123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419742074217422742374247425742674277428742974307431743274337434743574367437743874397440744174427443744474457446744774487449745074517452745374547455745674577458745974607461746274637464746574667467746874697470747174727473747474757476747774787479748074817482748374847485748674877488748974907491749274937494749574967497749874997500750175027503750475057506750775087509751075117512751375147515751675177518751975207521752275237524752575267527752875297530753175327533753475357536753775387539754075417542754375447545754675477548754975507551755275537554755575567557755875597560756175627563756475657566756775687569757075717572757375747575757675777578757975807581758275837584758575867587758875897590759175927593759475957596759775987599760076017602760376047605760676077608760976107611761276137614761576167617761876197620762176227623762476257626762776287629763076317632763376347635763676377638763976407641764276437644764576467647764876497650765176527653765476557656765776587659766076617662766376647665766676677668766976707671767276737674767576767677767876797680768176827683768476857686768776887689769076917692769376947695769676977698769977007701770277037704770577067707770877097710771177127713771477157716771777187719772077217722772377247725772677277728772977307731773277337734773577367737773877397740774177427743774477457746774777487749775077517752775377547755775677577758775977607761776277637764776577667767776877697770777177727773777477757776777777787779778077817782778377847785778677877788778977907791779277937794779577967797779877997800780178027803780478057806780778087809781078117812781378147815781678177818781978207821782278237824782578267827782878297830783178327833783478357836783778387839784078417842784378447845784678477848784978507851785278537854785578567857785878597860786178627863786478657866786778687869787078717872787378747875787678777878787978807881788278837884788578867887788878897890789178927893789478957896789778987899790079017902790379047905790679077908790979107911791279137914791579167917791879197920792179227923792479257926792779287929793079317932793379347935793679377938793979407941794279437944794579467947794879497950795179527953795479557956795779587959796079617962796379647965796679677968796979707971797279737974797579767977797879797980798179827983798479857986798779887989799079917992799379947995799679977998799980008001800280038004800580068007800880098010801180128013801480158016801780188019802080218022802380248025802680278028802980308031803280338034803580368037803880398040804180428043804480458046804780488049805080518052805380548055805680578058805980608061806280638064806580668067806880698070807180728073807480758076807780788079808080818082808380848085808680878088808980908091809280938094809580968097809880998100810181028103810481058106810781088109811081118112811381148115811681178118811981208121812281238124812581268127812881298130813181328133813481358136813781388139814081418142814381448145814681478148814981508151815281538154815581568157815881598160816181628163816481658166816781688169817081718172817381748175817681778178817981808181818281838184818581868187818881898190 |
- // © 2016 and later: Unicode, Inc. and others.
- // License & terms of use: http://www.unicode.org/copyright.html
- /* ------------------------------------------------------------------ */
- /* Decimal Number arithmetic module */
- /* ------------------------------------------------------------------ */
- /* Copyright (c) IBM Corporation, 2000-2014. All rights reserved. */
- /* */
- /* This software is made available under the terms of the */
- /* ICU License -- ICU 1.8.1 and later. */
- /* */
- /* The description and User's Guide ("The decNumber C Library") for */
- /* this software is called decNumber.pdf. This document is */
- /* available, together with arithmetic and format specifications, */
- /* testcases, and Web links, on the General Decimal Arithmetic page. */
- /* */
- /* Please send comments, suggestions, and corrections to the author: */
- /* mfc@uk.ibm.com */
- /* Mike Cowlishaw, IBM Fellow */
- /* IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK */
- /* ------------------------------------------------------------------ */
- /* Modified version, for use from within ICU.
- * Renamed public functions, to avoid an unwanted export of the
- * standard names from the ICU library.
- *
- * Use ICU's uprv_malloc() and uprv_free()
- *
- * Revert comment syntax to plain C
- *
- * Remove a few compiler warnings.
- */
- /* This module comprises the routines for arbitrary-precision General */
- /* Decimal Arithmetic as defined in the specification which may be */
- /* found on the General Decimal Arithmetic pages. It implements both */
- /* the full ('extended') arithmetic and the simpler ('subset') */
- /* arithmetic. */
- /* */
- /* Usage notes: */
- /* */
- /* 1. This code is ANSI C89 except: */
- /* */
- /* a) C99 line comments (double forward slash) are used. (Most C */
- /* compilers accept these. If yours does not, a simple script */
- /* can be used to convert them to ANSI C comments.) */
- /* */
- /* b) Types from C99 stdint.h are used. If you do not have this */
- /* header file, see the User's Guide section of the decNumber */
- /* documentation; this lists the necessary definitions. */
- /* */
- /* c) If DECDPUN>4 or DECUSE64=1, the C99 64-bit int64_t and */
- /* uint64_t types may be used. To avoid these, set DECUSE64=0 */
- /* and DECDPUN<=4 (see documentation). */
- /* */
- /* The code also conforms to C99 restrictions; in particular, */
- /* strict aliasing rules are observed. */
- /* */
- /* 2. The decNumber format which this library uses is optimized for */
- /* efficient processing of relatively short numbers; in particular */
- /* it allows the use of fixed sized structures and minimizes copy */
- /* and move operations. It does, however, support arbitrary */
- /* precision (up to 999,999,999 digits) and arbitrary exponent */
- /* range (Emax in the range 0 through 999,999,999 and Emin in the */
- /* range -999,999,999 through 0). Mathematical functions (for */
- /* example decNumberExp) as identified below are restricted more */
- /* tightly: digits, emax, and -emin in the context must be <= */
- /* DEC_MAX_MATH (999999), and their operand(s) must be within */
- /* these bounds. */
- /* */
- /* 3. Logical functions are further restricted; their operands must */
- /* be finite, positive, have an exponent of zero, and all digits */
- /* must be either 0 or 1. The result will only contain digits */
- /* which are 0 or 1 (and will have exponent=0 and a sign of 0). */
- /* */
- /* 4. Operands to operator functions are never modified unless they */
- /* are also specified to be the result number (which is always */
- /* permitted). Other than that case, operands must not overlap. */
- /* */
- /* 5. Error handling: the type of the error is ORed into the status */
- /* flags in the current context (decContext structure). The */
- /* SIGFPE signal is then raised if the corresponding trap-enabler */
- /* flag in the decContext is set (is 1). */
- /* */
- /* It is the responsibility of the caller to clear the status */
- /* flags as required. */
- /* */
- /* The result of any routine which returns a number will always */
- /* be a valid number (which may be a special value, such as an */
- /* Infinity or NaN). */
- /* */
- /* 6. The decNumber format is not an exchangeable concrete */
- /* representation as it comprises fields which may be machine- */
- /* dependent (packed or unpacked, or special length, for example). */
- /* Canonical conversions to and from strings are provided; other */
- /* conversions are available in separate modules. */
- /* */
- /* 7. Normally, input operands are assumed to be valid. Set DECCHECK */
- /* to 1 for extended operand checking (including nullptr operands). */
- /* Results are undefined if a badly-formed structure (or a nullptr */
- /* pointer to a structure) is provided, though with DECCHECK */
- /* enabled the operator routines are protected against exceptions. */
- /* (Except if the result pointer is nullptr, which is unrecoverable.) */
- /* */
- /* However, the routines will never cause exceptions if they are */
- /* given well-formed operands, even if the value of the operands */
- /* is inappropriate for the operation and DECCHECK is not set. */
- /* (Except for SIGFPE, as and where documented.) */
- /* */
- /* 8. Subset arithmetic is available only if DECSUBSET is set to 1. */
- /* ------------------------------------------------------------------ */
- /* Implementation notes for maintenance of this module: */
- /* */
- /* 1. Storage leak protection: Routines which use malloc are not */
- /* permitted to use return for fastpath or error exits (i.e., */
- /* they follow strict structured programming conventions). */
- /* Instead they have a do{}while(0); construct surrounding the */
- /* code which is protected -- break may be used to exit this. */
- /* Other routines can safely use the return statement inline. */
- /* */
- /* Storage leak accounting can be enabled using DECALLOC. */
- /* */
- /* 2. All loops use the for(;;) construct. Any do construct does */
- /* not loop; it is for allocation protection as just described. */
- /* */
- /* 3. Setting status in the context must always be the very last */
- /* action in a routine, as non-0 status may raise a trap and hence */
- /* the call to set status may not return (if the handler uses long */
- /* jump). Therefore all cleanup must be done first. In general, */
