123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815 |
- // © 2018 and later: Unicode, Inc. and others.
- // License & terms of use: http://www.unicode.org/copyright.html
- //
- // From the double-conversion library. Original license:
- //
- // Copyright 2010 the V8 project authors. All rights reserved.
- // Redistribution and use in source and binary forms, with or without
- // modification, are permitted provided that the following conditions are
- // met:
- //
- // * Redistributions of source code must retain the above copyright
- // notice, this list of conditions and the following disclaimer.
- // * Redistributions in binary form must reproduce the above
- // copyright notice, this list of conditions and the following
- // disclaimer in the documentation and/or other materials provided
- // with the distribution.
- // * Neither the name of Google Inc. nor the names of its
- // contributors may be used to endorse or promote products derived
- // from this software without specific prior written permission.
- //
- // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
- // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
- // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
- // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
- // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
- // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
- // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
- // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
- // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
- // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
- // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
- // ICU PATCH: ifdef around UCONFIG_NO_FORMATTING
- #include "unicode/utypes.h"
- #if !UCONFIG_NO_FORMATTING
- #include <algorithm>
- #include <cstring>
- // ICU PATCH: Customize header file paths for ICU.
- #include "double-conversion-bignum.h"
- #include "double-conversion-utils.h"
- // ICU PATCH: Wrap in ICU namespace
- U_NAMESPACE_BEGIN
- namespace double_conversion {
- Bignum::Chunk& Bignum::RawBigit(const int index) {
- DOUBLE_CONVERSION_ASSERT(static_cast<unsigned>(index) < kBigitCapacity);
- return bigits_buffer_[index];
- }
- const Bignum::Chunk& Bignum::RawBigit(const int index) const {
- DOUBLE_CONVERSION_ASSERT(static_cast<unsigned>(index) < kBigitCapacity);
- return bigits_buffer_[index];
- }
- template<typename S>
- static int BitSize(const S value) {
- (void) value; // Mark variable as used.
- return 8 * sizeof(value);
- }
- // Guaranteed to lie in one Bigit.
- void Bignum::AssignUInt16(const uint16_t value) {
- DOUBLE_CONVERSION_ASSERT(kBigitSize >= BitSize(value));
- Zero();
- if (value > 0) {
- RawBigit(0) = value;
- used_bigits_ = 1;
- }
- }
- void Bignum::AssignUInt64(uint64_t value) {
- Zero();
- for(int i = 0; value > 0; ++i) {
- RawBigit(i) = value & kBigitMask;
- value >>= kBigitSize;
- ++used_bigits_;
- }
- }
- void Bignum::AssignBignum(const Bignum& other) {
- exponent_ = other.exponent_;
- for (int i = 0; i < other.used_bigits_; ++i) {
- RawBigit(i) = other.RawBigit(i);
- }
- used_bigits_ = other.used_bigits_;
- }
- static uint64_t ReadUInt64(const Vector<const char> buffer,
- const int from,
- const int digits_to_read) {
- uint64_t result = 0;
- for (int i = from; i < from + digits_to_read; ++i) {
- const int digit = buffer[i] - '0';
- DOUBLE_CONVERSION_ASSERT(0 <= digit && digit <= 9);
- result = result * 10 + digit;
- }
- return result;
- }
- void Bignum::AssignDecimalString(const Vector<const char> value) {
- // 2^64 = 18446744073709551616 > 10^19
- static const int kMaxUint64DecimalDigits = 19;
- Zero();
- int length = value.length();
- unsigned pos = 0;
- // Let's just say that each digit needs 4 bits.
- while (length >= kMaxUint64DecimalDigits) {
- const uint64_t digits = ReadUInt64(value, pos, kMaxUint64DecimalDigits);
- pos += kMaxUint64DecimalDigits;
- length -= kMaxUint64DecimalDigits;
- MultiplyByPowerOfTen(kMaxUint64DecimalDigits);
- AddUInt64(digits);
- }
- const uint64_t digits = ReadUInt64(value, pos, length);
- MultiplyByPowerOfTen(length);
- AddUInt64(digits);
- Clamp();
- }
- static uint64_t HexCharValue(const int c) {
- if ('0' <= c && c <= '9') {
- return c - '0';
- }
- if ('a' <= c && c <= 'f') {
- return 10 + c - 'a';
- }
- DOUBLE_CONVERSION_ASSERT('A' <= c && c <= 'F');
- return 10 + c - 'A';
- }
- // Unlike AssignDecimalString(), this function is "only" used
- // for unit-tests and therefore not performance critical.
