123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035 |
- // © 2016 and later: Unicode, Inc. and others.
- // License & terms of use: http://www.unicode.org/copyright.html
- /*
- ******************************************************************************
- * Copyright (C) 1997-2015, International Business Machines
- * Corporation and others. All Rights Reserved.
- ******************************************************************************
- * file name: nfrs.cpp
- * encoding: UTF-8
- * tab size: 8 (not used)
- * indentation:4
- *
- * Modification history
- * Date Name Comments
- * 10/11/2001 Doug Ported from ICU4J
- */
- #include "nfrs.h"
- #if U_HAVE_RBNF
- #include "unicode/uchar.h"
- #include "nfrule.h"
- #include "nfrlist.h"
- #include "patternprops.h"
- #include "putilimp.h"
- #ifdef RBNF_DEBUG
- #include "cmemory.h"
- #endif
- enum {
- /** -x */
- NEGATIVE_RULE_INDEX = 0,
- /** x.x */
- IMPROPER_FRACTION_RULE_INDEX = 1,
- /** 0.x */
- PROPER_FRACTION_RULE_INDEX = 2,
- /** x.0 */
- DEFAULT_RULE_INDEX = 3,
- /** Inf */
- INFINITY_RULE_INDEX = 4,
- /** NaN */
- NAN_RULE_INDEX = 5,
- NON_NUMERICAL_RULE_LENGTH = 6
- };
- U_NAMESPACE_BEGIN
- #if 0
- // euclid's algorithm works with doubles
- // note, doubles only get us up to one quadrillion or so, which
- // isn't as much range as we get with longs. We probably still
- // want either 64-bit math, or BigInteger.
- static int64_t
- util_lcm(int64_t x, int64_t y)
- {
- x.abs();
- y.abs();
- if (x == 0 || y == 0) {
- return 0;
- } else {
- do {
- if (x < y) {
- int64_t t = x; x = y; y = t;
- }
- x -= y * (x/y);
- } while (x != 0);
- return y;
- }
- }
- #else
- /**
- * Calculates the least common multiple of x and y.
- */
- static int64_t
- util_lcm(int64_t x, int64_t y)
- {
- // binary gcd algorithm from Knuth, "The Art of Computer Programming,"
- // vol. 2, 1st ed., pp. 298-299
- int64_t x1 = x;
- int64_t y1 = y;
- int p2 = 0;
- while ((x1 & 1) == 0 && (y1 & 1) == 0) {
- ++p2;
- x1 >>= 1;
- y1 >>= 1;
- }
- int64_t t;
- if ((x1 & 1) == 1) {
- t = -y1;
- } else {
- t = x1;
- }
- while (t != 0) {
- while ((t & 1) == 0) {
- t = t >> 1;
- }
- if (t > 0) {
- x1 = t;
- } else {
- y1 = -t;
- }
- t = x1 - y1;
- }
- int64_t gcd = x1 << p2;
- // x * y == gcd(x, y) * lcm(x, y)
- return x / gcd * y;
- }
- #endif
- static const char16_t gPercent = 0x0025;
- static const char16_t gColon = 0x003a;
- static const char16_t gSemicolon = 0x003b;
- static const char16_t gLineFeed = 0x000a;
- static const char16_t gPercentPercent[] =
- {
- 0x25, 0x25, 0
- }; /* "%%" */
- static const char16_t gNoparse[] =
- {
- 0x40, 0x6E, 0x6F, 0x70, 0x61, 0x72, 0x73, 0x65, 0
- }; /* "@noparse" */
- NFRuleSet::NFRuleSet(RuleBasedNumberFormat *_owner, UnicodeString* descriptions, int32_t index, UErrorCode& status)
- : name()
- , rules(0)
- , owner(_owner)
- , fractionRules()
- , fIsFractionRuleSet(false)
- , fIsPublic(false)
- , fIsParseable(true)
- {
- for (int32_t i = 0; i < NON_NUMERICAL_RULE_LENGTH; ++i) {
- nonNumericalRules[i] = nullptr;
- }
- if (U_FAILURE(status)) {
- return;
- }
- UnicodeString& description = descriptions[index]; // !!! make sure index is valid
- if (description.length() == 0) {
- // throw new IllegalArgumentException("Empty rule set description");
- status = U_PARSE_ERROR;
- return;
- }
- // if the description begins with a rule set name (the rule set
- // name can be omitted in formatter descriptions that consist
- // of only one rule set), copy it out into our "name" member
- // and delete it from the description
- if (description.charAt(0) == gPercent) {
- int32_t pos = description.indexOf(gColon);
- if (pos == -1) {
- // throw new IllegalArgumentException("Rule set name doesn't end in colon");
- status = U_PARSE_ERROR;
- } else {
- name.setTo(description, 0, pos);
- while (pos < description.length() && PatternProps::isWhiteSpace(description.charAt(++pos))) {
- }
- description.remove(0, pos);
