an odd number of operands!",
- BaseNode);
- return InvalidNode;
- }
- }
- // Check the type size field.
- if (IsNewFormat) {
- auto *TypeSizeNode = mdconst::dyn_extract_or_null<ConstantInt>(
- BaseNode->getOperand(1));
- if (!TypeSizeNode) {
- CheckFailed("Type size nodes must be constants!", &I, BaseNode);
- return InvalidNode;
- }
- }
- // Check the type name field. In the new format it can be anything.
- if (!IsNewFormat && !isa<MDString>(BaseNode->getOperand(0))) {
- CheckFailed("Struct tag nodes have a string as their first operand",
- BaseNode);
- return InvalidNode;
- }
- bool Failed = false;
- Optional<APInt> PrevOffset;
- unsigned BitWidth = ~0u;
- // We've already checked that BaseNode is not a degenerate root node with one
- // operand in \c verifyTBAABaseNode, so this loop should run at least once.
- unsigned FirstFieldOpNo = IsNewFormat ? 3 : 1;
- unsigned NumOpsPerField = IsNewFormat ? 3 : 2;
- for (unsigned Idx = FirstFieldOpNo; Idx < BaseNode->getNumOperands();
- Idx += NumOpsPerField) {
- const MDOperand &FieldTy = BaseNode->getOperand(Idx);
- const MDOperand &FieldOffset = BaseNode->getOperand(Idx + 1);
- if (!isa<MDNode>(FieldTy)) {
- CheckFailed("Incorrect field entry in struct type node!", &I, BaseNode);
- Failed = true;
- continue;
- }
- auto *OffsetEntryCI =
- mdconst::dyn_extract_or_null<ConstantInt>(FieldOffset);
- if (!OffsetEntryCI) {
- CheckFailed("Offset entries must be constants!", &I, BaseNode);
- Failed = true;
- continue;
- }
- if (BitWidth == ~0u)
- BitWidth = OffsetEntryCI->getBitWidth();
- if (OffsetEntryCI->getBitWidth() != BitWidth) {
- CheckFailed(
- "Bitwidth between the offsets and struct type entries must match", &I,
- BaseNode);
- Failed = true;
- continue;
- }
- // NB! As far as I can tell, we generate a non-strictly increasing offset
- // sequence only from structs that have zero size bit fields. When
- // recursing into a contained struct in \c getFieldNodeFromTBAABaseNode we
- // pick the field lexically the latest in struct type metadata node. This
- // mirrors the actual behavior of the alias analysis implementation.
- bool IsAscending =
- !PrevOffset || PrevOffset->ule(OffsetEntryCI->getValue());
- if (!IsAscending) {
- CheckFailed("Offsets must be increasing!", &I, BaseNode);
- Failed = true;
- }
- PrevOffset = OffsetEntryCI->getValue();
- if (IsNewFormat) {
- auto *MemberSizeNode = mdconst::dyn_extract_or_null<ConstantInt>(
- BaseNode->getOperand(Idx + 2));
- if (!MemberSizeNode) {
- CheckFailed("Member size entries must be constants!", &I, BaseNode);
- Failed = true;
- continue;
- }
- }
- }
- return Failed ? InvalidNode
- : TBAAVerifier::TBAABaseNodeSummary(false, BitWidth);
- }
- static bool IsRootTBAANode(const MDNode *MD) {
- return MD->getNumOperands() < 2;
- }
- static bool IsScalarTBAANodeImpl(const MDNode *MD,
- SmallPtrSetImpl<const MDNode *> &Visited) {
- if (MD->getNumOperands() != 2 && MD->getNumOperands() != 3)
- return false;
- if (!isa<MDString>(MD->getOperand(0)))
- return false;
- if (MD->getNumOperands() == 3) {
- auto *Offset = mdconst::dyn_extract<ConstantInt>(MD->getOperand(2));
- if (!(Offset && Offset->isZero() && isa<MDString>(MD->getOperand(0))))
- return false;
- }
- auto *Parent = dyn_cast_or_null<MDNode>(MD->getOperand(1));
- return Parent && Visited.insert(Parent).second &&
- (IsRootTBAANode(Parent) || IsScalarTBAANodeImpl(Parent, Visited));
- }
- bool TBAAVerifier::isValidScalarTBAANode(const MDNode *MD) {
- auto ResultIt = TBAAScalarNodes.find(MD);
- if (ResultIt != TBAAScalarNodes.end())
- return ResultIt->second;
- SmallPtrSet<const MDNode *, 4> Visited;
- bool Result = IsScalarTBAANodeImpl(MD, Visited);
- auto InsertResult = TBAAScalarNodes.insert({MD, Result});
- (void)InsertResult;
- assert(InsertResult.second && "Just checked!");
- return Result;
- }
- /// Returns the field node at the offset \p Offset in \p BaseNode. Update \p
- /// Offset in place to be the offset within the field node returned.
