12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136 |
- //===-- DependenceAnalysis.cpp - DA Implementation --------------*- C++ -*-===//
- //
- // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
- // See https://llvm.org/LICENSE.txt for license information.
- // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
- //
- //===----------------------------------------------------------------------===//
- //
- // DependenceAnalysis is an LLVM pass that analyses dependences between memory
- // accesses. Currently, it is an (incomplete) implementation of the approach
- // described in
- //
- // Practical Dependence Testing
- // Goff, Kennedy, Tseng
- // PLDI 1991
- //
- // There's a single entry point that analyzes the dependence between a pair
- // of memory references in a function, returning either NULL, for no dependence,
- // or a more-or-less detailed description of the dependence between them.
- //
- // Currently, the implementation cannot propagate constraints between
- // coupled RDIV subscripts and lacks a multi-subscript MIV test.
- // Both of these are conservative weaknesses;
- // that is, not a source of correctness problems.
- //
- // Since Clang linearizes some array subscripts, the dependence
- // analysis is using SCEV->delinearize to recover the representation of multiple
- // subscripts, and thus avoid the more expensive and less precise MIV tests. The
- // delinearization is controlled by the flag -da-delinearize.
- //
- // We should pay some careful attention to the possibility of integer overflow
- // in the implementation of the various tests. This could happen with Add,
- // Subtract, or Multiply, with both APInt's and SCEV's.
- //
- // Some non-linear subscript pairs can be handled by the GCD test
- // (and perhaps other tests).
- // Should explore how often these things occur.
- //
- // Finally, it seems like certain test cases expose weaknesses in the SCEV
- // simplification, especially in the handling of sign and zero extensions.
- // It could be useful to spend time exploring these.
- //
- // Please note that this is work in progress and the interface is subject to
- // change.
- //
- //===----------------------------------------------------------------------===//
- // //
- // In memory of Ken Kennedy, 1945 - 2007 //
- // //
- //===----------------------------------------------------------------------===//
- #include "llvm/Analysis/DependenceAnalysis.h"
- #include "llvm/ADT/STLExtras.h"
- #include "llvm/ADT/Statistic.h"
- #include "llvm/Analysis/AliasAnalysis.h"
- #include "llvm/Analysis/Delinearization.h"
- #include "llvm/Analysis/LoopInfo.h"
- #include "llvm/Analysis/ScalarEvolution.h"
- #include "llvm/Analysis/ScalarEvolutionExpressions.h"
- #include "llvm/Analysis/ValueTracking.h"
- #include "llvm/Config/llvm-config.h"
- #include "llvm/IR/InstIterator.h"
- #include "llvm/IR/Module.h"
- #include "llvm/IR/Operator.h"
- #include "llvm/InitializePasses.h"
- #include "llvm/Support/CommandLine.h"
- #include "llvm/Support/Debug.h"
- #include "llvm/Support/ErrorHandling.h"
- #include "llvm/Support/raw_ostream.h"
- using namespace llvm;
- #define DEBUG_TYPE "da"
- //===----------------------------------------------------------------------===//
- // statistics
- STATISTIC(TotalArrayPairs, "Array pairs tested");
- STATISTIC(SeparableSubscriptPairs, "Separable subscript pairs");
- STATISTIC(CoupledSubscriptPairs, "Coupled subscript pairs");
- STATISTIC(NonlinearSubscriptPairs, "Nonlinear subscript pairs");
- STATISTIC(ZIVapplications, "ZIV applications");
- STATISTIC(ZIVindependence, "ZIV independence");
- STATISTIC(StrongSIVapplications, "Strong SIV applications");
- STATISTIC(StrongSIVsuccesses, "Strong SIV successes");
- STATISTIC(StrongSIVindependence, "Strong SIV independence");
- STATISTIC(WeakCrossingSIVapplications, "Weak-Crossing SIV applications");
- STATISTIC(WeakCrossingSIVsuccesses, "Weak-Crossing SIV successes");
- STATISTIC(WeakCrossingSIVindependence, "Weak-Crossing SIV independence");
- STATISTIC(ExactSIVapplications, "Exact SIV applications");
- STATISTIC(ExactSIVsuccesses, "Exact SIV successes");
- STATISTIC(ExactSIVindependence, "Exact SIV independence");
- STATISTIC(WeakZeroSIVapplications, "Weak-Zero SIV applications");
- STATISTIC(WeakZeroSIVsuccesses, "Weak-Zero SIV successes");
- STATISTIC(WeakZeroSIVindependence, "Weak-Zero SIV independence");
- STATISTIC(ExactRDIVapplications, "Exact RDIV applications");
- STATISTIC(ExactRDIVindependence, "Exact RDIV independence");
- STATISTIC(SymbolicRDIVapplications, "Symbolic RDIV applications");
- STATISTIC(SymbolicRDIVindependence, "Symbolic RDIV independence");
- STATISTIC(DeltaApplications, "Delta applications");
- STATISTIC(DeltaSuccesses, "Delta successes");
- STATISTIC(DeltaIndependence, "Delta independence");
- STATISTIC(DeltaPropagations, "Delta propagations");
- STATISTIC(GCDapplications, "GCD applications");
- STATISTIC(GCDsuccesses, "GCD successes");
- STATISTIC(GCDindependence, "GCD independence");
- STATISTIC(BanerjeeApplications, "Banerjee applications");
- STATISTIC(BanerjeeIndependence, "Banerjee independence");
- STATISTIC(BanerjeeSuccesses, "Banerjee successes");
- static cl::opt<bool>
- Delinearize("da-delinearize", cl::init(true), cl::Hidden, cl::ZeroOrMore,
- cl::desc("Try to delinearize array references."));
- static cl::opt<bool> DisableDelinearizationChecks(
- "da-disable-delinearization-checks", cl::init(false), cl::Hidden,
- cl::ZeroOrMore,
- cl::desc(
- "Disable checks that try to statically verify validity of "
- "delinearized subscripts. Enabling this option may result in incorrect "
- "dependence vectors for languages that allow the subscript of one "
- "dimension to underflow or overflow into another dimension."));
- static cl::opt<unsigned> MIVMaxLevelThreshold(
- "da-miv-max-level-threshold", cl::init(7), cl::Hidden, cl::ZeroOrMore,
- cl::desc("Maximum depth allowed for the recursive algorithm used to "
- "explore MIV direction vectors."));
- //===----------------------------------------------------------------------===//
- // basics
- DependenceAnalysis::Result
- DependenceAnalysis::run(Function &F, FunctionAnalysisManager &FAM) {
- auto &AA = FAM.getResult<AAManager>(F);
- auto &SE = FAM.getResult<ScalarEvolutionAnalysis>(F);
- auto &LI = FAM.getResult<LoopAnalysis>(F);
- return DependenceInfo(&F, &AA, &SE, &LI);
- }
- AnalysisKey DependenceAnalysis::Key;
- INITIALIZE_PASS_BEGIN(DependenceAnalysisWrapperPass, "da",
- "Dependence Analysis", true, true)
- INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
- INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
- INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
- INITIALIZE_PASS_END(DependenceAnalysisWrapperPass, "da", "Dependence Analysis",
- true, true)
- char DependenceAnalysisWrapperPass::ID = 0;
- DependenceAnalysisWrapperPass::DependenceAnalysisWrapperPass()
- : FunctionPass(ID) {
- initializeDependenceAnalysisWrapperPassPass(*PassRegistry::getPassRegistry());
- }
- FunctionPass *llvm::createDependenceAnalysisWrapperPass() {
- return new DependenceAnalysisWrapperPass();
- }
- bool DependenceAnalysisWrapperPass::runOnFunction(Function &F) {
- auto &AA = getAnalysis<AAResultsWrapperPass>().getAAResults();
- auto &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE();
- auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
- info.reset(new DependenceInfo(&F, &AA, &SE, &LI));
- return false;
- }
- DependenceInfo &DependenceAnalysisWrapperPass::getDI() const { return *info; }
- void DependenceAnalysisWrapperPass::releaseMemory() { info.reset(); }
- void DependenceAnalysisWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
- AU.setPreservesAll();
- AU.addRequiredTransitive<AAResultsWrapperPass>();
- AU.addRequiredTransitive<ScalarEvolutionWrapperPass>();
- AU.addRequiredTransitive<LoopInfoWrapperPass>();
- }
- // Used to test the dependence analyzer.
- // Looks through the function, noting instructions that may access memory.
- // Calls depends() on every possible pair and prints out the result.
- // Ignores all other instructions.
- static void dumpExampleDependence(raw_ostream &OS, DependenceInfo *DA) {
- auto *F = DA->getFunction();
- for (inst_iterator SrcI = inst_begin(F), SrcE = inst_end(F); SrcI != SrcE;
- ++SrcI) {
- if (SrcI->mayReadOrWriteMemory()) {
- for (inst_iterator DstI = SrcI, DstE = inst_end(F);
- DstI != DstE; ++DstI) {
- if (DstI->mayReadOrWriteMemory()) {
- OS << "Src:" << *SrcI << " --> Dst:" << *DstI << "\n";
- OS << " da analyze - ";
- if (auto D = DA->depends(&*SrcI, &*DstI, true)) {
- D->dump(OS);
- for (unsigned Level = 1; Level <= D->getLevels(); Level++) {
- if (D->isSplitable(Level)) {
- OS << " da analyze - split level = " << Level;
- OS << ", iteration = " << *DA->getSplitIteration(*D, Level);
- OS << "!\n";
- }
- }
- }
- else
- OS << "none!\n";
- }
- }
- }
- }
- }
- void DependenceAnalysisWrapperPass::print(raw_ostream &OS,
- const Module *) const {
- dumpExampleDependence(OS, info.get());
- }
- PreservedAnalyses
- DependenceAnalysisPrinterPass::run(Function &F, FunctionAnalysisManager &FAM) {
- OS << "'Dependence Analysis' for function '" << F.getName() << "':\n";
- dumpExampleDependence(OS, &FAM.getResult<DependenceAnalysis>(F));
- return PreservedAnalyses::all();
- }
- //===----------------------------------------------------------------------===//
- // Dependence methods
- // Returns true if this is an input dependence.
- bool Dependence::isInput() const {
- return Src->mayReadFromMemory() && Dst->mayReadFromMemory();
- }
- // Returns true if this is an output dependence.
- bool Dependence::isOutput() const {
- return Src->mayWriteToMemory() && Dst->mayWriteToMemory();
- }
- // Returns true if this is an flow (aka true) dependence.
- bool Dependence::isFlow() const {
- return Src->mayWriteToMemory() && Dst->mayReadFromMemory();
- }
- // Returns true if this is an anti dependence.
- bool Dependence::isAnti() const {
- return Src->mayReadFromMemory() && Dst->mayWriteToMemory();
- }
- // Returns true if a particular level is scalar; that is,
- // if no subscript in the source or destination mention the induction
- // variable associated with the loop at this level.
- // Leave this out of line, so it will serve as a virtual method anchor
- bool Dependence::isScalar(unsigned level) const {
- return false;
- }
- //===----------------------------------------------------------------------===//
- // FullDependence methods
- FullDependence::FullDependence(Instruction *Source, Instruction *Destination,
- bool PossiblyLoopIndependent,
- unsigned CommonLevels)
- : Dependence(Source, Destination), Levels(CommonLevels),
- LoopIndependent(PossiblyLoopIndependent) {
- Consistent = true;
- if (CommonLevels)
- DV = std::make_unique<DVEntry[]>(CommonLevels);
- }
- // The rest are simple getters that hide the implementation.
- // getDirection - Returns the direction associated with a particular level.
- unsigned FullDependence::getDirection(unsigned Level) const {
- assert(0 < Level && Level <= Levels && "Level out of range");
- return DV[Level - 1].Direction;
- }
- // Returns the distance (or NULL) associated with a particular level.
- const SCEV *FullDependence::getDistance(unsigned Level) const {
- assert(0 < Level && Level <= Levels && "Level out of range");
- return DV[Level - 1].Distance;
- }
- // Returns true if a particular level is scalar; that is,
- // if no subscript in the source or destination mention the induction
- // variable associated with the loop at this level.
- bool FullDependence::isScalar(unsigned Level) const {
- assert(0 < Level && Level <= Levels && "Level out of range");
- return DV[Level - 1].Scalar;
- }
- // Returns true if peeling the first iteration from this loop
- // will break this dependence.
- bool FullDependence::isPeelFirst(unsigned Level) const {
- assert(0 < Level && Level <= Levels && "Level out of range");
- return DV[Level - 1].PeelFirst;
- }
- // Returns true if peeling the last iteration from this loop
- // will break this dependence.
- bool FullDependence::isPeelLast(unsigned Level) const {
- assert(0 < Level && Level <= Levels && "Level out of range");
- return DV[Level - 1].PeelLast;
- }
- // Returns true if splitting this loop will break the dependence.
- bool FullDependence::isSplitable(unsigned Level) const {
- assert(0 < Level && Level <= Levels && "Level out of range");
- return DV[Level - 1].Splitable;
- }
- //===----------------------------------------------------------------------===//
- // DependenceInfo::Constraint methods
- // If constraint is a point <X, Y>, returns X.
- // Otherwise assert.
- const SCEV *DependenceInfo::Constraint::getX() const {
- assert(Kind == Point && "Kind should be Point");
- return A;
- }
- // If constraint is a point <X, Y>, returns Y.
- // Otherwise assert.
- const SCEV *DependenceInfo::Constraint::getY() const {
- assert(Kind == Point && "Kind should be Point");
- return B;
- }
- // If constraint is a line AX + BY = C, returns A.
- // Otherwise assert.
- const SCEV *DependenceInfo::Constraint::getA() const {
- assert((Kind == Line || Kind == Distance) &&
- "Kind should be Line (or Distance)");
- return A;
- }
- // If constraint is a line AX + BY = C, returns B.
- // Otherwise assert.
- const SCEV *DependenceInfo::Constraint::getB() const {
- assert((Kind == Line || Kind == Distance) &&
- "Kind should be Line (or Distance)");
- return B;
- }
- // If constraint is a line AX + BY = C, returns C.
- // Otherwise assert.
- const SCEV *DependenceInfo::Constraint::getC() const {
- assert((Kind == Line || Kind == Distance) &&
- "Kind should be Line (or Distance)");
- return C;
- }
- // If constraint is a distance, returns D.
- // Otherwise assert.
- const SCEV *DependenceInfo::Constraint::getD() const {
- assert(Kind == Distance && "Kind should be Distance");
- return SE->getNegativeSCEV(C);
- }
- // Returns the loop associated with this constraint.
- const Loop *DependenceInfo::Constraint::getAssociatedLoop() const {
- assert((Kind == Distance || Kind == Line || Kind == Point) &&
- "Kind should be Distance, Line, or Point");
- return AssociatedLoop;
- }
- void DependenceInfo::Constraint::setPoint(const SCEV *X, const SCEV *Y,
- const Loop *CurLoop) {
- Kind = Point;
- A = X;
- B = Y;
- AssociatedLoop = CurLoop;
- }
- void DependenceInfo::Constraint::setLine(const SCEV *AA, const SCEV *BB,
- const SCEV *CC, const Loop *CurLoop) {
- Kind = Line;
- A = AA;
- B = BB;
- C = CC;
- AssociatedLoop = CurLoop;
- }
- void DependenceInfo::Constraint::setDistance(const SCEV *D,
- const Loop *CurLoop) {
- Kind = Distance;
- A = SE->getOne(D->getType());
- B = SE->getNegativeSCEV(A);
- C = SE->getNegativeSCEV(D);
- AssociatedLoop = CurLoop;
- }
- void DependenceInfo::Constraint::setEmpty() { Kind = Empty; }
- void DependenceInfo::Constraint::setAny(ScalarEvolution *NewSE) {
- SE = NewSE;
- Kind = Any;
- }
- #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
- // For debugging purposes. Dumps the constraint out to OS.
- LLVM_DUMP_METHOD void DependenceInfo::Constraint::dump(raw_ostream &OS) const {
- if (isEmpty())
- OS << " Empty\n";
- else if (isAny())
- OS << " Any\n";
- else if (isPoint())
- OS << " Point is <" << *getX() << ", " << *getY() << ">\n";
- else if (isDistance())
- OS << " Distance is " << *getD() <<
- " (" << *getA() << "*X + " << *getB() << "*Y = " << *getC() << ")\n";
- else if (isLine())
- OS << " Line is " << *getA() << "*X + " <<
- *getB() << "*Y = " << *getC() << "\n";
- else
- llvm_unreachable("unknown constraint type in Constraint::dump");
- }
- #endif
- // Updates X with the intersection
- // of the Constraints X and Y. Returns true if X has changed.
- // Corresponds to Figure 4 from the paper
- //
- // Practical Dependence Testing
- // Goff, Kennedy, Tseng
- // PLDI 1991
- bool DependenceInfo::intersectConstraints(Constraint *X, const Constraint *Y) {
- ++DeltaApplications;
- LLVM_DEBUG(dbgs() << "\tintersect constraints\n");
- LLVM_DEBUG(dbgs() << "\t X ="; X->dump(dbgs()));
- LLVM_DEBUG(dbgs() << "\t Y ="; Y->dump(dbgs()));
- assert(!Y->isPoint() && "Y must not be a Point");
- if (X->isAny()) {
- if (Y->isAny())
- return false;
- *X = *Y;
- return true;
- }
- if (X->isEmpty())
- return false;
- if (Y->isEmpty()) {
- X->setEmpty();
- return true;
- }
- if (X->isDistance() && Y->isDistance()) {
- LLVM_DEBUG(dbgs() << "\t intersect 2 distances\n");
- if (isKnownPredicate(CmpInst::ICMP_EQ, X->getD(), Y->getD()))
- return false;
- if (isKnownPredicate(CmpInst::ICMP_NE, X->getD(), Y->getD())) {
- X->setEmpty();
- ++DeltaSuccesses;
- return true;
- }
- // Hmmm, interesting situation.
- // I guess if either is constant, keep it and ignore the other.
- if (isa<SCEVConstant>(Y->getD())) {
- *X = *Y;
- return true;
- }
- return false;
- }
- // At this point, the pseudo-code in Figure 4 of the paper
- // checks if (X->isPoint() && Y->isPoint()).
- // This case can't occur in our implementation,
- // since a Point can only arise as the result of intersecting
- // two Line constraints, and the right-hand value, Y, is never
- // the result of an intersection.
- assert(!(X->isPoint() && Y->isPoint()) &&
- "We shouldn't ever see X->isPoint() && Y->isPoint()");
- if (X->isLine() && Y->isLine()) {
- LLVM_DEBUG(dbgs() << "\t intersect 2 lines\n");
- const SCEV *Prod1 = SE->getMulExpr(X->getA(), Y->getB());
- const SCEV *Prod2 = SE->getMulExpr(X->getB(), Y->getA());
- if (isKnownPredicate(CmpInst::ICMP_EQ, Prod1, Prod2)) {
- // slopes are equal, so lines are parallel
- LLVM_DEBUG(dbgs() << "\t\tsame slope\n");
- Prod1 = SE->getMulExpr(X->getC(), Y->getB());
- Prod2 = SE->getMulExpr(X->getB(), Y->getC());
- if (isKnownPredicate(CmpInst::ICMP_EQ, Prod1, Prod2))
- return false;
- if (isKnownPredicate(CmpInst::ICMP_NE, Prod1, Prod2)) {
- X->setEmpty();
- ++DeltaSuccesses;
- return true;
- }
- return false;
- }
- if (isKnownPredicate(CmpInst::ICMP_NE, Prod1, Prod2)) {
- // slopes differ, so lines intersect
- LLVM_DEBUG(dbgs() << "\t\tdifferent slopes\n");
- const SCEV *C1B2 = SE->getMulExpr(X->getC(), Y->getB());
- const SCEV *C1A2 = SE->getMulExpr(X->getC(), Y->getA());
- const SCEV *C2B1 = SE->getMulExpr(Y->getC(), X->getB());
- const SCEV *C2A1 = SE->getMulExpr(Y->getC(), X->getA());
- const SCEV *A1B2 = SE->getMulExpr(X->getA(), Y->getB());
- const SCEV *A2B1 = SE->getMulExpr(Y->getA(), X->getB());
- const SCEVConstant *C1A2_C2A1 =
- dyn_cast<SCEVConstant>(SE->getMinusSCEV(C1A2, C2A1));
- const SCEVConstant *C1B2_C2B1 =
- dyn_cast<SCEVConstant>(SE->getMinusSCEV(C1B2, C2B1));
- const SCEVConstant *A1B2_A2B1 =
- dyn_cast<SCEVConstant>(SE->getMinusSCEV(A1B2, A2B1));
- const SCEVConstant *A2B1_A1B2 =
- dyn_cast<SCEVConstant>(SE->getMinusSCEV(A2B1, A1B2));
- if (!C1B2_C2B1 || !C1A2_C2A1 ||
- !A1B2_A2B1 || !A2B1_A1B2)
- return false;
- APInt Xtop = C1B2_C2B1->getAPInt();
- APInt Xbot = A1B2_A2B1->getAPInt();
- APInt Ytop = C1A2_C2A1->getAPInt();
- APInt Ybot = A2B1_A1B2->getAPInt();
- LLVM_DEBUG(dbgs() << "\t\tXtop = " << Xtop << "\n");
- LLVM_DEBUG(dbgs() << "\t\tXbot = " << Xbot << "\n");
- LLVM_DEBUG(dbgs() << "\t\tYtop = " << Ytop << "\n");
- LLVM_DEBUG(dbgs() << "\t\tYbot = " << Ybot << "\n");
- APInt Xq = Xtop; // these need to be initialized, even
- APInt Xr = Xtop; // though they're just going to be overwritten
- APInt::sdivrem(Xtop, Xbot, Xq, Xr);
- APInt Yq = Ytop;
- APInt Yr = Ytop;
- APInt::sdivrem(Ytop, Ybot, Yq, Yr);
- if (Xr != 0 || Yr != 0) {
- X->setEmpty();
- ++DeltaSuccesses;
- return true;
- }
- LLVM_DEBUG(dbgs() << "\t\tX = " << Xq << ", Y = " << Yq << "\n");
- if (Xq.slt(0) || Yq.slt(0)) {
- X->setEmpty();
- ++DeltaSuccesses;
- return true;
- }
- if (const SCEVConstant *CUB =
- collectConstantUpperBound(X->getAssociatedLoop(), Prod1->getType())) {
- const APInt &UpperBound = CUB->getAPInt();
- LLVM_DEBUG(dbgs() << "\t\tupper bound = " << UpperBound << "\n");
- if (Xq.sgt(UpperBound) || Yq.sgt(UpperBound)) {
- X->setEmpty();
- ++DeltaSuccesses;
- return true;
- }
- }
- X->setPoint(SE->getConstant(Xq),
- SE->getConstant(Yq),
- X->getAssociatedLoop());
- ++DeltaSuccesses;
- return true;
- }
- return false;
- }
- // if (X->isLine() && Y->isPoint()) This case can't occur.