- }
- } else {
- name.setTo(UNICODE_STRING_SIMPLE("%default"));
- }
- if (description.length() == 0) {
- // throw new IllegalArgumentException("Empty rule set description");
- status = U_PARSE_ERROR;
- }
- fIsPublic = name.indexOf(gPercentPercent, 2, 0) != 0;
- if ( name.endsWith(gNoparse,8) ) {
- fIsParseable = false;
- name.truncate(name.length()-8); // remove the @noparse from the name
- }
- // all of the other members of NFRuleSet are initialized
- // by parseRules()
- }
- void
- NFRuleSet::parseRules(UnicodeString& description, UErrorCode& status)
- {
- // start by creating a Vector whose elements are Strings containing
- // the descriptions of the rules (one rule per element). The rules
- // are separated by semicolons (there's no escape facility: ALL
- // semicolons are rule delimiters)
- if (U_FAILURE(status)) {
- return;
- }
- // ensure we are starting with an empty rule list
- rules.deleteAll();
- // dlf - the original code kept a separate description array for no reason,
- // so I got rid of it. The loop was too complex so I simplified it.
- UnicodeString currentDescription;
- int32_t oldP = 0;
- while (oldP < description.length()) {
- int32_t p = description.indexOf(gSemicolon, oldP);
- if (p == -1) {
- p = description.length();
- }
- currentDescription.setTo(description, oldP, p - oldP);
- NFRule::makeRules(currentDescription, this, rules.last(), owner, rules, status);
- oldP = p + 1;
- }
- // for rules that didn't specify a base value, their base values
- // were initialized to 0. Make another pass through the list and
- // set all those rules' base values. We also remove any special
- // rules from the list and put them into their own member variables
- int64_t defaultBaseValue = 0;
- // (this isn't a for loop because we might be deleting items from
- // the vector-- we want to make sure we only increment i when
- // we _didn't_ delete anything from the vector)
- int32_t rulesSize = rules.size();
- for (int32_t i = 0; i < rulesSize; i++) {
- NFRule* rule = rules[i];
- int64_t baseValue = rule->getBaseValue();
- if (baseValue == 0) {
- // if the rule's base value is 0, fill in a default
- // base value (this will be 1 plus the preceding
- // rule's base value for regular rule sets, and the
- // same as the preceding rule's base value in fraction
- // rule sets)
- rule->setBaseValue(defaultBaseValue, status);
- }
- else {
- // if it's a regular rule that already knows its base value,
- // check to make sure the rules are in order, and update
- // the default base value for the next rule
- if (baseValue < defaultBaseValue) {
- // throw new IllegalArgumentException("Rules are not in order");
- status = U_PARSE_ERROR;
- return;
- }
- defaultBaseValue = baseValue;
- }
- if (!fIsFractionRuleSet) {
- ++defaultBaseValue;
- }
- }
- }
- /**
- * Set one of the non-numerical rules.
- * @param rule The rule to set.
- */
- void NFRuleSet::setNonNumericalRule(NFRule *rule) {
- int64_t baseValue = rule->getBaseValue();
- if (baseValue == NFRule::kNegativeNumberRule) {
- delete nonNumericalRules[NEGATIVE_RULE_INDEX];
- nonNumericalRules[NEGATIVE_RULE_INDEX] = rule;
- }
- else if (baseValue == NFRule::kImproperFractionRule) {
- setBestFractionRule(IMPROPER_FRACTION_RULE_INDEX, rule, true);
- }
- else if (baseValue == NFRule::kProperFractionRule) {
- setBestFractionRule(PROPER_FRACTION_RULE_INDEX, rule, true);
- }
- else if (baseValue == NFRule::kDefaultRule) {
- setBestFractionRule(DEFAULT_RULE_INDEX, rule, true);
- }
- else if (baseValue == NFRule::kInfinityRule) {
- delete nonNumericalRules[INFINITY_RULE_INDEX];
- nonNumericalRules[INFINITY_RULE_INDEX] = rule;
- }
- else if (baseValue == NFRule::kNaNRule) {
- delete nonNumericalRules[NAN_RULE_INDEX];
- nonNumericalRules[NAN_RULE_INDEX] = rule;
- }
- }
- /**
- * Determine the best fraction rule to use. Rules matching the decimal point from
- * DecimalFormatSymbols become the main set of rules to use.