- void Bignum::AssignHexString(Vector<const char> value) {
- Zero();
- // Required capacity could be reduced by ignoring leading zeros.
- EnsureCapacity(((value.length() * 4) + kBigitSize - 1) / kBigitSize);
- DOUBLE_CONVERSION_ASSERT(sizeof(uint64_t) * 8 >= kBigitSize + 4); // TODO: static_assert
- // Accumulates converted hex digits until at least kBigitSize bits.
- // Works with non-factor-of-four kBigitSizes.
- uint64_t tmp = 0;
- for (int cnt = 0; !value.is_empty(); value.pop_back()) {
- tmp |= (HexCharValue(value.last()) << cnt);
- if ((cnt += 4) >= kBigitSize) {
- RawBigit(used_bigits_++) = (tmp & kBigitMask);
- cnt -= kBigitSize;
- tmp >>= kBigitSize;
- }
- }
- if (tmp > 0) {
- DOUBLE_CONVERSION_ASSERT(tmp <= kBigitMask);
- RawBigit(used_bigits_++) = static_cast<Bignum::Chunk>(tmp & kBigitMask);
- }
- Clamp();
- }
- void Bignum::AddUInt64(const uint64_t operand) {
- if (operand == 0) {
- return;
- }
- Bignum other;
- other.AssignUInt64(operand);
- AddBignum(other);
- }
- void Bignum::AddBignum(const Bignum& other) {
- DOUBLE_CONVERSION_ASSERT(IsClamped());
- DOUBLE_CONVERSION_ASSERT(other.IsClamped());
- // If this has a greater exponent than other append zero-bigits to this.
- // After this call exponent_ <= other.exponent_.
- Align(other);
- // There are two possibilities:
- // aaaaaaaaaaa 0000 (where the 0s represent a's exponent)
- // bbbbb 00000000
- // ----------------
- // ccccccccccc 0000
- // or
- // aaaaaaaaaa 0000
- // bbbbbbbbb 0000000
- // -----------------
- // cccccccccccc 0000
- // In both cases we might need a carry bigit.
- EnsureCapacity(1 + (std::max)(BigitLength(), other.BigitLength()) - exponent_);
- Chunk carry = 0;
- int bigit_pos = other.exponent_ - exponent_;
- DOUBLE_CONVERSION_ASSERT(bigit_pos >= 0);
- for (int i = used_bigits_; i < bigit_pos; ++i) {
- RawBigit(i) = 0;
- }
- for (int i = 0; i < other.used_bigits_; ++i) {
- const Chunk my = (bigit_pos < used_bigits_) ? RawBigit(bigit_pos) : 0;
- const Chunk sum = my + other.RawBigit(i) + carry;
- RawBigit(bigit_pos) = sum & kBigitMask;
- carry = sum >> kBigitSize;
- ++bigit_pos;
- }
- while (carry != 0) {
- const Chunk my = (bigit_pos < used_bigits_) ? RawBigit(bigit_pos) : 0;
- const Chunk sum = my + carry;
- RawBigit(bigit_pos) = sum & kBigitMask;
- carry = sum >> kBigitSize;
- ++bigit_pos;
- }
- used_bigits_ = static_cast<int16_t>(std::max(bigit_pos, static_cast<int>(used_bigits_)));
- DOUBLE_CONVERSION_ASSERT(IsClamped());
- }
- void Bignum::SubtractBignum(const Bignum& other) {
- DOUBLE_CONVERSION_ASSERT(IsClamped());
- DOUBLE_CONVERSION_ASSERT(other.IsClamped());
- // We require this to be bigger than other.