- assert(!(X->isLine() && Y->isPoint()) && "This case should never occur");
- if (X->isPoint() && Y->isLine()) {
- LLVM_DEBUG(dbgs() << "\t intersect Point and Line\n");
- const SCEV *A1X1 = SE->getMulExpr(Y->getA(), X->getX());
- const SCEV *B1Y1 = SE->getMulExpr(Y->getB(), X->getY());
- const SCEV *Sum = SE->getAddExpr(A1X1, B1Y1);
- if (isKnownPredicate(CmpInst::ICMP_EQ, Sum, Y->getC()))
- return false;
- if (isKnownPredicate(CmpInst::ICMP_NE, Sum, Y->getC())) {
- X->setEmpty();
- ++DeltaSuccesses;
- return true;
- }
- return false;
- }
- llvm_unreachable("shouldn't reach the end of Constraint intersection");
- return false;
- }
- //===----------------------------------------------------------------------===//
- // DependenceInfo methods
- // For debugging purposes. Dumps a dependence to OS.
- void Dependence::dump(raw_ostream &OS) const {
- bool Splitable = false;
- if (isConfused())
- OS << "confused";
- else {
- if (isConsistent())
- OS << "consistent ";
- if (isFlow())
- OS << "flow";
- else if (isOutput())
- OS << "output";
- else if (isAnti())
- OS << "anti";
- else if (isInput())
- OS << "input";
- unsigned Levels = getLevels();
- OS << " [";
- for (unsigned II = 1; II <= Levels; ++II) {
- if (isSplitable(II))
- Splitable = true;
- if (isPeelFirst(II))
- OS << 'p';
- const SCEV *Distance = getDistance(II);
- if (Distance)
- OS << *Distance;
- else if (isScalar(II))
- OS << "S";
- else {
- unsigned Direction = getDirection(II);
- if (Direction == DVEntry::ALL)
- OS << "*";
- else {
- if (Direction & DVEntry::LT)
- OS << "<";
- if (Direction & DVEntry::EQ)
- OS << "=";
- if (Direction & DVEntry::GT)
- OS << ">";
- }
- }
- if (isPeelLast(II))
- OS << 'p';
- if (II < Levels)
- OS << " ";
- }
- if (isLoopIndependent())
- OS << "|<";
- OS << "]";
- if (Splitable)
- OS << " splitable";
- }
- OS << "!\n";
- }
- // Returns NoAlias/MayAliass/MustAlias for two memory locations based upon their
- // underlaying objects. If LocA and LocB are known to not alias (for any reason:
- // tbaa, non-overlapping regions etc), then it is known there is no dependecy.
- // Otherwise the underlying objects are checked to see if they point to
- // different identifiable objects.
- static AliasResult underlyingObjectsAlias(AAResults *AA,
- const DataLayout &DL,
- const MemoryLocation &LocA,
- const MemoryLocation &LocB) {
- // Check the original locations (minus size) for noalias, which can happen for
- // tbaa, incompatible underlying object locations, etc.
- MemoryLocation LocAS =
- MemoryLocation::getBeforeOrAfter(LocA.Ptr, LocA.AATags);
- MemoryLocation LocBS =
- MemoryLocation::getBeforeOrAfter(LocB.Ptr, LocB.AATags);
- if (AA->isNoAlias(LocAS, LocBS))
- return AliasResult::NoAlias;
- // Check the underlying objects are the same
- const Value *AObj = getUnderlyingObject(LocA.Ptr);
- const Value *BObj = getUnderlyingObject(LocB.Ptr);
- // If the underlying objects are the same, they must alias
- if (AObj == BObj)
- return AliasResult::MustAlias;
- // We may have hit the recursion limit for underlying objects, or have
- // underlying objects where we don't know they will alias.
- if (!isIdentifiedObject(AObj) || !isIdentifiedObject(BObj))
- return AliasResult::MayAlias;
- // Otherwise we know the objects are different and both identified objects so
- // must not alias.
- return AliasResult::NoAlias;
- }
- // Returns true if the load or store can be analyzed. Atomic and volatile
- // operations have properties which this analysis does not understand.
- static
- bool isLoadOrStore(const Instruction *I) {
- if (const LoadInst *LI = dyn_cast<LoadInst>(I))
- return LI->isUnordered();
- else if (const StoreInst *SI = dyn_cast<StoreInst>(I))
- return SI->isUnordered();
- return false;
- }
- // Examines the loop nesting of the Src and Dst
- // instructions and establishes their shared loops. Sets the variables
- // CommonLevels, SrcLevels, and MaxLevels.
- // The source and destination instructions needn't be contained in the same
- // loop. The routine establishNestingLevels finds the level of most deeply
- // nested loop that contains them both, CommonLevels. An instruction that's
- // not contained in a loop is at level = 0. MaxLevels is equal to the level
- // of the source plus the level of the destination, minus CommonLevels.
- // This lets us allocate vectors MaxLevels in length, with room for every
- // distinct loop referenced in both the source and destination subscripts.
- // The variable SrcLevels is the nesting depth of the source instruction.
- // It's used to help calculate distinct loops referenced by the destination.
- // Here's the map from loops to levels:
- // 0 - unused
- // 1 - outermost common loop
- // ... - other common loops
- // CommonLevels - innermost common loop
- // ... - loops containing Src but not Dst
- // SrcLevels - innermost loop containing Src but not Dst
- // ... - loops containing Dst but not Src
- // MaxLevels - innermost loops containing Dst but not Src
- // Consider the follow code fragment:
- // for (a = ...) {
- // for (b = ...) {
- // for (c = ...) {
- // for (d = ...) {
- // A[] = ...;
- // }
- // }
- // for (e = ...) {
- // for (f = ...) {
- // for (g = ...) {
- // ... = A[];
- // }
- // }
- // }
- // }
- // }
- // If we're looking at the possibility of a dependence between the store
- // to A (the Src) and the load from A (the Dst), we'll note that they
- // have 2 loops in common, so CommonLevels will equal 2 and the direction
- // vector for Result will have 2 entries. SrcLevels = 4 and MaxLevels = 7.
- // A map from loop names to loop numbers would look like
- // a - 1
- // b - 2 = CommonLevels
- // c - 3
- // d - 4 = SrcLevels
- // e - 5
- // f - 6
- // g - 7 = MaxLevels
- void DependenceInfo::establishNestingLevels(const Instruction *Src,
- const Instruction *Dst) {
- const BasicBlock *SrcBlock = Src->getParent();
- const BasicBlock *DstBlock = Dst->getParent();
- unsigned SrcLevel = LI->getLoopDepth(SrcBlock);
- unsigned DstLevel = LI->getLoopDepth(DstBlock);
- const Loop *SrcLoop = LI->getLoopFor(SrcBlock);
- const Loop *DstLoop = LI->getLoopFor(DstBlock);
- SrcLevels = SrcLevel;
- MaxLevels = SrcLevel + DstLevel;
- while (SrcLevel > DstLevel) {
- SrcLoop = SrcLoop->getParentLoop();
- SrcLevel--;
- }
- while (DstLevel > SrcLevel) {
- DstLoop = DstLoop->getParentLoop();
- DstLevel--;
- }
- while (SrcLoop != DstLoop) {
- SrcLoop = SrcLoop->getParentLoop();
- DstLoop = DstLoop->getParentLoop();
- SrcLevel--;
- }
- CommonLevels = SrcLevel;
- MaxLevels -= CommonLevels;
- }
- // Given one of the loops containing the source, return
- // its level index in our numbering scheme.
- unsigned DependenceInfo::mapSrcLoop(const Loop *SrcLoop) const {
- return SrcLoop->getLoopDepth();
- }
- // Given one of the loops containing the destination,
- // return its level index in our numbering scheme.
- unsigned DependenceInfo::mapDstLoop(const Loop *DstLoop) const {
- unsigned D = DstLoop->getLoopDepth();
- if (D > CommonLevels)
- return D - CommonLevels + SrcLevels;
- else
- return D;
- }
- // Returns true if Expression is loop invariant in LoopNest.
- bool DependenceInfo::isLoopInvariant(const SCEV *Expression,
- const Loop *LoopNest) const {
- if (!LoopNest)
- return true;
- return SE->isLoopInvariant(Expression, LoopNest) &&
- isLoopInvariant(Expression, LoopNest->getParentLoop());
- }
- // Finds the set of loops from the LoopNest that
- // have a level <= CommonLevels and are referred to by the SCEV Expression.
- void DependenceInfo::collectCommonLoops(const SCEV *Expression,
- const Loop *LoopNest,
- SmallBitVector &Loops) const {
- while (LoopNest) {
- unsigned Level = LoopNest->getLoopDepth();
- if (Level <= CommonLevels && !SE->isLoopInvariant(Expression, LoopNest))
- Loops.set(Level);
- LoopNest = LoopNest->getParentLoop();
- }
- }
- void DependenceInfo::unifySubscriptType(ArrayRef<Subscript *> Pairs) {
- unsigned widestWidthSeen = 0;
- Type *widestType;
- // Go through each pair and find the widest bit to which we need
- // to extend all of them.
- for (Subscript *Pair : Pairs) {
- const SCEV *Src = Pair->Src;
- const SCEV *Dst = Pair->Dst;
- IntegerType *SrcTy = dyn_cast<IntegerType>(Src->getType());
- IntegerType *DstTy = dyn_cast<IntegerType>(Dst->getType());
- if (SrcTy == nullptr || DstTy == nullptr) {
- assert(SrcTy == DstTy && "This function only unify integer types and "
- "expect Src and Dst share the same type "
- "otherwise.");
- continue;
- }
- if (SrcTy->getBitWidth() > widestWidthSeen) {
- widestWidthSeen = SrcTy->getBitWidth();
- widestType = SrcTy;
- }
- if (DstTy->getBitWidth() > widestWidthSeen) {
- widestWidthSeen = DstTy->getBitWidth();
- widestType = DstTy;
- }
- }
- assert(widestWidthSeen > 0);
- // Now extend each pair to the widest seen.
- for (Subscript *Pair : Pairs) {
- const SCEV *Src = Pair->Src;
- const SCEV *Dst = Pair->Dst;
- IntegerType *SrcTy = dyn_cast<IntegerType>(Src->getType());
- IntegerType *DstTy = dyn_cast<IntegerType>(Dst->getType());
- if (SrcTy == nullptr || DstTy == nullptr) {
- assert(SrcTy == DstTy && "This function only unify integer types and "
- "expect Src and Dst share the same type "
- "otherwise.");
- continue;
- }
- if (SrcTy->getBitWidth() < widestWidthSeen)
- // Sign-extend Src to widestType
- Pair->Src = SE->getSignExtendExpr(Src, widestType);
- if (DstTy->getBitWidth() < widestWidthSeen) {
- // Sign-extend Dst to widestType
- Pair->Dst = SE->getSignExtendExpr(Dst, widestType);
- }
- }
- }
- // removeMatchingExtensions - Examines a subscript pair.
- // If the source and destination are identically sign (or zero)
- // extended, it strips off the extension in an effect to simplify
- // the actual analysis.
- void DependenceInfo::removeMatchingExtensions(Subscript *Pair) {
- const SCEV *Src = Pair->Src;
- const SCEV *Dst = Pair->Dst;
- if ((isa<SCEVZeroExtendExpr>(Src) && isa<SCEVZeroExtendExpr>(Dst)) ||
- (isa<SCEVSignExtendExpr>(Src) && isa<SCEVSignExtendExpr>(Dst))) {
- const SCEVIntegralCastExpr *SrcCast = cast<SCEVIntegralCastExpr>(Src);
- const SCEVIntegralCastExpr *DstCast = cast<SCEVIntegralCastExpr>(Dst);
- const SCEV *SrcCastOp = SrcCast->getOperand();
- const SCEV *DstCastOp = DstCast->getOperand();
- if (SrcCastOp->getType() == DstCastOp->getType()) {
- Pair->Src = SrcCastOp;
- Pair->Dst = DstCastOp;
- }
- }
- }
- // Examine the scev and return true iff it's linear.
- // Collect any loops mentioned in the set of "Loops".
- bool DependenceInfo::checkSubscript(const SCEV *Expr, const Loop *LoopNest,
- SmallBitVector &Loops, bool IsSrc) {
- const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Expr);
- if (!AddRec)
- return isLoopInvariant(Expr, LoopNest);
- const SCEV *Start = AddRec->getStart();
- const SCEV *Step = AddRec->getStepRecurrence(*SE);
- const SCEV *UB = SE->getBackedgeTakenCount(AddRec->getLoop());
- if (!isa<SCEVCouldNotCompute>(UB)) {
- if (SE->getTypeSizeInBits(Start->getType()) <
- SE->getTypeSizeInBits(UB->getType())) {
- if (!AddRec->getNoWrapFlags())
- return false;
- }
- }
- if (!isLoopInvariant(Step, LoopNest))
- return false;
- if (IsSrc)
- Loops.set(mapSrcLoop(AddRec->getLoop()));
- else
- Loops.set(mapDstLoop(AddRec->getLoop()));
- return checkSubscript(Start, LoopNest, Loops, IsSrc);
- }
- // Examine the scev and return true iff it's linear.
- // Collect any loops mentioned in the set of "Loops".
- bool DependenceInfo::checkSrcSubscript(const SCEV *Src, const Loop *LoopNest,
- SmallBitVector &Loops) {
- return checkSubscript(Src, LoopNest, Loops, true);
- }
- // Examine the scev and return true iff it's linear.
- // Collect any loops mentioned in the set of "Loops".
- bool DependenceInfo::checkDstSubscript(const SCEV *Dst, const Loop *LoopNest,
- SmallBitVector &Loops) {
- return checkSubscript(Dst, LoopNest, Loops, false);
- }
- // Examines the subscript pair (the Src and Dst SCEVs)
- // and classifies it as either ZIV, SIV, RDIV, MIV, or Nonlinear.
- // Collects the associated loops in a set.
- DependenceInfo::Subscript::ClassificationKind
- DependenceInfo::classifyPair(const SCEV *Src, const Loop *SrcLoopNest,
- const SCEV *Dst, const Loop *DstLoopNest,
- SmallBitVector &Loops) {
- SmallBitVector SrcLoops(MaxLevels + 1);
- SmallBitVector DstLoops(MaxLevels + 1);
- if (!checkSrcSubscript(Src, SrcLoopNest, SrcLoops))
- return Subscript::NonLinear;
- if (!checkDstSubscript(Dst, DstLoopNest, DstLoops))
- return Subscript::NonLinear;
- Loops = SrcLoops;
- Loops |= DstLoops;
- unsigned N = Loops.count();
- if (N == 0)
- return Subscript::ZIV;
- if (N == 1)
- return Subscript::SIV;
- if (N == 2 && (SrcLoops.count() == 0 ||
- DstLoops.count() == 0 ||
- (SrcLoops.count() == 1 && DstLoops.count() == 1)))
- return Subscript::RDIV;
- return Subscript::MIV;
- }
- // A wrapper around SCEV::isKnownPredicate.
- // Looks for cases where we're interested in comparing for equality.
- // If both X and Y have been identically sign or zero extended,
- // it strips off the (confusing) extensions before invoking
- // SCEV::isKnownPredicate. Perhaps, someday, the ScalarEvolution package
- // will be similarly updated.
- //
- // If SCEV::isKnownPredicate can't prove the predicate,
- // we try simple subtraction, which seems to help in some cases
- // involving symbolics.
- bool DependenceInfo::isKnownPredicate(ICmpInst::Predicate Pred, const SCEV *X,
- const SCEV *Y) const {
- if (Pred == CmpInst::ICMP_EQ ||
- Pred == CmpInst::ICMP_NE) {
- if ((isa<SCEVSignExtendExpr>(X) &&
- isa<SCEVSignExtendExpr>(Y)) ||
- (isa<SCEVZeroExtendExpr>(X) &&
- isa<SCEVZeroExtendExpr>(Y))) {
- const SCEVIntegralCastExpr *CX = cast<SCEVIntegralCastExpr>(X);
- const SCEVIntegralCastExpr *CY = cast<SCEVIntegralCastExpr>(Y);
- const SCEV *Xop = CX->getOperand();
- const SCEV *Yop = CY->getOperand();
- if (Xop->getType() == Yop->getType()) {
- X = Xop;
- Y = Yop;
- }
- }
- }
- if (SE->isKnownPredicate(Pred, X, Y))
- return true;
- // If SE->isKnownPredicate can't prove the condition,
- // we try the brute-force approach of subtracting
- // and testing the difference.
- // By testing with SE->isKnownPredicate first, we avoid
- // the possibility of overflow when the arguments are constants.
- const SCEV *Delta = SE->getMinusSCEV(X, Y);
- switch (Pred) {
- case CmpInst::ICMP_EQ:
- return Delta->isZero();
- case CmpInst::ICMP_NE:
- return SE->isKnownNonZero(Delta);
- case CmpInst::ICMP_SGE:
- return SE->isKnownNonNegative(Delta);
- case CmpInst::ICMP_SLE:
- return SE->isKnownNonPositive(Delta);
- case CmpInst::ICMP_SGT:
- return SE->isKnownPositive(Delta);
- case CmpInst::ICMP_SLT:
- return SE->isKnownNegative(Delta);
- default:
- llvm_unreachable("unexpected predicate in isKnownPredicate");
- }
- }
- /// Compare to see if S is less than Size, using isKnownNegative(S - max(Size, 1))
- /// with some extra checking if S is an AddRec and we can prove less-than using
- /// the loop bounds.
- bool DependenceInfo::isKnownLessThan(const SCEV *S, const SCEV *Size) const {
- // First unify to the same type
- auto *SType = dyn_cast<IntegerType>(S->getType());
- auto *SizeType = dyn_cast<IntegerType>(Size->getType());
- if (!SType || !SizeType)
- return false;
- Type *MaxType =
- (SType->getBitWidth() >= SizeType->getBitWidth()) ? SType : SizeType;
- S = SE->getTruncateOrZeroExtend(S, MaxType);
- Size = SE->getTruncateOrZeroExtend(Size, MaxType);
- // Special check for addrecs using BE taken count
- const SCEV *Bound = SE->getMinusSCEV(S, Size);
- if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Bound)) {
- if (AddRec->isAffine()) {
- const SCEV *BECount = SE->getBackedgeTakenCount(AddRec->getLoop());
- if (!isa<SCEVCouldNotCompute>(BECount)) {
- const SCEV *Limit = AddRec->evaluateAtIteration(BECount, *SE);
- if (SE->isKnownNegative(Limit))
- return true;
- }
- }
- }
- // Check using normal isKnownNegative
- const SCEV *LimitedBound =
- SE->getMinusSCEV(S, SE->getSMaxExpr(Size, SE->getOne(Size->getType())));
- return SE->isKnownNegative(LimitedBound);
- }
- bool DependenceInfo::isKnownNonNegative(const SCEV *S, const Value *Ptr) const {
- bool Inbounds = false;
- if (auto *SrcGEP = dyn_cast<GetElementPtrInst>(Ptr))
- Inbounds = SrcGEP->isInBounds();
- if (Inbounds) {
- if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
- if (AddRec->isAffine()) {
- // We know S is for Ptr, the operand on a load/store, so doesn't wrap.
- // If both parts are NonNegative, the end result will be NonNegative
- if (SE->isKnownNonNegative(AddRec->getStart()) &&
- SE->isKnownNonNegative(AddRec->getOperand(1)))
- return true;
- }
- }
- }
- return SE->isKnownNonNegative(S);
- }
- // All subscripts are all the same type.
- // Loop bound may be smaller (e.g., a char).
- // Should zero extend loop bound, since it's always >= 0.
- // This routine collects upper bound and extends or truncates if needed.
- // Truncating is safe when subscripts are known not to wrap. Cases without
- // nowrap flags should have been rejected earlier.
- // Return null if no bound available.
- const SCEV *DependenceInfo::collectUpperBound(const Loop *L, Type *T) const {
- if (SE->hasLoopInvariantBackedgeTakenCount(L)) {
- const SCEV *UB = SE->getBackedgeTakenCount(L);
- return SE->getTruncateOrZeroExtend(UB, T);
- }
- return nullptr;
- }
- // Calls collectUpperBound(), then attempts to cast it to SCEVConstant.
- // If the cast fails, returns NULL.
- const SCEVConstant *DependenceInfo::collectConstantUpperBound(const Loop *L,
- Type *T) const {
- if (const SCEV *UB = collectUpperBound(L, T))
- return dyn_cast<SCEVConstant>(UB);
- return nullptr;
- }
- // testZIV -
- // When we have a pair of subscripts of the form [c1] and [c2],
- // where c1 and c2 are both loop invariant, we attack it using
- // the ZIV test. Basically, we test by comparing the two values,
- // but there are actually three possible results:
- // 1) the values are equal, so there's a dependence
- // 2) the values are different, so there's no dependence
- // 3) the values might be equal, so we have to assume a dependence.
- //
- // Return true if dependence disproved.
- bool DependenceInfo::testZIV(const SCEV *Src, const SCEV *Dst,
- FullDependence &Result) const {
- LLVM_DEBUG(dbgs() << " src = " << *Src << "\n");
- LLVM_DEBUG(dbgs() << " dst = " << *Dst << "\n");
- ++ZIVapplications;
- if (isKnownPredicate(CmpInst::ICMP_EQ, Src, Dst)) {
- LLVM_DEBUG(dbgs() << " provably dependent\n");
- return false; // provably dependent
- }
- if (isKnownPredicate(CmpInst::ICMP_NE, Src, Dst)) {
- LLVM_DEBUG(dbgs() << " provably independent\n");
- ++ZIVindependence;
- return true; // provably independent
- }
- LLVM_DEBUG(dbgs() << " possibly dependent\n");
- Result.Consistent = false;
- return false; // possibly dependent
- }
- // strongSIVtest -
- // From the paper, Practical Dependence Testing, Section 4.2.1
- //
- // When we have a pair of subscripts of the form [c1 + a*i] and [c2 + a*i],
- // where i is an induction variable, c1 and c2 are loop invariant,
- // and a is a constant, we can solve it exactly using the Strong SIV test.
- //
- // Can prove independence. Failing that, can compute distance (and direction).
- // In the presence of symbolic terms, we can sometimes make progress.
- //
- // If there's a dependence,
- //
- // c1 + a*i = c2 + a*i'
- //
- // The dependence distance is
- //
- // d = i' - i = (c1 - c2)/a
- //
- // A dependence only exists if d is an integer and abs(d) <= U, where U is the
- // loop's upper bound. If a dependence exists, the dependence direction is
- // defined as
- //
- // { < if d > 0
- // direction = { = if d = 0
- // { > if d < 0
- //
- // Return true if dependence disproved.