- * @param originalIndex The index into nonNumericalRules
- * @param newRule The new rule to consider
- * @param rememberRule Should the new rule be added to fractionRules.
- */
- void NFRuleSet::setBestFractionRule(int32_t originalIndex, NFRule *newRule, UBool rememberRule) {
- if (rememberRule) {
- fractionRules.add(newRule);
- }
- NFRule *bestResult = nonNumericalRules[originalIndex];
- if (bestResult == nullptr) {
- nonNumericalRules[originalIndex] = newRule;
- }
- else {
- // We have more than one. Which one is better?
- const DecimalFormatSymbols *decimalFormatSymbols = owner->getDecimalFormatSymbols();
- if (decimalFormatSymbols->getSymbol(DecimalFormatSymbols::kDecimalSeparatorSymbol).charAt(0)
- == newRule->getDecimalPoint())
- {
- nonNumericalRules[originalIndex] = newRule;
- }
- // else leave it alone
- }
- }
- NFRuleSet::~NFRuleSet()
- {
- for (int i = 0; i < NON_NUMERICAL_RULE_LENGTH; i++) {
- if (i != IMPROPER_FRACTION_RULE_INDEX
- && i != PROPER_FRACTION_RULE_INDEX
- && i != DEFAULT_RULE_INDEX)
- {
- delete nonNumericalRules[i];
- }
- // else it will be deleted via NFRuleList fractionRules
- }
- }
- static UBool
- util_equalRules(const NFRule* rule1, const NFRule* rule2)
- {
- if (rule1) {
- if (rule2) {
- return *rule1 == *rule2;
- }
- } else if (!rule2) {
- return true;
- }
- return false;
- }
- bool
- NFRuleSet::operator==(const NFRuleSet& rhs) const
- {
- if (rules.size() == rhs.rules.size() &&
- fIsFractionRuleSet == rhs.fIsFractionRuleSet &&
- name == rhs.name) {
- // ...then compare the non-numerical rule lists...
- for (int i = 0; i < NON_NUMERICAL_RULE_LENGTH; i++) {
- if (!util_equalRules(nonNumericalRules[i], rhs.nonNumericalRules[i])) {
- return false;
- }
- }
- // ...then compare the rule lists...
- for (uint32_t i = 0; i < rules.size(); ++i) {
- if (*rules[i] != *rhs.rules[i]) {
- return false;
- }
- }
- return true;
- }
- return false;
- }
- void
- NFRuleSet::setDecimalFormatSymbols(const DecimalFormatSymbols &newSymbols, UErrorCode& status) {
- for (uint32_t i = 0; i < rules.size(); ++i) {
- rules[i]->setDecimalFormatSymbols(newSymbols, status);
- }
- // Switch the fraction rules to mirror the DecimalFormatSymbols.