- DOUBLE_CONVERSION_ASSERT(LessEqual(other, *this));
- Align(other);
- const int offset = other.exponent_ - exponent_;
- Chunk borrow = 0;
- int i;
- for (i = 0; i < other.used_bigits_; ++i) {
- DOUBLE_CONVERSION_ASSERT((borrow == 0) || (borrow == 1));
- const Chunk difference = RawBigit(i + offset) - other.RawBigit(i) - borrow;
- RawBigit(i + offset) = difference & kBigitMask;
- borrow = difference >> (kChunkSize - 1);
- }
- while (borrow != 0) {
- const Chunk difference = RawBigit(i + offset) - borrow;
- RawBigit(i + offset) = difference & kBigitMask;
- borrow = difference >> (kChunkSize - 1);
- ++i;
- }
- Clamp();
- }
- void Bignum::ShiftLeft(const int shift_amount) {
- if (used_bigits_ == 0) {
- return;
- }
- exponent_ += static_cast<int16_t>(shift_amount / kBigitSize);
- const int local_shift = shift_amount % kBigitSize;
- EnsureCapacity(used_bigits_ + 1);
- BigitsShiftLeft(local_shift);
- }
- void Bignum::MultiplyByUInt32(const uint32_t factor) {
- if (factor == 1) {
- return;
- }
- if (factor == 0) {
- Zero();
- return;
- }
- if (used_bigits_ == 0) {
- return;
- }
- // The product of a bigit with the factor is of size kBigitSize + 32.
- // Assert that this number + 1 (for the carry) fits into double chunk.
- DOUBLE_CONVERSION_ASSERT(kDoubleChunkSize >= kBigitSize + 32 + 1);
- DoubleChunk carry = 0;
- for (int i = 0; i < used_bigits_; ++i) {
- const DoubleChunk product = static_cast<DoubleChunk>(factor) * RawBigit(i) + carry;
- RawBigit(i) = static_cast<Chunk>(product & kBigitMask);
- carry = (product >> kBigitSize);
- }
- while (carry != 0) {
- EnsureCapacity(used_bigits_ + 1);
- RawBigit(used_bigits_) = carry & kBigitMask;
- used_bigits_++;
- carry >>= kBigitSize;
- }
- }
- void Bignum::MultiplyByUInt64(const uint64_t factor) {
- if (factor == 1) {
- return;
- }
- if (factor == 0) {
- Zero();
- return;
- }
- if (used_bigits_ == 0) {
- return;
- }
- DOUBLE_CONVERSION_ASSERT(kBigitSize < 32);
- uint64_t carry = 0;
- const uint64_t low = factor & 0xFFFFFFFF;
- const uint64_t high = factor >> 32;
- for (int i = 0; i < used_bigits_; ++i) {
- const uint64_t product_low = low * RawBigit(i);
- const uint64_t product_high = high * RawBigit(i);
- const uint64_t tmp = (carry & kBigitMask) + product_low;
- RawBigit(i) = tmp & kBigitMask;
- carry = (carry >> kBigitSize) + (tmp >> kBigitSize) +
- (product_high << (32 - kBigitSize));
- }
- while (carry != 0) {
- EnsureCapacity(used_bigits_ + 1);
- RawBigit(used_bigits_) = carry & kBigitMask;
- used_bigits_++;
- carry >>= kBigitSize;
- }
- }
- void Bignum::MultiplyByPowerOfTen(const int exponent) {
- static const uint64_t kFive27 = DOUBLE_CONVERSION_UINT64_2PART_C(0x6765c793, fa10079d);
- static const uint16_t kFive1 = 5;
- static const uint16_t kFive2 = kFive1 * 5;
- static const uint16_t kFive3 = kFive2 * 5;
- static const uint16_t kFive4 = kFive3 * 5;
- static const uint16_t kFive5 = kFive4 * 5;
- static const uint16_t kFive6 = kFive5 * 5;
- static const uint32_t kFive7 = kFive6 * 5;
- static const uint32_t kFive8 = kFive7 * 5;
- static const uint32_t kFive9 = kFive8 * 5;
- static const uint32_t kFive10 = kFive9 * 5;
- static const uint32_t kFive11 = kFive10 * 5;
- static const uint32_t kFive12 = kFive11 * 5;
- static const uint32_t kFive13 = kFive12 * 5;
- static const uint32_t kFive1_to_12[] =
- { kFive1, kFive2, kFive3, kFive4, kFive5, kFive6,
- kFive7, kFive8, kFive9, kFive10, kFive11, kFive12 };
- DOUBLE_CONVERSION_ASSERT(exponent >= 0);
- if (exponent == 0) {
- return;
- }
- if (used_bigits_ == 0) {
- return;
- }
- // We shift by exponent at the end just before returning.