- bool DependenceInfo::strongSIVtest(const SCEV *Coeff, const SCEV *SrcConst,
- const SCEV *DstConst, const Loop *CurLoop,
- unsigned Level, FullDependence &Result,
- Constraint &NewConstraint) const {
- LLVM_DEBUG(dbgs() << "\tStrong SIV test\n");
- LLVM_DEBUG(dbgs() << "\t Coeff = " << *Coeff);
- LLVM_DEBUG(dbgs() << ", " << *Coeff->getType() << "\n");
- LLVM_DEBUG(dbgs() << "\t SrcConst = " << *SrcConst);
- LLVM_DEBUG(dbgs() << ", " << *SrcConst->getType() << "\n");
- LLVM_DEBUG(dbgs() << "\t DstConst = " << *DstConst);
- LLVM_DEBUG(dbgs() << ", " << *DstConst->getType() << "\n");
- ++StrongSIVapplications;
- assert(0 < Level && Level <= CommonLevels && "level out of range");
- Level--;
- const SCEV *Delta = SE->getMinusSCEV(SrcConst, DstConst);
- LLVM_DEBUG(dbgs() << "\t Delta = " << *Delta);
- LLVM_DEBUG(dbgs() << ", " << *Delta->getType() << "\n");
- // check that |Delta| < iteration count
- if (const SCEV *UpperBound = collectUpperBound(CurLoop, Delta->getType())) {
- LLVM_DEBUG(dbgs() << "\t UpperBound = " << *UpperBound);
- LLVM_DEBUG(dbgs() << ", " << *UpperBound->getType() << "\n");
- const SCEV *AbsDelta =
- SE->isKnownNonNegative(Delta) ? Delta : SE->getNegativeSCEV(Delta);
- const SCEV *AbsCoeff =
- SE->isKnownNonNegative(Coeff) ? Coeff : SE->getNegativeSCEV(Coeff);
- const SCEV *Product = SE->getMulExpr(UpperBound, AbsCoeff);
- if (isKnownPredicate(CmpInst::ICMP_SGT, AbsDelta, Product)) {
- // Distance greater than trip count - no dependence
- ++StrongSIVindependence;
- ++StrongSIVsuccesses;
- return true;
- }
- }
- // Can we compute distance?
- if (isa<SCEVConstant>(Delta) && isa<SCEVConstant>(Coeff)) {
- APInt ConstDelta = cast<SCEVConstant>(Delta)->getAPInt();
- APInt ConstCoeff = cast<SCEVConstant>(Coeff)->getAPInt();
- APInt Distance = ConstDelta; // these need to be initialized
- APInt Remainder = ConstDelta;
- APInt::sdivrem(ConstDelta, ConstCoeff, Distance, Remainder);
- LLVM_DEBUG(dbgs() << "\t Distance = " << Distance << "\n");
- LLVM_DEBUG(dbgs() << "\t Remainder = " << Remainder << "\n");
- // Make sure Coeff divides Delta exactly
- if (Remainder != 0) {
- // Coeff doesn't divide Distance, no dependence
- ++StrongSIVindependence;
- ++StrongSIVsuccesses;
- return true;
- }
- Result.DV[Level].Distance = SE->getConstant(Distance);
- NewConstraint.setDistance(SE->getConstant(Distance), CurLoop);
- if (Distance.sgt(0))
- Result.DV[Level].Direction &= Dependence::DVEntry::LT;
- else if (Distance.slt(0))
- Result.DV[Level].Direction &= Dependence::DVEntry::GT;
- else
- Result.DV[Level].Direction &= Dependence::DVEntry::EQ;
- ++StrongSIVsuccesses;
- }
- else if (Delta->isZero()) {
- // since 0/X == 0
- Result.DV[Level].Distance = Delta;
- NewConstraint.setDistance(Delta, CurLoop);
- Result.DV[Level].Direction &= Dependence::DVEntry::EQ;
- ++StrongSIVsuccesses;
- }
- else {
- if (Coeff->isOne()) {
- LLVM_DEBUG(dbgs() << "\t Distance = " << *Delta << "\n");
- Result.DV[Level].Distance = Delta; // since X/1 == X
- NewConstraint.setDistance(Delta, CurLoop);
- }
- else {
- Result.Consistent = false;
- NewConstraint.setLine(Coeff,
- SE->getNegativeSCEV(Coeff),
- SE->getNegativeSCEV(Delta), CurLoop);
- }
- // maybe we can get a useful direction
- bool DeltaMaybeZero = !SE->isKnownNonZero(Delta);
- bool DeltaMaybePositive = !SE->isKnownNonPositive(Delta);
- bool DeltaMaybeNegative = !SE->isKnownNonNegative(Delta);
- bool CoeffMaybePositive = !SE->isKnownNonPositive(Coeff);
- bool CoeffMaybeNegative = !SE->isKnownNonNegative(Coeff);
- // The double negatives above are confusing.
- // It helps to read !SE->isKnownNonZero(Delta)
- // as "Delta might be Zero"
- unsigned NewDirection = Dependence::DVEntry::NONE;
- if ((DeltaMaybePositive && CoeffMaybePositive) ||
- (DeltaMaybeNegative && CoeffMaybeNegative))
- NewDirection = Dependence::DVEntry::LT;
- if (DeltaMaybeZero)
- NewDirection |= Dependence::DVEntry::EQ;
- if ((DeltaMaybeNegative && CoeffMaybePositive) ||
- (DeltaMaybePositive && CoeffMaybeNegative))
- NewDirection |= Dependence::DVEntry::GT;
- if (NewDirection < Result.DV[Level].Direction)
- ++StrongSIVsuccesses;
- Result.DV[Level].Direction &= NewDirection;
- }
- return false;
- }
- // weakCrossingSIVtest -
- // From the paper, Practical Dependence Testing, Section 4.2.2
- //
- // When we have a pair of subscripts of the form [c1 + a*i] and [c2 - a*i],
- // where i is an induction variable, c1 and c2 are loop invariant,
- // and a is a constant, we can solve it exactly using the
- // Weak-Crossing SIV test.
- //
- // Given c1 + a*i = c2 - a*i', we can look for the intersection of
- // the two lines, where i = i', yielding
- //
- // c1 + a*i = c2 - a*i
- // 2a*i = c2 - c1
- // i = (c2 - c1)/2a
- //
- // If i < 0, there is no dependence.
- // If i > upperbound, there is no dependence.
- // If i = 0 (i.e., if c1 = c2), there's a dependence with distance = 0.
- // If i = upperbound, there's a dependence with distance = 0.
- // If i is integral, there's a dependence (all directions).
- // If the non-integer part = 1/2, there's a dependence (<> directions).
- // Otherwise, there's no dependence.
- //
- // Can prove independence. Failing that,
- // can sometimes refine the directions.
- // Can determine iteration for splitting.
- //
- // Return true if dependence disproved.
- bool DependenceInfo::weakCrossingSIVtest(
- const SCEV *Coeff, const SCEV *SrcConst, const SCEV *DstConst,
- const Loop *CurLoop, unsigned Level, FullDependence &Result,
- Constraint &NewConstraint, const SCEV *&SplitIter) const {
- LLVM_DEBUG(dbgs() << "\tWeak-Crossing SIV test\n");
- LLVM_DEBUG(dbgs() << "\t Coeff = " << *Coeff << "\n");
- LLVM_DEBUG(dbgs() << "\t SrcConst = " << *SrcConst << "\n");
- LLVM_DEBUG(dbgs() << "\t DstConst = " << *DstConst << "\n");
- ++WeakCrossingSIVapplications;
- assert(0 < Level && Level <= CommonLevels && "Level out of range");
- Level--;
- Result.Consistent = false;
- const SCEV *Delta = SE->getMinusSCEV(DstConst, SrcConst);
- LLVM_DEBUG(dbgs() << "\t Delta = " << *Delta << "\n");
- NewConstraint.setLine(Coeff, Coeff, Delta, CurLoop);
- if (Delta->isZero()) {
- Result.DV[Level].Direction &= unsigned(~Dependence::DVEntry::LT);
- Result.DV[Level].Direction &= unsigned(~Dependence::DVEntry::GT);
- ++WeakCrossingSIVsuccesses;
- if (!Result.DV[Level].Direction) {
- ++WeakCrossingSIVindependence;
- return true;
- }
- Result.DV[Level].Distance = Delta; // = 0
- return false;
- }
- const SCEVConstant *ConstCoeff = dyn_cast<SCEVConstant>(Coeff);
- if (!ConstCoeff)
- return false;
- Result.DV[Level].Splitable = true;
- if (SE->isKnownNegative(ConstCoeff)) {
- ConstCoeff = dyn_cast<SCEVConstant>(SE->getNegativeSCEV(ConstCoeff));
- assert(ConstCoeff &&
- "dynamic cast of negative of ConstCoeff should yield constant");
- Delta = SE->getNegativeSCEV(Delta);
- }
- assert(SE->isKnownPositive(ConstCoeff) && "ConstCoeff should be positive");
- // compute SplitIter for use by DependenceInfo::getSplitIteration()
- SplitIter = SE->getUDivExpr(
- SE->getSMaxExpr(SE->getZero(Delta->getType()), Delta),
- SE->getMulExpr(SE->getConstant(Delta->getType(), 2), ConstCoeff));
- LLVM_DEBUG(dbgs() << "\t Split iter = " << *SplitIter << "\n");
- const SCEVConstant *ConstDelta = dyn_cast<SCEVConstant>(Delta);
- if (!ConstDelta)
- return false;
- // We're certain that ConstCoeff > 0; therefore,
- // if Delta < 0, then no dependence.
- LLVM_DEBUG(dbgs() << "\t Delta = " << *Delta << "\n");
- LLVM_DEBUG(dbgs() << "\t ConstCoeff = " << *ConstCoeff << "\n");
- if (SE->isKnownNegative(Delta)) {
- // No dependence, Delta < 0
- ++WeakCrossingSIVindependence;
- ++WeakCrossingSIVsuccesses;
- return true;
- }
- // We're certain that Delta > 0 and ConstCoeff > 0.
- // Check Delta/(2*ConstCoeff) against upper loop bound
- if (const SCEV *UpperBound = collectUpperBound(CurLoop, Delta->getType())) {
- LLVM_DEBUG(dbgs() << "\t UpperBound = " << *UpperBound << "\n");
- const SCEV *ConstantTwo = SE->getConstant(UpperBound->getType(), 2);
- const SCEV *ML = SE->getMulExpr(SE->getMulExpr(ConstCoeff, UpperBound),
- ConstantTwo);
- LLVM_DEBUG(dbgs() << "\t ML = " << *ML << "\n");
- if (isKnownPredicate(CmpInst::ICMP_SGT, Delta, ML)) {
- // Delta too big, no dependence
- ++WeakCrossingSIVindependence;
- ++WeakCrossingSIVsuccesses;
- return true;
- }
- if (isKnownPredicate(CmpInst::ICMP_EQ, Delta, ML)) {
- // i = i' = UB
- Result.DV[Level].Direction &= unsigned(~Dependence::DVEntry::LT);
- Result.DV[Level].Direction &= unsigned(~Dependence::DVEntry::GT);
- ++WeakCrossingSIVsuccesses;
- if (!Result.DV[Level].Direction) {
- ++WeakCrossingSIVindependence;
- return true;
- }
- Result.DV[Level].Splitable = false;
- Result.DV[Level].Distance = SE->getZero(Delta->getType());
- return false;
- }
- }
- // check that Coeff divides Delta
- APInt APDelta = ConstDelta->getAPInt();
- APInt APCoeff = ConstCoeff->getAPInt();
- APInt Distance = APDelta; // these need to be initialzed
- APInt Remainder = APDelta;
- APInt::sdivrem(APDelta, APCoeff, Distance, Remainder);
- LLVM_DEBUG(dbgs() << "\t Remainder = " << Remainder << "\n");
- if (Remainder != 0) {
- // Coeff doesn't divide Delta, no dependence
- ++WeakCrossingSIVindependence;
- ++WeakCrossingSIVsuccesses;
- return true;
- }
- LLVM_DEBUG(dbgs() << "\t Distance = " << Distance << "\n");
- // if 2*Coeff doesn't divide Delta, then the equal direction isn't possible
- APInt Two = APInt(Distance.getBitWidth(), 2, true);
- Remainder = Distance.srem(Two);
- LLVM_DEBUG(dbgs() << "\t Remainder = " << Remainder << "\n");
- if (Remainder != 0) {
- // Equal direction isn't possible
- Result.DV[Level].Direction &= unsigned(~Dependence::DVEntry::EQ);
- ++WeakCrossingSIVsuccesses;
- }
- return false;
- }
- // Kirch's algorithm, from
- //
- // Optimizing Supercompilers for Supercomputers
- // Michael Wolfe
- // MIT Press, 1989
- //
- // Program 2.1, page 29.
- // Computes the GCD of AM and BM.
- // Also finds a solution to the equation ax - by = gcd(a, b).
- // Returns true if dependence disproved; i.e., gcd does not divide Delta.
- static bool findGCD(unsigned Bits, const APInt &AM, const APInt &BM,
- const APInt &Delta, APInt &G, APInt &X, APInt &Y) {
- APInt A0(Bits, 1, true), A1(Bits, 0, true);
- APInt B0(Bits, 0, true), B1(Bits, 1, true);
- APInt G0 = AM.abs();
- APInt G1 = BM.abs();
- APInt Q = G0; // these need to be initialized
- APInt R = G0;
- APInt::sdivrem(G0, G1, Q, R);
- while (R != 0) {
- APInt A2 = A0 - Q*A1; A0 = A1; A1 = A2;
- APInt B2 = B0 - Q*B1; B0 = B1; B1 = B2;
- G0 = G1; G1 = R;
- APInt::sdivrem(G0, G1, Q, R);
- }
- G = G1;
- LLVM_DEBUG(dbgs() << "\t GCD = " << G << "\n");
- X = AM.slt(0) ? -A1 : A1;
- Y = BM.slt(0) ? B1 : -B1;
- // make sure gcd divides Delta
- R = Delta.srem(G);
- if (R != 0)
- return true; // gcd doesn't divide Delta, no dependence
- Q = Delta.sdiv(G);
- return false;
- }
- static APInt floorOfQuotient(const APInt &A, const APInt &B) {
- APInt Q = A; // these need to be initialized
- APInt R = A;
- APInt::sdivrem(A, B, Q, R);
- if (R == 0)
- return Q;
- if ((A.sgt(0) && B.sgt(0)) ||
- (A.slt(0) && B.slt(0)))
- return Q;
- else
- return Q - 1;
- }
- static APInt ceilingOfQuotient(const APInt &A, const APInt &B) {
- APInt Q = A; // these need to be initialized
- APInt R = A;
- APInt::sdivrem(A, B, Q, R);
- if (R == 0)
- return Q;
- if ((A.sgt(0) && B.sgt(0)) ||
- (A.slt(0) && B.slt(0)))
- return Q + 1;
- else
- return Q;
- }
- // exactSIVtest -
- // When we have a pair of subscripts of the form [c1 + a1*i] and [c2 + a2*i],
- // where i is an induction variable, c1 and c2 are loop invariant, and a1
- // and a2 are constant, we can solve it exactly using an algorithm developed
- // by Banerjee and Wolfe. See Algorithm 6.2.1 (case 2.5) in:
- //
- // Dependence Analysis for Supercomputing
- // Utpal Banerjee
- // Kluwer Academic Publishers, 1988
- //
- // It's slower than the specialized tests (strong SIV, weak-zero SIV, etc),
- // so use them if possible. They're also a bit better with symbolics and,
- // in the case of the strong SIV test, can compute Distances.
- //
- // Return true if dependence disproved.
- //
- // This is a modified version of the original Banerjee algorithm. The original
- // only tested whether Dst depends on Src. This algorithm extends that and
- // returns all the dependencies that exist between Dst and Src.
- bool DependenceInfo::exactSIVtest(const SCEV *SrcCoeff, const SCEV *DstCoeff,
- const SCEV *SrcConst, const SCEV *DstConst,
- const Loop *CurLoop, unsigned Level,
- FullDependence &Result,
- Constraint &NewConstraint) const {
- LLVM_DEBUG(dbgs() << "\tExact SIV test\n");
- LLVM_DEBUG(dbgs() << "\t SrcCoeff = " << *SrcCoeff << " = AM\n");
- LLVM_DEBUG(dbgs() << "\t DstCoeff = " << *DstCoeff << " = BM\n");
- LLVM_DEBUG(dbgs() << "\t SrcConst = " << *SrcConst << "\n");
- LLVM_DEBUG(dbgs() << "\t DstConst = " << *DstConst << "\n");
- ++ExactSIVapplications;
- assert(0 < Level && Level <= CommonLevels && "Level out of range");
- Level--;
- Result.Consistent = false;
- const SCEV *Delta = SE->getMinusSCEV(DstConst, SrcConst);
- LLVM_DEBUG(dbgs() << "\t Delta = " << *Delta << "\n");
- NewConstraint.setLine(SrcCoeff, SE->getNegativeSCEV(DstCoeff), Delta,
- CurLoop);
- const SCEVConstant *ConstDelta = dyn_cast<SCEVConstant>(Delta);
- const SCEVConstant *ConstSrcCoeff = dyn_cast<SCEVConstant>(SrcCoeff);
- const SCEVConstant *ConstDstCoeff = dyn_cast<SCEVConstant>(DstCoeff);
- if (!ConstDelta || !ConstSrcCoeff || !ConstDstCoeff)
- return false;
- // find gcd
- APInt G, X, Y;
- APInt AM = ConstSrcCoeff->getAPInt();
- APInt BM = ConstDstCoeff->getAPInt();
- APInt CM = ConstDelta->getAPInt();
- unsigned Bits = AM.getBitWidth();
- if (findGCD(Bits, AM, BM, CM, G, X, Y)) {
- // gcd doesn't divide Delta, no dependence
- ++ExactSIVindependence;
- ++ExactSIVsuccesses;
- return true;
- }
- LLVM_DEBUG(dbgs() << "\t X = " << X << ", Y = " << Y << "\n");
- // since SCEV construction normalizes, LM = 0
- APInt UM(Bits, 1, true);
- bool UMValid = false;
- // UM is perhaps unavailable, let's check
- if (const SCEVConstant *CUB =
- collectConstantUpperBound(CurLoop, Delta->getType())) {
- UM = CUB->getAPInt();
- LLVM_DEBUG(dbgs() << "\t UM = " << UM << "\n");
- UMValid = true;
- }
- APInt TU(APInt::getSignedMaxValue(Bits));
- APInt TL(APInt::getSignedMinValue(Bits));
- APInt TC = CM.sdiv(G);
- APInt TX = X * TC;
- APInt TY = Y * TC;
- LLVM_DEBUG(dbgs() << "\t TC = " << TC << "\n");
- LLVM_DEBUG(dbgs() << "\t TX = " << TX << "\n");
- LLVM_DEBUG(dbgs() << "\t TY = " << TY << "\n");
- SmallVector<APInt, 2> TLVec, TUVec;
- APInt TB = BM.sdiv(G);
- if (TB.sgt(0)) {
- TLVec.push_back(ceilingOfQuotient(-TX, TB));
- LLVM_DEBUG(dbgs() << "\t Possible TL = " << TLVec.back() << "\n");
- // New bound check - modification to Banerjee's e3 check
- if (UMValid) {
- TUVec.push_back(floorOfQuotient(UM - TX, TB));
- LLVM_DEBUG(dbgs() << "\t Possible TU = " << TUVec.back() << "\n");
- }
- } else {
- TUVec.push_back(floorOfQuotient(-TX, TB));
- LLVM_DEBUG(dbgs() << "\t Possible TU = " << TUVec.back() << "\n");
- // New bound check - modification to Banerjee's e3 check
- if (UMValid) {
- TLVec.push_back(ceilingOfQuotient(UM - TX, TB));
- LLVM_DEBUG(dbgs() << "\t Possible TL = " << TLVec.back() << "\n");
- }
- }
- APInt TA = AM.sdiv(G);
- if (TA.sgt(0)) {
- if (UMValid) {
- TUVec.push_back(floorOfQuotient(UM - TY, TA));
- LLVM_DEBUG(dbgs() << "\t Possible TU = " << TUVec.back() << "\n");
- }
- // New bound check - modification to Banerjee's e3 check
- TLVec.push_back(ceilingOfQuotient(-TY, TA));
- LLVM_DEBUG(dbgs() << "\t Possible TL = " << TLVec.back() << "\n");
- } else {
- if (UMValid) {
- TLVec.push_back(ceilingOfQuotient(UM - TY, TA));
- LLVM_DEBUG(dbgs() << "\t Possible TL = " << TLVec.back() << "\n");
- }
- // New bound check - modification to Banerjee's e3 check
- TUVec.push_back(floorOfQuotient(-TY, TA));
- LLVM_DEBUG(dbgs() << "\t Possible TU = " << TUVec.back() << "\n");
- }
- LLVM_DEBUG(dbgs() << "\t TA = " << TA << "\n");
- LLVM_DEBUG(dbgs() << "\t TB = " << TB << "\n");
- if (TLVec.empty() || TUVec.empty())
- return false;
- TL = APIntOps::smax(TLVec.front(), TLVec.back());
- TU = APIntOps::smin(TUVec.front(), TUVec.back());
- LLVM_DEBUG(dbgs() << "\t TL = " << TL << "\n");
- LLVM_DEBUG(dbgs() << "\t TU = " << TU << "\n");
- if (TL.sgt(TU)) {
- ++ExactSIVindependence;
- ++ExactSIVsuccesses;
- return true;
- }
- // explore directions
- unsigned NewDirection = Dependence::DVEntry::NONE;
- APInt LowerDistance, UpperDistance;
- if (TA.sgt(TB)) {
- LowerDistance = (TY - TX) + (TA - TB) * TL;
- UpperDistance = (TY - TX) + (TA - TB) * TU;
- } else {
- LowerDistance = (TY - TX) + (TA - TB) * TU;
- UpperDistance = (TY - TX) + (TA - TB) * TL;
- }
- LLVM_DEBUG(dbgs() << "\t LowerDistance = " << LowerDistance << "\n");
- LLVM_DEBUG(dbgs() << "\t UpperDistance = " << UpperDistance << "\n");
- APInt Zero(Bits, 0, true);
- if (LowerDistance.sle(Zero) && UpperDistance.sge(Zero)) {
- NewDirection |= Dependence::DVEntry::EQ;
- ++ExactSIVsuccesses;
- }
- if (LowerDistance.slt(0)) {
- NewDirection |= Dependence::DVEntry::GT;
- ++ExactSIVsuccesses;
- }
- if (UpperDistance.sgt(0)) {
- NewDirection |= Dependence::DVEntry::LT;
- ++ExactSIVsuccesses;
- }
- // finished
- Result.DV[Level].Direction &= NewDirection;
- if (Result.DV[Level].Direction == Dependence::DVEntry::NONE)
- ++ExactSIVindependence;
- LLVM_DEBUG(dbgs() << "\t Result = ");
- LLVM_DEBUG(Result.dump(dbgs()));
- return Result.DV[Level].Direction == Dependence::DVEntry::NONE;
- }
- // Return true if the divisor evenly divides the dividend.
