123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176 |
- // © 2016 and later: Unicode, Inc. and others.
- // License & terms of use: http://www.unicode.org/copyright.html
- /*
- **********************************************************************
- * Copyright (c) 2003-2008, International Business Machines
- * Corporation and others. All Rights Reserved.
- **********************************************************************
- * Author: Alan Liu
- * Created: September 2 2003
- * Since: ICU 2.8
- **********************************************************************
- */
- #include "gregoimp.h"
- #if !UCONFIG_NO_FORMATTING
- #include "unicode/ucal.h"
- #include "uresimp.h"
- #include "cstring.h"
- #include "uassert.h"
- U_NAMESPACE_BEGIN
- int32_t ClockMath::floorDivide(int32_t numerator, int32_t denominator) {
- return (numerator >= 0) ?
- numerator / denominator : ((numerator + 1) / denominator) - 1;
- }
- int64_t ClockMath::floorDivide(int64_t numerator, int64_t denominator) {
- return (numerator >= 0) ?
- numerator / denominator : ((numerator + 1) / denominator) - 1;
- }
- int32_t ClockMath::floorDivide(double numerator, int32_t denominator,
- int32_t* remainder) {
- // For an integer n and representable ⌊x/n⌋, ⌊RN(x/n)⌋=⌊x/n⌋, where RN is
- // rounding to nearest.
- double quotient = uprv_floor(numerator / denominator);
- if (remainder != nullptr) {
- // For doubles x and n, where n is an integer and ⌊x+n⌋ < 2³¹, the
- // expression `(int32_t) (x + n)` evaluated with rounding to nearest
- // differs from ⌊x+n⌋ if 0 < ⌈x⌉−x ≪ x+n, as `x + n` is rounded up to
- // n+⌈x⌉ = ⌊x+n⌋ + 1. Rewriting it as ⌊x⌋+n makes the addition exact.
- *remainder = (int32_t) (uprv_floor(numerator) - (quotient * denominator));
- }
- return (int32_t) quotient;
- }
- double ClockMath::floorDivide(double dividend, double divisor,
- double* remainder) {
- // Only designed to work for positive divisors
- U_ASSERT(divisor > 0);
- double quotient = floorDivide(dividend, divisor);
- double r = dividend - (quotient * divisor);
- // N.B. For certain large dividends, on certain platforms, there
- // is a bug such that the quotient is off by one. If you doubt
- // this to be true, set a breakpoint below and run cintltst.
- if (r < 0 || r >= divisor) {
- // E.g. 6.7317038241449352e+022 / 86400000.0 is wrong on my
- // machine (too high by one). 4.1792057231752762e+024 /
- // 86400000.0 is wrong the other way (too low).
- double q = quotient;
- quotient += (r < 0) ? -1 : +1;
- if (q == quotient) {
- // For quotients > ~2^53, we won't be able to add or
- // subtract one, since the LSB of the mantissa will be >
- // 2^0; that is, the exponent (base 2) will be larger than
- // the length, in bits, of the mantissa. In that case, we
- // can't give a correct answer, so we set the remainder to
- // zero. This has the desired effect of making extreme
- // values give back an approximate answer rather than
- // crashing. For example, UDate values above a ~10^25
- // might all have a time of midnight.
- r = 0;
- } else {
- r = dividend - (quotient * divisor);
- }
- }
- U_ASSERT(0 <= r && r < divisor);
- if (remainder != nullptr) {
- *remainder = r;
- }
- return quotient;
- }
- const int32_t JULIAN_1_CE = 1721426; // January 1, 1 CE Gregorian
- const int32_t JULIAN_1970_CE = 2440588; // January 1, 1970 CE Gregorian
- const int16_t Grego::DAYS_BEFORE[24] =
- {0,31,59,90,120,151,181,212,243,273,304,334,
- 0,31,60,91,121,152,182,213,244,274,305,335};
- const int8_t Grego::MONTH_LENGTH[24] =
- {31,28,31,30,31,30,31,31,30,31,30,31,
- 31,29,31,30,31,30,31,31,30,31,30,31};
- double Grego::fieldsToDay(int32_t year, int32_t month, int32_t dom) {
- int32_t y = year - 1;
- double julian = 365 * y + ClockMath::floorDivide(y, 4) + (JULIAN_1_CE - 3) + // Julian cal
- ClockMath::floorDivide(y, 400) - ClockMath::floorDivide(y, 100) + 2 + // => Gregorian cal
- DAYS_BEFORE[month + (isLeapYear(year) ? 12 : 0)] + dom; // => month/dom
- return julian - JULIAN_1970_CE; // JD => epoch day
- }
- void Grego::dayToFields(double day, int32_t& year, int32_t& month,
- int32_t& dom, int32_t& dow, int32_t& doy) {
- // Convert from 1970 CE epoch to 1 CE epoch (Gregorian calendar)
- day += JULIAN_1970_CE - JULIAN_1_CE;
- // Convert from the day number to the multiple radix
- // representation. We use 400-year, 100-year, and 4-year cycles.
- // For example, the 4-year cycle has 4 years + 1 leap day; giving
- // 1461 == 365*4 + 1 days.
- int32_t n400 = ClockMath::floorDivide(day, 146097, &doy); // 400-year cycle length
- int32_t n100 = ClockMath::floorDivide(doy, 36524, &doy); // 100-year cycle length
- int32_t n4 = ClockMath::floorDivide(doy, 1461, &doy); // 4-year cycle length
- int32_t n1 = ClockMath::floorDivide(doy, 365, &doy);
- year = 400*n400 + 100*n100 + 4*n4 + n1;
- if (n100 == 4 || n1 == 4) {
- doy = 365; // Dec 31 at end of 4- or 400-year cycle
- } else {
- ++year;
- }
-
- UBool isLeap = isLeapYear(year);
-
- // Gregorian day zero is a Monday.
- dow = (int32_t) uprv_fmod(day + 1, 7);
- dow += (dow < 0) ? (UCAL_SUNDAY + 7) : UCAL_SUNDAY;
- // Common Julian/Gregorian calculation
- int32_t correction = 0;
- int32_t march1 = isLeap ? 60 : 59; // zero-based DOY for March 1
- if (doy >= march1) {
- correction = isLeap ? 1 : 2;
- }
- month = (12 * (doy + correction) + 6) / 367; // zero-based month
- dom = doy - DAYS_BEFORE[month + (isLeap ? 12 : 0)] + 1; // one-based DOM
- doy++; // one-based doy
- }
- void Grego::timeToFields(UDate time, int32_t& year, int32_t& month,
- int32_t& dom, int32_t& dow, int32_t& doy, int32_t& mid) {
- double millisInDay;
- double day = ClockMath::floorDivide((double)time, (double)U_MILLIS_PER_DAY, &millisInDay);
- mid = (int32_t)millisInDay;
- dayToFields(day, year, month, dom, dow, doy);
- }
- int32_t Grego::dayOfWeek(double day) {
- int32_t dow;
- ClockMath::floorDivide(day + int{UCAL_THURSDAY}, 7, &dow);
- return (dow == 0) ? UCAL_SATURDAY : dow;
- }
- int32_t Grego::dayOfWeekInMonth(int32_t year, int32_t month, int32_t dom) {
- int32_t weekInMonth = (dom + 6)/7;
- if (weekInMonth == 4) {
- if (dom + 7 > monthLength(year, month)) {
- weekInMonth = -1;
- }
- } else if (weekInMonth == 5) {
- weekInMonth = -1;
- }
- return weekInMonth;
- }
- U_NAMESPACE_END
- #endif
- //eof
|