- int remaining_exponent = exponent;
- while (remaining_exponent >= 27) {
- MultiplyByUInt64(kFive27);
- remaining_exponent -= 27;
- }
- while (remaining_exponent >= 13) {
- MultiplyByUInt32(kFive13);
- remaining_exponent -= 13;
- }
- if (remaining_exponent > 0) {
- MultiplyByUInt32(kFive1_to_12[remaining_exponent - 1]);
- }
- ShiftLeft(exponent);
- }
- void Bignum::Square() {
- DOUBLE_CONVERSION_ASSERT(IsClamped());
- const int product_length = 2 * used_bigits_;
- EnsureCapacity(product_length);
- // Comba multiplication: compute each column separately.
- // Example: r = a2a1a0 * b2b1b0.
- // r = 1 * a0b0 +
- // 10 * (a1b0 + a0b1) +
- // 100 * (a2b0 + a1b1 + a0b2) +
- // 1000 * (a2b1 + a1b2) +
- // 10000 * a2b2
- //
- // In the worst case we have to accumulate nb-digits products of digit*digit.
- //
- // Assert that the additional number of bits in a DoubleChunk are enough to
- // sum up used_digits of Bigit*Bigit.
- if ((1 << (2 * (kChunkSize - kBigitSize))) <= used_bigits_) {
- DOUBLE_CONVERSION_UNIMPLEMENTED();
- }
- DoubleChunk accumulator = 0;
- // First shift the digits so we don't overwrite them.
- const int copy_offset = used_bigits_;
- for (int i = 0; i < used_bigits_; ++i) {
- RawBigit(copy_offset + i) = RawBigit(i);
- }
- // We have two loops to avoid some 'if's in the loop.
- for (int i = 0; i < used_bigits_; ++i) {
- // Process temporary digit i with power i.
- // The sum of the two indices must be equal to i.
- int bigit_index1 = i;
- int bigit_index2 = 0;
- // Sum all of the sub-products.
- while (bigit_index1 >= 0) {
- const Chunk chunk1 = RawBigit(copy_offset + bigit_index1);
- const Chunk chunk2 = RawBigit(copy_offset + bigit_index2);
- accumulator += static_cast<DoubleChunk>(chunk1) * chunk2;
- bigit_index1--;
- bigit_index2++;
- }
- RawBigit(i) = static_cast<Chunk>(accumulator) & kBigitMask;
- accumulator >>= kBigitSize;
- }
- for (int i = used_bigits_; i < product_length; ++i) {
- int bigit_index1 = used_bigits_ - 1;
- int bigit_index2 = i - bigit_index1;
- // Invariant: sum of both indices is again equal to i.
- // Inner loop runs 0 times on last iteration, emptying accumulator.
- while (bigit_index2 < used_bigits_) {
- const Chunk chunk1 = RawBigit(copy_offset + bigit_index1);
- const Chunk chunk2 = RawBigit(copy_offset + bigit_index2);
- accumulator += static_cast<DoubleChunk>(chunk1) * chunk2;
- bigit_index1--;
- bigit_index2++;
- }
- // The overwritten RawBigit(i) will never be read in further loop iterations,
- // because bigit_index1 and bigit_index2 are always greater
- // than i - used_bigits_.
- RawBigit(i) = static_cast<Chunk>(accumulator) & kBigitMask;
- accumulator >>= kBigitSize;
- }
- // Since the result was guaranteed to lie inside the number the
- // accumulator must be 0 now.
- DOUBLE_CONVERSION_ASSERT(accumulator == 0);
- // Don't forget to update the used_digits and the exponent.
- used_bigits_ = static_cast<int16_t>(product_length);
- exponent_ *= 2;
- Clamp();
- }
- void Bignum::AssignPowerUInt16(uint16_t base, const int power_exponent) {
- DOUBLE_CONVERSION_ASSERT(base != 0);
- DOUBLE_CONVERSION_ASSERT(power_exponent >= 0);
- if (power_exponent == 0) {
- AssignUInt16(1);
- return;
- }
- Zero();
- int shifts = 0;
- // We expect base to be in range 2-32, and most often to be 10.
- // It does not make much sense to implement different algorithms for counting
- // the bits.
- while ((base & 1) == 0) {
- base >>= 1;
- shifts++;
- }
- int bit_size = 0;
- int tmp_base = base;
- while (tmp_base != 0) {
- tmp_base >>= 1;
- bit_size++;
- }
- const int final_size = bit_size * power_exponent;
- // 1 extra bigit for the shifting, and one for rounded final_size.