- static
- bool isRemainderZero(const SCEVConstant *Dividend,
- const SCEVConstant *Divisor) {
- const APInt &ConstDividend = Dividend->getAPInt();
- const APInt &ConstDivisor = Divisor->getAPInt();
- return ConstDividend.srem(ConstDivisor) == 0;
- }
- // weakZeroSrcSIVtest -
- // From the paper, Practical Dependence Testing, Section 4.2.2
- //
- // When we have a pair of subscripts of the form [c1] and [c2 + a*i],
- // where i is an induction variable, c1 and c2 are loop invariant,
- // and a is a constant, we can solve it exactly using the
- // Weak-Zero SIV test.
- //
- // Given
- //
- // c1 = c2 + a*i
- //
- // we get
- //
- // (c1 - c2)/a = i
- //
- // If i is not an integer, there's no dependence.
- // If i < 0 or > UB, there's no dependence.
- // If i = 0, the direction is >= and peeling the
- // 1st iteration will break the dependence.
- // If i = UB, the direction is <= and peeling the
- // last iteration will break the dependence.
- // Otherwise, the direction is *.
- //
- // Can prove independence. Failing that, we can sometimes refine
- // the directions. Can sometimes show that first or last
- // iteration carries all the dependences (so worth peeling).
- //
- // (see also weakZeroDstSIVtest)
- //
- // Return true if dependence disproved.
- bool DependenceInfo::weakZeroSrcSIVtest(const SCEV *DstCoeff,
- const SCEV *SrcConst,
- const SCEV *DstConst,
- const Loop *CurLoop, unsigned Level,
- FullDependence &Result,
- Constraint &NewConstraint) const {
- // For the WeakSIV test, it's possible the loop isn't common to
- // the Src and Dst loops. If it isn't, then there's no need to
- // record a direction.
- LLVM_DEBUG(dbgs() << "\tWeak-Zero (src) SIV test\n");
- LLVM_DEBUG(dbgs() << "\t DstCoeff = " << *DstCoeff << "\n");
- LLVM_DEBUG(dbgs() << "\t SrcConst = " << *SrcConst << "\n");
- LLVM_DEBUG(dbgs() << "\t DstConst = " << *DstConst << "\n");
- ++WeakZeroSIVapplications;
- assert(0 < Level && Level <= MaxLevels && "Level out of range");
- Level--;
- Result.Consistent = false;
- const SCEV *Delta = SE->getMinusSCEV(SrcConst, DstConst);
- NewConstraint.setLine(SE->getZero(Delta->getType()), DstCoeff, Delta,
- CurLoop);
- LLVM_DEBUG(dbgs() << "\t Delta = " << *Delta << "\n");
- if (isKnownPredicate(CmpInst::ICMP_EQ, SrcConst, DstConst)) {
- if (Level < CommonLevels) {
- Result.DV[Level].Direction &= Dependence::DVEntry::GE;
- Result.DV[Level].PeelFirst = true;
- ++WeakZeroSIVsuccesses;
- }
- return false; // dependences caused by first iteration
- }
- const SCEVConstant *ConstCoeff = dyn_cast<SCEVConstant>(DstCoeff);
- if (!ConstCoeff)
- return false;
- const SCEV *AbsCoeff =
- SE->isKnownNegative(ConstCoeff) ?
- SE->getNegativeSCEV(ConstCoeff) : ConstCoeff;
- const SCEV *NewDelta =
- SE->isKnownNegative(ConstCoeff) ? SE->getNegativeSCEV(Delta) : Delta;
- // check that Delta/SrcCoeff < iteration count
- // really check NewDelta < count*AbsCoeff
- if (const SCEV *UpperBound = collectUpperBound(CurLoop, Delta->getType())) {
- LLVM_DEBUG(dbgs() << "\t UpperBound = " << *UpperBound << "\n");
- const SCEV *Product = SE->getMulExpr(AbsCoeff, UpperBound);
- if (isKnownPredicate(CmpInst::ICMP_SGT, NewDelta, Product)) {
- ++WeakZeroSIVindependence;
- ++WeakZeroSIVsuccesses;
- return true;
- }
- if (isKnownPredicate(CmpInst::ICMP_EQ, NewDelta, Product)) {
- // dependences caused by last iteration
- if (Level < CommonLevels) {
- Result.DV[Level].Direction &= Dependence::DVEntry::LE;
- Result.DV[Level].PeelLast = true;
- ++WeakZeroSIVsuccesses;
- }
- return false;
- }
- }
- // check that Delta/SrcCoeff >= 0
- // really check that NewDelta >= 0
- if (SE->isKnownNegative(NewDelta)) {
- // No dependence, newDelta < 0
- ++WeakZeroSIVindependence;
- ++WeakZeroSIVsuccesses;
- return true;
- }
- // if SrcCoeff doesn't divide Delta, then no dependence
- if (isa<SCEVConstant>(Delta) &&
- !isRemainderZero(cast<SCEVConstant>(Delta), ConstCoeff)) {
- ++WeakZeroSIVindependence;
- ++WeakZeroSIVsuccesses;
- return true;
- }
- return false;
- }
- // weakZeroDstSIVtest -
- // From the paper, Practical Dependence Testing, Section 4.2.2
- //
- // When we have a pair of subscripts of the form [c1 + a*i] and [c2],
- // where i is an induction variable, c1 and c2 are loop invariant,
- // and a is a constant, we can solve it exactly using the
- // Weak-Zero SIV test.
- //
- // Given
- //
- // c1 + a*i = c2
- //
- // we get
- //
- // i = (c2 - c1)/a
- //
- // If i is not an integer, there's no dependence.
- // If i < 0 or > UB, there's no dependence.
- // If i = 0, the direction is <= and peeling the
- // 1st iteration will break the dependence.
- // If i = UB, the direction is >= and peeling the
- // last iteration will break the dependence.
- // Otherwise, the direction is *.
- //
- // Can prove independence. Failing that, we can sometimes refine
- // the directions. Can sometimes show that first or last
- // iteration carries all the dependences (so worth peeling).
- //
- // (see also weakZeroSrcSIVtest)
- //
- // Return true if dependence disproved.
- bool DependenceInfo::weakZeroDstSIVtest(const SCEV *SrcCoeff,
- const SCEV *SrcConst,
- const SCEV *DstConst,
- const Loop *CurLoop, unsigned Level,
- FullDependence &Result,
- Constraint &NewConstraint) const {
- // For the WeakSIV test, it's possible the loop isn't common to the
- // Src and Dst loops. If it isn't, then there's no need to record a direction.
- LLVM_DEBUG(dbgs() << "\tWeak-Zero (dst) SIV test\n");
- LLVM_DEBUG(dbgs() << "\t SrcCoeff = " << *SrcCoeff << "\n");
- LLVM_DEBUG(dbgs() << "\t SrcConst = " << *SrcConst << "\n");
- LLVM_DEBUG(dbgs() << "\t DstConst = " << *DstConst << "\n");
- ++WeakZeroSIVapplications;
- assert(0 < Level && Level <= SrcLevels && "Level out of range");
- Level--;
- Result.Consistent = false;
- const SCEV *Delta = SE->getMinusSCEV(DstConst, SrcConst);
- NewConstraint.setLine(SrcCoeff, SE->getZero(Delta->getType()), Delta,
- CurLoop);
- LLVM_DEBUG(dbgs() << "\t Delta = " << *Delta << "\n");
- if (isKnownPredicate(CmpInst::ICMP_EQ, DstConst, SrcConst)) {
- if (Level < CommonLevels) {
- Result.DV[Level].Direction &= Dependence::DVEntry::LE;
- Result.DV[Level].PeelFirst = true;
- ++WeakZeroSIVsuccesses;
- }
- return false; // dependences caused by first iteration
- }
- const SCEVConstant *ConstCoeff = dyn_cast<SCEVConstant>(SrcCoeff);
- if (!ConstCoeff)
- return false;
- const SCEV *AbsCoeff =
- SE->isKnownNegative(ConstCoeff) ?
- SE->getNegativeSCEV(ConstCoeff) : ConstCoeff;
- const SCEV *NewDelta =
- SE->isKnownNegative(ConstCoeff) ? SE->getNegativeSCEV(Delta) : Delta;
- // check that Delta/SrcCoeff < iteration count
- // really check NewDelta < count*AbsCoeff
- if (const SCEV *UpperBound = collectUpperBound(CurLoop, Delta->getType())) {
- LLVM_DEBUG(dbgs() << "\t UpperBound = " << *UpperBound << "\n");
- const SCEV *Product = SE->getMulExpr(AbsCoeff, UpperBound);
- if (isKnownPredicate(CmpInst::ICMP_SGT, NewDelta, Product)) {
- ++WeakZeroSIVindependence;
- ++WeakZeroSIVsuccesses;
- return true;
- }
- if (isKnownPredicate(CmpInst::ICMP_EQ, NewDelta, Product)) {
- // dependences caused by last iteration
- if (Level < CommonLevels) {
- Result.DV[Level].Direction &= Dependence::DVEntry::GE;
- Result.DV[Level].PeelLast = true;
- ++WeakZeroSIVsuccesses;
- }
- return false;
- }
- }
- // check that Delta/SrcCoeff >= 0
- // really check that NewDelta >= 0
- if (SE->isKnownNegative(NewDelta)) {
- // No dependence, newDelta < 0
- ++WeakZeroSIVindependence;
- ++WeakZeroSIVsuccesses;
- return true;
- }
- // if SrcCoeff doesn't divide Delta, then no dependence
- if (isa<SCEVConstant>(Delta) &&
- !isRemainderZero(cast<SCEVConstant>(Delta), ConstCoeff)) {
- ++WeakZeroSIVindependence;
- ++WeakZeroSIVsuccesses;
- return true;
- }
- return false;
- }
- // exactRDIVtest - Tests the RDIV subscript pair for dependence.
- // Things of the form [c1 + a*i] and [c2 + b*j],
- // where i and j are induction variable, c1 and c2 are loop invariant,
- // and a and b are constants.
- // Returns true if any possible dependence is disproved.
- // Marks the result as inconsistent.
- // Works in some cases that symbolicRDIVtest doesn't, and vice versa.
- bool DependenceInfo::exactRDIVtest(const SCEV *SrcCoeff, const SCEV *DstCoeff,
- const SCEV *SrcConst, const SCEV *DstConst,
- const Loop *SrcLoop, const Loop *DstLoop,
- FullDependence &Result) const {
- LLVM_DEBUG(dbgs() << "\tExact RDIV test\n");
- LLVM_DEBUG(dbgs() << "\t SrcCoeff = " << *SrcCoeff << " = AM\n");
- LLVM_DEBUG(dbgs() << "\t DstCoeff = " << *DstCoeff << " = BM\n");
- LLVM_DEBUG(dbgs() << "\t SrcConst = " << *SrcConst << "\n");
- LLVM_DEBUG(dbgs() << "\t DstConst = " << *DstConst << "\n");
- ++ExactRDIVapplications;
- Result.Consistent = false;
- const SCEV *Delta = SE->getMinusSCEV(DstConst, SrcConst);
- LLVM_DEBUG(dbgs() << "\t Delta = " << *Delta << "\n");
- const SCEVConstant *ConstDelta = dyn_cast<SCEVConstant>(Delta);
- const SCEVConstant *ConstSrcCoeff = dyn_cast<SCEVConstant>(SrcCoeff);
- const SCEVConstant *ConstDstCoeff = dyn_cast<SCEVConstant>(DstCoeff);
- if (!ConstDelta || !ConstSrcCoeff || !ConstDstCoeff)
- return false;
- // find gcd
- APInt G, X, Y;
- APInt AM = ConstSrcCoeff->getAPInt();
- APInt BM = ConstDstCoeff->getAPInt();
- APInt CM = ConstDelta->getAPInt();
- unsigned Bits = AM.getBitWidth();
- if (findGCD(Bits, AM, BM, CM, G, X, Y)) {
- // gcd doesn't divide Delta, no dependence
- ++ExactRDIVindependence;
- return true;
- }
- LLVM_DEBUG(dbgs() << "\t X = " << X << ", Y = " << Y << "\n");
- // since SCEV construction seems to normalize, LM = 0
- APInt SrcUM(Bits, 1, true);
- bool SrcUMvalid = false;
- // SrcUM is perhaps unavailable, let's check
- if (const SCEVConstant *UpperBound =
- collectConstantUpperBound(SrcLoop, Delta->getType())) {
- SrcUM = UpperBound->getAPInt();
- LLVM_DEBUG(dbgs() << "\t SrcUM = " << SrcUM << "\n");
- SrcUMvalid = true;
- }
- APInt DstUM(Bits, 1, true);
- bool DstUMvalid = false;
- // UM is perhaps unavailable, let's check
- if (const SCEVConstant *UpperBound =
- collectConstantUpperBound(DstLoop, Delta->getType())) {
- DstUM = UpperBound->getAPInt();
- LLVM_DEBUG(dbgs() << "\t DstUM = " << DstUM << "\n");
- DstUMvalid = true;
- }
- APInt TU(APInt::getSignedMaxValue(Bits));
- APInt TL(APInt::getSignedMinValue(Bits));
- APInt TC = CM.sdiv(G);
- APInt TX = X * TC;
- APInt TY = Y * TC;
- LLVM_DEBUG(dbgs() << "\t TC = " << TC << "\n");
- LLVM_DEBUG(dbgs() << "\t TX = " << TX << "\n");
- LLVM_DEBUG(dbgs() << "\t TY = " << TY << "\n");
- SmallVector<APInt, 2> TLVec, TUVec;
- APInt TB = BM.sdiv(G);
- if (TB.sgt(0)) {
- TLVec.push_back(ceilingOfQuotient(-TX, TB));
- LLVM_DEBUG(dbgs() << "\t Possible TL = " << TLVec.back() << "\n");
- if (SrcUMvalid) {
- TUVec.push_back(floorOfQuotient(SrcUM - TX, TB));
- LLVM_DEBUG(dbgs() << "\t Possible TU = " << TUVec.back() << "\n");
- }
- } else {
- TUVec.push_back(floorOfQuotient(-TX, TB));
- LLVM_DEBUG(dbgs() << "\t Possible TU = " << TUVec.back() << "\n");
- if (SrcUMvalid) {
- TLVec.push_back(ceilingOfQuotient(SrcUM - TX, TB));
- LLVM_DEBUG(dbgs() << "\t Possible TL = " << TLVec.back() << "\n");
- }
- }
- APInt TA = AM.sdiv(G);
- if (TA.sgt(0)) {
- TLVec.push_back(ceilingOfQuotient(-TY, TA));
- LLVM_DEBUG(dbgs() << "\t Possible TL = " << TLVec.back() << "\n");
- if (DstUMvalid) {
- TUVec.push_back(floorOfQuotient(DstUM - TY, TA));
- LLVM_DEBUG(dbgs() << "\t Possible TU = " << TUVec.back() << "\n");
- }
- } else {
- TUVec.push_back(floorOfQuotient(-TY, TA));
- LLVM_DEBUG(dbgs() << "\t Possible TU = " << TUVec.back() << "\n");
- if (DstUMvalid) {
- TLVec.push_back(ceilingOfQuotient(DstUM - TY, TA));
- LLVM_DEBUG(dbgs() << "\t Possible TL = " << TLVec.back() << "\n");
- }
- }
- if (TLVec.empty() || TUVec.empty())
- return false;
- LLVM_DEBUG(dbgs() << "\t TA = " << TA << "\n");
- LLVM_DEBUG(dbgs() << "\t TB = " << TB << "\n");
- TL = APIntOps::smax(TLVec.front(), TLVec.back());
- TU = APIntOps::smin(TUVec.front(), TUVec.back());
- LLVM_DEBUG(dbgs() << "\t TL = " << TL << "\n");
- LLVM_DEBUG(dbgs() << "\t TU = " << TU << "\n");
- if (TL.sgt(TU))
- ++ExactRDIVindependence;
- return TL.sgt(TU);
- }
- // symbolicRDIVtest -
- // In Section 4.5 of the Practical Dependence Testing paper,the authors
- // introduce a special case of Banerjee's Inequalities (also called the
- // Extreme-Value Test) that can handle some of the SIV and RDIV cases,
- // particularly cases with symbolics. Since it's only able to disprove
- // dependence (not compute distances or directions), we'll use it as a
- // fall back for the other tests.
- //
- // When we have a pair of subscripts of the form [c1 + a1*i] and [c2 + a2*j]
- // where i and j are induction variables and c1 and c2 are loop invariants,
- // we can use the symbolic tests to disprove some dependences, serving as a
- // backup for the RDIV test. Note that i and j can be the same variable,
- // letting this test serve as a backup for the various SIV tests.
- //
- // For a dependence to exist, c1 + a1*i must equal c2 + a2*j for some
- // 0 <= i <= N1 and some 0 <= j <= N2, where N1 and N2 are the (normalized)
- // loop bounds for the i and j loops, respectively. So, ...
- //
- // c1 + a1*i = c2 + a2*j
- // a1*i - a2*j = c2 - c1
- //
- // To test for a dependence, we compute c2 - c1 and make sure it's in the
- // range of the maximum and minimum possible values of a1*i - a2*j.
- // Considering the signs of a1 and a2, we have 4 possible cases:
- //
- // 1) If a1 >= 0 and a2 >= 0, then
- // a1*0 - a2*N2 <= c2 - c1 <= a1*N1 - a2*0
- // -a2*N2 <= c2 - c1 <= a1*N1
- //
- // 2) If a1 >= 0 and a2 <= 0, then
- // a1*0 - a2*0 <= c2 - c1 <= a1*N1 - a2*N2
- // 0 <= c2 - c1 <= a1*N1 - a2*N2
- //
- // 3) If a1 <= 0 and a2 >= 0, then
- // a1*N1 - a2*N2 <= c2 - c1 <= a1*0 - a2*0
- // a1*N1 - a2*N2 <= c2 - c1 <= 0
- //
- // 4) If a1 <= 0 and a2 <= 0, then
- // a1*N1 - a2*0 <= c2 - c1 <= a1*0 - a2*N2
- // a1*N1 <= c2 - c1 <= -a2*N2
- //
- // return true if dependence disproved
- bool DependenceInfo::symbolicRDIVtest(const SCEV *A1, const SCEV *A2,
- const SCEV *C1, const SCEV *C2,
- const Loop *Loop1,
- const Loop *Loop2) const {
- ++SymbolicRDIVapplications;
- LLVM_DEBUG(dbgs() << "\ttry symbolic RDIV test\n");
- LLVM_DEBUG(dbgs() << "\t A1 = " << *A1);
- LLVM_DEBUG(dbgs() << ", type = " << *A1->getType() << "\n");
- LLVM_DEBUG(dbgs() << "\t A2 = " << *A2 << "\n");
- LLVM_DEBUG(dbgs() << "\t C1 = " << *C1 << "\n");
- LLVM_DEBUG(dbgs() << "\t C2 = " << *C2 << "\n");
- const SCEV *N1 = collectUpperBound(Loop1, A1->getType());
- const SCEV *N2 = collectUpperBound(Loop2, A1->getType());
- LLVM_DEBUG(if (N1) dbgs() << "\t N1 = " << *N1 << "\n");
- LLVM_DEBUG(if (N2) dbgs() << "\t N2 = " << *N2 << "\n");
- const SCEV *C2_C1 = SE->getMinusSCEV(C2, C1);
- const SCEV *C1_C2 = SE->getMinusSCEV(C1, C2);
- LLVM_DEBUG(dbgs() << "\t C2 - C1 = " << *C2_C1 << "\n");
- LLVM_DEBUG(dbgs() << "\t C1 - C2 = " << *C1_C2 << "\n");
- if (SE->isKnownNonNegative(A1)) {
- if (SE->isKnownNonNegative(A2)) {
- // A1 >= 0 && A2 >= 0
- if (N1) {
- // make sure that c2 - c1 <= a1*N1
- const SCEV *A1N1 = SE->getMulExpr(A1, N1);
- LLVM_DEBUG(dbgs() << "\t A1*N1 = " << *A1N1 << "\n");
- if (isKnownPredicate(CmpInst::ICMP_SGT, C2_C1, A1N1)) {
- ++SymbolicRDIVindependence;
- return true;
- }
- }
- if (N2) {
- // make sure that -a2*N2 <= c2 - c1, or a2*N2 >= c1 - c2
- const SCEV *A2N2 = SE->getMulExpr(A2, N2);
- LLVM_DEBUG(dbgs() << "\t A2*N2 = " << *A2N2 << "\n");
- if (isKnownPredicate(CmpInst::ICMP_SLT, A2N2, C1_C2)) {
- ++SymbolicRDIVindependence;
- return true;
- }
- }
- }
- else if (SE->isKnownNonPositive(A2)) {
- // a1 >= 0 && a2 <= 0
- if (N1 && N2) {
- // make sure that c2 - c1 <= a1*N1 - a2*N2
- const SCEV *A1N1 = SE->getMulExpr(A1, N1);
- const SCEV *A2N2 = SE->getMulExpr(A2, N2);
- const SCEV *A1N1_A2N2 = SE->getMinusSCEV(A1N1, A2N2);
- LLVM_DEBUG(dbgs() << "\t A1*N1 - A2*N2 = " << *A1N1_A2N2 << "\n");
- if (isKnownPredicate(CmpInst::ICMP_SGT, C2_C1, A1N1_A2N2)) {
- ++SymbolicRDIVindependence;
- return true;
- }
- }
- // make sure that 0 <= c2 - c1
- if (SE->isKnownNegative(C2_C1)) {
- ++SymbolicRDIVindependence;
- return true;
- }
- }
- }
- else if (SE->isKnownNonPositive(A1)) {
- if (SE->isKnownNonNegative(A2)) {
- // a1 <= 0 && a2 >= 0
- if (N1 && N2) {
- // make sure that a1*N1 - a2*N2 <= c2 - c1
- const SCEV *A1N1 = SE->getMulExpr(A1, N1);
- const SCEV *A2N2 = SE->getMulExpr(A2, N2);
- const SCEV *A1N1_A2N2 = SE->getMinusSCEV(A1N1, A2N2);
- LLVM_DEBUG(dbgs() << "\t A1*N1 - A2*N2 = " << *A1N1_A2N2 << "\n");
- if (isKnownPredicate(CmpInst::ICMP_SGT, A1N1_A2N2, C2_C1)) {
- ++SymbolicRDIVindependence;
- return true;
- }
- }
- // make sure that c2 - c1 <= 0
- if (SE->isKnownPositive(C2_C1)) {
- ++SymbolicRDIVindependence;
- return true;
- }
- }
- else if (SE->isKnownNonPositive(A2)) {
- // a1 <= 0 && a2 <= 0
- if (N1) {
- // make sure that a1*N1 <= c2 - c1
- const SCEV *A1N1 = SE->getMulExpr(A1, N1);
- LLVM_DEBUG(dbgs() << "\t A1*N1 = " << *A1N1 << "\n");
- if (isKnownPredicate(CmpInst::ICMP_SGT, A1N1, C2_C1)) {
- ++SymbolicRDIVindependence;
- return true;
- }
- }
- if (N2) {
- // make sure that c2 - c1 <= -a2*N2, or c1 - c2 >= a2*N2
- const SCEV *A2N2 = SE->getMulExpr(A2, N2);
- LLVM_DEBUG(dbgs() << "\t A2*N2 = " << *A2N2 << "\n");
- if (isKnownPredicate(CmpInst::ICMP_SLT, C1_C2, A2N2)) {
- ++SymbolicRDIVindependence;
- return true;
- }
- }
- }
- }
- return false;
- }
- // testSIV -
- // When we have a pair of subscripts of the form [c1 + a1*i] and [c2 - a2*i]
- // where i is an induction variable, c1 and c2 are loop invariant, and a1 and
- // a2 are constant, we attack it with an SIV test. While they can all be
- // solved with the Exact SIV test, it's worthwhile to use simpler tests when
- // they apply; they're cheaper and sometimes more precise.