- /* to achieve this status is accumulated and is only applied just */
- /* before return by calling decContextSetStatus (via decStatus). */
- /* */
- /* Routines which allocate storage cannot, in general, use the */
- /* 'top level' routines which could cause a non-returning */
- /* transfer of control. The decXxxxOp routines are safe (do not */
- /* call decStatus even if traps are set in the context) and should */
- /* be used instead (they are also a little faster). */
- /* */
- /* 4. Exponent checking is minimized by allowing the exponent to */
- /* grow outside its limits during calculations, provided that */
- /* the decFinalize function is called later. Multiplication and */
- /* division, and intermediate calculations in exponentiation, */
- /* require more careful checks because of the risk of 31-bit */
- /* overflow (the most negative valid exponent is -1999999997, for */
- /* a 999999999-digit number with adjusted exponent of -999999999). */
- /* */
- /* 5. Rounding is deferred until finalization of results, with any */
- /* 'off to the right' data being represented as a single digit */
- /* residue (in the range -1 through 9). This avoids any double- */
- /* rounding when more than one shortening takes place (for */
- /* example, when a result is subnormal). */
- /* */
- /* 6. The digits count is allowed to rise to a multiple of DECDPUN */
- /* during many operations, so whole Units are handled and exact */
- /* accounting of digits is not needed. The correct digits value */
- /* is found by decGetDigits, which accounts for leading zeros. */
- /* This must be called before any rounding if the number of digits */
- /* is not known exactly. */
- /* */
- /* 7. The multiply-by-reciprocal 'trick' is used for partitioning */
- /* numbers up to four digits, using appropriate constants. This */
- /* is not useful for longer numbers because overflow of 32 bits */
- /* would lead to 4 multiplies, which is almost as expensive as */
- /* a divide (unless a floating-point or 64-bit multiply is */
- /* assumed to be available). */
- /* */
- /* 8. Unusual abbreviations that may be used in the commentary: */
- /* lhs -- left hand side (operand, of an operation) */
- /* lsd -- least significant digit (of coefficient) */
- /* lsu -- least significant Unit (of coefficient) */
- /* msd -- most significant digit (of coefficient) */
- /* msi -- most significant item (in an array) */
- /* msu -- most significant Unit (of coefficient) */
- /* rhs -- right hand side (operand, of an operation) */
- /* +ve -- positive */
- /* -ve -- negative */
- /* ** -- raise to the power */
- /* ------------------------------------------------------------------ */
- #include <stdlib.h> /* for malloc, free, etc. */
- /* #include <stdio.h> */ /* for printf [if needed] */
- #include <string.h> /* for strcpy */
- #include <ctype.h> /* for lower */
- #include "cmemory.h" /* for uprv_malloc, etc., in ICU */
- #include "decNumber.h" /* base number library */
- #include "decNumberLocal.h" /* decNumber local types, etc. */
- #include "uassert.h"
- /* Constants */
- /* Public lookup table used by the D2U macro */
- static const uByte d2utable[DECMAXD2U+1]=D2UTABLE;
- #define DECVERB 1 /* set to 1 for verbose DECCHECK */
- #define powers DECPOWERS /* old internal name */
- /* Local constants */
- #define DIVIDE 0x80 /* Divide operators */
- #define REMAINDER 0x40 /* .. */
- #define DIVIDEINT 0x20 /* .. */
- #define REMNEAR 0x10 /* .. */
- #define COMPARE 0x01 /* Compare operators */
- #define COMPMAX 0x02 /* .. */
- #define COMPMIN 0x03 /* .. */
- #define COMPTOTAL 0x04 /* .. */
- #define COMPNAN 0x05 /* .. [NaN processing] */
- #define COMPSIG 0x06 /* .. [signaling COMPARE] */
- #define COMPMAXMAG 0x07 /* .. */
- #define COMPMINMAG 0x08 /* .. */
- #define DEC_sNaN 0x40000000 /* local status: sNaN signal */
- #define BADINT (Int)0x80000000 /* most-negative Int; error indicator */
- /* Next two indicate an integer >= 10**6, and its parity (bottom bit) */
- #define BIGEVEN (Int)0x80000002
- #define BIGODD (Int)0x80000003
- static const Unit uarrone[1]={1}; /* Unit array of 1, used for incrementing */
- /* ------------------------------------------------------------------ */
- /* round-for-reround digits */
- /* ------------------------------------------------------------------ */
- #if 0
- static const uByte DECSTICKYTAB[10]={1,1,2,3,4,6,6,7,8,9}; /* used if sticky */
- #endif
- /* ------------------------------------------------------------------ */
- /* Powers of ten (powers[n]==10**n, 0<=n<=9) */
- /* ------------------------------------------------------------------ */
- static const uInt DECPOWERS[10]={1, 10, 100, 1000, 10000, 100000, 1000000,
- 10000000, 100000000, 1000000000};
- /* Granularity-dependent code */
- #if DECDPUN<=4
- #define eInt Int /* extended integer */
- #define ueInt uInt /* unsigned extended integer */
- /* Constant multipliers for divide-by-power-of five using reciprocal */
- /* multiply, after removing powers of 2 by shifting, and final shift */
- /* of 17 [we only need up to **4] */
- static const uInt multies[]={131073, 26215, 5243, 1049, 210};
- /* QUOT10 -- macro to return the quotient of unit u divided by 10**n */
- #define QUOT10(u, n) ((((uInt)(u)>>(n))*multies[n])>>17)
- #else
- /* For DECDPUN>4 non-ANSI-89 64-bit types are needed. */
- #if !DECUSE64
- #error decNumber.c: DECUSE64 must be 1 when DECDPUN>4
- #endif
- #define eInt Long /* extended integer */
- #define ueInt uLong /* unsigned extended integer */
- #endif
- /* Local routines */
- static decNumber * decAddOp(decNumber *, const decNumber *, const decNumber *,
- decContext *, uByte, uInt *);
- static Flag decBiStr(const char *, const char *, const char *);
- static uInt decCheckMath(const decNumber *, decContext *, uInt *);
- static void decApplyRound(decNumber *, decContext *, Int, uInt *);
- static Int decCompare(const decNumber *lhs, const decNumber *rhs, Flag);
- static decNumber * decCompareOp(decNumber *, const decNumber *,
- const decNumber *, decContext *,
- Flag, uInt *);
- static void decCopyFit(decNumber *, const decNumber *, decContext *,
- Int *, uInt *);
- static decNumber * decDecap(decNumber *, Int);
- static decNumber * decDivideOp(decNumber *, const decNumber *,
- const decNumber *, decContext *, Flag, uInt *);
- static decNumber * decExpOp(decNumber *, const decNumber *,
- decContext *, uInt *);
- static void decFinalize(decNumber *, decContext *, Int *, uInt *);
- static Int decGetDigits(Unit *, Int);
- static Int decGetInt(const decNumber *);
- static decNumber * decLnOp(decNumber *, const decNumber *,
- decContext *, uInt *);
- static decNumber * decMultiplyOp(decNumber *, const decNumber *,
- const decNumber *, decContext *,
- uInt *);
- static decNumber * decNaNs(decNumber *, const decNumber *,
- const decNumber *, decContext *, uInt *);
- static decNumber * decQuantizeOp(decNumber *, const decNumber *,
- const decNumber *, decContext *, Flag,
- uInt *);
- static void decReverse(Unit *, Unit *);
- static void decSetCoeff(decNumber *, decContext *, const Unit *,
- Int, Int *, uInt *);
- static void decSetMaxValue(decNumber *, decContext *);
- static void decSetOverflow(decNumber *, decContext *, uInt *);
- static void decSetSubnormal(decNumber *, decContext *, Int *, uInt *);
- static Int decShiftToLeast(Unit *, Int, Int);
- static Int decShiftToMost(Unit *, Int, Int);
- static void decStatus(decNumber *, uInt, decContext *);
- static void decToString(const decNumber *, char[], Flag);
- static decNumber * decTrim(decNumber *, decContext *, Flag, Flag, Int *);
- static Int decUnitAddSub(const Unit *, Int, const Unit *, Int, Int,
- Unit *, Int);
- static Int decUnitCompare(const Unit *, Int, const Unit *, Int, Int);
- #if !DECSUBSET
- /* decFinish == decFinalize when no subset arithmetic needed */
- #define decFinish(a,b,c,d) decFinalize(a,b,c,d)
- #else
- static void decFinish(decNumber *, decContext *, Int *, uInt *);
- static decNumber * decRoundOperand(const decNumber *, decContext *, uInt *);
- #endif
- /* Local macros */
- /* masked special-values bits */
- #define SPECIALARG (rhs->bits & DECSPECIAL)
- #define SPECIALARGS ((lhs->bits | rhs->bits) & DECSPECIAL)
- /* For use in ICU */
- #define malloc(a) uprv_malloc(a)
- #define free(a) uprv_free(a)
- /* Diagnostic macros, etc. */
- #if DECALLOC
- /* Handle malloc/free accounting. If enabled, our accountable routines */
- /* are used; otherwise the code just goes straight to the system malloc */
- /* and free routines. */
- #define malloc(a) decMalloc(a)
- #define free(a) decFree(a)
- #define DECFENCE 0x5a /* corruption detector */
- /* 'Our' malloc and free: */
- static void *decMalloc(size_t);
- static void decFree(void *);
- uInt decAllocBytes=0; /* count of bytes allocated */
- /* Note that DECALLOC code only checks for storage buffer overflow. */
- /* To check for memory leaks, the decAllocBytes variable must be */
- /* checked to be 0 at appropriate times (e.g., after the test */
- /* harness completes a set of tests). This checking may be unreliable */
- /* if the testing is done in a multi-thread environment. */
- #endif
- #if DECCHECK
- /* Optional checking routines. Enabling these means that decNumber */
- /* and decContext operands to operator routines are checked for */
- /* correctness. This roughly doubles the execution time of the */
- /* fastest routines (and adds 600+ bytes), so should not normally be */
- /* used in 'production'. */
- /* decCheckInexact is used to check that inexact results have a full */