- ///
- /// We assume we've okayed \p BaseNode via \c verifyTBAABaseNode.
- MDNode *TBAAVerifier::getFieldNodeFromTBAABaseNode(Instruction &I,
- const MDNode *BaseNode,
- APInt &Offset,
- bool IsNewFormat) {
- assert(BaseNode->getNumOperands() >= 2 && "Invalid base node!");
- // Scalar nodes have only one possible "field" -- their parent in the access
- // hierarchy. Offset must be zero at this point, but our caller is supposed
- // to Assert that.
- if (BaseNode->getNumOperands() == 2)
- return cast<MDNode>(BaseNode->getOperand(1));
- unsigned FirstFieldOpNo = IsNewFormat ? 3 : 1;
- unsigned NumOpsPerField = IsNewFormat ? 3 : 2;
- for (unsigned Idx = FirstFieldOpNo; Idx < BaseNode->getNumOperands();
- Idx += NumOpsPerField) {
- auto *OffsetEntryCI =
- mdconst::extract<ConstantInt>(BaseNode->getOperand(Idx + 1));
- if (OffsetEntryCI->getValue().ugt(Offset)) {
- if (Idx == FirstFieldOpNo) {
- CheckFailed("Could not find TBAA parent in struct type node", &I,
- BaseNode, &Offset);
- return nullptr;
- }
- unsigned PrevIdx = Idx - NumOpsPerField;
- auto *PrevOffsetEntryCI =
- mdconst::extract<ConstantInt>(BaseNode->getOperand(PrevIdx + 1));
- Offset -= PrevOffsetEntryCI->getValue();
- return cast<MDNode>(BaseNode->getOperand(PrevIdx));
- }
- }
- unsigned LastIdx = BaseNode->getNumOperands() - NumOpsPerField;
- auto *LastOffsetEntryCI = mdconst::extract<ConstantInt>(
- BaseNode->getOperand(LastIdx + 1));
- Offset -= LastOffsetEntryCI->getValue();
- return cast<MDNode>(BaseNode->getOperand(LastIdx));
- }
- static bool isNewFormatTBAATypeNode(llvm::MDNode *Type) {
- if (!Type || Type->getNumOperands() < 3)
- return false;
- // In the new format type nodes shall have a reference to the parent type as
- // its first operand.
- return isa_and_nonnull<MDNode>(Type->getOperand(0));
- }
- bool TBAAVerifier::visitTBAAMetadata(Instruction &I, const MDNode *MD) {
- AssertTBAA(isa<LoadInst>(I) || isa<StoreInst>(I) || isa<CallInst>(I) ||
- isa<VAArgInst>(I) || isa<AtomicRMWInst>(I) ||
- isa<AtomicCmpXchgInst>(I),
- "This instruction shall not have a TBAA access tag!", &I);
- bool IsStructPathTBAA =
- isa<MDNode>(MD->getOperand(0)) && MD->getNumOperands() >= 3;
- AssertTBAA(
- IsStructPathTBAA,
- "Old-style TBAA is no longer allowed, use struct-path TBAA instead", &I);
- MDNode *BaseNode = dyn_cast_or_null<MDNode>(MD->getOperand(0));
- MDNode *AccessType = dyn_cast_or_null<MDNode>(MD->getOperand(1));
- bool IsNewFormat = isNewFormatTBAATypeNode(AccessType);
- if (IsNewFormat) {
- AssertTBAA(MD->getNumOperands() == 4 || MD->getNumOperands() == 5,
- "Access tag metadata must have either 4 or 5 operands", &I, MD);
- } else {
- AssertTBAA(MD->getNumOperands() < 5,
- "Struct tag metadata must have either 3 or 4 operands", &I, MD);
- }
- // Check the access size field.
- if (IsNewFormat) {
- auto *AccessSizeNode = mdconst::dyn_extract_or_null<ConstantInt>(
- MD->getOperand(3));
- AssertTBAA(AccessSizeNode, "Access size field must be a constant", &I, MD);
- }
- // Check the immutability flag.