- EnsureCapacity(final_size / kBigitSize + 2);
- // Left to Right exponentiation.
- int mask = 1;
- while (power_exponent >= mask) mask <<= 1;
- // The mask is now pointing to the bit above the most significant 1-bit of
- // power_exponent.
- // Get rid of first 1-bit;
- mask >>= 2;
- uint64_t this_value = base;
- bool delayed_multiplication = false;
- const uint64_t max_32bits = 0xFFFFFFFF;
- while (mask != 0 && this_value <= max_32bits) {
- this_value = this_value * this_value;
- // Verify that there is enough space in this_value to perform the
- // multiplication. The first bit_size bits must be 0.
- if ((power_exponent & mask) != 0) {
- DOUBLE_CONVERSION_ASSERT(bit_size > 0);
- const uint64_t base_bits_mask =
- ~((static_cast<uint64_t>(1) << (64 - bit_size)) - 1);
- const bool high_bits_zero = (this_value & base_bits_mask) == 0;
- if (high_bits_zero) {
- this_value *= base;
- } else {
- delayed_multiplication = true;
- }
- }
- mask >>= 1;
- }
- AssignUInt64(this_value);
- if (delayed_multiplication) {
- MultiplyByUInt32(base);
- }
- // Now do the same thing as a bignum.
- while (mask != 0) {
- Square();
- if ((power_exponent & mask) != 0) {
- MultiplyByUInt32(base);
- }
- mask >>= 1;
- }
- // And finally add the saved shifts.
- ShiftLeft(shifts * power_exponent);
- }
- // Precondition: this/other < 16bit.
- uint16_t Bignum::DivideModuloIntBignum(const Bignum& other) {
- DOUBLE_CONVERSION_ASSERT(IsClamped());
- DOUBLE_CONVERSION_ASSERT(other.IsClamped());
- DOUBLE_CONVERSION_ASSERT(other.used_bigits_ > 0);
- // Easy case: if we have less digits than the divisor than the result is 0.
- // Note: this handles the case where this == 0, too.
- if (BigitLength() < other.BigitLength()) {
- return 0;
- }
- Align(other);
- uint16_t result = 0;
- // Start by removing multiples of 'other' until both numbers have the same
- // number of digits.
- while (BigitLength() > other.BigitLength()) {
- // This naive approach is extremely inefficient if `this` divided by other
- // is big. This function is implemented for doubleToString where
- // the result should be small (less than 10).
- DOUBLE_CONVERSION_ASSERT(other.RawBigit(other.used_bigits_ - 1) >= ((1 << kBigitSize) / 16));
- DOUBLE_CONVERSION_ASSERT(RawBigit(used_bigits_ - 1) < 0x10000);
- // Remove the multiples of the first digit.
- // Example this = 23 and other equals 9. -> Remove 2 multiples.
- result += static_cast<uint16_t>(RawBigit(used_bigits_ - 1));
- SubtractTimes(other, RawBigit(used_bigits_ - 1));
- }
- DOUBLE_CONVERSION_ASSERT(BigitLength() == other.BigitLength());
- // Both bignums are at the same length now.
- // Since other has more than 0 digits we know that the access to
- // RawBigit(used_bigits_ - 1) is safe.
- const Chunk this_bigit = RawBigit(used_bigits_ - 1);
- const Chunk other_bigit = other.RawBigit(other.used_bigits_ - 1);
- if (other.used_bigits_ == 1) {
- // Shortcut for easy (and common) case.
- int quotient = this_bigit / other_bigit;
- RawBigit(used_bigits_ - 1) = this_bigit - other_bigit * quotient;
- DOUBLE_CONVERSION_ASSERT(quotient < 0x10000);
- result += static_cast<uint16_t>(quotient);
- Clamp();
- return result;
- }
- const int division_estimate = this_bigit / (other_bigit + 1);
- DOUBLE_CONVERSION_ASSERT(division_estimate < 0x10000);
- result += static_cast<uint16_t>(division_estimate);
- SubtractTimes(other, division_estimate);
- if (other_bigit * (division_estimate + 1) > this_bigit) {
- // No need to even try to subtract. Even if other's remaining digits were 0
- // another subtraction would be too much.