- /* complement of digits (where appropriate -- this is not the case */
- /* for Quantize, for example) */
- #define DECUNRESU ((decNumber *)(void *)0xffffffff)
- #define DECUNUSED ((const decNumber *)(void *)0xffffffff)
- #define DECUNCONT ((decContext *)(void *)(0xffffffff))
- static Flag decCheckOperands(decNumber *, const decNumber *,
- const decNumber *, decContext *);
- static Flag decCheckNumber(const decNumber *);
- static void decCheckInexact(const decNumber *, decContext *);
- #endif
- #if DECTRACE || DECCHECK
- /* Optional trace/debugging routines (may or may not be used) */
- void decNumberShow(const decNumber *); /* displays the components of a number */
- static void decDumpAr(char, const Unit *, Int);
- #endif
- /* ================================================================== */
- /* Conversions */
- /* ================================================================== */
- /* ------------------------------------------------------------------ */
- /* from-int32 -- conversion from Int or uInt */
- /* */
- /* dn is the decNumber to receive the integer */
- /* in or uin is the integer to be converted */
- /* returns dn */
- /* */
- /* No error is possible. */
- /* ------------------------------------------------------------------ */
- U_CAPI decNumber * U_EXPORT2 uprv_decNumberFromInt32(decNumber *dn, Int in) {
- uInt unsig;
- if (in>=0) unsig=in;
- else { /* negative (possibly BADINT) */
- if (in==BADINT) unsig=(uInt)1073741824*2; /* special case */
- else unsig=-in; /* invert */
- }
- /* in is now positive */
- uprv_decNumberFromUInt32(dn, unsig);
- if (in<0) dn->bits=DECNEG; /* sign needed */
- return dn;
- } /* decNumberFromInt32 */
- U_CAPI decNumber * U_EXPORT2 uprv_decNumberFromUInt32(decNumber *dn, uInt uin) {
- Unit *up; /* work pointer */
- uprv_decNumberZero(dn); /* clean */
- if (uin==0) return dn; /* [or decGetDigits bad call] */
- for (up=dn->lsu; uin>0; up++) {
- *up=(Unit)(uin%(DECDPUNMAX+1));
- uin=uin/(DECDPUNMAX+1);
- }
- dn->digits=decGetDigits(dn->lsu, static_cast<int32_t>(up - dn->lsu));
- return dn;
- } /* decNumberFromUInt32 */
- /* ------------------------------------------------------------------ */
- /* to-int32 -- conversion to Int or uInt */
- /* */
- /* dn is the decNumber to convert */
- /* set is the context for reporting errors */
- /* returns the converted decNumber, or 0 if Invalid is set */
- /* */
- /* Invalid is set if the decNumber does not have exponent==0 or if */
- /* it is a NaN, Infinite, or out-of-range. */
- /* ------------------------------------------------------------------ */
- U_CAPI Int U_EXPORT2 uprv_decNumberToInt32(const decNumber *dn, decContext *set) {
- #if DECCHECK
- if (decCheckOperands(DECUNRESU, DECUNUSED, dn, set)) return 0;
- #endif
- /* special or too many digits, or bad exponent */
- if (dn->bits&DECSPECIAL || dn->digits>10 || dn->exponent!=0) ; /* bad */
- else { /* is a finite integer with 10 or fewer digits */
- Int d; /* work */
- const Unit *up; /* .. */
- uInt hi=0, lo; /* .. */
- up=dn->lsu; /* -> lsu */
- lo=*up; /* get 1 to 9 digits */
- #if DECDPUN>1 /* split to higher */
- hi=lo/10;
- lo=lo%10;
- #endif
- up++;
- /* collect remaining Units, if any, into hi */
- for (d=DECDPUN; d<dn->digits; up++, d+=DECDPUN) hi+=*up*powers[d-1];
- /* now low has the lsd, hi the remainder */
- if (hi>214748364 || (hi==214748364 && lo>7)) { /* out of range? */
- /* most-negative is a reprieve */
- if (dn->bits&DECNEG && hi==214748364 && lo==8) return 0x80000000;
- /* bad -- drop through */
- }
- else { /* in-range always */
- Int i=X10(hi)+lo;
- if (dn->bits&DECNEG) return -i;
- return i;
- }
- } /* integer */
- uprv_decContextSetStatus(set, DEC_Invalid_operation); /* [may not return] */
- return 0;
- } /* decNumberToInt32 */
- U_CAPI uInt U_EXPORT2 uprv_decNumberToUInt32(const decNumber *dn, decContext *set) {
- #if DECCHECK
- if (decCheckOperands(DECUNRESU, DECUNUSED, dn, set)) return 0;
- #endif
- /* special or too many digits, or bad exponent, or negative (<0) */
- if (dn->bits&DECSPECIAL || dn->digits>10 || dn->exponent!=0
- || (dn->bits&DECNEG && !ISZERO(dn))); /* bad */
- else { /* is a finite integer with 10 or fewer digits */
- Int d; /* work */
- const Unit *up; /* .. */
- uInt hi=0, lo; /* .. */
- up=dn->lsu; /* -> lsu */
- lo=*up; /* get 1 to 9 digits */
- #if DECDPUN>1 /* split to higher */
- hi=lo/10;
- lo=lo%10;
- #endif
- up++;
- /* collect remaining Units, if any, into hi */
- for (d=DECDPUN; d<dn->digits; up++, d+=DECDPUN) hi+=*up*powers[d-1];
- /* now low has the lsd, hi the remainder */
- if (hi>429496729 || (hi==429496729 && lo>5)) ; /* no reprieve possible */
- else return X10(hi)+lo;
- } /* integer */
- uprv_decContextSetStatus(set, DEC_Invalid_operation); /* [may not return] */
- return 0;
- } /* decNumberToUInt32 */
- /* ------------------------------------------------------------------ */
- /* to-scientific-string -- conversion to numeric string */
- /* to-engineering-string -- conversion to numeric string */
- /* */
- /* decNumberToString(dn, string); */
- /* decNumberToEngString(dn, string); */
- /* */
- /* dn is the decNumber to convert */
- /* string is the string where the result will be laid out */
- /* */
- /* string must be at least dn->digits+14 characters long */
- /* */
- /* No error is possible, and no status can be set. */
- /* ------------------------------------------------------------------ */
- U_CAPI char * U_EXPORT2 uprv_decNumberToString(const decNumber *dn, char *string){
- decToString(dn, string, 0);
- return string;
- } /* DecNumberToString */
- U_CAPI char * U_EXPORT2 uprv_decNumberToEngString(const decNumber *dn, char *string){
- decToString(dn, string, 1);
- return string;
- } /* DecNumberToEngString */
- /* ------------------------------------------------------------------ */
- /* to-number -- conversion from numeric string */
- /* */
- /* decNumberFromString -- convert string to decNumber */
- /* dn -- the number structure to fill */
- /* chars[] -- the string to convert ('\0' terminated) */
- /* set -- the context used for processing any error, */
- /* determining the maximum precision available */
- /* (set.digits), determining the maximum and minimum */
- /* exponent (set.emax and set.emin), determining if */
- /* extended values are allowed, and checking the */
- /* rounding mode if overflow occurs or rounding is */
- /* needed. */
- /* */
- /* The length of the coefficient and the size of the exponent are */
- /* checked by this routine, so the correct error (Underflow or */
- /* Overflow) can be reported or rounding applied, as necessary. */
- /* */
- /* If bad syntax is detected, the result will be a quiet NaN. */
- /* ------------------------------------------------------------------ */
- U_CAPI decNumber * U_EXPORT2 uprv_decNumberFromString(decNumber *dn, const char chars[],
- decContext *set) {
- Int exponent=0; /* working exponent [assume 0] */
- uByte bits=0; /* working flags [assume +ve] */
- Unit *res; /* where result will be built */
- Unit resbuff[SD2U(DECBUFFER+9)];/* local buffer in case need temporary */
- /* [+9 allows for ln() constants] */
- Unit *allocres=nullptr; /* -> allocated result, iff allocated */
- Int d=0; /* count of digits found in decimal part */
- const char *dotchar=nullptr; /* where dot was found */
- const char *cfirst=chars; /* -> first character of decimal part */
- const char *last=nullptr; /* -> last digit of decimal part */
- const char *c; /* work */
- Unit *up; /* .. */
- #if DECDPUN>1
- Int cut, out; /* .. */
- #endif
- Int residue; /* rounding residue */
- uInt status=0; /* error code */
- #if DECCHECK
- if (decCheckOperands(DECUNRESU, DECUNUSED, DECUNUSED, set))
- return uprv_decNumberZero(dn);
- #endif
- do { /* status & malloc protection */
- for (c=chars;; c++) { /* -> input character */
- if (*c>='0' && *c<='9') { /* test for Arabic digit */
- last=c;
- d++; /* count of real digits */
- continue; /* still in decimal part */
- }
- if (*c=='.' && dotchar==nullptr) { /* first '.' */
- dotchar=c; /* record offset into decimal part */
- if (c==cfirst) cfirst++; /* first digit must follow */
- continue;}
- if (c==chars) { /* first in string... */
- if (*c=='-') { /* valid - sign */
- cfirst++;
- bits=DECNEG;
- continue;}
- if (*c=='+') { /* valid + sign */
- cfirst++;
- continue;}
- }
- /* *c is not a digit, or a valid +, -, or '.' */
- break;
- } /* c */
- if (last==nullptr) { /* no digits yet */
- status=DEC_Conversion_syntax;/* assume the worst */
- if (*c=='\0') break; /* and no more to come... */
- #if DECSUBSET
- /* if subset then infinities and NaNs are not allowed */
- if (!set->extended) break; /* hopeless */
- #endif
- /* Infinities and NaNs are possible, here */
- if (dotchar!=nullptr) break; /* .. unless had a dot */
- uprv_decNumberZero(dn); /* be optimistic */
- if (decBiStr(c, "infinity", "INFINITY")
- || decBiStr(c, "inf", "INF")) {
- dn->bits=bits | DECINF;
- status=0; /* is OK */
- break; /* all done */
- }
- /* a NaN expected */
- /* 2003.09.10 NaNs are now permitted to have a sign */
- dn->bits=bits | DECNAN; /* assume simple NaN */
- if (*c=='s' || *c=='S') { /* looks like an sNaN */
- c++;
- dn->bits=bits | DECSNAN;
- }
- if (*c!='n' && *c!='N') break; /* check caseless "NaN" */
- c++;
- if (*c!='a' && *c!='A') break; /* .. */
- c++;
- if (*c!='n' && *c!='N') break; /* .. */
- c++;
- /* now either nothing, or nnnn payload, expected */
- /* -> start of integer and skip leading 0s [including plain 0] */
- for (cfirst=c; *cfirst=='0';) cfirst++;