- //
- // Return true if dependence disproved.
- bool DependenceInfo::testSIV(const SCEV *Src, const SCEV *Dst, unsigned &Level,
- FullDependence &Result, Constraint &NewConstraint,
- const SCEV *&SplitIter) const {
- LLVM_DEBUG(dbgs() << " src = " << *Src << "\n");
- LLVM_DEBUG(dbgs() << " dst = " << *Dst << "\n");
- const SCEVAddRecExpr *SrcAddRec = dyn_cast<SCEVAddRecExpr>(Src);
- const SCEVAddRecExpr *DstAddRec = dyn_cast<SCEVAddRecExpr>(Dst);
- if (SrcAddRec && DstAddRec) {
- const SCEV *SrcConst = SrcAddRec->getStart();
- const SCEV *DstConst = DstAddRec->getStart();
- const SCEV *SrcCoeff = SrcAddRec->getStepRecurrence(*SE);
- const SCEV *DstCoeff = DstAddRec->getStepRecurrence(*SE);
- const Loop *CurLoop = SrcAddRec->getLoop();
- assert(CurLoop == DstAddRec->getLoop() &&
- "both loops in SIV should be same");
- Level = mapSrcLoop(CurLoop);
- bool disproven;
- if (SrcCoeff == DstCoeff)
- disproven = strongSIVtest(SrcCoeff, SrcConst, DstConst, CurLoop,
- Level, Result, NewConstraint);
- else if (SrcCoeff == SE->getNegativeSCEV(DstCoeff))
- disproven = weakCrossingSIVtest(SrcCoeff, SrcConst, DstConst, CurLoop,
- Level, Result, NewConstraint, SplitIter);
- else
- disproven = exactSIVtest(SrcCoeff, DstCoeff, SrcConst, DstConst, CurLoop,
- Level, Result, NewConstraint);
- return disproven ||
- gcdMIVtest(Src, Dst, Result) ||
- symbolicRDIVtest(SrcCoeff, DstCoeff, SrcConst, DstConst, CurLoop, CurLoop);
- }
- if (SrcAddRec) {
- const SCEV *SrcConst = SrcAddRec->getStart();
- const SCEV *SrcCoeff = SrcAddRec->getStepRecurrence(*SE);
- const SCEV *DstConst = Dst;
- const Loop *CurLoop = SrcAddRec->getLoop();
- Level = mapSrcLoop(CurLoop);
- return weakZeroDstSIVtest(SrcCoeff, SrcConst, DstConst, CurLoop,
- Level, Result, NewConstraint) ||
- gcdMIVtest(Src, Dst, Result);
- }
- if (DstAddRec) {
- const SCEV *DstConst = DstAddRec->getStart();
- const SCEV *DstCoeff = DstAddRec->getStepRecurrence(*SE);
- const SCEV *SrcConst = Src;
- const Loop *CurLoop = DstAddRec->getLoop();
- Level = mapDstLoop(CurLoop);
- return weakZeroSrcSIVtest(DstCoeff, SrcConst, DstConst,
- CurLoop, Level, Result, NewConstraint) ||
- gcdMIVtest(Src, Dst, Result);
- }
- llvm_unreachable("SIV test expected at least one AddRec");
- return false;
- }
- // testRDIV -
- // When we have a pair of subscripts of the form [c1 + a1*i] and [c2 + a2*j]
- // where i and j are induction variables, c1 and c2 are loop invariant,
- // and a1 and a2 are constant, we can solve it exactly with an easy adaptation
- // of the Exact SIV test, the Restricted Double Index Variable (RDIV) test.
- // It doesn't make sense to talk about distance or direction in this case,
- // so there's no point in making special versions of the Strong SIV test or
- // the Weak-crossing SIV test.
- //
- // With minor algebra, this test can also be used for things like
- // [c1 + a1*i + a2*j][c2].
- //
- // Return true if dependence disproved.
- bool DependenceInfo::testRDIV(const SCEV *Src, const SCEV *Dst,
- FullDependence &Result) const {
- // we have 3 possible situations here:
- // 1) [a*i + b] and [c*j + d]
- // 2) [a*i + c*j + b] and [d]
- // 3) [b] and [a*i + c*j + d]
- // We need to find what we've got and get organized
- const SCEV *SrcConst, *DstConst;
- const SCEV *SrcCoeff, *DstCoeff;
- const Loop *SrcLoop, *DstLoop;
- LLVM_DEBUG(dbgs() << " src = " << *Src << "\n");
- LLVM_DEBUG(dbgs() << " dst = " << *Dst << "\n");
- const SCEVAddRecExpr *SrcAddRec = dyn_cast<SCEVAddRecExpr>(Src);
- const SCEVAddRecExpr *DstAddRec = dyn_cast<SCEVAddRecExpr>(Dst);
- if (SrcAddRec && DstAddRec) {
- SrcConst = SrcAddRec->getStart();
- SrcCoeff = SrcAddRec->getStepRecurrence(*SE);
- SrcLoop = SrcAddRec->getLoop();
- DstConst = DstAddRec->getStart();
- DstCoeff = DstAddRec->getStepRecurrence(*SE);
- DstLoop = DstAddRec->getLoop();
- }
- else if (SrcAddRec) {
- if (const SCEVAddRecExpr *tmpAddRec =
- dyn_cast<SCEVAddRecExpr>(SrcAddRec->getStart())) {
- SrcConst = tmpAddRec->getStart();
- SrcCoeff = tmpAddRec->getStepRecurrence(*SE);
- SrcLoop = tmpAddRec->getLoop();
- DstConst = Dst;
- DstCoeff = SE->getNegativeSCEV(SrcAddRec->getStepRecurrence(*SE));
- DstLoop = SrcAddRec->getLoop();
- }
- else
- llvm_unreachable("RDIV reached by surprising SCEVs");
- }
- else if (DstAddRec) {
- if (const SCEVAddRecExpr *tmpAddRec =
- dyn_cast<SCEVAddRecExpr>(DstAddRec->getStart())) {
- DstConst = tmpAddRec->getStart();
- DstCoeff = tmpAddRec->getStepRecurrence(*SE);
- DstLoop = tmpAddRec->getLoop();
- SrcConst = Src;
- SrcCoeff = SE->getNegativeSCEV(DstAddRec->getStepRecurrence(*SE));
- SrcLoop = DstAddRec->getLoop();
- }
- else
- llvm_unreachable("RDIV reached by surprising SCEVs");
- }
- else
- llvm_unreachable("RDIV expected at least one AddRec");
- return exactRDIVtest(SrcCoeff, DstCoeff,
- SrcConst, DstConst,
- SrcLoop, DstLoop,
- Result) ||
- gcdMIVtest(Src, Dst, Result) ||
- symbolicRDIVtest(SrcCoeff, DstCoeff,
- SrcConst, DstConst,
- SrcLoop, DstLoop);
- }
- // Tests the single-subscript MIV pair (Src and Dst) for dependence.
- // Return true if dependence disproved.
- // Can sometimes refine direction vectors.
- bool DependenceInfo::testMIV(const SCEV *Src, const SCEV *Dst,
- const SmallBitVector &Loops,
- FullDependence &Result) const {
- LLVM_DEBUG(dbgs() << " src = " << *Src << "\n");
- LLVM_DEBUG(dbgs() << " dst = " << *Dst << "\n");
- Result.Consistent = false;
- return gcdMIVtest(Src, Dst, Result) ||
- banerjeeMIVtest(Src, Dst, Loops, Result);
- }
- // Given a product, e.g., 10*X*Y, returns the first constant operand,
- // in this case 10. If there is no constant part, returns NULL.
- static
- const SCEVConstant *getConstantPart(const SCEV *Expr) {
- if (const auto *Constant = dyn_cast<SCEVConstant>(Expr))
- return Constant;
- else if (const auto *Product = dyn_cast<SCEVMulExpr>(Expr))
- if (const auto *Constant = dyn_cast<SCEVConstant>(Product->getOperand(0)))
- return Constant;
- return nullptr;
- }
- //===----------------------------------------------------------------------===//
- // gcdMIVtest -
- // Tests an MIV subscript pair for dependence.
- // Returns true if any possible dependence is disproved.
- // Marks the result as inconsistent.
- // Can sometimes disprove the equal direction for 1 or more loops,
- // as discussed in Michael Wolfe's book,
- // High Performance Compilers for Parallel Computing, page 235.
- //
- // We spend some effort (code!) to handle cases like
- // [10*i + 5*N*j + 15*M + 6], where i and j are induction variables,
- // but M and N are just loop-invariant variables.
- // This should help us handle linearized subscripts;
- // also makes this test a useful backup to the various SIV tests.
- //
- // It occurs to me that the presence of loop-invariant variables
- // changes the nature of the test from "greatest common divisor"
- // to "a common divisor".
- bool DependenceInfo::gcdMIVtest(const SCEV *Src, const SCEV *Dst,
- FullDependence &Result) const {
- LLVM_DEBUG(dbgs() << "starting gcd\n");
- ++GCDapplications;
- unsigned BitWidth = SE->getTypeSizeInBits(Src->getType());
- APInt RunningGCD = APInt::getZero(BitWidth);
- // Examine Src coefficients.
- // Compute running GCD and record source constant.
- // Because we're looking for the constant at the end of the chain,
- // we can't quit the loop just because the GCD == 1.
- const SCEV *Coefficients = Src;
- while (const SCEVAddRecExpr *AddRec =
- dyn_cast<SCEVAddRecExpr>(Coefficients)) {
- const SCEV *Coeff = AddRec->getStepRecurrence(*SE);
- // If the coefficient is the product of a constant and other stuff,
- // we can use the constant in the GCD computation.
- const auto *Constant = getConstantPart(Coeff);
- if (!Constant)
- return false;
- APInt ConstCoeff = Constant->getAPInt();
- RunningGCD = APIntOps::GreatestCommonDivisor(RunningGCD, ConstCoeff.abs());
- Coefficients = AddRec->getStart();
- }
- const SCEV *SrcConst = Coefficients;
- // Examine Dst coefficients.
- // Compute running GCD and record destination constant.
- // Because we're looking for the constant at the end of the chain,
- // we can't quit the loop just because the GCD == 1.
- Coefficients = Dst;
- while (const SCEVAddRecExpr *AddRec =
- dyn_cast<SCEVAddRecExpr>(Coefficients)) {
- const SCEV *Coeff = AddRec->getStepRecurrence(*SE);
- // If the coefficient is the product of a constant and other stuff,
- // we can use the constant in the GCD computation.
- const auto *Constant = getConstantPart(Coeff);
- if (!Constant)
- return false;
- APInt ConstCoeff = Constant->getAPInt();
- RunningGCD = APIntOps::GreatestCommonDivisor(RunningGCD, ConstCoeff.abs());
- Coefficients = AddRec->getStart();
- }
- const SCEV *DstConst = Coefficients;
- APInt ExtraGCD = APInt::getZero(BitWidth);
- const SCEV *Delta = SE->getMinusSCEV(DstConst, SrcConst);
- LLVM_DEBUG(dbgs() << " Delta = " << *Delta << "\n");
- const SCEVConstant *Constant = dyn_cast<SCEVConstant>(Delta);
- if (const SCEVAddExpr *Sum = dyn_cast<SCEVAddExpr>(Delta)) {
- // If Delta is a sum of products, we may be able to make further progress.
- for (unsigned Op = 0, Ops = Sum->getNumOperands(); Op < Ops; Op++) {
- const SCEV *Operand = Sum->getOperand(Op);
- if (isa<SCEVConstant>(Operand)) {
- assert(!Constant && "Surprised to find multiple constants");
- Constant = cast<SCEVConstant>(Operand);
- }
- else if (const SCEVMulExpr *Product = dyn_cast<SCEVMulExpr>(Operand)) {
- // Search for constant operand to participate in GCD;
- // If none found; return false.
- const SCEVConstant *ConstOp = getConstantPart(Product);
- if (!ConstOp)
- return false;
- APInt ConstOpValue = ConstOp->getAPInt();
- ExtraGCD = APIntOps::GreatestCommonDivisor(ExtraGCD,
- ConstOpValue.abs());
- }
- else
- return false;
- }
- }
- if (!Constant)
- return false;
- APInt ConstDelta = cast<SCEVConstant>(Constant)->getAPInt();
- LLVM_DEBUG(dbgs() << " ConstDelta = " << ConstDelta << "\n");
- if (ConstDelta == 0)
- return false;
- RunningGCD = APIntOps::GreatestCommonDivisor(RunningGCD, ExtraGCD);
- LLVM_DEBUG(dbgs() << " RunningGCD = " << RunningGCD << "\n");
- APInt Remainder = ConstDelta.srem(RunningGCD);
- if (Remainder != 0) {
- ++GCDindependence;
- return true;
- }
- // Try to disprove equal directions.
- // For example, given a subscript pair [3*i + 2*j] and [i' + 2*j' - 1],
- // the code above can't disprove the dependence because the GCD = 1.
- // So we consider what happen if i = i' and what happens if j = j'.
- // If i = i', we can simplify the subscript to [2*i + 2*j] and [2*j' - 1],
- // which is infeasible, so we can disallow the = direction for the i level.
- // Setting j = j' doesn't help matters, so we end up with a direction vector
- // of [<>, *]
- //
- // Given A[5*i + 10*j*M + 9*M*N] and A[15*i + 20*j*M - 21*N*M + 5],
- // we need to remember that the constant part is 5 and the RunningGCD should
- // be initialized to ExtraGCD = 30.
- LLVM_DEBUG(dbgs() << " ExtraGCD = " << ExtraGCD << '\n');
- bool Improved = false;
- Coefficients = Src;
- while (const SCEVAddRecExpr *AddRec =
- dyn_cast<SCEVAddRecExpr>(Coefficients)) {
- Coefficients = AddRec->getStart();
- const Loop *CurLoop = AddRec->getLoop();
- RunningGCD = ExtraGCD;
- const SCEV *SrcCoeff = AddRec->getStepRecurrence(*SE);
- const SCEV *DstCoeff = SE->getMinusSCEV(SrcCoeff, SrcCoeff);
- const SCEV *Inner = Src;
- while (RunningGCD != 1 && isa<SCEVAddRecExpr>(Inner)) {
- AddRec = cast<SCEVAddRecExpr>(Inner);
- const SCEV *Coeff = AddRec->getStepRecurrence(*SE);
- if (CurLoop == AddRec->getLoop())
- ; // SrcCoeff == Coeff
- else {
- // If the coefficient is the product of a constant and other stuff,
- // we can use the constant in the GCD computation.
- Constant = getConstantPart(Coeff);
- if (!Constant)
- return false;
- APInt ConstCoeff = Constant->getAPInt();
- RunningGCD = APIntOps::GreatestCommonDivisor(RunningGCD, ConstCoeff.abs());
- }
- Inner = AddRec->getStart();
- }
- Inner = Dst;
- while (RunningGCD != 1 && isa<SCEVAddRecExpr>(Inner)) {
- AddRec = cast<SCEVAddRecExpr>(Inner);
- const SCEV *Coeff = AddRec->getStepRecurrence(*SE);
- if (CurLoop == AddRec->getLoop())
- DstCoeff = Coeff;
- else {
- // If the coefficient is the product of a constant and other stuff,
- // we can use the constant in the GCD computation.
- Constant = getConstantPart(Coeff);
- if (!Constant)
- return false;
- APInt ConstCoeff = Constant->getAPInt();
- RunningGCD = APIntOps::GreatestCommonDivisor(RunningGCD, ConstCoeff.abs());
- }
- Inner = AddRec->getStart();
- }
- Delta = SE->getMinusSCEV(SrcCoeff, DstCoeff);
- // If the coefficient is the product of a constant and other stuff,
- // we can use the constant in the GCD computation.
- Constant = getConstantPart(Delta);
- if (!Constant)
- // The difference of the two coefficients might not be a product
- // or constant, in which case we give up on this direction.
- continue;
- APInt ConstCoeff = Constant->getAPInt();
- RunningGCD = APIntOps::GreatestCommonDivisor(RunningGCD, ConstCoeff.abs());
- LLVM_DEBUG(dbgs() << "\tRunningGCD = " << RunningGCD << "\n");
- if (RunningGCD != 0) {
- Remainder = ConstDelta.srem(RunningGCD);
- LLVM_DEBUG(dbgs() << "\tRemainder = " << Remainder << "\n");
- if (Remainder != 0) {
- unsigned Level = mapSrcLoop(CurLoop);
- Result.DV[Level - 1].Direction &= unsigned(~Dependence::DVEntry::EQ);
- Improved = true;
- }
- }
- }
- if (Improved)
- ++GCDsuccesses;
- LLVM_DEBUG(dbgs() << "all done\n");
- return false;
- }
- //===----------------------------------------------------------------------===//
- // banerjeeMIVtest -
- // Use Banerjee's Inequalities to test an MIV subscript pair.
- // (Wolfe, in the race-car book, calls this the Extreme Value Test.)
- // Generally follows the discussion in Section 2.5.2 of
- //
- // Optimizing Supercompilers for Supercomputers
- // Michael Wolfe
- //
- // The inequalities given on page 25 are simplified in that loops are
- // normalized so that the lower bound is always 0 and the stride is always 1.
- // For example, Wolfe gives
- //
- // LB^<_k = (A^-_k - B_k)^- (U_k - L_k - N_k) + (A_k - B_k)L_k - B_k N_k
- //
- // where A_k is the coefficient of the kth index in the source subscript,
- // B_k is the coefficient of the kth index in the destination subscript,
- // U_k is the upper bound of the kth index, L_k is the lower bound of the Kth
- // index, and N_k is the stride of the kth index. Since all loops are normalized
- // by the SCEV package, N_k = 1 and L_k = 0, allowing us to simplify the
- // equation to
- //
- // LB^<_k = (A^-_k - B_k)^- (U_k - 0 - 1) + (A_k - B_k)0 - B_k 1
- // = (A^-_k - B_k)^- (U_k - 1) - B_k
- //
- // Similar simplifications are possible for the other equations.
- //
- // When we can't determine the number of iterations for a loop,
- // we use NULL as an indicator for the worst case, infinity.
- // When computing the upper bound, NULL denotes +inf;
- // for the lower bound, NULL denotes -inf.
- //
- // Return true if dependence disproved.
- bool DependenceInfo::banerjeeMIVtest(const SCEV *Src, const SCEV *Dst,
- const SmallBitVector &Loops,
- FullDependence &Result) const {
- LLVM_DEBUG(dbgs() << "starting Banerjee\n");
- ++BanerjeeApplications;
- LLVM_DEBUG(dbgs() << " Src = " << *Src << '\n');
- const SCEV *A0;
- CoefficientInfo *A = collectCoeffInfo(Src, true, A0);
- LLVM_DEBUG(dbgs() << " Dst = " << *Dst << '\n');
- const SCEV *B0;
- CoefficientInfo *B = collectCoeffInfo(Dst, false, B0);
- BoundInfo *Bound = new BoundInfo[MaxLevels + 1];
- const SCEV *Delta = SE->getMinusSCEV(B0, A0);
- LLVM_DEBUG(dbgs() << "\tDelta = " << *Delta << '\n');
- // Compute bounds for all the * directions.
- LLVM_DEBUG(dbgs() << "\tBounds[*]\n");
- for (unsigned K = 1; K <= MaxLevels; ++K) {
- Bound[K].Iterations = A[K].Iterations ? A[K].Iterations : B[K].Iterations;
- Bound[K].Direction = Dependence::DVEntry::ALL;
- Bound[K].DirSet = Dependence::DVEntry::NONE;
- findBoundsALL(A, B, Bound, K);
- #ifndef NDEBUG
- LLVM_DEBUG(dbgs() << "\t " << K << '\t');
- if (Bound[K].Lower[Dependence::DVEntry::ALL])
- LLVM_DEBUG(dbgs() << *Bound[K].Lower[Dependence::DVEntry::ALL] << '\t');
- else
- LLVM_DEBUG(dbgs() << "-inf\t");
- if (Bound[K].Upper[Dependence::DVEntry::ALL])
- LLVM_DEBUG(dbgs() << *Bound[K].Upper[Dependence::DVEntry::ALL] << '\n');
- else
- LLVM_DEBUG(dbgs() << "+inf\n");
- #endif
- }
- // Test the *, *, *, ... case.
- bool Disproved = false;
- if (testBounds(Dependence::DVEntry::ALL, 0, Bound, Delta)) {
- // Explore the direction vector hierarchy.
- unsigned DepthExpanded = 0;
- unsigned NewDeps = exploreDirections(1, A, B, Bound,
- Loops, DepthExpanded, Delta);
- if (NewDeps > 0) {
- bool Improved = false;
- for (unsigned K = 1; K <= CommonLevels; ++K) {
- if (Loops[K]) {
- unsigned Old = Result.DV[K - 1].Direction;
- Result.DV[K - 1].Direction = Old & Bound[K].DirSet;
- Improved |= Old != Result.DV[K - 1].Direction;
- if (!Result.DV[K - 1].Direction) {
- Improved = false;
- Disproved = true;
- break;
- }
- }
- }
- if (Improved)
- ++BanerjeeSuccesses;
- }
- else {
- ++BanerjeeIndependence;
- Disproved = true;
- }
- }
- else {
- ++BanerjeeIndependence;
- Disproved = true;
- }
- delete [] Bound;
- delete [] A;
- delete [] B;
- return Disproved;
- }
- // Hierarchically expands the direction vector
- // search space, combining the directions of discovered dependences
- // in the DirSet field of Bound. Returns the number of distinct
- // dependences discovered. If the dependence is disproved,
- // it will return 0.