- for (int32_t nonNumericalIdx = IMPROPER_FRACTION_RULE_INDEX; nonNumericalIdx <= DEFAULT_RULE_INDEX; nonNumericalIdx++) {
- if (nonNumericalRules[nonNumericalIdx]) {
- for (uint32_t fIdx = 0; fIdx < fractionRules.size(); fIdx++) {
- NFRule *fractionRule = fractionRules[fIdx];
- if (nonNumericalRules[nonNumericalIdx]->getBaseValue() == fractionRule->getBaseValue()) {
- setBestFractionRule(nonNumericalIdx, fractionRule, false);
- }
- }
- }
- }
- for (uint32_t nnrIdx = 0; nnrIdx < NON_NUMERICAL_RULE_LENGTH; nnrIdx++) {
- NFRule *rule = nonNumericalRules[nnrIdx];
- if (rule) {
- rule->setDecimalFormatSymbols(newSymbols, status);
- }
- }
- }
- #define RECURSION_LIMIT 64
- void
- NFRuleSet::format(int64_t number, UnicodeString& toAppendTo, int32_t pos, int32_t recursionCount, UErrorCode& status) const
- {
- if (recursionCount >= RECURSION_LIMIT) {
- // stop recursion
- status = U_INVALID_STATE_ERROR;
- return;
- }
- const NFRule *rule = findNormalRule(number);
- if (rule) { // else error, but can't report it
- rule->doFormat(number, toAppendTo, pos, ++recursionCount, status);
- }
- }
- void
- NFRuleSet::format(double number, UnicodeString& toAppendTo, int32_t pos, int32_t recursionCount, UErrorCode& status) const
- {
- if (recursionCount >= RECURSION_LIMIT) {
- // stop recursion
- status = U_INVALID_STATE_ERROR;
- return;
- }
- const NFRule *rule = findDoubleRule(number);
- if (rule) { // else error, but can't report it
- rule->doFormat(number, toAppendTo, pos, ++recursionCount, status);
- }
- }
- const NFRule*
- NFRuleSet::findDoubleRule(double number) const
- {
- // if this is a fraction rule set, use findFractionRuleSetRule()
- if (isFractionRuleSet()) {
- return findFractionRuleSetRule(number);
- }
- if (uprv_isNaN(number)) {
- const NFRule *rule = nonNumericalRules[NAN_RULE_INDEX];
- if (!rule) {
- rule = owner->getDefaultNaNRule();
- }
- return rule;
- }
- // if the number is negative, return the negative number rule
- // (if there isn't a negative-number rule, we pretend it's a
- // positive number)
- if (number < 0) {
- if (nonNumericalRules[NEGATIVE_RULE_INDEX]) {
- return nonNumericalRules[NEGATIVE_RULE_INDEX];
- } else {
- number = -number;
- }
- }
- if (uprv_isInfinite(number)) {
- const NFRule *rule = nonNumericalRules[INFINITY_RULE_INDEX];
- if (!rule) {
- rule = owner->getDefaultInfinityRule();
- }
- return rule;
- }
- // if the number isn't an integer, we use one of the fraction rules...
- if (number != uprv_floor(number)) {
- // if the number is between 0 and 1, return the proper
- // fraction rule
- if (number < 1 && nonNumericalRules[PROPER_FRACTION_RULE_INDEX]) {
- return nonNumericalRules[PROPER_FRACTION_RULE_INDEX];
- }
- // otherwise, return the improper fraction rule
- else if (nonNumericalRules[IMPROPER_FRACTION_RULE_INDEX]) {
- return nonNumericalRules[IMPROPER_FRACTION_RULE_INDEX];
- }
- }
- // if there's a default rule, use it to format the number
- if (nonNumericalRules[DEFAULT_RULE_INDEX]) {
- return nonNumericalRules[DEFAULT_RULE_INDEX];
- }
- // and if we haven't yet returned a rule, use findNormalRule()
- // to find the applicable rule
- int64_t r = util64_fromDouble(number + 0.5);
- return findNormalRule(r);
- }
- const NFRule *
- NFRuleSet::findNormalRule(int64_t number) const
- {
- // if this is a fraction rule set, use findFractionRuleSetRule()
- // to find the rule (we should only go into this clause if the
- // value is 0)
- if (fIsFractionRuleSet) {
- return findFractionRuleSetRule((double)number);
- }
- // if the number is negative, return the negative-number rule
- // (if there isn't one, pretend the number is positive)
- if (number < 0) {
- if (nonNumericalRules[NEGATIVE_RULE_INDEX]) {
- return nonNumericalRules[NEGATIVE_RULE_INDEX];
- } else {
- number = -number;
- }
- }
- // we have to repeat the preceding two checks, even though we
- // do them in findRule(), because the version of format() that
- // takes a long bypasses findRule() and goes straight to this
- // function. This function does skip the fraction rules since
- // we know the value is an integer (it also skips the default
- // rule, since it's considered a fraction rule. Skipping the
- // default rule in this function is also how we avoid infinite
- // recursion)
- // {dlf} unfortunately this fails if there are no rules except
- // special rules. If there are no rules, use the default rule.