- if (*cfirst=='\0') { /* "NaN" or "sNaN", maybe with all 0s */
- status=0; /* it's good */
- break; /* .. */
- }
- /* something other than 0s; setup last and d as usual [no dots] */
- for (c=cfirst;; c++, d++) {
- if (*c<'0' || *c>'9') break; /* test for Arabic digit */
- last=c;
- }
- if (*c!='\0') break; /* not all digits */
- if (d>set->digits-1) {
- /* [NB: payload in a decNumber can be full length unless */
- /* clamped, in which case can only be digits-1] */
- if (set->clamp) break;
- if (d>set->digits) break;
- } /* too many digits? */
- /* good; drop through to convert the integer to coefficient */
- status=0; /* syntax is OK */
- bits=dn->bits; /* for copy-back */
- } /* last==nullptr */
- else if (*c!='\0') { /* more to process... */
- /* had some digits; exponent is only valid sequence now */
- Flag nege; /* 1=negative exponent */
- const char *firstexp; /* -> first significant exponent digit */
- status=DEC_Conversion_syntax;/* assume the worst */
- if (*c!='e' && *c!='E') break;
- /* Found 'e' or 'E' -- now process explicit exponent */
- /* 1998.07.11: sign no longer required */
- nege=0;
- c++; /* to (possible) sign */
- if (*c=='-') {nege=1; c++;}
- else if (*c=='+') c++;
- if (*c=='\0') break;
- for (; *c=='0' && *(c+1)!='\0';) c++; /* strip insignificant zeros */
- firstexp=c; /* save exponent digit place */
- uInt uexponent = 0; /* Avoid undefined behavior on signed int overflow */
- for (; ;c++) {
- if (*c<'0' || *c>'9') break; /* not a digit */
- uexponent=X10(uexponent)+(uInt)*c-(uInt)'0';
- } /* c */
- exponent = (Int)uexponent;
- /* if not now on a '\0', *c must not be a digit */
- if (*c!='\0') break;
- /* (this next test must be after the syntax checks) */
- /* if it was too long the exponent may have wrapped, so check */
- /* carefully and set it to a certain overflow if wrap possible */
- if (c>=firstexp+9+1) {
- if (c>firstexp+9+1 || *firstexp>'1') exponent=DECNUMMAXE*2;
- /* [up to 1999999999 is OK, for example 1E-1000000998] */
- }
- if (nege) exponent=-exponent; /* was negative */
- status=0; /* is OK */
- } /* stuff after digits */
- /* Here when whole string has been inspected; syntax is good */
- /* cfirst->first digit (never dot), last->last digit (ditto) */
- /* strip leading zeros/dot [leave final 0 if all 0's] */
- if (*cfirst=='0') { /* [cfirst has stepped over .] */
- for (c=cfirst; c<last; c++, cfirst++) {
- if (*c=='.') continue; /* ignore dots */
- if (*c!='0') break; /* non-zero found */
- d--; /* 0 stripped */
- } /* c */
- #if DECSUBSET
- /* make a rapid exit for easy zeros if !extended */
- if (*cfirst=='0' && !set->extended) {
- uprv_decNumberZero(dn); /* clean result */
- break; /* [could be return] */
- }
- #endif
- } /* at least one leading 0 */
- /* Handle decimal point... */
- if (dotchar!=nullptr && dotchar<last) /* non-trailing '.' found? */
- exponent -= static_cast<int32_t>(last-dotchar); /* adjust exponent */
- /* [we can now ignore the .] */
- /* OK, the digits string is good. Assemble in the decNumber, or in */
- /* a temporary units array if rounding is needed */
- if (d<=set->digits) res=dn->lsu; /* fits into supplied decNumber */
- else { /* rounding needed */
- Int needbytes=D2U(d)*sizeof(Unit);/* bytes needed */
- res=resbuff; /* assume use local buffer */
- if (needbytes>(Int)sizeof(resbuff)) { /* too big for local */
- allocres=(Unit *)malloc(needbytes);
- if (allocres==nullptr) {status|=DEC_Insufficient_storage; break;}
- res=allocres;
- }
- }
- /* res now -> number lsu, buffer, or allocated storage for Unit array */
- /* Place the coefficient into the selected Unit array */
- /* [this is often 70% of the cost of this function when DECDPUN>1] */
- #if DECDPUN>1
- out=0; /* accumulator */
- up=res+D2U(d)-1; /* -> msu */
- cut=d-(up-res)*DECDPUN; /* digits in top unit */
- for (c=cfirst;; c++) { /* along the digits */
- if (*c=='.') continue; /* ignore '.' [don't decrement cut] */
- out=X10(out)+(Int)*c-(Int)'0';
- if (c==last) break; /* done [never get to trailing '.'] */
- cut--;
- if (cut>0) continue; /* more for this unit */
- *up=(Unit)out; /* write unit */
- up--; /* prepare for unit below.. */
- cut=DECDPUN; /* .. */
- out=0; /* .. */
- } /* c */
- *up=(Unit)out; /* write lsu */
- #else
- /* DECDPUN==1 */
- up=res; /* -> lsu */
- for (c=last; c>=cfirst; c--) { /* over each character, from least */
- if (*c=='.') continue; /* ignore . [don't step up] */
- *up=(Unit)((Int)*c-(Int)'0');
- up++;
- } /* c */
- #endif
- dn->bits=bits;
- dn->exponent=exponent;
- dn->digits=d;
- /* if not in number (too long) shorten into the number */
- if (d>set->digits) {
- residue=0;
- decSetCoeff(dn, set, res, d, &residue, &status);
- /* always check for overflow or subnormal and round as needed */
- decFinalize(dn, set, &residue, &status);
- }
- else { /* no rounding, but may still have overflow or subnormal */
- /* [these tests are just for performance; finalize repeats them] */
- if ((dn->exponent-1<set->emin-dn->digits)
- || (dn->exponent-1>set->emax-set->digits)) {
- residue=0;
- decFinalize(dn, set, &residue, &status);
- }
- }
- /* decNumberShow(dn); */
- } while(0); /* [for break] */
- if (allocres!=nullptr) free(allocres); /* drop any storage used */
- if (status!=0) decStatus(dn, status, set);
- return dn;
- } /* decNumberFromString */
- /* ================================================================== */
- /* Operators */
- /* ================================================================== */
- /* ------------------------------------------------------------------ */
- /* decNumberAbs -- absolute value operator */
- /* */
- /* This computes C = abs(A) */
- /* */
- /* res is C, the result. C may be A */
- /* rhs is A */
- /* set is the context */
- /* */
- /* See also decNumberCopyAbs for a quiet bitwise version of this. */
- /* C must have space for set->digits digits. */
- /* ------------------------------------------------------------------ */
- /* This has the same effect as decNumberPlus unless A is negative, */
- /* in which case it has the same effect as decNumberMinus. */
- /* ------------------------------------------------------------------ */
- U_CAPI decNumber * U_EXPORT2 uprv_decNumberAbs(decNumber *res, const decNumber *rhs,
- decContext *set) {
- decNumber dzero; /* for 0 */
- uInt status=0; /* accumulator */
- #if DECCHECK
- if (decCheckOperands(res, DECUNUSED, rhs, set)) return res;
- #endif
- uprv_decNumberZero(&dzero); /* set 0 */
- dzero.exponent=rhs->exponent; /* [no coefficient expansion] */
- decAddOp(res, &dzero, rhs, set, (uByte)(rhs->bits & DECNEG), &status);
- if (status!=0) decStatus(res, status, set);
- #if DECCHECK
- decCheckInexact(res, set);
- #endif
- return res;
- } /* decNumberAbs */
- /* ------------------------------------------------------------------ */
- /* decNumberAdd -- add two Numbers */
- /* */
- /* This computes C = A + B */
- /* */
- /* res is C, the result. C may be A and/or B (e.g., X=X+X) */
- /* lhs is A */
- /* rhs is B */
- /* set is the context */
- /* */
- /* C must have space for set->digits digits. */
- /* ------------------------------------------------------------------ */
- /* This just calls the routine shared with Subtract */
- U_CAPI decNumber * U_EXPORT2 uprv_decNumberAdd(decNumber *res, const decNumber *lhs,
- const decNumber *rhs, decContext *set) {
- uInt status=0; /* accumulator */
- decAddOp(res, lhs, rhs, set, 0, &status);
- if (status!=0) decStatus(res, status, set);
- #if DECCHECK
- decCheckInexact(res, set);
- #endif
- return res;
- } /* decNumberAdd */
- /* ------------------------------------------------------------------ */
- /* decNumberAnd -- AND two Numbers, digitwise */
- /* */
- /* This computes C = A & B */
- /* */
- /* res is C, the result. C may be A and/or B (e.g., X=X&X) */
- /* lhs is A */
- /* rhs is B */
- /* set is the context (used for result length and error report) */
- /* */
- /* C must have space for set->digits digits. */
- /* */
- /* Logical function restrictions apply (see above); a NaN is */
- /* returned with Invalid_operation if a restriction is violated. */
- /* ------------------------------------------------------------------ */
- U_CAPI decNumber * U_EXPORT2 uprv_decNumberAnd(decNumber *res, const decNumber *lhs,
- const decNumber *rhs, decContext *set) {
- const Unit *ua, *ub; /* -> operands */
- const Unit *msua, *msub; /* -> operand msus */
- Unit *uc, *msuc; /* -> result and its msu */
- Int msudigs; /* digits in res msu */
- #if DECCHECK
- if (decCheckOperands(res, lhs, rhs, set)) return res;
- #endif
- if (lhs->exponent!=0 || decNumberIsSpecial(lhs) || decNumberIsNegative(lhs)
- || rhs->exponent!=0 || decNumberIsSpecial(rhs) || decNumberIsNegative(rhs)) {
- decStatus(res, DEC_Invalid_operation, set);
- return res;
- }
- /* operands are valid */
- ua=lhs->lsu; /* bottom-up */
- ub=rhs->lsu; /* .. */
- uc=res->lsu; /* .. */
- msua=ua+D2U(lhs->digits)-1; /* -> msu of lhs */
- msub=ub+D2U(rhs->digits)-1; /* -> msu of rhs */
- msuc=uc+D2U(set->digits)-1; /* -> msu of result */
- msudigs=MSUDIGITS(set->digits); /* [faster than remainder] */
- for (; uc<=msuc; ua++, ub++, uc++) { /* Unit loop */
- Unit a, b; /* extract units */
- if (ua>msua) a=0;
- else a=*ua;
- if (ub>msub) b=0;
- else b=*ub;
- *uc=0; /* can now write back */
- if (a|b) { /* maybe 1 bits to examine */
- Int i, j;
- *uc=0; /* can now write back */
- /* This loop could be unrolled and/or use BIN2BCD tables */
- for (i=0; i<DECDPUN; i++) {
- if (a&b&1) *uc=*uc+(Unit)powers[i]; /* effect AND */
- j=a%10;
- a=a/10;
- j|=b%10;