- unsigned ImmutabilityFlagOpNo = IsNewFormat ? 4 : 3;
- if (MD->getNumOperands() == ImmutabilityFlagOpNo + 1) {
- auto *IsImmutableCI = mdconst::dyn_extract_or_null<ConstantInt>(
- MD->getOperand(ImmutabilityFlagOpNo));
- AssertTBAA(IsImmutableCI,
- "Immutability tag on struct tag metadata must be a constant",
- &I, MD);
- AssertTBAA(
- IsImmutableCI->isZero() || IsImmutableCI->isOne(),
- "Immutability part of the struct tag metadata must be either 0 or 1",
- &I, MD);
- }
- AssertTBAA(BaseNode && AccessType,
- "Malformed struct tag metadata: base and access-type "
- "should be non-null and point to Metadata nodes",
- &I, MD, BaseNode, AccessType);
- if (!IsNewFormat) {
- AssertTBAA(isValidScalarTBAANode(AccessType),
- "Access type node must be a valid scalar type", &I, MD,
- AccessType);
- }
- auto *OffsetCI = mdconst::dyn_extract_or_null<ConstantInt>(MD->getOperand(2));
- AssertTBAA(OffsetCI, "Offset must be constant integer", &I, MD);
- APInt Offset = OffsetCI->getValue();
- bool SeenAccessTypeInPath = false;
- SmallPtrSet<MDNode *, 4> StructPath;
- for (/* empty */; BaseNode && !IsRootTBAANode(BaseNode);
- BaseNode = getFieldNodeFromTBAABaseNode(I, BaseNode, Offset,
- IsNewFormat)) {
- if (!StructPath.insert(BaseNode).second) {
- CheckFailed("Cycle detected in struct path", &I, MD);
- return false;
- }
- bool Invalid;
- unsigned BaseNodeBitWidth;
- std::tie(Invalid, BaseNodeBitWidth) = verifyTBAABaseNode(I, BaseNode,
- IsNewFormat);
- // If the base node is invalid in itself, then we've already printed all the
- // errors we wanted to print.
- if (Invalid)
- return false;
- SeenAccessTypeInPath |= BaseNode == AccessType;
- if (isValidScalarTBAANode(BaseNode) || BaseNode == AccessType)
- AssertTBAA(Offset == 0, "Offset not zero at the point of scalar access",
- &I, MD, &Offset);
- AssertTBAA(BaseNodeBitWidth == Offset.getBitWidth() ||
- (BaseNodeBitWidth == 0 && Offset == 0) ||
- (IsNewFormat && BaseNodeBitWidth == ~0u),
- "Access bit-width not the same as description bit-width", &I, MD,
- BaseNodeBitWidth, Offset.getBitWidth());
- if (IsNewFormat && SeenAccessTypeInPath)
- break;
- }
- AssertTBAA(SeenAccessTypeInPath, "Did not see access type in access path!",
- &I, MD);
- return true;
- }
- char VerifierLegacyPass::ID = 0;
- INITIALIZE_PASS(VerifierLegacyPass, "verify", "Module Verifier", false, false)
- FunctionPass *llvm::createVerifierPass(bool FatalErrors) {
- return new VerifierLegacyPass(FatalErrors);
- }
- AnalysisKey VerifierAnalysis::Key;
- VerifierAnalysis::Result VerifierAnalysis::run(Module &M,
- ModuleAnalysisManager &) {
- Result Res;
- Res.IRBroken = llvm::verifyModule(M, &dbgs(), &Res.DebugInfoBroken);
- return Res;
- }
- VerifierAnalysis::Result VerifierAnalysis::run(Function &F,
- FunctionAnalysisManager &) {
- return { llvm::verifyFunction(F, &dbgs()), false };
- }
- PreservedAnalyses VerifierPass::run(Module &M, ModuleAnalysisManager &AM) {
- auto Res = AM.getResult<VerifierAnalysis>(M);
- if (FatalErrors && (Res.IRBroken || Res.DebugInfoBroken))
- report_fatal_error("Broken module found, compilation aborted!");
- return PreservedAnalyses::all();
- }
- PreservedAnalyses VerifierPass::run(Function &F, FunctionAnalysisManager &AM) {
- auto res = AM.getResult<VerifierAnalysis>(F);
- if (res.IRBroken && FatalErrors)
- report_fatal_error("Broken function found, compilation aborted!");
- return PreservedAnalyses::all();
- }
|