- // binary-search the rule list for the applicable rule
- // (a rule is used for all values from its base value to
- // the next rule's base value)
- int32_t hi = rules.size();
- if (hi > 0) {
- int32_t lo = 0;
- while (lo < hi) {
- int32_t mid = (lo + hi) / 2;
- if (rules[mid]->getBaseValue() == number) {
- return rules[mid];
- }
- else if (rules[mid]->getBaseValue() > number) {
- hi = mid;
- }
- else {
- lo = mid + 1;
- }
- }
- if (hi == 0) { // bad rule set, minimum base > 0
- return nullptr; // want to throw exception here
- }
- NFRule *result = rules[hi - 1];
- // use shouldRollBack() to see whether we need to invoke the
- // rollback rule (see shouldRollBack()'s documentation for
- // an explanation of the rollback rule). If we do, roll back
- // one rule and return that one instead of the one we'd normally
- // return
- if (result->shouldRollBack(number)) {
- if (hi == 1) { // bad rule set, no prior rule to rollback to from this base
- return nullptr;
- }
- result = rules[hi - 2];
- }
- return result;
- }
- // else use the default rule
- return nonNumericalRules[DEFAULT_RULE_INDEX];
- }
- /**
- * If this rule is a fraction rule set, this function is used by
- * findRule() to select the most appropriate rule for formatting
- * the number. Basically, the base value of each rule in the rule
- * set is treated as the denominator of a fraction. Whichever
- * denominator can produce the fraction closest in value to the
- * number passed in is the result. If there's a tie, the earlier
- * one in the list wins. (If there are two rules in a row with the
- * same base value, the first one is used when the numerator of the
- * fraction would be 1, and the second rule is used the rest of the
- * time.
- * @param number The number being formatted (which will always be
- * a number between 0 and 1)
- * @return The rule to use to format this number
- */
- const NFRule*
- NFRuleSet::findFractionRuleSetRule(double number) const
- {
- // the obvious way to do this (multiply the value being formatted
- // by each rule's base value until you get an integral result)
- // doesn't work because of rounding error. This method is more
- // accurate
- // find the least common multiple of the rules' base values
- // and multiply this by the number being formatted. This is
- // all the precision we need, and we can do all of the rest
- // of the math using integer arithmetic
- int64_t leastCommonMultiple = rules[0]->getBaseValue();
- int64_t numerator;
- {
- for (uint32_t i = 1; i < rules.size(); ++i) {
- leastCommonMultiple = util_lcm(leastCommonMultiple, rules[i]->getBaseValue());
- }
- numerator = util64_fromDouble(number * (double)leastCommonMultiple + 0.5);
- }
- // for each rule, do the following...
- int64_t tempDifference;
- int64_t difference = util64_fromDouble(uprv_maxMantissa());
- int32_t winner = 0;
- for (uint32_t i = 0; i < rules.size(); ++i) {
- // "numerator" is the numerator of the fraction if the
- // denominator is the LCD. The numerator if the rule's
- // base value is the denominator is "numerator" times the
- // base value divided bythe LCD. Here we check to see if
- // that's an integer, and if not, how close it is to being
- // an integer.
- tempDifference = numerator * rules[i]->getBaseValue() % leastCommonMultiple;
- // normalize the result of the above calculation: we want
- // the numerator's distance from the CLOSEST multiple
- // of the LCD
- if (leastCommonMultiple - tempDifference < tempDifference) {
- tempDifference = leastCommonMultiple - tempDifference;
- }
- // if this is as close as we've come, keep track of how close
- // that is, and the line number of the rule that did it. If
- // we've scored a direct hit, we don't have to look at any more
- // rules
- if (tempDifference < difference) {
- difference = tempDifference;
- winner = i;
- if (difference == 0) {
- break;
- }
- }
- }
- // if we have two successive rules that both have the winning base
- // value, then the first one (the one we found above) is used if
- // the numerator of the fraction is 1 and the second one is used if
- // the numerator of the fraction is anything else (this lets us
- // do things like "one third"/"two thirds" without having to define
- // a whole bunch of extra rule sets)
- if ((unsigned)(winner + 1) < rules.size() &&
- rules[winner + 1]->getBaseValue() == rules[winner]->getBaseValue()) {
- double n = ((double)rules[winner]->getBaseValue()) * number;
- if (n < 0.5 || n >= 2) {
- ++winner;
- }
- }
- // finally, return the winning rule
- return rules[winner];
- }
- /**
- * Parses a string. Matches the string to be parsed against each
- * of its rules (with a base value less than upperBound) and returns
- * the value produced by the rule that matched the most characters
- * in the source string.