- b=b/10;
- if (j>1) {
- decStatus(res, DEC_Invalid_operation, set);
- return res;
- }
- if (uc==msuc && i==msudigs-1) break; /* just did final digit */
- } /* each digit */
- } /* both OK */
- } /* each unit */
- /* [here uc-1 is the msu of the result] */
- res->digits=decGetDigits(res->lsu, static_cast<int32_t>(uc - res->lsu));
- res->exponent=0; /* integer */
- res->bits=0; /* sign=0 */
- return res; /* [no status to set] */
- } /* decNumberAnd */
- /* ------------------------------------------------------------------ */
- /* decNumberCompare -- compare two Numbers */
- /* */
- /* This computes C = A ? B */
- /* */
- /* res is C, the result. C may be A and/or B (e.g., X=X?X) */
- /* lhs is A */
- /* rhs is B */
- /* set is the context */
- /* */
- /* C must have space for one digit (or NaN). */
- /* ------------------------------------------------------------------ */
- U_CAPI decNumber * U_EXPORT2 uprv_decNumberCompare(decNumber *res, const decNumber *lhs,
- const decNumber *rhs, decContext *set) {
- uInt status=0; /* accumulator */
- decCompareOp(res, lhs, rhs, set, COMPARE, &status);
- if (status!=0) decStatus(res, status, set);
- return res;
- } /* decNumberCompare */
- /* ------------------------------------------------------------------ */
- /* decNumberCompareSignal -- compare, signalling on all NaNs */
- /* */
- /* This computes C = A ? B */
- /* */
- /* res is C, the result. C may be A and/or B (e.g., X=X?X) */
- /* lhs is A */
- /* rhs is B */
- /* set is the context */
- /* */
- /* C must have space for one digit (or NaN). */
- /* ------------------------------------------------------------------ */
- U_CAPI decNumber * U_EXPORT2 uprv_decNumberCompareSignal(decNumber *res, const decNumber *lhs,
- const decNumber *rhs, decContext *set) {
- uInt status=0; /* accumulator */
- decCompareOp(res, lhs, rhs, set, COMPSIG, &status);
- if (status!=0) decStatus(res, status, set);
- return res;
- } /* decNumberCompareSignal */
- /* ------------------------------------------------------------------ */
- /* decNumberCompareTotal -- compare two Numbers, using total ordering */
- /* */
- /* This computes C = A ? B, under total ordering */
- /* */
- /* res is C, the result. C may be A and/or B (e.g., X=X?X) */
- /* lhs is A */
- /* rhs is B */
- /* set is the context */
- /* */
- /* C must have space for one digit; the result will always be one of */
- /* -1, 0, or 1. */
- /* ------------------------------------------------------------------ */
- U_CAPI decNumber * U_EXPORT2 uprv_decNumberCompareTotal(decNumber *res, const decNumber *lhs,
- const decNumber *rhs, decContext *set) {
- uInt status=0; /* accumulator */
- decCompareOp(res, lhs, rhs, set, COMPTOTAL, &status);
- if (status!=0) decStatus(res, status, set);
- return res;
- } /* decNumberCompareTotal */
- /* ------------------------------------------------------------------ */
- /* decNumberCompareTotalMag -- compare, total ordering of magnitudes */
- /* */
- /* This computes C = |A| ? |B|, under total ordering */
- /* */
- /* res is C, the result. C may be A and/or B (e.g., X=X?X) */
- /* lhs is A */
- /* rhs is B */
- /* set is the context */
- /* */
- /* C must have space for one digit; the result will always be one of */
- /* -1, 0, or 1. */
- /* ------------------------------------------------------------------ */
- U_CAPI decNumber * U_EXPORT2 uprv_decNumberCompareTotalMag(decNumber *res, const decNumber *lhs,
- const decNumber *rhs, decContext *set) {
- uInt status=0; /* accumulator */
- uInt needbytes; /* for space calculations */
- decNumber bufa[D2N(DECBUFFER+1)];/* +1 in case DECBUFFER=0 */
- decNumber *allocbufa=nullptr; /* -> allocated bufa, iff allocated */
- decNumber bufb[D2N(DECBUFFER+1)];
- decNumber *allocbufb=nullptr; /* -> allocated bufb, iff allocated */
- decNumber *a, *b; /* temporary pointers */
- #if DECCHECK
- if (decCheckOperands(res, lhs, rhs, set)) return res;
- #endif
- do { /* protect allocated storage */
- /* if either is negative, take a copy and absolute */
- if (decNumberIsNegative(lhs)) { /* lhs<0 */
- a=bufa;
- needbytes=sizeof(decNumber)+(D2U(lhs->digits)-1)*sizeof(Unit);
- if (needbytes>sizeof(bufa)) { /* need malloc space */
- allocbufa=(decNumber *)malloc(needbytes);
- if (allocbufa==nullptr) { /* hopeless -- abandon */
- status|=DEC_Insufficient_storage;
- break;}
- a=allocbufa; /* use the allocated space */
- }
- uprv_decNumberCopy(a, lhs); /* copy content */
- a->bits&=~DECNEG; /* .. and clear the sign */
- lhs=a; /* use copy from here on */
- }
- if (decNumberIsNegative(rhs)) { /* rhs<0 */
- b=bufb;
- needbytes=sizeof(decNumber)+(D2U(rhs->digits)-1)*sizeof(Unit);
- if (needbytes>sizeof(bufb)) { /* need malloc space */
- allocbufb=(decNumber *)malloc(needbytes);
- if (allocbufb==nullptr) { /* hopeless -- abandon */
- status|=DEC_Insufficient_storage;
- break;}
- b=allocbufb; /* use the allocated space */
- }
- uprv_decNumberCopy(b, rhs); /* copy content */
- b->bits&=~DECNEG; /* .. and clear the sign */
- rhs=b; /* use copy from here on */
- }
- decCompareOp(res, lhs, rhs, set, COMPTOTAL, &status);
- } while(0); /* end protected */
- if (allocbufa!=nullptr) free(allocbufa); /* drop any storage used */
- if (allocbufb!=nullptr) free(allocbufb); /* .. */
- if (status!=0) decStatus(res, status, set);
- return res;
- } /* decNumberCompareTotalMag */
- /* ------------------------------------------------------------------ */
- /* decNumberDivide -- divide one number by another */
- /* */
- /* This computes C = A / B */
- /* */
- /* res is C, the result. C may be A and/or B (e.g., X=X/X) */
- /* lhs is A */
- /* rhs is B */
- /* set is the context */
- /* */
- /* C must have space for set->digits digits. */
- /* ------------------------------------------------------------------ */
- U_CAPI decNumber * U_EXPORT2 uprv_decNumberDivide(decNumber *res, const decNumber *lhs,
- const decNumber *rhs, decContext *set) {
- uInt status=0; /* accumulator */
- decDivideOp(res, lhs, rhs, set, DIVIDE, &status);
- if (status!=0) decStatus(res, status, set);
- #if DECCHECK
- decCheckInexact(res, set);
- #endif
- return res;
- } /* decNumberDivide */
- /* ------------------------------------------------------------------ */
- /* decNumberDivideInteger -- divide and return integer quotient */
- /* */
- /* This computes C = A # B, where # is the integer divide operator */
- /* */
- /* res is C, the result. C may be A and/or B (e.g., X=X#X) */
- /* lhs is A */
- /* rhs is B */
- /* set is the context */
- /* */
- /* C must have space for set->digits digits. */
- /* ------------------------------------------------------------------ */
- U_CAPI decNumber * U_EXPORT2 uprv_decNumberDivideInteger(decNumber *res, const decNumber *lhs,
- const decNumber *rhs, decContext *set) {
- uInt status=0; /* accumulator */
- decDivideOp(res, lhs, rhs, set, DIVIDEINT, &status);
- if (status!=0) decStatus(res, status, set);
- return res;
- } /* decNumberDivideInteger */
- /* ------------------------------------------------------------------ */
- /* decNumberExp -- exponentiation */
- /* */
- /* This computes C = exp(A) */
- /* */
- /* res is C, the result. C may be A */
- /* rhs is A */
- /* set is the context; note that rounding mode has no effect */
- /* */
- /* C must have space for set->digits digits. */
- /* */
- /* Mathematical function restrictions apply (see above); a NaN is */
- /* returned with Invalid_operation if a restriction is violated. */
- /* */
- /* Finite results will always be full precision and Inexact, except */
- /* when A is a zero or -Infinity (giving 1 or 0 respectively). */
- /* */
- /* An Inexact result is rounded using DEC_ROUND_HALF_EVEN; it will */
- /* almost always be correctly rounded, but may be up to 1 ulp in */
- /* error in rare cases. */
- /* ------------------------------------------------------------------ */
- /* This is a wrapper for decExpOp which can handle the slightly wider */
- /* (double) range needed by Ln (which has to be able to calculate */
- /* exp(-a) where a can be the tiniest number (Ntiny). */
- /* ------------------------------------------------------------------ */
- U_CAPI decNumber * U_EXPORT2 uprv_decNumberExp(decNumber *res, const decNumber *rhs,
- decContext *set) {
- uInt status=0; /* accumulator */
- #if DECSUBSET
- decNumber *allocrhs=nullptr; /* non-nullptr if rounded rhs allocated */
- #endif
- #if DECCHECK
- if (decCheckOperands(res, DECUNUSED, rhs, set)) return res;
- #endif
- /* Check restrictions; these restrictions ensure that if h=8 (see */
- /* decExpOp) then the result will either overflow or underflow to 0. */
- /* Other math functions restrict the input range, too, for inverses. */
- /* If not violated then carry out the operation. */
- if (!decCheckMath(rhs, set, &status)) do { /* protect allocation */
- #if DECSUBSET
- if (!set->extended) {
- /* reduce operand and set lostDigits status, as needed */
- if (rhs->digits>set->digits) {
- allocrhs=decRoundOperand(rhs, set, &status);
- if (allocrhs==nullptr) break;
- rhs=allocrhs;
- }
- }
- #endif
- decExpOp(res, rhs, set, &status);
- } while(0); /* end protected */
- #if DECSUBSET
- if (allocrhs !=nullptr) free(allocrhs); /* drop any storage used */
- #endif
- /* apply significant status */
- if (status!=0) decStatus(res, status, set);
- #if DECCHECK
- decCheckInexact(res, set);
- #endif
- return res;
- } /* decNumberExp */
- /* ------------------------------------------------------------------ */
- /* decNumberFMA -- fused multiply add */
- /* */