- return result;
- }
- while (LessEqual(other, *this)) {
- SubtractBignum(other);
- result++;
- }
- return result;
- }
- template<typename S>
- static int SizeInHexChars(S number) {
- DOUBLE_CONVERSION_ASSERT(number > 0);
- int result = 0;
- while (number != 0) {
- number >>= 4;
- result++;
- }
- return result;
- }
- static char HexCharOfValue(const int value) {
- DOUBLE_CONVERSION_ASSERT(0 <= value && value <= 16);
- if (value < 10) {
- return static_cast<char>(value + '0');
- }
- return static_cast<char>(value - 10 + 'A');
- }
- bool Bignum::ToHexString(char* buffer, const int buffer_size) const {
- DOUBLE_CONVERSION_ASSERT(IsClamped());
- // Each bigit must be printable as separate hex-character.
- DOUBLE_CONVERSION_ASSERT(kBigitSize % 4 == 0);
- static const int kHexCharsPerBigit = kBigitSize / 4;
- if (used_bigits_ == 0) {
- if (buffer_size < 2) {
- return false;
- }
- buffer[0] = '0';
- buffer[1] = '\0';
- return true;
- }
- // We add 1 for the terminating '\0' character.
- const int needed_chars = (BigitLength() - 1) * kHexCharsPerBigit +
- SizeInHexChars(RawBigit(used_bigits_ - 1)) + 1;
- if (needed_chars > buffer_size) {
- return false;
- }
- int string_index = needed_chars - 1;
- buffer[string_index--] = '\0';
- for (int i = 0; i < exponent_; ++i) {
- for (int j = 0; j < kHexCharsPerBigit; ++j) {
- buffer[string_index--] = '0';
- }
- }
- for (int i = 0; i < used_bigits_ - 1; ++i) {
- Chunk current_bigit = RawBigit(i);
- for (int j = 0; j < kHexCharsPerBigit; ++j) {
- buffer[string_index--] = HexCharOfValue(current_bigit & 0xF);
- current_bigit >>= 4;
- }
- }
- // And finally the last bigit.
- Chunk most_significant_bigit = RawBigit(used_bigits_ - 1);
- while (most_significant_bigit != 0) {
- buffer[string_index--] = HexCharOfValue(most_significant_bigit & 0xF);
- most_significant_bigit >>= 4;
- }
- return true;
- }
- Bignum::Chunk Bignum::BigitOrZero(const int index) const {
- if (index >= BigitLength()) {
- return 0;
- }
- if (index < exponent_) {
- return 0;
- }
- return RawBigit(index - exponent_);
- }
- int Bignum::Compare(const Bignum& a, const Bignum& b) {
- DOUBLE_CONVERSION_ASSERT(a.IsClamped());
- DOUBLE_CONVERSION_ASSERT(b.IsClamped());
- const int bigit_length_a = a.BigitLength();
- const int bigit_length_b = b.BigitLength();
- if (bigit_length_a < bigit_length_b) {
- return -1;
- }
- if (bigit_length_a > bigit_length_b) {
- return +1;
- }
- for (int i = bigit_length_a - 1; i >= (std::min)(a.exponent_, b.exponent_); --i) {
- const Chunk bigit_a = a.BigitOrZero(i);
- const Chunk bigit_b = b.BigitOrZero(i);
- if (bigit_a < bigit_b) {
- return -1;
- }
- if (bigit_a > bigit_b) {
- return +1;
- }
- // Otherwise they are equal up to this digit. Try the next digit.
- }
- return 0;
- }
- int Bignum::PlusCompare(const Bignum& a, const Bignum& b, const Bignum& c) {
- DOUBLE_CONVERSION_ASSERT(a.IsClamped());
- DOUBLE_CONVERSION_ASSERT(b.IsClamped());
- DOUBLE_CONVERSION_ASSERT(c.IsClamped());
- if (a.BigitLength() < b.BigitLength()) {
- return PlusCompare(b, a, c);
- }
- if (a.BigitLength() + 1 < c.BigitLength()) {
- return -1;
- }
- if (a.BigitLength() > c.BigitLength()) {
- return +1;
- }
- // The exponent encodes 0-bigits. So if there are more 0-digits in 'a' than
- // 'b' has digits, then the bigit-length of 'a'+'b' must be equal to the one
- // of 'a'.
- if (a.exponent_ >= b.BigitLength() && a.BigitLength() < c.BigitLength()) {
- return -1;
- }
- Chunk borrow = 0;
- // Starting at min_exponent all digits are == 0. So no need to compare them.