- unsigned DependenceInfo::exploreDirections(unsigned Level, CoefficientInfo *A,
- CoefficientInfo *B, BoundInfo *Bound,
- const SmallBitVector &Loops,
- unsigned &DepthExpanded,
- const SCEV *Delta) const {
- // This algorithm has worst case complexity of O(3^n), where 'n' is the number
- // of common loop levels. To avoid excessive compile-time, pessimize all the
- // results and immediately return when the number of common levels is beyond
- // the given threshold.
- if (CommonLevels > MIVMaxLevelThreshold) {
- LLVM_DEBUG(dbgs() << "Number of common levels exceeded the threshold. MIV "
- "direction exploration is terminated.\n");
- for (unsigned K = 1; K <= CommonLevels; ++K)
- if (Loops[K])
- Bound[K].DirSet = Dependence::DVEntry::ALL;
- return 1;
- }
- if (Level > CommonLevels) {
- // record result
- LLVM_DEBUG(dbgs() << "\t[");
- for (unsigned K = 1; K <= CommonLevels; ++K) {
- if (Loops[K]) {
- Bound[K].DirSet |= Bound[K].Direction;
- #ifndef NDEBUG
- switch (Bound[K].Direction) {
- case Dependence::DVEntry::LT:
- LLVM_DEBUG(dbgs() << " <");
- break;
- case Dependence::DVEntry::EQ:
- LLVM_DEBUG(dbgs() << " =");
- break;
- case Dependence::DVEntry::GT:
- LLVM_DEBUG(dbgs() << " >");
- break;
- case Dependence::DVEntry::ALL:
- LLVM_DEBUG(dbgs() << " *");
- break;
- default:
- llvm_unreachable("unexpected Bound[K].Direction");
- }
- #endif
- }
- }
- LLVM_DEBUG(dbgs() << " ]\n");
- return 1;
- }
- if (Loops[Level]) {
- if (Level > DepthExpanded) {
- DepthExpanded = Level;
- // compute bounds for <, =, > at current level
- findBoundsLT(A, B, Bound, Level);
- findBoundsGT(A, B, Bound, Level);
- findBoundsEQ(A, B, Bound, Level);
- #ifndef NDEBUG
- LLVM_DEBUG(dbgs() << "\tBound for level = " << Level << '\n');
- LLVM_DEBUG(dbgs() << "\t <\t");
- if (Bound[Level].Lower[Dependence::DVEntry::LT])
- LLVM_DEBUG(dbgs() << *Bound[Level].Lower[Dependence::DVEntry::LT]
- << '\t');
- else
- LLVM_DEBUG(dbgs() << "-inf\t");
- if (Bound[Level].Upper[Dependence::DVEntry::LT])
- LLVM_DEBUG(dbgs() << *Bound[Level].Upper[Dependence::DVEntry::LT]
- << '\n');
- else
- LLVM_DEBUG(dbgs() << "+inf\n");
- LLVM_DEBUG(dbgs() << "\t =\t");
- if (Bound[Level].Lower[Dependence::DVEntry::EQ])
- LLVM_DEBUG(dbgs() << *Bound[Level].Lower[Dependence::DVEntry::EQ]
- << '\t');
- else
- LLVM_DEBUG(dbgs() << "-inf\t");
- if (Bound[Level].Upper[Dependence::DVEntry::EQ])
- LLVM_DEBUG(dbgs() << *Bound[Level].Upper[Dependence::DVEntry::EQ]
- << '\n');
- else
- LLVM_DEBUG(dbgs() << "+inf\n");
- LLVM_DEBUG(dbgs() << "\t >\t");
- if (Bound[Level].Lower[Dependence::DVEntry::GT])
- LLVM_DEBUG(dbgs() << *Bound[Level].Lower[Dependence::DVEntry::GT]
- << '\t');
- else
- LLVM_DEBUG(dbgs() << "-inf\t");
- if (Bound[Level].Upper[Dependence::DVEntry::GT])
- LLVM_DEBUG(dbgs() << *Bound[Level].Upper[Dependence::DVEntry::GT]
- << '\n');
- else
- LLVM_DEBUG(dbgs() << "+inf\n");
- #endif
- }
- unsigned NewDeps = 0;
- // test bounds for <, *, *, ...
- if (testBounds(Dependence::DVEntry::LT, Level, Bound, Delta))
- NewDeps += exploreDirections(Level + 1, A, B, Bound,
- Loops, DepthExpanded, Delta);
- // Test bounds for =, *, *, ...
- if (testBounds(Dependence::DVEntry::EQ, Level, Bound, Delta))
- NewDeps += exploreDirections(Level + 1, A, B, Bound,
- Loops, DepthExpanded, Delta);
- // test bounds for >, *, *, ...
- if (testBounds(Dependence::DVEntry::GT, Level, Bound, Delta))
- NewDeps += exploreDirections(Level + 1, A, B, Bound,
- Loops, DepthExpanded, Delta);
- Bound[Level].Direction = Dependence::DVEntry::ALL;
- return NewDeps;
- }
- else
- return exploreDirections(Level + 1, A, B, Bound, Loops, DepthExpanded, Delta);
- }
- // Returns true iff the current bounds are plausible.
- bool DependenceInfo::testBounds(unsigned char DirKind, unsigned Level,
- BoundInfo *Bound, const SCEV *Delta) const {
- Bound[Level].Direction = DirKind;
- if (const SCEV *LowerBound = getLowerBound(Bound))
- if (isKnownPredicate(CmpInst::ICMP_SGT, LowerBound, Delta))
- return false;
- if (const SCEV *UpperBound = getUpperBound(Bound))
- if (isKnownPredicate(CmpInst::ICMP_SGT, Delta, UpperBound))
- return false;
- return true;
- }
- // Computes the upper and lower bounds for level K
- // using the * direction. Records them in Bound.
- // Wolfe gives the equations
- //
- // LB^*_k = (A^-_k - B^+_k)(U_k - L_k) + (A_k - B_k)L_k
- // UB^*_k = (A^+_k - B^-_k)(U_k - L_k) + (A_k - B_k)L_k
- //
- // Since we normalize loops, we can simplify these equations to
- //
- // LB^*_k = (A^-_k - B^+_k)U_k
- // UB^*_k = (A^+_k - B^-_k)U_k
- //
- // We must be careful to handle the case where the upper bound is unknown.
- // Note that the lower bound is always <= 0
- // and the upper bound is always >= 0.
- void DependenceInfo::findBoundsALL(CoefficientInfo *A, CoefficientInfo *B,
- BoundInfo *Bound, unsigned K) const {
- Bound[K].Lower[Dependence::DVEntry::ALL] = nullptr; // Default value = -infinity.
- Bound[K].Upper[Dependence::DVEntry::ALL] = nullptr; // Default value = +infinity.
- if (Bound[K].Iterations) {
- Bound[K].Lower[Dependence::DVEntry::ALL] =
- SE->getMulExpr(SE->getMinusSCEV(A[K].NegPart, B[K].PosPart),
- Bound[K].Iterations);
- Bound[K].Upper[Dependence::DVEntry::ALL] =
- SE->getMulExpr(SE->getMinusSCEV(A[K].PosPart, B[K].NegPart),
- Bound[K].Iterations);
- }
- else {
- // If the difference is 0, we won't need to know the number of iterations.
- if (isKnownPredicate(CmpInst::ICMP_EQ, A[K].NegPart, B[K].PosPart))
- Bound[K].Lower[Dependence::DVEntry::ALL] =
- SE->getZero(A[K].Coeff->getType());
- if (isKnownPredicate(CmpInst::ICMP_EQ, A[K].PosPart, B[K].NegPart))
- Bound[K].Upper[Dependence::DVEntry::ALL] =
- SE->getZero(A[K].Coeff->getType());
- }
- }
- // Computes the upper and lower bounds for level K
- // using the = direction. Records them in Bound.
- // Wolfe gives the equations
- //
- // LB^=_k = (A_k - B_k)^- (U_k - L_k) + (A_k - B_k)L_k
- // UB^=_k = (A_k - B_k)^+ (U_k - L_k) + (A_k - B_k)L_k
- //
- // Since we normalize loops, we can simplify these equations to
- //
- // LB^=_k = (A_k - B_k)^- U_k
- // UB^=_k = (A_k - B_k)^+ U_k
- //
- // We must be careful to handle the case where the upper bound is unknown.
- // Note that the lower bound is always <= 0
- // and the upper bound is always >= 0.
- void DependenceInfo::findBoundsEQ(CoefficientInfo *A, CoefficientInfo *B,
- BoundInfo *Bound, unsigned K) const {
- Bound[K].Lower[Dependence::DVEntry::EQ] = nullptr; // Default value = -infinity.
- Bound[K].Upper[Dependence::DVEntry::EQ] = nullptr; // Default value = +infinity.
- if (Bound[K].Iterations) {
- const SCEV *Delta = SE->getMinusSCEV(A[K].Coeff, B[K].Coeff);
- const SCEV *NegativePart = getNegativePart(Delta);
- Bound[K].Lower[Dependence::DVEntry::EQ] =
- SE->getMulExpr(NegativePart, Bound[K].Iterations);
- const SCEV *PositivePart = getPositivePart(Delta);
- Bound[K].Upper[Dependence::DVEntry::EQ] =
- SE->getMulExpr(PositivePart, Bound[K].Iterations);
- }
- else {
- // If the positive/negative part of the difference is 0,
- // we won't need to know the number of iterations.
- const SCEV *Delta = SE->getMinusSCEV(A[K].Coeff, B[K].Coeff);
- const SCEV *NegativePart = getNegativePart(Delta);
- if (NegativePart->isZero())
- Bound[K].Lower[Dependence::DVEntry::EQ] = NegativePart; // Zero
- const SCEV *PositivePart = getPositivePart(Delta);
- if (PositivePart->isZero())
- Bound[K].Upper[Dependence::DVEntry::EQ] = PositivePart; // Zero
- }
- }
- // Computes the upper and lower bounds for level K
- // using the < direction. Records them in Bound.
- // Wolfe gives the equations
- //
- // LB^<_k = (A^-_k - B_k)^- (U_k - L_k - N_k) + (A_k - B_k)L_k - B_k N_k
- // UB^<_k = (A^+_k - B_k)^+ (U_k - L_k - N_k) + (A_k - B_k)L_k - B_k N_k
- //
- // Since we normalize loops, we can simplify these equations to
- //
- // LB^<_k = (A^-_k - B_k)^- (U_k - 1) - B_k
- // UB^<_k = (A^+_k - B_k)^+ (U_k - 1) - B_k
- //
- // We must be careful to handle the case where the upper bound is unknown.
- void DependenceInfo::findBoundsLT(CoefficientInfo *A, CoefficientInfo *B,
- BoundInfo *Bound, unsigned K) const {
- Bound[K].Lower[Dependence::DVEntry::LT] = nullptr; // Default value = -infinity.
- Bound[K].Upper[Dependence::DVEntry::LT] = nullptr; // Default value = +infinity.
- if (Bound[K].Iterations) {
- const SCEV *Iter_1 = SE->getMinusSCEV(
- Bound[K].Iterations, SE->getOne(Bound[K].Iterations->getType()));
- const SCEV *NegPart =
- getNegativePart(SE->getMinusSCEV(A[K].NegPart, B[K].Coeff));
- Bound[K].Lower[Dependence::DVEntry::LT] =
- SE->getMinusSCEV(SE->getMulExpr(NegPart, Iter_1), B[K].Coeff);
- const SCEV *PosPart =
- getPositivePart(SE->getMinusSCEV(A[K].PosPart, B[K].Coeff));
- Bound[K].Upper[Dependence::DVEntry::LT] =
- SE->getMinusSCEV(SE->getMulExpr(PosPart, Iter_1), B[K].Coeff);
- }
- else {
- // If the positive/negative part of the difference is 0,
- // we won't need to know the number of iterations.
- const SCEV *NegPart =
- getNegativePart(SE->getMinusSCEV(A[K].NegPart, B[K].Coeff));
- if (NegPart->isZero())
- Bound[K].Lower[Dependence::DVEntry::LT] = SE->getNegativeSCEV(B[K].Coeff);
- const SCEV *PosPart =
- getPositivePart(SE->getMinusSCEV(A[K].PosPart, B[K].Coeff));
- if (PosPart->isZero())
- Bound[K].Upper[Dependence::DVEntry::LT] = SE->getNegativeSCEV(B[K].Coeff);
- }
- }
- // Computes the upper and lower bounds for level K
- // using the > direction. Records them in Bound.
- // Wolfe gives the equations
- //
- // LB^>_k = (A_k - B^+_k)^- (U_k - L_k - N_k) + (A_k - B_k)L_k + A_k N_k
- // UB^>_k = (A_k - B^-_k)^+ (U_k - L_k - N_k) + (A_k - B_k)L_k + A_k N_k
- //
- // Since we normalize loops, we can simplify these equations to
- //
- // LB^>_k = (A_k - B^+_k)^- (U_k - 1) + A_k
- // UB^>_k = (A_k - B^-_k)^+ (U_k - 1) + A_k
- //
- // We must be careful to handle the case where the upper bound is unknown.
- void DependenceInfo::findBoundsGT(CoefficientInfo *A, CoefficientInfo *B,
- BoundInfo *Bound, unsigned K) const {
- Bound[K].Lower[Dependence::DVEntry::GT] = nullptr; // Default value = -infinity.
- Bound[K].Upper[Dependence::DVEntry::GT] = nullptr; // Default value = +infinity.
- if (Bound[K].Iterations) {
- const SCEV *Iter_1 = SE->getMinusSCEV(
- Bound[K].Iterations, SE->getOne(Bound[K].Iterations->getType()));
- const SCEV *NegPart =
- getNegativePart(SE->getMinusSCEV(A[K].Coeff, B[K].PosPart));
- Bound[K].Lower[Dependence::DVEntry::GT] =
- SE->getAddExpr(SE->getMulExpr(NegPart, Iter_1), A[K].Coeff);
- const SCEV *PosPart =
- getPositivePart(SE->getMinusSCEV(A[K].Coeff, B[K].NegPart));
- Bound[K].Upper[Dependence::DVEntry::GT] =
- SE->getAddExpr(SE->getMulExpr(PosPart, Iter_1), A[K].Coeff);
- }
- else {
- // If the positive/negative part of the difference is 0,
- // we won't need to know the number of iterations.
- const SCEV *NegPart = getNegativePart(SE->getMinusSCEV(A[K].Coeff, B[K].PosPart));
- if (NegPart->isZero())
- Bound[K].Lower[Dependence::DVEntry::GT] = A[K].Coeff;
- const SCEV *PosPart = getPositivePart(SE->getMinusSCEV(A[K].Coeff, B[K].NegPart));
- if (PosPart->isZero())
- Bound[K].Upper[Dependence::DVEntry::GT] = A[K].Coeff;
- }
- }
- // X^+ = max(X, 0)
- const SCEV *DependenceInfo::getPositivePart(const SCEV *X) const {
- return SE->getSMaxExpr(X, SE->getZero(X->getType()));
- }
- // X^- = min(X, 0)
- const SCEV *DependenceInfo::getNegativePart(const SCEV *X) const {
- return SE->getSMinExpr(X, SE->getZero(X->getType()));
- }
- // Walks through the subscript,
- // collecting each coefficient, the associated loop bounds,
- // and recording its positive and negative parts for later use.
- DependenceInfo::CoefficientInfo *
- DependenceInfo::collectCoeffInfo(const SCEV *Subscript, bool SrcFlag,
- const SCEV *&Constant) const {
- const SCEV *Zero = SE->getZero(Subscript->getType());
- CoefficientInfo *CI = new CoefficientInfo[MaxLevels + 1];
- for (unsigned K = 1; K <= MaxLevels; ++K) {
- CI[K].Coeff = Zero;
- CI[K].PosPart = Zero;
- CI[K].NegPart = Zero;
- CI[K].Iterations = nullptr;
- }
- while (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Subscript)) {
- const Loop *L = AddRec->getLoop();
- unsigned K = SrcFlag ? mapSrcLoop(L) : mapDstLoop(L);
- CI[K].Coeff = AddRec->getStepRecurrence(*SE);
- CI[K].PosPart = getPositivePart(CI[K].Coeff);
- CI[K].NegPart = getNegativePart(CI[K].Coeff);
- CI[K].Iterations = collectUpperBound(L, Subscript->getType());
- Subscript = AddRec->getStart();
- }
- Constant = Subscript;
- #ifndef NDEBUG
- LLVM_DEBUG(dbgs() << "\tCoefficient Info\n");
- for (unsigned K = 1; K <= MaxLevels; ++K) {
- LLVM_DEBUG(dbgs() << "\t " << K << "\t" << *CI[K].Coeff);
- LLVM_DEBUG(dbgs() << "\tPos Part = ");
- LLVM_DEBUG(dbgs() << *CI[K].PosPart);
- LLVM_DEBUG(dbgs() << "\tNeg Part = ");
- LLVM_DEBUG(dbgs() << *CI[K].NegPart);
- LLVM_DEBUG(dbgs() << "\tUpper Bound = ");
- if (CI[K].Iterations)
- LLVM_DEBUG(dbgs() << *CI[K].Iterations);
- else
- LLVM_DEBUG(dbgs() << "+inf");
- LLVM_DEBUG(dbgs() << '\n');
- }
- LLVM_DEBUG(dbgs() << "\t Constant = " << *Subscript << '\n');
- #endif
- return CI;
- }
- // Looks through all the bounds info and
- // computes the lower bound given the current direction settings
- // at each level. If the lower bound for any level is -inf,
- // the result is -inf.
- const SCEV *DependenceInfo::getLowerBound(BoundInfo *Bound) const {
- const SCEV *Sum = Bound[1].Lower[Bound[1].Direction];
- for (unsigned K = 2; Sum && K <= MaxLevels; ++K) {
- if (Bound[K].Lower[Bound[K].Direction])
- Sum = SE->getAddExpr(Sum, Bound[K].Lower[Bound[K].Direction]);
- else
- Sum = nullptr;
- }
- return Sum;
- }
- // Looks through all the bounds info and
- // computes the upper bound given the current direction settings
- // at each level. If the upper bound at any level is +inf,
- // the result is +inf.
- const SCEV *DependenceInfo::getUpperBound(BoundInfo *Bound) const {
- const SCEV *Sum = Bound[1].Upper[Bound[1].Direction];
- for (unsigned K = 2; Sum && K <= MaxLevels; ++K) {
- if (Bound[K].Upper[Bound[K].Direction])
- Sum = SE->getAddExpr(Sum, Bound[K].Upper[Bound[K].Direction]);
- else
- Sum = nullptr;
- }
- return Sum;
- }
- //===----------------------------------------------------------------------===//
- // Constraint manipulation for Delta test.
- // Given a linear SCEV,
- // return the coefficient (the step)
- // corresponding to the specified loop.
- // If there isn't one, return 0.
- // For example, given a*i + b*j + c*k, finding the coefficient
- // corresponding to the j loop would yield b.
- const SCEV *DependenceInfo::findCoefficient(const SCEV *Expr,
- const Loop *TargetLoop) const {
- const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Expr);
- if (!AddRec)
- return SE->getZero(Expr->getType());
- if (AddRec->getLoop() == TargetLoop)
- return AddRec->getStepRecurrence(*SE);
- return findCoefficient(AddRec->getStart(), TargetLoop);
- }
- // Given a linear SCEV,
- // return the SCEV given by zeroing out the coefficient
- // corresponding to the specified loop.
- // For example, given a*i + b*j + c*k, zeroing the coefficient
- // corresponding to the j loop would yield a*i + c*k.
- const SCEV *DependenceInfo::zeroCoefficient(const SCEV *Expr,
- const Loop *TargetLoop) const {
- const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Expr);
- if (!AddRec)
- return Expr; // ignore
- if (AddRec->getLoop() == TargetLoop)
- return AddRec->getStart();
- return SE->getAddRecExpr(zeroCoefficient(AddRec->getStart(), TargetLoop),
- AddRec->getStepRecurrence(*SE),
- AddRec->getLoop(),
- AddRec->getNoWrapFlags());
- }
- // Given a linear SCEV Expr,
- // return the SCEV given by adding some Value to the
- // coefficient corresponding to the specified TargetLoop.
- // For example, given a*i + b*j + c*k, adding 1 to the coefficient
- // corresponding to the j loop would yield a*i + (b+1)*j + c*k.
- const SCEV *DependenceInfo::addToCoefficient(const SCEV *Expr,
- const Loop *TargetLoop,
- const SCEV *Value) const {
- const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Expr);
- if (!AddRec) // create a new addRec
- return SE->getAddRecExpr(Expr,
- Value,
- TargetLoop,
- SCEV::FlagAnyWrap); // Worst case, with no info.
- if (AddRec->getLoop() == TargetLoop) {
- const SCEV *Sum = SE->getAddExpr(AddRec->getStepRecurrence(*SE), Value);
- if (Sum->isZero())
- return AddRec->getStart();
- return SE->getAddRecExpr(AddRec->getStart(),
- Sum,
- AddRec->getLoop(),
- AddRec->getNoWrapFlags());
- }
- if (SE->isLoopInvariant(AddRec, TargetLoop))
- return SE->getAddRecExpr(AddRec, Value, TargetLoop, SCEV::FlagAnyWrap);
- return SE->getAddRecExpr(
- addToCoefficient(AddRec->getStart(), TargetLoop, Value),
- AddRec->getStepRecurrence(*SE), AddRec->getLoop(),
- AddRec->getNoWrapFlags());
- }
- // Review the constraints, looking for opportunities
- // to simplify a subscript pair (Src and Dst).
- // Return true if some simplification occurs.
- // If the simplification isn't exact (that is, if it is conservative
- // in terms of dependence), set consistent to false.
- // Corresponds to Figure 5 from the paper
- //
- // Practical Dependence Testing
- // Goff, Kennedy, Tseng
- // PLDI 1991
- bool DependenceInfo::propagate(const SCEV *&Src, const SCEV *&Dst,
- SmallBitVector &Loops,
- SmallVectorImpl<Constraint> &Constraints,
- bool &Consistent) {
- bool Result = false;
- for (unsigned LI : Loops.set_bits()) {
- LLVM_DEBUG(dbgs() << "\t Constraint[" << LI << "] is");
- LLVM_DEBUG(Constraints[LI].dump(dbgs()));
- if (Constraints[LI].isDistance())
- Result |= propagateDistance(Src, Dst, Constraints[LI], Consistent);
- else if (Constraints[LI].isLine())
- Result |= propagateLine(Src, Dst, Constraints[LI], Consistent);
- else if (Constraints[LI].isPoint())
- Result |= propagatePoint(Src, Dst, Constraints[LI]);
- }
- return Result;
- }
- // Attempt to propagate a distance
- // constraint into a subscript pair (Src and Dst).