- /* This computes D = (A * B) + C with only one rounding */
- /* */
- /* res is D, the result. D may be A or B or C (e.g., X=FMA(X,X,X)) */
- /* lhs is A */
- /* rhs is B */
- /* fhs is C [far hand side] */
- /* set is the context */
- /* */
- /* Mathematical function restrictions apply (see above); a NaN is */
- /* returned with Invalid_operation if a restriction is violated. */
- /* */
- /* C must have space for set->digits digits. */
- /* ------------------------------------------------------------------ */
- U_CAPI decNumber * U_EXPORT2 uprv_decNumberFMA(decNumber *res, const decNumber *lhs,
- const decNumber *rhs, const decNumber *fhs,
- decContext *set) {
- uInt status=0; /* accumulator */
- decContext dcmul; /* context for the multiplication */
- uInt needbytes; /* for space calculations */
- decNumber bufa[D2N(DECBUFFER*2+1)];
- decNumber *allocbufa=nullptr; /* -> allocated bufa, iff allocated */
- decNumber *acc; /* accumulator pointer */
- decNumber dzero; /* work */
- #if DECCHECK
- if (decCheckOperands(res, lhs, rhs, set)) return res;
- if (decCheckOperands(res, fhs, DECUNUSED, set)) return res;
- #endif
- do { /* protect allocated storage */
- #if DECSUBSET
- if (!set->extended) { /* [undefined if subset] */
- status|=DEC_Invalid_operation;
- break;}
- #endif
- /* Check math restrictions [these ensure no overflow or underflow] */
- if ((!decNumberIsSpecial(lhs) && decCheckMath(lhs, set, &status))
- || (!decNumberIsSpecial(rhs) && decCheckMath(rhs, set, &status))
- || (!decNumberIsSpecial(fhs) && decCheckMath(fhs, set, &status))) break;
- /* set up context for multiply */
- dcmul=*set;
- dcmul.digits=lhs->digits+rhs->digits; /* just enough */
- /* [The above may be an over-estimate for subset arithmetic, but that's OK] */
- dcmul.emax=DEC_MAX_EMAX; /* effectively unbounded .. */
- dcmul.emin=DEC_MIN_EMIN; /* [thanks to Math restrictions] */
- /* set up decNumber space to receive the result of the multiply */
- acc=bufa; /* may fit */
- needbytes=sizeof(decNumber)+(D2U(dcmul.digits)-1)*sizeof(Unit);
- if (needbytes>sizeof(bufa)) { /* need malloc space */
- allocbufa=(decNumber *)malloc(needbytes);
- if (allocbufa==nullptr) { /* hopeless -- abandon */
- status|=DEC_Insufficient_storage;
- break;}
- acc=allocbufa; /* use the allocated space */
- }
- /* multiply with extended range and necessary precision */
- /*printf("emin=%ld\n", dcmul.emin); */
- decMultiplyOp(acc, lhs, rhs, &dcmul, &status);
- /* Only Invalid operation (from sNaN or Inf * 0) is possible in */
- /* status; if either is seen than ignore fhs (in case it is */
- /* another sNaN) and set acc to NaN unless we had an sNaN */
- /* [decMultiplyOp leaves that to caller] */
- /* Note sNaN has to go through addOp to shorten payload if */
- /* necessary */
- if ((status&DEC_Invalid_operation)!=0) {
- if (!(status&DEC_sNaN)) { /* but be true invalid */
- uprv_decNumberZero(res); /* acc not yet set */
- res->bits=DECNAN;
- break;
- }
- uprv_decNumberZero(&dzero); /* make 0 (any non-NaN would do) */
- fhs=&dzero; /* use that */
- }
- #if DECCHECK
- else { /* multiply was OK */
- if (status!=0) printf("Status=%08lx after FMA multiply\n", (LI)status);
- }
- #endif
- /* add the third operand and result -> res, and all is done */
- decAddOp(res, acc, fhs, set, 0, &status);
- } while(0); /* end protected */
- if (allocbufa!=nullptr) free(allocbufa); /* drop any storage used */
- if (status!=0) decStatus(res, status, set);
- #if DECCHECK
- decCheckInexact(res, set);
- #endif
- return res;
- } /* decNumberFMA */
- /* ------------------------------------------------------------------ */
- /* decNumberInvert -- invert a Number, digitwise */
- /* */
- /* This computes C = ~A */
- /* */
- /* res is C, the result. C may be A (e.g., X=~X) */
- /* rhs is A */
- /* set is the context (used for result length and error report) */
- /* */
- /* C must have space for set->digits digits. */
- /* */
- /* Logical function restrictions apply (see above); a NaN is */
- /* returned with Invalid_operation if a restriction is violated. */
- /* ------------------------------------------------------------------ */
- U_CAPI decNumber * U_EXPORT2 uprv_decNumberInvert(decNumber *res, const decNumber *rhs,
- decContext *set) {
- const Unit *ua, *msua; /* -> operand and its msu */
- Unit *uc, *msuc; /* -> result and its msu */
- Int msudigs; /* digits in res msu */
- #if DECCHECK
- if (decCheckOperands(res, DECUNUSED, rhs, set)) return res;
- #endif
- if (rhs->exponent!=0 || decNumberIsSpecial(rhs) || decNumberIsNegative(rhs)) {
- decStatus(res, DEC_Invalid_operation, set);
- return res;
- }
- /* operand is valid */
- ua=rhs->lsu; /* bottom-up */
- uc=res->lsu; /* .. */
- msua=ua+D2U(rhs->digits)-1; /* -> msu of rhs */
- msuc=uc+D2U(set->digits)-1; /* -> msu of result */
- msudigs=MSUDIGITS(set->digits); /* [faster than remainder] */
- for (; uc<=msuc; ua++, uc++) { /* Unit loop */
- Unit a; /* extract unit */
- Int i, j; /* work */
- if (ua>msua) a=0;
- else a=*ua;
- *uc=0; /* can now write back */
- /* always need to examine all bits in rhs */
- /* This loop could be unrolled and/or use BIN2BCD tables */
- for (i=0; i<DECDPUN; i++) {
- if ((~a)&1) *uc=*uc+(Unit)powers[i]; /* effect INVERT */
- j=a%10;
- a=a/10;
- if (j>1) {
- decStatus(res, DEC_Invalid_operation, set);
- return res;
- }
- if (uc==msuc && i==msudigs-1) break; /* just did final digit */
- } /* each digit */
- } /* each unit */
- /* [here uc-1 is the msu of the result] */
- res->digits=decGetDigits(res->lsu, static_cast<int32_t>(uc - res->lsu));
- res->exponent=0; /* integer */
- res->bits=0; /* sign=0 */
- return res; /* [no status to set] */
- } /* decNumberInvert */
- /* ------------------------------------------------------------------ */
- /* decNumberLn -- natural logarithm */
- /* */
- /* This computes C = ln(A) */
- /* */
- /* res is C, the result. C may be A */
- /* rhs is A */
- /* set is the context; note that rounding mode has no effect */
- /* */
- /* C must have space for set->digits digits. */
- /* */
- /* Notable cases: */
- /* A<0 -> Invalid */
- /* A=0 -> -Infinity (Exact) */
- /* A=+Infinity -> +Infinity (Exact) */
- /* A=1 exactly -> 0 (Exact) */
- /* */
- /* Mathematical function restrictions apply (see above); a NaN is */
- /* returned with Invalid_operation if a restriction is violated. */
- /* */
- /* An Inexact result is rounded using DEC_ROUND_HALF_EVEN; it will */
- /* almost always be correctly rounded, but may be up to 1 ulp in */
- /* error in rare cases. */
- /* ------------------------------------------------------------------ */
- /* This is a wrapper for decLnOp which can handle the slightly wider */
- /* (+11) range needed by Ln, Log10, etc. (which may have to be able */
- /* to calculate at p+e+2). */
- /* ------------------------------------------------------------------ */
- U_CAPI decNumber * U_EXPORT2 uprv_decNumberLn(decNumber *res, const decNumber *rhs,
- decContext *set) {
- uInt status=0; /* accumulator */
- #if DECSUBSET
- decNumber *allocrhs=nullptr; /* non-nullptr if rounded rhs allocated */
- #endif
- #if DECCHECK
- if (decCheckOperands(res, DECUNUSED, rhs, set)) return res;
- #endif
- /* Check restrictions; this is a math function; if not violated */
- /* then carry out the operation. */
- if (!decCheckMath(rhs, set, &status)) do { /* protect allocation */
- #if DECSUBSET
- if (!set->extended) {
- /* reduce operand and set lostDigits status, as needed */
- if (rhs->digits>set->digits) {
- allocrhs=decRoundOperand(rhs, set, &status);
- if (allocrhs==nullptr) break;
- rhs=allocrhs;
- }
- /* special check in subset for rhs=0 */
- if (ISZERO(rhs)) { /* +/- zeros -> error */
- status|=DEC_Invalid_operation;
- break;}
- } /* extended=0 */
- #endif
- decLnOp(res, rhs, set, &status);
- } while(0); /* end protected */
- #if DECSUBSET
- if (allocrhs !=nullptr) free(allocrhs); /* drop any storage used */
- #endif
- /* apply significant status */
- if (status!=0) decStatus(res, status, set);
- #if DECCHECK
- decCheckInexact(res, set);
- #endif
- return res;
- } /* decNumberLn */
- /* ------------------------------------------------------------------ */
- /* decNumberLogB - get adjusted exponent, by 754 rules */
- /* */
- /* This computes C = adjustedexponent(A) */
- /* */
- /* res is C, the result. C may be A */
- /* rhs is A */
- /* set is the context, used only for digits and status */
- /* */
- /* C must have space for 10 digits (A might have 10**9 digits and */
- /* an exponent of +999999999, or one digit and an exponent of */
- /* -1999999999). */
- /* */
- /* This returns the adjusted exponent of A after (in theory) padding */
- /* with zeros on the right to set->digits digits while keeping the */
- /* same value. The exponent is not limited by emin/emax. */
- /* */
- /* Notable cases: */
- /* A<0 -> Use |A| */
- /* A=0 -> -Infinity (Division by zero) */
- /* A=Infinite -> +Infinity (Exact) */
- /* A=1 exactly -> 0 (Exact) */
- /* NaNs are propagated as usual */
- /* ------------------------------------------------------------------ */
- U_CAPI decNumber * U_EXPORT2 uprv_decNumberLogB(decNumber *res, const decNumber *rhs,
- decContext *set) {
- uInt status=0; /* accumulator */
- #if DECCHECK
- if (decCheckOperands(res, DECUNUSED, rhs, set)) return res;
- #endif
- /* NaNs as usual; Infinities return +Infinity; 0->oops */
- if (decNumberIsNaN(rhs)) decNaNs(res, rhs, nullptr, set, &status);
- else if (decNumberIsInfinite(rhs)) uprv_decNumberCopyAbs(res, rhs);
- else if (decNumberIsZero(rhs)) {
- uprv_decNumberZero(res); /* prepare for Infinity */