- const int min_exponent = (std::min)((std::min)(a.exponent_, b.exponent_), c.exponent_);
- for (int i = c.BigitLength() - 1; i >= min_exponent; --i) {
- const Chunk chunk_a = a.BigitOrZero(i);
- const Chunk chunk_b = b.BigitOrZero(i);
- const Chunk chunk_c = c.BigitOrZero(i);
- const Chunk sum = chunk_a + chunk_b;
- if (sum > chunk_c + borrow) {
- return +1;
- } else {
- borrow = chunk_c + borrow - sum;
- if (borrow > 1) {
- return -1;
- }
- borrow <<= kBigitSize;
- }
- }
- if (borrow == 0) {
- return 0;
- }
- return -1;
- }
- void Bignum::Clamp() {
- while (used_bigits_ > 0 && RawBigit(used_bigits_ - 1) == 0) {
- used_bigits_--;
- }
- if (used_bigits_ == 0) {
- // Zero.
- exponent_ = 0;
- }
- }
- void Bignum::Align(const Bignum& other) {
- if (exponent_ > other.exponent_) {
- // If "X" represents a "hidden" bigit (by the exponent) then we are in the
- // following case (a == this, b == other):
- // a: aaaaaaXXXX or a: aaaaaXXX
- // b: bbbbbbX b: bbbbbbbbXX
- // We replace some of the hidden digits (X) of a with 0 digits.
- // a: aaaaaa000X or a: aaaaa0XX
- const int zero_bigits = exponent_ - other.exponent_;
- EnsureCapacity(used_bigits_ + zero_bigits);
- for (int i = used_bigits_ - 1; i >= 0; --i) {
- RawBigit(i + zero_bigits) = RawBigit(i);
- }
- for (int i = 0; i < zero_bigits; ++i) {
- RawBigit(i) = 0;
- }
- used_bigits_ += static_cast<int16_t>(zero_bigits);
- exponent_ -= static_cast<int16_t>(zero_bigits);
- DOUBLE_CONVERSION_ASSERT(used_bigits_ >= 0);
- DOUBLE_CONVERSION_ASSERT(exponent_ >= 0);
- }
- }
- void Bignum::BigitsShiftLeft(const int shift_amount) {
- DOUBLE_CONVERSION_ASSERT(shift_amount < kBigitSize);
- DOUBLE_CONVERSION_ASSERT(shift_amount >= 0);
- Chunk carry = 0;
- for (int i = 0; i < used_bigits_; ++i) {
- const Chunk new_carry = RawBigit(i) >> (kBigitSize - shift_amount);
- RawBigit(i) = ((RawBigit(i) << shift_amount) + carry) & kBigitMask;
- carry = new_carry;
- }
- if (carry != 0) {
- RawBigit(used_bigits_) = carry;
- used_bigits_++;
- }
- }
- void Bignum::SubtractTimes(const Bignum& other, const int factor) {
- DOUBLE_CONVERSION_ASSERT(exponent_ <= other.exponent_);
- if (factor < 3) {
- for (int i = 0; i < factor; ++i) {
- SubtractBignum(other);
- }
- return;
- }
- Chunk borrow = 0;
- const int exponent_diff = other.exponent_ - exponent_;
- for (int i = 0; i < other.used_bigits_; ++i) {
- const DoubleChunk product = static_cast<DoubleChunk>(factor) * other.RawBigit(i);
- const DoubleChunk remove = borrow + product;
- const Chunk difference = RawBigit(i + exponent_diff) - (remove & kBigitMask);
- RawBigit(i + exponent_diff) = difference & kBigitMask;
- borrow = static_cast<Chunk>((difference >> (kChunkSize - 1)) +
- (remove >> kBigitSize));
- }
- for (int i = other.used_bigits_ + exponent_diff; i < used_bigits_; ++i) {
- if (borrow == 0) {
- return;
- }
- const Chunk difference = RawBigit(i) - borrow;
- RawBigit(i) = difference & kBigitMask;
- borrow = difference >> (kChunkSize - 1);
- }
- Clamp();
- }
- } // namespace double_conversion
- // ICU PATCH: Close ICU namespace
- U_NAMESPACE_END
- #endif // ICU PATCH: close #if !UCONFIG_NO_FORMATTING
|