- // Return true if some simplification occurs.
- // If the simplification isn't exact (that is, if it is conservative
- // in terms of dependence), set consistent to false.
- bool DependenceInfo::propagateDistance(const SCEV *&Src, const SCEV *&Dst,
- Constraint &CurConstraint,
- bool &Consistent) {
- const Loop *CurLoop = CurConstraint.getAssociatedLoop();
- LLVM_DEBUG(dbgs() << "\t\tSrc is " << *Src << "\n");
- const SCEV *A_K = findCoefficient(Src, CurLoop);
- if (A_K->isZero())
- return false;
- const SCEV *DA_K = SE->getMulExpr(A_K, CurConstraint.getD());
- Src = SE->getMinusSCEV(Src, DA_K);
- Src = zeroCoefficient(Src, CurLoop);
- LLVM_DEBUG(dbgs() << "\t\tnew Src is " << *Src << "\n");
- LLVM_DEBUG(dbgs() << "\t\tDst is " << *Dst << "\n");
- Dst = addToCoefficient(Dst, CurLoop, SE->getNegativeSCEV(A_K));
- LLVM_DEBUG(dbgs() << "\t\tnew Dst is " << *Dst << "\n");
- if (!findCoefficient(Dst, CurLoop)->isZero())
- Consistent = false;
- return true;
- }
- // Attempt to propagate a line
- // constraint into a subscript pair (Src and Dst).
- // Return true if some simplification occurs.
- // If the simplification isn't exact (that is, if it is conservative
- // in terms of dependence), set consistent to false.
- bool DependenceInfo::propagateLine(const SCEV *&Src, const SCEV *&Dst,
- Constraint &CurConstraint,
- bool &Consistent) {
- const Loop *CurLoop = CurConstraint.getAssociatedLoop();
- const SCEV *A = CurConstraint.getA();
- const SCEV *B = CurConstraint.getB();
- const SCEV *C = CurConstraint.getC();
- LLVM_DEBUG(dbgs() << "\t\tA = " << *A << ", B = " << *B << ", C = " << *C
- << "\n");
- LLVM_DEBUG(dbgs() << "\t\tSrc = " << *Src << "\n");
- LLVM_DEBUG(dbgs() << "\t\tDst = " << *Dst << "\n");
- if (A->isZero()) {
- const SCEVConstant *Bconst = dyn_cast<SCEVConstant>(B);
- const SCEVConstant *Cconst = dyn_cast<SCEVConstant>(C);
- if (!Bconst || !Cconst) return false;
- APInt Beta = Bconst->getAPInt();
- APInt Charlie = Cconst->getAPInt();
- APInt CdivB = Charlie.sdiv(Beta);
- assert(Charlie.srem(Beta) == 0 && "C should be evenly divisible by B");
- const SCEV *AP_K = findCoefficient(Dst, CurLoop);
- // Src = SE->getAddExpr(Src, SE->getMulExpr(AP_K, SE->getConstant(CdivB)));
- Src = SE->getMinusSCEV(Src, SE->getMulExpr(AP_K, SE->getConstant(CdivB)));
- Dst = zeroCoefficient(Dst, CurLoop);
- if (!findCoefficient(Src, CurLoop)->isZero())
- Consistent = false;
- }
- else if (B->isZero()) {
- const SCEVConstant *Aconst = dyn_cast<SCEVConstant>(A);
- const SCEVConstant *Cconst = dyn_cast<SCEVConstant>(C);
- if (!Aconst || !Cconst) return false;
- APInt Alpha = Aconst->getAPInt();
- APInt Charlie = Cconst->getAPInt();
- APInt CdivA = Charlie.sdiv(Alpha);
- assert(Charlie.srem(Alpha) == 0 && "C should be evenly divisible by A");
- const SCEV *A_K = findCoefficient(Src, CurLoop);
- Src = SE->getAddExpr(Src, SE->getMulExpr(A_K, SE->getConstant(CdivA)));
- Src = zeroCoefficient(Src, CurLoop);
- if (!findCoefficient(Dst, CurLoop)->isZero())
- Consistent = false;
- }
- else if (isKnownPredicate(CmpInst::ICMP_EQ, A, B)) {
- const SCEVConstant *Aconst = dyn_cast<SCEVConstant>(A);
- const SCEVConstant *Cconst = dyn_cast<SCEVConstant>(C);
- if (!Aconst || !Cconst) return false;
- APInt Alpha = Aconst->getAPInt();
- APInt Charlie = Cconst->getAPInt();
- APInt CdivA = Charlie.sdiv(Alpha);
- assert(Charlie.srem(Alpha) == 0 && "C should be evenly divisible by A");
- const SCEV *A_K = findCoefficient(Src, CurLoop);
- Src = SE->getAddExpr(Src, SE->getMulExpr(A_K, SE->getConstant(CdivA)));
- Src = zeroCoefficient(Src, CurLoop);
- Dst = addToCoefficient(Dst, CurLoop, A_K);
- if (!findCoefficient(Dst, CurLoop)->isZero())
- Consistent = false;
- }
- else {
- // paper is incorrect here, or perhaps just misleading
- const SCEV *A_K = findCoefficient(Src, CurLoop);
- Src = SE->getMulExpr(Src, A);
- Dst = SE->getMulExpr(Dst, A);
- Src = SE->getAddExpr(Src, SE->getMulExpr(A_K, C));
- Src = zeroCoefficient(Src, CurLoop);
- Dst = addToCoefficient(Dst, CurLoop, SE->getMulExpr(A_K, B));
- if (!findCoefficient(Dst, CurLoop)->isZero())
- Consistent = false;
- }
- LLVM_DEBUG(dbgs() << "\t\tnew Src = " << *Src << "\n");
- LLVM_DEBUG(dbgs() << "\t\tnew Dst = " << *Dst << "\n");
- return true;
- }
- // Attempt to propagate a point
- // constraint into a subscript pair (Src and Dst).
- // Return true if some simplification occurs.
- bool DependenceInfo::propagatePoint(const SCEV *&Src, const SCEV *&Dst,
- Constraint &CurConstraint) {
- const Loop *CurLoop = CurConstraint.getAssociatedLoop();
- const SCEV *A_K = findCoefficient(Src, CurLoop);
- const SCEV *AP_K = findCoefficient(Dst, CurLoop);
- const SCEV *XA_K = SE->getMulExpr(A_K, CurConstraint.getX());
- const SCEV *YAP_K = SE->getMulExpr(AP_K, CurConstraint.getY());
- LLVM_DEBUG(dbgs() << "\t\tSrc is " << *Src << "\n");
- Src = SE->getAddExpr(Src, SE->getMinusSCEV(XA_K, YAP_K));
- Src = zeroCoefficient(Src, CurLoop);
- LLVM_DEBUG(dbgs() << "\t\tnew Src is " << *Src << "\n");
- LLVM_DEBUG(dbgs() << "\t\tDst is " << *Dst << "\n");
- Dst = zeroCoefficient(Dst, CurLoop);
- LLVM_DEBUG(dbgs() << "\t\tnew Dst is " << *Dst << "\n");
- return true;
- }
- // Update direction vector entry based on the current constraint.
- void DependenceInfo::updateDirection(Dependence::DVEntry &Level,
- const Constraint &CurConstraint) const {
- LLVM_DEBUG(dbgs() << "\tUpdate direction, constraint =");
- LLVM_DEBUG(CurConstraint.dump(dbgs()));
- if (CurConstraint.isAny())
- ; // use defaults
- else if (CurConstraint.isDistance()) {
- // this one is consistent, the others aren't
- Level.Scalar = false;
- Level.Distance = CurConstraint.getD();
- unsigned NewDirection = Dependence::DVEntry::NONE;
- if (!SE->isKnownNonZero(Level.Distance)) // if may be zero
- NewDirection = Dependence::DVEntry::EQ;
- if (!SE->isKnownNonPositive(Level.Distance)) // if may be positive
- NewDirection |= Dependence::DVEntry::LT;
- if (!SE->isKnownNonNegative(Level.Distance)) // if may be negative
- NewDirection |= Dependence::DVEntry::GT;
- Level.Direction &= NewDirection;
- }
- else if (CurConstraint.isLine()) {
- Level.Scalar = false;
- Level.Distance = nullptr;
- // direction should be accurate
- }
- else if (CurConstraint.isPoint()) {
- Level.Scalar = false;
- Level.Distance = nullptr;
- unsigned NewDirection = Dependence::DVEntry::NONE;
- if (!isKnownPredicate(CmpInst::ICMP_NE,
- CurConstraint.getY(),
- CurConstraint.getX()))
- // if X may be = Y
- NewDirection |= Dependence::DVEntry::EQ;
- if (!isKnownPredicate(CmpInst::ICMP_SLE,
- CurConstraint.getY(),
- CurConstraint.getX()))
- // if Y may be > X
- NewDirection |= Dependence::DVEntry::LT;
- if (!isKnownPredicate(CmpInst::ICMP_SGE,
- CurConstraint.getY(),
- CurConstraint.getX()))
- // if Y may be < X
- NewDirection |= Dependence::DVEntry::GT;
- Level.Direction &= NewDirection;
- }
- else
- llvm_unreachable("constraint has unexpected kind");
- }
- /// Check if we can delinearize the subscripts. If the SCEVs representing the
- /// source and destination array references are recurrences on a nested loop,
- /// this function flattens the nested recurrences into separate recurrences
- /// for each loop level.
- bool DependenceInfo::tryDelinearize(Instruction *Src, Instruction *Dst,
- SmallVectorImpl<Subscript> &Pair) {
- assert(isLoadOrStore(Src) && "instruction is not load or store");
- assert(isLoadOrStore(Dst) && "instruction is not load or store");
- Value *SrcPtr = getLoadStorePointerOperand(Src);
- Value *DstPtr = getLoadStorePointerOperand(Dst);
- Loop *SrcLoop = LI->getLoopFor(Src->getParent());
- Loop *DstLoop = LI->getLoopFor(Dst->getParent());
- const SCEV *SrcAccessFn = SE->getSCEVAtScope(SrcPtr, SrcLoop);
- const SCEV *DstAccessFn = SE->getSCEVAtScope(DstPtr, DstLoop);
- const SCEVUnknown *SrcBase =
- dyn_cast<SCEVUnknown>(SE->getPointerBase(SrcAccessFn));
- const SCEVUnknown *DstBase =
- dyn_cast<SCEVUnknown>(SE->getPointerBase(DstAccessFn));
- if (!SrcBase || !DstBase || SrcBase != DstBase)
- return false;
- SmallVector<const SCEV *, 4> SrcSubscripts, DstSubscripts;
- if (!tryDelinearizeFixedSize(Src, Dst, SrcAccessFn, DstAccessFn,
- SrcSubscripts, DstSubscripts) &&
- !tryDelinearizeParametricSize(Src, Dst, SrcAccessFn, DstAccessFn,
- SrcSubscripts, DstSubscripts))
- return false;
- int Size = SrcSubscripts.size();
- LLVM_DEBUG({
- dbgs() << "\nSrcSubscripts: ";
- for (int I = 0; I < Size; I++)
- dbgs() << *SrcSubscripts[I];
- dbgs() << "\nDstSubscripts: ";
- for (int I = 0; I < Size; I++)
- dbgs() << *DstSubscripts[I];
- });
- // The delinearization transforms a single-subscript MIV dependence test into
- // a multi-subscript SIV dependence test that is easier to compute. So we
- // resize Pair to contain as many pairs of subscripts as the delinearization
- // has found, and then initialize the pairs following the delinearization.
- Pair.resize(Size);
- for (int I = 0; I < Size; ++I) {
- Pair[I].Src = SrcSubscripts[I];
- Pair[I].Dst = DstSubscripts[I];
- unifySubscriptType(&Pair[I]);
- }
- return true;
- }
- bool DependenceInfo::tryDelinearizeFixedSize(
- Instruction *Src, Instruction *Dst, const SCEV *SrcAccessFn,
- const SCEV *DstAccessFn, SmallVectorImpl<const SCEV *> &SrcSubscripts,
- SmallVectorImpl<const SCEV *> &DstSubscripts) {
- Value *SrcPtr = getLoadStorePointerOperand(Src);
- Value *DstPtr = getLoadStorePointerOperand(Dst);
- const SCEVUnknown *SrcBase =
- dyn_cast<SCEVUnknown>(SE->getPointerBase(SrcAccessFn));
- const SCEVUnknown *DstBase =
- dyn_cast<SCEVUnknown>(SE->getPointerBase(DstAccessFn));
- assert(SrcBase && DstBase && SrcBase == DstBase &&
- "expected src and dst scev unknowns to be equal");
- // Check the simple case where the array dimensions are fixed size.
- auto *SrcGEP = dyn_cast<GetElementPtrInst>(SrcPtr);
- auto *DstGEP = dyn_cast<GetElementPtrInst>(DstPtr);
- if (!SrcGEP || !DstGEP)
- return false;
- SmallVector<int, 4> SrcSizes, DstSizes;
- getIndexExpressionsFromGEP(*SE, SrcGEP, SrcSubscripts, SrcSizes);
- getIndexExpressionsFromGEP(*SE, DstGEP, DstSubscripts, DstSizes);
- // Check that the two size arrays are non-empty and equal in length and
- // value.
- if (SrcSizes.empty() || SrcSubscripts.size() <= 1 ||
- SrcSizes.size() != DstSizes.size() ||
- !std::equal(SrcSizes.begin(), SrcSizes.end(), DstSizes.begin())) {
- SrcSubscripts.clear();
- DstSubscripts.clear();
- return false;
- }
- Value *SrcBasePtr = SrcGEP->getOperand(0);
- Value *DstBasePtr = DstGEP->getOperand(0);
- while (auto *PCast = dyn_cast<BitCastInst>(SrcBasePtr))
- SrcBasePtr = PCast->getOperand(0);
- while (auto *PCast = dyn_cast<BitCastInst>(DstBasePtr))
- DstBasePtr = PCast->getOperand(0);
- // Check that for identical base pointers we do not miss index offsets
- // that have been added before this GEP is applied.
- if (SrcBasePtr != SrcBase->getValue() || DstBasePtr != DstBase->getValue()) {
- SrcSubscripts.clear();
- DstSubscripts.clear();
- return false;
- }
- assert(SrcSubscripts.size() == DstSubscripts.size() &&
- SrcSubscripts.size() == SrcSizes.size() + 1 &&
- "Expected equal number of entries in the list of sizes and "
- "subscripts.");
- // In general we cannot safely assume that the subscripts recovered from GEPs
- // are in the range of values defined for their corresponding array
- // dimensions. For example some C language usage/interpretation make it
- // impossible to verify this at compile-time. As such we can only delinearize
- // iff the subscripts are positive and are less than the range of the
- // dimension.
- if (!DisableDelinearizationChecks) {
- auto AllIndiciesInRange = [&](SmallVector<int, 4> &DimensionSizes,
- SmallVectorImpl<const SCEV *> &Subscripts,
- Value *Ptr) {
- size_t SSize = Subscripts.size();
- for (size_t I = 1; I < SSize; ++I) {
- const SCEV *S = Subscripts[I];
- if (!isKnownNonNegative(S, Ptr))
- return false;
- if (auto *SType = dyn_cast<IntegerType>(S->getType())) {
- const SCEV *Range = SE->getConstant(
- ConstantInt::get(SType, DimensionSizes[I - 1], false));
- if (!isKnownLessThan(S, Range))
- return false;
- }
- }
- return true;
- };
- if (!AllIndiciesInRange(SrcSizes, SrcSubscripts, SrcPtr) ||
- !AllIndiciesInRange(DstSizes, DstSubscripts, DstPtr)) {
- SrcSubscripts.clear();
- DstSubscripts.clear();
- return false;
- }
- }
- LLVM_DEBUG({
- dbgs() << "Delinearized subscripts of fixed-size array\n"
- << "SrcGEP:" << *SrcGEP << "\n"
- << "DstGEP:" << *DstGEP << "\n";
- });
- return true;
- }
- bool DependenceInfo::tryDelinearizeParametricSize(
- Instruction *Src, Instruction *Dst, const SCEV *SrcAccessFn,
- const SCEV *DstAccessFn, SmallVectorImpl<const SCEV *> &SrcSubscripts,
- SmallVectorImpl<const SCEV *> &DstSubscripts) {
- Value *SrcPtr = getLoadStorePointerOperand(Src);
- Value *DstPtr = getLoadStorePointerOperand(Dst);
- const SCEVUnknown *SrcBase =
- dyn_cast<SCEVUnknown>(SE->getPointerBase(SrcAccessFn));
- const SCEVUnknown *DstBase =
- dyn_cast<SCEVUnknown>(SE->getPointerBase(DstAccessFn));
- assert(SrcBase && DstBase && SrcBase == DstBase &&
- "expected src and dst scev unknowns to be equal");
- const SCEV *ElementSize = SE->getElementSize(Src);
- if (ElementSize != SE->getElementSize(Dst))
- return false;
- const SCEV *SrcSCEV = SE->getMinusSCEV(SrcAccessFn, SrcBase);
- const SCEV *DstSCEV = SE->getMinusSCEV(DstAccessFn, DstBase);
- const SCEVAddRecExpr *SrcAR = dyn_cast<SCEVAddRecExpr>(SrcSCEV);
- const SCEVAddRecExpr *DstAR = dyn_cast<SCEVAddRecExpr>(DstSCEV);
- if (!SrcAR || !DstAR || !SrcAR->isAffine() || !DstAR->isAffine())
- return false;
- // First step: collect parametric terms in both array references.
- SmallVector<const SCEV *, 4> Terms;
- collectParametricTerms(*SE, SrcAR, Terms);
- collectParametricTerms(*SE, DstAR, Terms);
- // Second step: find subscript sizes.
- SmallVector<const SCEV *, 4> Sizes;
- findArrayDimensions(*SE, Terms, Sizes, ElementSize);
- // Third step: compute the access functions for each subscript.
- computeAccessFunctions(*SE, SrcAR, SrcSubscripts, Sizes);
- computeAccessFunctions(*SE, DstAR, DstSubscripts, Sizes);
- // Fail when there is only a subscript: that's a linearized access function.
- if (SrcSubscripts.size() < 2 || DstSubscripts.size() < 2 ||
- SrcSubscripts.size() != DstSubscripts.size())
- return false;
- size_t Size = SrcSubscripts.size();
- // Statically check that the array bounds are in-range. The first subscript we
- // don't have a size for and it cannot overflow into another subscript, so is
- // always safe. The others need to be 0 <= subscript[i] < bound, for both src
- // and dst.
- // FIXME: It may be better to record these sizes and add them as constraints
- // to the dependency checks.
- if (!DisableDelinearizationChecks)
- for (size_t I = 1; I < Size; ++I) {
- if (!isKnownNonNegative(SrcSubscripts[I], SrcPtr))
- return false;
- if (!isKnownLessThan(SrcSubscripts[I], Sizes[I - 1]))
- return false;
- if (!isKnownNonNegative(DstSubscripts[I], DstPtr))
- return false;
- if (!isKnownLessThan(DstSubscripts[I], Sizes[I - 1]))
- return false;
- }
- return true;
- }
- //===----------------------------------------------------------------------===//
- #ifndef NDEBUG
- // For debugging purposes, dump a small bit vector to dbgs().
- static void dumpSmallBitVector(SmallBitVector &BV) {
- dbgs() << "{";
- for (unsigned VI : BV.set_bits()) {
- dbgs() << VI;
- if (BV.find_next(VI) >= 0)
- dbgs() << ' ';
- }
- dbgs() << "}\n";
- }
- #endif
- bool DependenceInfo::invalidate(Function &F, const PreservedAnalyses &PA,
- FunctionAnalysisManager::Invalidator &Inv) {
- // Check if the analysis itself has been invalidated.
- auto PAC = PA.getChecker<DependenceAnalysis>();
- if (!PAC.preserved() && !PAC.preservedSet<AllAnalysesOn<Function>>())
- return true;
- // Check transitive dependencies.
- return Inv.invalidate<AAManager>(F, PA) ||
- Inv.invalidate<ScalarEvolutionAnalysis>(F, PA) ||
- Inv.invalidate<LoopAnalysis>(F, PA);
- }
- // depends -
- // Returns NULL if there is no dependence.
- // Otherwise, return a Dependence with as many details as possible.
- // Corresponds to Section 3.1 in the paper
- //
- // Practical Dependence Testing
- // Goff, Kennedy, Tseng
- // PLDI 1991
- //
- // Care is required to keep the routine below, getSplitIteration(),
- // up to date with respect to this routine.
- std::unique_ptr<Dependence>
- DependenceInfo::depends(Instruction *Src, Instruction *Dst,
- bool PossiblyLoopIndependent) {
- if (Src == Dst)
- PossiblyLoopIndependent = false;
- if (!(Src->mayReadOrWriteMemory() && Dst->mayReadOrWriteMemory()))
- // if both instructions don't reference memory, there's no dependence
- return nullptr;
- if (!isLoadOrStore(Src) || !isLoadOrStore(Dst)) {
- // can only analyze simple loads and stores, i.e., no calls, invokes, etc.
- LLVM_DEBUG(dbgs() << "can only handle simple loads and stores\n");
- return std::make_unique<Dependence>(Src, Dst);
- }
- assert(isLoadOrStore(Src) && "instruction is not load or store");
- assert(isLoadOrStore(Dst) && "instruction is not load or store");
- Value *SrcPtr = getLoadStorePointerOperand(Src);
- Value *DstPtr = getLoadStorePointerOperand(Dst);
- switch (underlyingObjectsAlias(AA, F->getParent()->getDataLayout(),
- MemoryLocation::get(Dst),
- MemoryLocation::get(Src))) {
- case AliasResult::MayAlias:
- case AliasResult::PartialAlias:
- // cannot analyse objects if we don't understand their aliasing.
- LLVM_DEBUG(dbgs() << "can't analyze may or partial alias\n");
- return std::make_unique<Dependence>(Src, Dst);
- case AliasResult::NoAlias:
- // If the objects noalias, they are distinct, accesses are independent.
- LLVM_DEBUG(dbgs() << "no alias\n");
- return nullptr;
- case AliasResult::MustAlias:
- break; // The underlying objects alias; test accesses for dependence.