- * @param text The string to parse
- * @param parsePosition The initial position is ignored and assumed
- * to be 0. On exit, this object has been updated to point to the
- * first character position this rule set didn't consume.
- * @param upperBound Limits the rules that can be allowed to match.
- * Only rules whose base values are strictly less than upperBound
- * are considered.
- * @return The numerical result of parsing this string. This will
- * be the matching rule's base value, composed appropriately with
- * the results of matching any of its substitutions. The object
- * will be an instance of Long if it's an integral value; otherwise,
- * it will be an instance of Double. This function always returns
- * a valid object: If nothing matched the input string at all,
- * this function returns new Long(0), and the parse position is
- * left unchanged.
- */
- #ifdef RBNF_DEBUG
- #include <stdio.h>
- static void dumpUS(FILE* f, const UnicodeString& us) {
- int len = us.length();
- char* buf = (char *)uprv_malloc((len+1)*sizeof(char)); //new char[len+1];
- if (buf != nullptr) {
- us.extract(0, len, buf);
- buf[len] = 0;
- fprintf(f, "%s", buf);
- uprv_free(buf); //delete[] buf;
- }
- }
- #endif
- UBool
- NFRuleSet::parse(const UnicodeString& text, ParsePosition& pos, double upperBound, uint32_t nonNumericalExecutedRuleMask, Formattable& result) const
- {
- // try matching each rule in the rule set against the text being
- // parsed. Whichever one matches the most characters is the one
- // that determines the value we return.
- result.setLong(0);
- // dump out if there's no text to parse
- if (text.length() == 0) {
- return 0;
- }
- ParsePosition highWaterMark;
- ParsePosition workingPos = pos;
- #ifdef RBNF_DEBUG
- fprintf(stderr, "<nfrs> %x '", this);
- dumpUS(stderr, name);
- fprintf(stderr, "' text '");
- dumpUS(stderr, text);
- fprintf(stderr, "'\n");
- fprintf(stderr, " parse negative: %d\n", this, negativeNumberRule != 0);
- #endif
- // Try each of the negative rules, fraction rules, infinity rules and NaN rules
- for (int i = 0; i < NON_NUMERICAL_RULE_LENGTH; i++) {
- if (nonNumericalRules[i] && ((nonNumericalExecutedRuleMask >> i) & 1) == 0) {
- // Mark this rule as being executed so that we don't try to execute it again.
- nonNumericalExecutedRuleMask |= 1 << i;
- Formattable tempResult;
- UBool success = nonNumericalRules[i]->doParse(text, workingPos, 0, upperBound, nonNumericalExecutedRuleMask, tempResult);
- if (success && (workingPos.getIndex() > highWaterMark.getIndex())) {
- result = tempResult;
- highWaterMark = workingPos;
- }
- workingPos = pos;
- }
- }
- #ifdef RBNF_DEBUG
- fprintf(stderr, "<nfrs> continue other with text '");
- dumpUS(stderr, text);
- fprintf(stderr, "' hwm: %d\n", highWaterMark.getIndex());
- #endif
- // finally, go through the regular rules one at a time. We start
- // at the end of the list because we want to try matching the most
- // sigificant rule first (this helps ensure that we parse
- // "five thousand three hundred six" as
- // "(five thousand) (three hundred) (six)" rather than
- // "((five thousand three) hundred) (six)"). Skip rules whose
- // base values are higher than the upper bound (again, this helps
- // limit ambiguity by making sure the rules that match a rule's
- // are less significant than the rule containing the substitutions)/
- {
- int64_t ub = util64_fromDouble(upperBound);
- #ifdef RBNF_DEBUG
- {
- char ubstr[64];
- util64_toa(ub, ubstr, 64);
- char ubstrhex[64];
- util64_toa(ub, ubstrhex, 64, 16);
- fprintf(stderr, "ub: %g, i64: %s (%s)\n", upperBound, ubstr, ubstrhex);
- }
- #endif
- for (int32_t i = rules.size(); --i >= 0 && highWaterMark.getIndex() < text.length();) {
- if ((!fIsFractionRuleSet) && (rules[i]->getBaseValue() >= ub)) {
- continue;
- }
- Formattable tempResult;
- UBool success = rules[i]->doParse(text, workingPos, fIsFractionRuleSet, upperBound, nonNumericalExecutedRuleMask, tempResult);
- if (success && workingPos.getIndex() > highWaterMark.getIndex()) {
- result = tempResult;
- highWaterMark = workingPos;
- }
- workingPos = pos;
- }
- }
- #ifdef RBNF_DEBUG
- fprintf(stderr, "<nfrs> exit\n");
- #endif
- // finally, update the parse position we were passed to point to the
- // first character we didn't use, and return the result that
- // corresponds to that string of characters
- pos = highWaterMark;
- return 1;
- }
- void
- NFRuleSet::appendRules(UnicodeString& result) const
- {
- uint32_t i;
- // the rule set name goes first...