- res->bits=DECNEG|DECINF; /* -Infinity */
- status|=DEC_Division_by_zero; /* as per 754 */
- }
- else { /* finite non-zero */
- Int ae=rhs->exponent+rhs->digits-1; /* adjusted exponent */
- uprv_decNumberFromInt32(res, ae); /* lay it out */
- }
- if (status!=0) decStatus(res, status, set);
- return res;
- } /* decNumberLogB */
- /* ------------------------------------------------------------------ */
- /* decNumberLog10 -- logarithm in base 10 */
- /* */
- /* This computes C = log10(A) */
- /* */
- /* res is C, the result. C may be A */
- /* rhs is A */
- /* set is the context; note that rounding mode has no effect */
- /* */
- /* C must have space for set->digits digits. */
- /* */
- /* Notable cases: */
- /* A<0 -> Invalid */
- /* A=0 -> -Infinity (Exact) */
- /* A=+Infinity -> +Infinity (Exact) */
- /* A=10**n (if n is an integer) -> n (Exact) */
- /* */
- /* Mathematical function restrictions apply (see above); a NaN is */
- /* returned with Invalid_operation if a restriction is violated. */
- /* */
- /* An Inexact result is rounded using DEC_ROUND_HALF_EVEN; it will */
- /* almost always be correctly rounded, but may be up to 1 ulp in */
- /* error in rare cases. */
- /* ------------------------------------------------------------------ */
- /* This calculates ln(A)/ln(10) using appropriate precision. For */
- /* ln(A) this is the max(p, rhs->digits + t) + 3, where p is the */
- /* requested digits and t is the number of digits in the exponent */
- /* (maximum 6). For ln(10) it is p + 3; this is often handled by the */
- /* fastpath in decLnOp. The final division is done to the requested */
- /* precision. */
- /* ------------------------------------------------------------------ */
- #if defined(__clang__) || U_GCC_MAJOR_MINOR >= 406
- #pragma GCC diagnostic push
- #pragma GCC diagnostic ignored "-Warray-bounds"
- #endif
- U_CAPI decNumber * U_EXPORT2 uprv_decNumberLog10(decNumber *res, const decNumber *rhs,
- decContext *set) {
- uInt status=0, ignore=0; /* status accumulators */
- uInt needbytes; /* for space calculations */
- Int p; /* working precision */
- Int t; /* digits in exponent of A */
- /* buffers for a and b working decimals */
- /* (adjustment calculator, same size) */
- decNumber bufa[D2N(DECBUFFER+2)];
- decNumber *allocbufa=nullptr; /* -> allocated bufa, iff allocated */
- decNumber *a=bufa; /* temporary a */
- decNumber bufb[D2N(DECBUFFER+2)];
- decNumber *allocbufb=nullptr; /* -> allocated bufb, iff allocated */
- decNumber *b=bufb; /* temporary b */
- decNumber bufw[D2N(10)]; /* working 2-10 digit number */
- decNumber *w=bufw; /* .. */
- #if DECSUBSET
- decNumber *allocrhs=nullptr; /* non-nullptr if rounded rhs allocated */
- #endif
- decContext aset; /* working context */
- #if DECCHECK
- if (decCheckOperands(res, DECUNUSED, rhs, set)) return res;
- #endif
- /* Check restrictions; this is a math function; if not violated */
- /* then carry out the operation. */
- if (!decCheckMath(rhs, set, &status)) do { /* protect malloc */
- #if DECSUBSET
- if (!set->extended) {
- /* reduce operand and set lostDigits status, as needed */
- if (rhs->digits>set->digits) {
- allocrhs=decRoundOperand(rhs, set, &status);
- if (allocrhs==nullptr) break;
- rhs=allocrhs;
- }
- /* special check in subset for rhs=0 */
- if (ISZERO(rhs)) { /* +/- zeros -> error */
- status|=DEC_Invalid_operation;
- break;}
- } /* extended=0 */
- #endif
- uprv_decContextDefault(&aset, DEC_INIT_DECIMAL64); /* clean context */
- /* handle exact powers of 10; only check if +ve finite */
- if (!(rhs->bits&(DECNEG|DECSPECIAL)) && !ISZERO(rhs)) {
- Int residue=0; /* (no residue) */
- uInt copystat=0; /* clean status */
- /* round to a single digit... */
- aset.digits=1;
- decCopyFit(w, rhs, &aset, &residue, ©stat); /* copy & shorten */
- /* if exact and the digit is 1, rhs is a power of 10 */
- if (!(copystat&DEC_Inexact) && w->lsu[0]==1) {
- /* the exponent, conveniently, is the power of 10; making */
- /* this the result needs a little care as it might not fit, */
- /* so first convert it into the working number, and then move */
- /* to res */
- uprv_decNumberFromInt32(w, w->exponent);
- residue=0;
- decCopyFit(res, w, set, &residue, &status); /* copy & round */
- decFinish(res, set, &residue, &status); /* cleanup/set flags */
- break;
- } /* not a power of 10 */
- } /* not a candidate for exact */
- /* simplify the information-content calculation to use 'total */
- /* number of digits in a, including exponent' as compared to the */
- /* requested digits, as increasing this will only rarely cost an */
- /* iteration in ln(a) anyway */
- t=6; /* it can never be >6 */
- /* allocate space when needed... */
- p=(rhs->digits+t>set->digits?rhs->digits+t:set->digits)+3;
- needbytes=sizeof(decNumber)+(D2U(p)-1)*sizeof(Unit);
- if (needbytes>sizeof(bufa)) { /* need malloc space */
- allocbufa=(decNumber *)malloc(needbytes);
- if (allocbufa==nullptr) { /* hopeless -- abandon */
- status|=DEC_Insufficient_storage;
- break;}
- a=allocbufa; /* use the allocated space */
- }
- aset.digits=p; /* as calculated */
- aset.emax=DEC_MAX_MATH; /* usual bounds */
- aset.emin=-DEC_MAX_MATH; /* .. */
- aset.clamp=0; /* and no concrete format */
- decLnOp(a, rhs, &aset, &status); /* a=ln(rhs) */
- /* skip the division if the result so far is infinite, NaN, or */
- /* zero, or there was an error; note NaN from sNaN needs copy */
- if (status&DEC_NaNs && !(status&DEC_sNaN)) break;
- if (a->bits&DECSPECIAL || ISZERO(a)) {
- uprv_decNumberCopy(res, a); /* [will fit] */
- break;}
- /* for ln(10) an extra 3 digits of precision are needed */
- p=set->digits+3;
- needbytes=sizeof(decNumber)+(D2U(p)-1)*sizeof(Unit);
- if (needbytes>sizeof(bufb)) { /* need malloc space */
- allocbufb=(decNumber *)malloc(needbytes);
- if (allocbufb==nullptr) { /* hopeless -- abandon */
- status|=DEC_Insufficient_storage;
- break;}
- b=allocbufb; /* use the allocated space */
- }
- uprv_decNumberZero(w); /* set up 10... */
- #if DECDPUN==1
- w->lsu[1]=1; w->lsu[0]=0; /* .. */
- #else
- w->lsu[0]=10; /* .. */
- #endif
- w->digits=2; /* .. */
- aset.digits=p;
- decLnOp(b, w, &aset, &ignore); /* b=ln(10) */
- aset.digits=set->digits; /* for final divide */
- decDivideOp(res, a, b, &aset, DIVIDE, &status); /* into result */
- } while(0); /* [for break] */
- if (allocbufa!=nullptr) free(allocbufa); /* drop any storage used */
- if (allocbufb!=nullptr) free(allocbufb); /* .. */
- #if DECSUBSET
- if (allocrhs !=nullptr) free(allocrhs); /* .. */
- #endif
- /* apply significant status */
- if (status!=0) decStatus(res, status, set);
- #if DECCHECK
- decCheckInexact(res, set);
- #endif
- return res;
- } /* decNumberLog10 */
- #if defined(__clang__) || U_GCC_MAJOR_MINOR >= 406
- #pragma GCC diagnostic pop
- #endif
- /* ------------------------------------------------------------------ */
- /* decNumberMax -- compare two Numbers and return the maximum */
- /* */
- /* This computes C = A ? B, returning the maximum by 754 rules */
- /* */
- /* res is C, the result. C may be A and/or B (e.g., X=X?X) */
- /* lhs is A */
- /* rhs is B */
- /* set is the context */
- /* */
- /* C must have space for set->digits digits. */
- /* ------------------------------------------------------------------ */
- U_CAPI decNumber * U_EXPORT2 uprv_decNumberMax(decNumber *res, const decNumber *lhs,
- const decNumber *rhs, decContext *set) {
- uInt status=0; /* accumulator */
- decCompareOp(res, lhs, rhs, set, COMPMAX, &status);
- if (status!=0) decStatus(res, status, set);
- #if DECCHECK
- decCheckInexact(res, set);
- #endif
- return res;
- } /* decNumberMax */
- /* ------------------------------------------------------------------ */
- /* decNumberMaxMag -- compare and return the maximum by magnitude */
- /* */
- /* This computes C = A ? B, returning the maximum by 754 rules */
- /* */
- /* res is C, the result. C may be A and/or B (e.g., X=X?X) */
- /* lhs is A */
- /* rhs is B */
- /* set is the context */
- /* */
- /* C must have space for set->digits digits. */
- /* ------------------------------------------------------------------ */
- U_CAPI decNumber * U_EXPORT2 uprv_decNumberMaxMag(decNumber *res, const decNumber *lhs,
- const decNumber *rhs, decContext *set) {
- uInt status=0; /* accumulator */
- decCompareOp(res, lhs, rhs, set, COMPMAXMAG, &status);
- if (status!=0) decStatus(res, status, set);
- #if DECCHECK
- decCheckInexact(res, set);
- #endif
- return res;
- } /* decNumberMaxMag */
- /* ------------------------------------------------------------------ */
- /* decNumberMin -- compare two Numbers and return the minimum */
- /* */
- /* This computes C = A ? B, returning the minimum by 754 rules */
- /* */
- /* res is C, the result. C may be A and/or B (e.g., X=X?X) */
- /* lhs is A */
- /* rhs is B */
- /* set is the context */
- /* */
- /* C must have space for set->digits digits. */
- /* ------------------------------------------------------------------ */
- U_CAPI decNumber * U_EXPORT2 uprv_decNumberMin(decNumber *res, const decNumber *lhs,
- const decNumber *rhs, decContext *set) {
- uInt status=0; /* accumulator */
- decCompareOp(res, lhs, rhs, set, COMPMIN, &status);
- if (status!=0) decStatus(res, status, set);
- #if DECCHECK
- decCheckInexact(res, set);
- #endif
- return res;
- } /* decNumberMin */
- /* ------------------------------------------------------------------ */
- /* decNumberMinMag -- compare and return the minimum by magnitude */
- /* */
- /* This computes C = A ? B, returning the minimum by 754 rules */
- /* */