- }
- // establish loop nesting levels
- establishNestingLevels(Src, Dst);
- LLVM_DEBUG(dbgs() << " common nesting levels = " << CommonLevels << "\n");
- LLVM_DEBUG(dbgs() << " maximum nesting levels = " << MaxLevels << "\n");
- FullDependence Result(Src, Dst, PossiblyLoopIndependent, CommonLevels);
- ++TotalArrayPairs;
- unsigned Pairs = 1;
- SmallVector<Subscript, 2> Pair(Pairs);
- const SCEV *SrcSCEV = SE->getSCEV(SrcPtr);
- const SCEV *DstSCEV = SE->getSCEV(DstPtr);
- LLVM_DEBUG(dbgs() << " SrcSCEV = " << *SrcSCEV << "\n");
- LLVM_DEBUG(dbgs() << " DstSCEV = " << *DstSCEV << "\n");
- if (SE->getPointerBase(SrcSCEV) != SE->getPointerBase(DstSCEV)) {
- // If two pointers have different bases, trying to analyze indexes won't
- // work; we can't compare them to each other. This can happen, for example,
- // if one is produced by an LCSSA PHI node.
- //
- // We check this upfront so we don't crash in cases where getMinusSCEV()
- // returns a SCEVCouldNotCompute.
- LLVM_DEBUG(dbgs() << "can't analyze SCEV with different pointer base\n");
- return std::make_unique<Dependence>(Src, Dst);
- }
- Pair[0].Src = SrcSCEV;
- Pair[0].Dst = DstSCEV;
- if (Delinearize) {
- if (tryDelinearize(Src, Dst, Pair)) {
- LLVM_DEBUG(dbgs() << " delinearized\n");
- Pairs = Pair.size();
- }
- }
- for (unsigned P = 0; P < Pairs; ++P) {
- Pair[P].Loops.resize(MaxLevels + 1);
- Pair[P].GroupLoops.resize(MaxLevels + 1);
- Pair[P].Group.resize(Pairs);
- removeMatchingExtensions(&Pair[P]);
- Pair[P].Classification =
- classifyPair(Pair[P].Src, LI->getLoopFor(Src->getParent()),
- Pair[P].Dst, LI->getLoopFor(Dst->getParent()),
- Pair[P].Loops);
- Pair[P].GroupLoops = Pair[P].Loops;
- Pair[P].Group.set(P);
- LLVM_DEBUG(dbgs() << " subscript " << P << "\n");
- LLVM_DEBUG(dbgs() << "\tsrc = " << *Pair[P].Src << "\n");
- LLVM_DEBUG(dbgs() << "\tdst = " << *Pair[P].Dst << "\n");
- LLVM_DEBUG(dbgs() << "\tclass = " << Pair[P].Classification << "\n");
- LLVM_DEBUG(dbgs() << "\tloops = ");
- LLVM_DEBUG(dumpSmallBitVector(Pair[P].Loops));
- }
- SmallBitVector Separable(Pairs);
- SmallBitVector Coupled(Pairs);
- // Partition subscripts into separable and minimally-coupled groups
- // Algorithm in paper is algorithmically better;
- // this may be faster in practice. Check someday.
- //
- // Here's an example of how it works. Consider this code:
- //
- // for (i = ...) {
- // for (j = ...) {
- // for (k = ...) {
- // for (l = ...) {
- // for (m = ...) {
- // A[i][j][k][m] = ...;
- // ... = A[0][j][l][i + j];
- // }
- // }
- // }
- // }
- // }
- //
- // There are 4 subscripts here:
- // 0 [i] and [0]
- // 1 [j] and [j]
- // 2 [k] and [l]
- // 3 [m] and [i + j]
- //
- // We've already classified each subscript pair as ZIV, SIV, etc.,
- // and collected all the loops mentioned by pair P in Pair[P].Loops.
- // In addition, we've initialized Pair[P].GroupLoops to Pair[P].Loops
- // and set Pair[P].Group = {P}.
- //
- // Src Dst Classification Loops GroupLoops Group
- // 0 [i] [0] SIV {1} {1} {0}
- // 1 [j] [j] SIV {2} {2} {1}
- // 2 [k] [l] RDIV {3,4} {3,4} {2}
- // 3 [m] [i + j] MIV {1,2,5} {1,2,5} {3}
- //
- // For each subscript SI 0 .. 3, we consider each remaining subscript, SJ.
- // So, 0 is compared against 1, 2, and 3; 1 is compared against 2 and 3, etc.
- //
- // We begin by comparing 0 and 1. The intersection of the GroupLoops is empty.
- // Next, 0 and 2. Again, the intersection of their GroupLoops is empty.
- // Next 0 and 3. The intersection of their GroupLoop = {1}, not empty,
- // so Pair[3].Group = {0,3} and Done = false (that is, 0 will not be added
- // to either Separable or Coupled).
- //
- // Next, we consider 1 and 2. The intersection of the GroupLoops is empty.
- // Next, 1 and 3. The intersection of their GroupLoops = {2}, not empty,
- // so Pair[3].Group = {0, 1, 3} and Done = false.
- //
- // Next, we compare 2 against 3. The intersection of the GroupLoops is empty.
- // Since Done remains true, we add 2 to the set of Separable pairs.
- //
- // Finally, we consider 3. There's nothing to compare it with,
- // so Done remains true and we add it to the Coupled set.
- // Pair[3].Group = {0, 1, 3} and GroupLoops = {1, 2, 5}.
- //
- // In the end, we've got 1 separable subscript and 1 coupled group.
- for (unsigned SI = 0; SI < Pairs; ++SI) {
- if (Pair[SI].Classification == Subscript::NonLinear) {
- // ignore these, but collect loops for later
- ++NonlinearSubscriptPairs;
- collectCommonLoops(Pair[SI].Src,
- LI->getLoopFor(Src->getParent()),
- Pair[SI].Loops);
- collectCommonLoops(Pair[SI].Dst,
- LI->getLoopFor(Dst->getParent()),
- Pair[SI].Loops);
- Result.Consistent = false;
- } else if (Pair[SI].Classification == Subscript::ZIV) {
- // always separable
- Separable.set(SI);
- }
- else {
- // SIV, RDIV, or MIV, so check for coupled group
- bool Done = true;
- for (unsigned SJ = SI + 1; SJ < Pairs; ++SJ) {
- SmallBitVector Intersection = Pair[SI].GroupLoops;
- Intersection &= Pair[SJ].GroupLoops;
- if (Intersection.any()) {
- // accumulate set of all the loops in group
- Pair[SJ].GroupLoops |= Pair[SI].GroupLoops;
- // accumulate set of all subscripts in group
- Pair[SJ].Group |= Pair[SI].Group;
- Done = false;
- }
- }
- if (Done) {
- if (Pair[SI].Group.count() == 1) {
- Separable.set(SI);
- ++SeparableSubscriptPairs;
- }
- else {
- Coupled.set(SI);
- ++CoupledSubscriptPairs;
- }
- }
- }
- }
- LLVM_DEBUG(dbgs() << " Separable = ");
- LLVM_DEBUG(dumpSmallBitVector(Separable));
- LLVM_DEBUG(dbgs() << " Coupled = ");
- LLVM_DEBUG(dumpSmallBitVector(Coupled));
- Constraint NewConstraint;
- NewConstraint.setAny(SE);
- // test separable subscripts
- for (unsigned SI : Separable.set_bits()) {
- LLVM_DEBUG(dbgs() << "testing subscript " << SI);
- switch (Pair[SI].Classification) {
- case Subscript::ZIV:
- LLVM_DEBUG(dbgs() << ", ZIV\n");
- if (testZIV(Pair[SI].Src, Pair[SI].Dst, Result))
- return nullptr;
- break;
- case Subscript::SIV: {
- LLVM_DEBUG(dbgs() << ", SIV\n");
- unsigned Level;
- const SCEV *SplitIter = nullptr;
- if (testSIV(Pair[SI].Src, Pair[SI].Dst, Level, Result, NewConstraint,
- SplitIter))
- return nullptr;
- break;
- }
- case Subscript::RDIV:
- LLVM_DEBUG(dbgs() << ", RDIV\n");
- if (testRDIV(Pair[SI].Src, Pair[SI].Dst, Result))
- return nullptr;
- break;
- case Subscript::MIV:
- LLVM_DEBUG(dbgs() << ", MIV\n");
- if (testMIV(Pair[SI].Src, Pair[SI].Dst, Pair[SI].Loops, Result))
- return nullptr;
- break;
- default:
- llvm_unreachable("subscript has unexpected classification");
- }
- }
- if (Coupled.count()) {
- // test coupled subscript groups
- LLVM_DEBUG(dbgs() << "starting on coupled subscripts\n");
- LLVM_DEBUG(dbgs() << "MaxLevels + 1 = " << MaxLevels + 1 << "\n");
- SmallVector<Constraint, 4> Constraints(MaxLevels + 1);
- for (unsigned II = 0; II <= MaxLevels; ++II)
- Constraints[II].setAny(SE);
- for (unsigned SI : Coupled.set_bits()) {
- LLVM_DEBUG(dbgs() << "testing subscript group " << SI << " { ");
- SmallBitVector Group(Pair[SI].Group);
- SmallBitVector Sivs(Pairs);
- SmallBitVector Mivs(Pairs);
- SmallBitVector ConstrainedLevels(MaxLevels + 1);
- SmallVector<Subscript *, 4> PairsInGroup;
- for (unsigned SJ : Group.set_bits()) {
- LLVM_DEBUG(dbgs() << SJ << " ");
- if (Pair[SJ].Classification == Subscript::SIV)
- Sivs.set(SJ);
- else
- Mivs.set(SJ);
- PairsInGroup.push_back(&Pair[SJ]);
- }
- unifySubscriptType(PairsInGroup);
- LLVM_DEBUG(dbgs() << "}\n");
- while (Sivs.any()) {
- bool Changed = false;
- for (unsigned SJ : Sivs.set_bits()) {
- LLVM_DEBUG(dbgs() << "testing subscript " << SJ << ", SIV\n");
- // SJ is an SIV subscript that's part of the current coupled group
- unsigned Level;
- const SCEV *SplitIter = nullptr;
- LLVM_DEBUG(dbgs() << "SIV\n");
- if (testSIV(Pair[SJ].Src, Pair[SJ].Dst, Level, Result, NewConstraint,
- SplitIter))
- return nullptr;
- ConstrainedLevels.set(Level);
- if (intersectConstraints(&Constraints[Level], &NewConstraint)) {
- if (Constraints[Level].isEmpty()) {
- ++DeltaIndependence;
- return nullptr;
- }
- Changed = true;
- }
- Sivs.reset(SJ);
- }
- if (Changed) {
- // propagate, possibly creating new SIVs and ZIVs
- LLVM_DEBUG(dbgs() << " propagating\n");
- LLVM_DEBUG(dbgs() << "\tMivs = ");
- LLVM_DEBUG(dumpSmallBitVector(Mivs));
- for (unsigned SJ : Mivs.set_bits()) {
- // SJ is an MIV subscript that's part of the current coupled group
- LLVM_DEBUG(dbgs() << "\tSJ = " << SJ << "\n");
- if (propagate(Pair[SJ].Src, Pair[SJ].Dst, Pair[SJ].Loops,
- Constraints, Result.Consistent)) {
- LLVM_DEBUG(dbgs() << "\t Changed\n");
- ++DeltaPropagations;
- Pair[SJ].Classification =
- classifyPair(Pair[SJ].Src, LI->getLoopFor(Src->getParent()),
- Pair[SJ].Dst, LI->getLoopFor(Dst->getParent()),
- Pair[SJ].Loops);
- switch (Pair[SJ].Classification) {
- case Subscript::ZIV:
- LLVM_DEBUG(dbgs() << "ZIV\n");
- if (testZIV(Pair[SJ].Src, Pair[SJ].Dst, Result))
- return nullptr;
- Mivs.reset(SJ);
- break;
- case Subscript::SIV:
- Sivs.set(SJ);
- Mivs.reset(SJ);
- break;
- case Subscript::RDIV:
- case Subscript::MIV:
- break;
- default:
- llvm_unreachable("bad subscript classification");
- }
- }
- }
- }
- }
- // test & propagate remaining RDIVs
- for (unsigned SJ : Mivs.set_bits()) {
- if (Pair[SJ].Classification == Subscript::RDIV) {
- LLVM_DEBUG(dbgs() << "RDIV test\n");
- if (testRDIV(Pair[SJ].Src, Pair[SJ].Dst, Result))
- return nullptr;
- // I don't yet understand how to propagate RDIV results
- Mivs.reset(SJ);
- }
- }
- // test remaining MIVs
- // This code is temporary.
- // Better to somehow test all remaining subscripts simultaneously.
- for (unsigned SJ : Mivs.set_bits()) {
- if (Pair[SJ].Classification == Subscript::MIV) {
- LLVM_DEBUG(dbgs() << "MIV test\n");
- if (testMIV(Pair[SJ].Src, Pair[SJ].Dst, Pair[SJ].Loops, Result))
- return nullptr;
- }
- else
- llvm_unreachable("expected only MIV subscripts at this point");
- }
- // update Result.DV from constraint vector
- LLVM_DEBUG(dbgs() << " updating\n");
- for (unsigned SJ : ConstrainedLevels.set_bits()) {
- if (SJ > CommonLevels)
- break;
- updateDirection(Result.DV[SJ - 1], Constraints[SJ]);
- if (Result.DV[SJ - 1].Direction == Dependence::DVEntry::NONE)
- return nullptr;
- }
- }
- }
- // Make sure the Scalar flags are set correctly.
- SmallBitVector CompleteLoops(MaxLevels + 1);
- for (unsigned SI = 0; SI < Pairs; ++SI)
- CompleteLoops |= Pair[SI].Loops;
- for (unsigned II = 1; II <= CommonLevels; ++II)
- if (CompleteLoops[II])
- Result.DV[II - 1].Scalar = false;
- if (PossiblyLoopIndependent) {
- // Make sure the LoopIndependent flag is set correctly.
- // All directions must include equal, otherwise no
- // loop-independent dependence is possible.
- for (unsigned II = 1; II <= CommonLevels; ++II) {
- if (!(Result.getDirection(II) & Dependence::DVEntry::EQ)) {
- Result.LoopIndependent = false;
- break;
- }
- }
- }
- else {
- // On the other hand, if all directions are equal and there's no
- // loop-independent dependence possible, then no dependence exists.
- bool AllEqual = true;
- for (unsigned II = 1; II <= CommonLevels; ++II) {
- if (Result.getDirection(II) != Dependence::DVEntry::EQ) {
- AllEqual = false;
- break;
- }
- }
- if (AllEqual)
- return nullptr;
- }
- return std::make_unique<FullDependence>(std::move(Result));
- }
- //===----------------------------------------------------------------------===//
- // getSplitIteration -
- // Rather than spend rarely-used space recording the splitting iteration
- // during the Weak-Crossing SIV test, we re-compute it on demand.
- // The re-computation is basically a repeat of the entire dependence test,
- // though simplified since we know that the dependence exists.
- // It's tedious, since we must go through all propagations, etc.
- //
- // Care is required to keep this code up to date with respect to the routine
- // above, depends().
- //
- // Generally, the dependence analyzer will be used to build
- // a dependence graph for a function (basically a map from instructions
- // to dependences). Looking for cycles in the graph shows us loops
- // that cannot be trivially vectorized/parallelized.
- //
- // We can try to improve the situation by examining all the dependences
- // that make up the cycle, looking for ones we can break.
- // Sometimes, peeling the first or last iteration of a loop will break
- // dependences, and we've got flags for those possibilities.
- // Sometimes, splitting a loop at some other iteration will do the trick,
- // and we've got a flag for that case. Rather than waste the space to
- // record the exact iteration (since we rarely know), we provide
- // a method that calculates the iteration. It's a drag that it must work
- // from scratch, but wonderful in that it's possible.
- //
- // Here's an example:
- //
- // for (i = 0; i < 10; i++)
- // A[i] = ...
- // ... = A[11 - i]
- //
- // There's a loop-carried flow dependence from the store to the load,
- // found by the weak-crossing SIV test. The dependence will have a flag,
- // indicating that the dependence can be broken by splitting the loop.
- // Calling getSplitIteration will return 5.
- // Splitting the loop breaks the dependence, like so:
- //
- // for (i = 0; i <= 5; i++)
- // A[i] = ...
- // ... = A[11 - i]
- // for (i = 6; i < 10; i++)
- // A[i] = ...
- // ... = A[11 - i]
- //
- // breaks the dependence and allows us to vectorize/parallelize
- // both loops.
- const SCEV *DependenceInfo::getSplitIteration(const Dependence &Dep,
- unsigned SplitLevel) {
- assert(Dep.isSplitable(SplitLevel) &&
- "Dep should be splitable at SplitLevel");
- Instruction *Src = Dep.getSrc();
- Instruction *Dst = Dep.getDst();
- assert(Src->mayReadFromMemory() || Src->mayWriteToMemory());
- assert(Dst->mayReadFromMemory() || Dst->mayWriteToMemory());
- assert(isLoadOrStore(Src));
- assert(isLoadOrStore(Dst));
- Value *SrcPtr = getLoadStorePointerOperand(Src);
- Value *DstPtr = getLoadStorePointerOperand(Dst);
- assert(underlyingObjectsAlias(
- AA, F->getParent()->getDataLayout(), MemoryLocation::get(Dst),
- MemoryLocation::get(Src)) == AliasResult::MustAlias);
- // establish loop nesting levels
- establishNestingLevels(Src, Dst);
- FullDependence Result(Src, Dst, false, CommonLevels);
- unsigned Pairs = 1;
- SmallVector<Subscript, 2> Pair(Pairs);
- const SCEV *SrcSCEV = SE->getSCEV(SrcPtr);
- const SCEV *DstSCEV = SE->getSCEV(DstPtr);
- Pair[0].Src = SrcSCEV;
- Pair[0].Dst = DstSCEV;
- if (Delinearize) {
- if (tryDelinearize(Src, Dst, Pair)) {
- LLVM_DEBUG(dbgs() << " delinearized\n");
- Pairs = Pair.size();
- }
- }
- for (unsigned P = 0; P < Pairs; ++P) {
- Pair[P].Loops.resize(MaxLevels + 1);
- Pair[P].GroupLoops.resize(MaxLevels + 1);
- Pair[P].Group.resize(Pairs);
- removeMatchingExtensions(&Pair[P]);
- Pair[P].Classification =
- classifyPair(Pair[P].Src, LI->getLoopFor(Src->getParent()),
- Pair[P].Dst, LI->getLoopFor(Dst->getParent()),
- Pair[P].Loops);
- Pair[P].GroupLoops = Pair[P].Loops;
- Pair[P].Group.set(P);
- }
- SmallBitVector Separable(Pairs);
- SmallBitVector Coupled(Pairs);
- // partition subscripts into separable and minimally-coupled groups
- for (unsigned SI = 0; SI < Pairs; ++SI) {
- if (Pair[SI].Classification == Subscript::NonLinear) {
- // ignore these, but collect loops for later
- collectCommonLoops(Pair[SI].Src,
- LI->getLoopFor(Src->getParent()),
- Pair[SI].Loops);
- collectCommonLoops(Pair[SI].Dst,
- LI->getLoopFor(Dst->getParent()),
- Pair[SI].Loops);
- Result.Consistent = false;
- }
- else if (Pair[SI].Classification == Subscript::ZIV)
- Separable.set(SI);
- else {
- // SIV, RDIV, or MIV, so check for coupled group
- bool Done = true;
- for (unsigned SJ = SI + 1; SJ < Pairs; ++SJ) {
- SmallBitVector Intersection = Pair[SI].GroupLoops;
- Intersection &= Pair[SJ].GroupLoops;
- if (Intersection.any()) {
- // accumulate set of all the loops in group
- Pair[SJ].GroupLoops |= Pair[SI].GroupLoops;
- // accumulate set of all subscripts in group
- Pair[SJ].Group |= Pair[SI].Group;
- Done = false;
- }
- }
- if (Done) {
- if (Pair[SI].Group.count() == 1)
- Separable.set(SI);
- else
- Coupled.set(SI);
- }
- }
- }
- Constraint NewConstraint;
- NewConstraint.setAny(SE);
- // test separable subscripts
- for (unsigned SI : Separable.set_bits()) {
- switch (Pair[SI].Classification) {
- case Subscript::SIV: {
- unsigned Level;
- const SCEV *SplitIter = nullptr;
- (void) testSIV(Pair[SI].Src, Pair[SI].Dst, Level,
- Result, NewConstraint, SplitIter);
- if (Level == SplitLevel) {
- assert(SplitIter != nullptr);
- return SplitIter;
- }
- break;
- }
- case Subscript::ZIV:
- case Subscript::RDIV:
- case Subscript::MIV:
- break;
- default:
- llvm_unreachable("subscript has unexpected classification");
- }
- }
- if (Coupled.count()) {
- // test coupled subscript groups
- SmallVector<Constraint, 4> Constraints(MaxLevels + 1);
- for (unsigned II = 0; II <= MaxLevels; ++II)
- Constraints[II].setAny(SE);
- for (unsigned SI : Coupled.set_bits()) {
- SmallBitVector Group(Pair[SI].Group);
- SmallBitVector Sivs(Pairs);
- SmallBitVector Mivs(Pairs);
- SmallBitVector ConstrainedLevels(MaxLevels + 1);
- for (unsigned SJ : Group.set_bits()) {
- if (Pair[SJ].Classification == Subscript::SIV)
- Sivs.set(SJ);
- else
- Mivs.set(SJ);
- }
- while (Sivs.any()) {
- bool Changed = false;
- for (unsigned SJ : Sivs.set_bits()) {
- // SJ is an SIV subscript that's part of the current coupled group
- unsigned Level;
- const SCEV *SplitIter = nullptr;
- (void) testSIV(Pair[SJ].Src, Pair[SJ].Dst, Level,
- Result, NewConstraint, SplitIter);
- if (Level == SplitLevel && SplitIter)
- return SplitIter;
- ConstrainedLevels.set(Level);
- if (intersectConstraints(&Constraints[Level], &NewConstraint))
- Changed = true;
- Sivs.reset(SJ);
- }
- if (Changed) {
- // propagate, possibly creating new SIVs and ZIVs
- for (unsigned SJ : Mivs.set_bits()) {
- // SJ is an MIV subscript that's part of the current coupled group
- if (propagate(Pair[SJ].Src, Pair[SJ].Dst,
- Pair[SJ].Loops, Constraints, Result.Consistent)) {
- Pair[SJ].Classification =
- classifyPair(Pair[SJ].Src, LI->getLoopFor(Src->getParent()),
- Pair[SJ].Dst, LI->getLoopFor(Dst->getParent()),
- Pair[SJ].Loops);
- switch (Pair[SJ].Classification) {
- case Subscript::ZIV:
- Mivs.reset(SJ);
- break;
- case Subscript::SIV:
- Sivs.set(SJ);
- Mivs.reset(SJ);
- break;
- case Subscript::RDIV:
- case Subscript::MIV:
- break;
- default:
- llvm_unreachable("bad subscript classification");
- }
- }
- }
- }
- }
- }
- }
- llvm_unreachable("somehow reached end of routine");
- return nullptr;
- }
|