- result.append(name);
- result.append(gColon);
- result.append(gLineFeed);
- // followed by the regular rules...
- for (i = 0; i < rules.size(); i++) {
- rules[i]->_appendRuleText(result);
- result.append(gLineFeed);
- }
- // followed by the special rules (if they exist)
- for (i = 0; i < NON_NUMERICAL_RULE_LENGTH; ++i) {
- NFRule *rule = nonNumericalRules[i];
- if (nonNumericalRules[i]) {
- if (rule->getBaseValue() == NFRule::kImproperFractionRule
- || rule->getBaseValue() == NFRule::kProperFractionRule
- || rule->getBaseValue() == NFRule::kDefaultRule)
- {
- for (uint32_t fIdx = 0; fIdx < fractionRules.size(); fIdx++) {
- NFRule *fractionRule = fractionRules[fIdx];
- if (fractionRule->getBaseValue() == rule->getBaseValue()) {
- fractionRule->_appendRuleText(result);
- result.append(gLineFeed);
- }
- }
- }
- else {
- rule->_appendRuleText(result);
- result.append(gLineFeed);
- }
- }
- }
- }
- // utility functions
- int64_t util64_fromDouble(double d) {
- int64_t result = 0;
- if (!uprv_isNaN(d)) {
- double mant = uprv_maxMantissa();
- if (d < -mant) {
- d = -mant;
- } else if (d > mant) {
- d = mant;
- }
- UBool neg = d < 0;
- if (neg) {
- d = -d;
- }
- result = (int64_t)uprv_floor(d);
- if (neg) {
- result = -result;
- }
- }
- return result;
- }
- uint64_t util64_pow(uint32_t base, uint16_t exponent) {
- if (base == 0) {
- return 0;
- }
- uint64_t result = 1;
- uint64_t pow = base;
- while (true) {
- if ((exponent & 1) == 1) {
- result *= pow;
- }
- exponent >>= 1;
- if (exponent == 0) {
- break;
- }
- pow *= pow;
- }
- return result;
- }
- static const uint8_t asciiDigits[] = {
- 0x30u, 0x31u, 0x32u, 0x33u, 0x34u, 0x35u, 0x36u, 0x37u,
- 0x38u, 0x39u, 0x61u, 0x62u, 0x63u, 0x64u, 0x65u, 0x66u,
- 0x67u, 0x68u, 0x69u, 0x6au, 0x6bu, 0x6cu, 0x6du, 0x6eu,
- 0x6fu, 0x70u, 0x71u, 0x72u, 0x73u, 0x74u, 0x75u, 0x76u,
- 0x77u, 0x78u, 0x79u, 0x7au,
- };
- static const char16_t kUMinus = (char16_t)0x002d;
- #ifdef RBNF_DEBUG
- static const char kMinus = '-';
- static const uint8_t digitInfo[] = {
- 0, 0, 0, 0, 0, 0, 0, 0,
- 0, 0, 0, 0, 0, 0, 0, 0,
- 0, 0, 0, 0, 0, 0, 0, 0,
- 0, 0, 0, 0, 0, 0, 0, 0,
- 0, 0, 0, 0, 0, 0, 0, 0,
- 0, 0, 0, 0, 0, 0, 0, 0,
- 0x80u, 0x81u, 0x82u, 0x83u, 0x84u, 0x85u, 0x86u, 0x87u,
- 0x88u, 0x89u, 0, 0, 0, 0, 0, 0,
- 0, 0x8au, 0x8bu, 0x8cu, 0x8du, 0x8eu, 0x8fu, 0x90u,
- 0x91u, 0x92u, 0x93u, 0x94u, 0x95u, 0x96u, 0x97u, 0x98u,
- 0x99u, 0x9au, 0x9bu, 0x9cu, 0x9du, 0x9eu, 0x9fu, 0xa0u,
- 0xa1u, 0xa2u, 0xa3u, 0, 0, 0, 0, 0,
- 0, 0x8au, 0x8bu, 0x8cu, 0x8du, 0x8eu, 0x8fu, 0x90u,
- 0x91u, 0x92u, 0x93u, 0x94u, 0x95u, 0x96u, 0x97u, 0x98u,
- 0x99u, 0x9au, 0x9bu, 0x9cu, 0x9du, 0x9eu, 0x9fu, 0xa0u,
- 0xa1u, 0xa2u, 0xa3u, 0, 0, 0, 0, 0,
- };
- int64_t util64_atoi(const char* str, uint32_t radix)
- {
- if (radix > 36) {
- radix = 36;
- } else if (radix < 2) {
- radix = 2;
- }
- int64_t lradix = radix;
- int neg = 0;
- if (*str == kMinus) {
- ++str;
- neg = 1;
- }
- int64_t result = 0;
- uint8_t b;
- while ((b = digitInfo[*str++]) && ((b &= 0x7f) < radix)) {
- result *= lradix;
- result += (int32_t)b;
- }
- if (neg) {
- result = -result;
- }
- return result;
- }
- int64_t util64_utoi(const char16_t* str, uint32_t radix)
- {
- if (radix > 36) {
- radix = 36;
- } else if (radix < 2) {
- radix = 2;
- }
- int64_t lradix = radix;
- int neg = 0;
- if (*str == kUMinus) {
- ++str;
- neg = 1;
- }
- int64_t result = 0;
- char16_t c;
- uint8_t b;
- while (((c = *str++) < 0x0080) && (b = digitInfo[c]) && ((b &= 0x7f) < radix)) {
- result *= lradix;
- result += (int32_t)b;
- }
- if (neg) {
- result = -result;
- }
- return result;
- }
- uint32_t util64_toa(int64_t w, char* buf, uint32_t len, uint32_t radix, UBool raw)
- {
- if (radix > 36) {
- radix = 36;
- } else if (radix < 2) {
- radix = 2;
- }
- int64_t base = radix;
- char* p = buf;
- if (len && (w < 0) && (radix == 10) && !raw) {
- w = -w;
- *p++ = kMinus;
- --len;
- } else if (len && (w == 0)) {
- *p++ = (char)raw ? 0 : asciiDigits[0];
- --len;
- }
- while (len && w != 0) {
- int64_t n = w / base;
- int64_t m = n * base;
- int32_t d = (int32_t)(w-m);
- *p++ = raw ? (char)d : asciiDigits[d];
- w = n;
- --len;
- }
- if (len) {
- *p = 0; // null terminate if room for caller convenience
- }
- len = p - buf;
- if (*buf == kMinus) {
- ++buf;
- }
- while (--p > buf) {
- char c = *p;
- *p = *buf;
- *buf = c;
- ++buf;
- }
- return len;
- }
- #endif
- uint32_t util64_tou(int64_t w, char16_t* buf, uint32_t len, uint32_t radix, UBool raw)
- {
- if (radix > 36) {
- radix = 36;
- } else if (radix < 2) {
- radix = 2;
- }
- int64_t base = radix;
- char16_t* p = buf;
- if (len && (w < 0) && (radix == 10) && !raw) {
- w = -w;
- *p++ = kUMinus;
- --len;
- } else if (len && (w == 0)) {
- *p++ = (char16_t)raw ? 0 : asciiDigits[0];
- --len;
- }
- while (len && (w != 0)) {
- int64_t n = w / base;
- int64_t m = n * base;
- int32_t d = (int32_t)(w-m);
- *p++ = (char16_t)(raw ? d : asciiDigits[d]);
- w = n;
- --len;
- }
- if (len) {
- *p = 0; // null terminate if room for caller convenience
- }
- len = (uint32_t)(p - buf);
- if (*buf == kUMinus) {
- ++buf;
- }
- while (--p > buf) {
- char16_t c = *p;
- *p = *buf;
- *buf = c;
- ++buf;
- }
- return len;
- }
- U_NAMESPACE_END
- /* U_HAVE_RBNF */
- #endif
|