- /* res is C, the result. C may be A and/or B (e.g., X=X?X) */
- /* lhs is A */
- /* rhs is B */
- /* set is the context */
- /* */
- /* C must have space for set->digits digits. */
- /* ------------------------------------------------------------------ */
- U_CAPI decNumber * U_EXPORT2 uprv_decNumberMinMag(decNumber *res, const decNumber *lhs,
- const decNumber *rhs, decContext *set) {
- uInt status=0; /* accumulator */
- decCompareOp(res, lhs, rhs, set, COMPMINMAG, &status);
- if (status!=0) decStatus(res, status, set);
- #if DECCHECK
- decCheckInexact(res, set);
- #endif
- return res;
- } /* decNumberMinMag */
- /* ------------------------------------------------------------------ */
- /* decNumberMinus -- prefix minus operator */
- /* */
- /* This computes C = 0 - A */
- /* */
- /* res is C, the result. C may be A */
- /* rhs is A */
- /* set is the context */
- /* */
- /* See also decNumberCopyNegate for a quiet bitwise version of this. */
- /* C must have space for set->digits digits. */
- /* ------------------------------------------------------------------ */
- /* Simply use AddOp for the subtract, which will do the necessary. */
- /* ------------------------------------------------------------------ */
- U_CAPI decNumber * U_EXPORT2 uprv_decNumberMinus(decNumber *res, const decNumber *rhs,
- decContext *set) {
- decNumber dzero;
- uInt status=0; /* accumulator */
- #if DECCHECK
- if (decCheckOperands(res, DECUNUSED, rhs, set)) return res;
- #endif
- uprv_decNumberZero(&dzero); /* make 0 */
- dzero.exponent=rhs->exponent; /* [no coefficient expansion] */
- decAddOp(res, &dzero, rhs, set, DECNEG, &status);
- if (status!=0) decStatus(res, status, set);
- #if DECCHECK
- decCheckInexact(res, set);
- #endif
- return res;
- } /* decNumberMinus */
- /* ------------------------------------------------------------------ */
- /* decNumberNextMinus -- next towards -Infinity */
- /* */
- /* This computes C = A - infinitesimal, rounded towards -Infinity */
- /* */
- /* res is C, the result. C may be A */
- /* rhs is A */
- /* set is the context */
- /* */
- /* This is a generalization of 754 NextDown. */
- /* ------------------------------------------------------------------ */
- U_CAPI decNumber * U_EXPORT2 uprv_decNumberNextMinus(decNumber *res, const decNumber *rhs,
- decContext *set) {
- decNumber dtiny; /* constant */
- decContext workset=*set; /* work */
- uInt status=0; /* accumulator */
- #if DECCHECK
- if (decCheckOperands(res, DECUNUSED, rhs, set)) return res;
- #endif
- /* +Infinity is the special case */
- if ((rhs->bits&(DECINF|DECNEG))==DECINF) {
- decSetMaxValue(res, set); /* is +ve */
- /* there is no status to set */
- return res;
- }
- uprv_decNumberZero(&dtiny); /* start with 0 */
- dtiny.lsu[0]=1; /* make number that is .. */
- dtiny.exponent=DEC_MIN_EMIN-1; /* .. smaller than tiniest */
- workset.round=DEC_ROUND_FLOOR;
- decAddOp(res, rhs, &dtiny, &workset, DECNEG, &status);
- status&=DEC_Invalid_operation|DEC_sNaN; /* only sNaN Invalid please */
- if (status!=0) decStatus(res, status, set);
- return res;
- } /* decNumberNextMinus */
- /* ------------------------------------------------------------------ */
- /* decNumberNextPlus -- next towards +Infinity */
- /* */
- /* This computes C = A + infinitesimal, rounded towards +Infinity */
- /* */
- /* res is C, the result. C may be A */
- /* rhs is A */
- /* set is the context */
- /* */
- /* This is a generalization of 754 NextUp. */
- /* ------------------------------------------------------------------ */
- U_CAPI decNumber * U_EXPORT2 uprv_decNumberNextPlus(decNumber *res, const decNumber *rhs,
- decContext *set) {
- decNumber dtiny; /* constant */
- decContext workset=*set; /* work */
- uInt status=0; /* accumulator */
- #if DECCHECK
- if (decCheckOperands(res, DECUNUSED, rhs, set)) return res;
- #endif
- /* -Infinity is the special case */
- if ((rhs->bits&(DECINF|DECNEG))==(DECINF|DECNEG)) {
- decSetMaxValue(res, set);
- res->bits=DECNEG; /* negative */
- /* there is no status to set */
- return res;
- }
- uprv_decNumberZero(&dtiny); /* start with 0 */
- dtiny.lsu[0]=1; /* make number that is .. */
- dtiny.exponent=DEC_MIN_EMIN-1; /* .. smaller than tiniest */
- workset.round=DEC_ROUND_CEILING;
- decAddOp(res, rhs, &dtiny, &workset, 0, &status);
- status&=DEC_Invalid_operation|DEC_sNaN; /* only sNaN Invalid please */
- if (status!=0) decStatus(res, status, set);
- return res;
- } /* decNumberNextPlus */
- /* ------------------------------------------------------------------ */
- /* decNumberNextToward -- next towards rhs */
- /* */
- /* This computes C = A +/- infinitesimal, rounded towards */
- /* +/-Infinity in the direction of B, as per 754-1985 nextafter */
- /* modified during revision but dropped from 754-2008. */
- /* */
- /* res is C, the result. C may be A or B. */
- /* lhs is A */
- /* rhs is B */
- /* set is the context */
- /* */
- /* This is a generalization of 754-1985 NextAfter. */
- /* ------------------------------------------------------------------ */
- U_CAPI decNumber * U_EXPORT2 uprv_decNumberNextToward(decNumber *res, const decNumber *lhs,
- const decNumber *rhs, decContext *set) {
- decNumber dtiny; /* constant */
- decContext workset=*set; /* work */
- Int result; /* .. */
- uInt status=0; /* accumulator */
- #if DECCHECK
- if (decCheckOperands(res, lhs, rhs, set)) return res;
- #endif
- if (decNumberIsNaN(lhs) || decNumberIsNaN(rhs)) {
- decNaNs(res, lhs, rhs, set, &status);
- }
- else { /* Is numeric, so no chance of sNaN Invalid, etc. */
- result=decCompare(lhs, rhs, 0); /* sign matters */
- if (result==BADINT) status|=DEC_Insufficient_storage; /* rare */
- else { /* valid compare */
- if (result==0) uprv_decNumberCopySign(res, lhs, rhs); /* easy */
- else { /* differ: need NextPlus or NextMinus */
- uByte sub; /* add or subtract */
- if (result<0) { /* lhs<rhs, do nextplus */
- /* -Infinity is the special case */
- if ((lhs->bits&(DECINF|DECNEG))==(DECINF|DECNEG)) {
- decSetMaxValue(res, set);
- res->bits=DECNEG; /* negative */
- return res; /* there is no status to set */
- }
- workset.round=DEC_ROUND_CEILING;
- sub=0; /* add, please */
- } /* plus */
- else { /* lhs>rhs, do nextminus */
- /* +Infinity is the special case */
- if ((lhs->bits&(DECINF|DECNEG))==DECINF) {
- decSetMaxValue(res, set);
- return res; /* there is no status to set */
- }
- workset.round=DEC_ROUND_FLOOR;
- sub=DECNEG; /* subtract, please */
- } /* minus */
- uprv_decNumberZero(&dtiny); /* start with 0 */
- dtiny.lsu[0]=1; /* make number that is .. */
- dtiny.exponent=DEC_MIN_EMIN-1; /* .. smaller than tiniest */
- decAddOp(res, lhs, &dtiny, &workset, sub, &status); /* + or - */
- /* turn off exceptions if the result is a normal number */
- /* (including Nmin), otherwise let all status through */
- if (uprv_decNumberIsNormal(res, set)) status=0;
- } /* unequal */
- } /* compare OK */
- } /* numeric */
- if (status!=0) decStatus(res, status, set);
- return res;
- } /* decNumberNextToward */
- /* ------------------------------------------------------------------ */
- /* decNumberOr -- OR two Numbers, digitwise */
- /* */
- /* This computes C = A | B */
- /* */
- /* res is C, the result. C may be A and/or B (e.g., X=X|X) */
- /* lhs is A */
- /* rhs is B */
- /* set is the context (used for result length and error report) */
- /* */
- /* C must have space for set->digits digits. */
- /* */
- /* Logical function restrictions apply (see above); a NaN is */
- /* returned with Invalid_operation if a restriction is violated. */
- /* ------------------------------------------------------------------ */
- U_CAPI decNumber * U_EXPORT2 uprv_decNumberOr(decNumber *res, const decNumber *lhs,
- const decNumber *rhs, decContext *set) {
- const Unit *ua, *ub; /* -> operands */
- const Unit *msua, *msub; /* -> operand msus */
- Unit *uc, *msuc; /* -> result and its msu */
- Int msudigs; /* digits in res msu */
- #if DECCHECK
- if (decCheckOperands(res, lhs, rhs, set)) return res;
- #endif
- if (lhs->exponent!=0 || decNumberIsSpecial(lhs) || decNumberIsNegative(lhs)
- || rhs->exponent!=0 || decNumberIsSpecial(rhs) || decNumberIsNegative(rhs)) {
- decStatus(res, DEC_Invalid_operation, set);
- return res;
- }
- /* operands are valid */
- ua=lhs->lsu; /* bottom-up */
- ub=rhs->lsu; /* .. */
- uc=res->lsu; /* .. */
- msua=ua+D2U(lhs->digits)-1; /* -> msu of lhs */
- msub=ub+D2U(rhs->digits)-1; /* -> msu of rhs */
- msuc=uc+D2U(set->digits)-1; /* -> msu of result */
- msudigs=MSUDIGITS(set->digits); /* [faster than remainder] */
- for (; uc<=msuc; ua++, ub++, uc++) { /* Unit loop */
- Unit a, b; /* extract units */
- if (ua>msua) a=0;
- else a=*ua;
- if (ub>msub) b=0;
- else b=*ub;
- *uc=0; /* can now write back */
- if (a|b) { /* maybe 1 bits to examine */
- Int i, j;
- /* This loop could be unrolled and/or use BIN2BCD tables */
- for (i=0; i<DECDPUN; i++) {
- if ((a|b)&1) *uc=*uc+(Unit)powers[i]; /* effect OR */
- j=a%10;
- a=a/10;
- j|=b%10;
- b=b/10;
- if (j>1) {
- decStatus(res, DEC_Invalid_operation, set);
- return res;
- }
- if (uc==msuc && i==msudigs-1) break; /* just did final digit */
- } /* each digit */
- } /* non-zero */
- } /* each unit */
- /* [here uc-1 is the msu of the result] */
- res->digits=decGetDigits(res->lsu, static_cast<int32_t>(uc-res->lsu));
- res->exponent=0; /* integer */
- res->bits=0; /* sign=0 */
- return res; /* [no status to set] */
- } /* decNumberOr */
- /* ------------------------------------------------------------------ */
- /* decNumberPlus -- prefix plus operator */
- /* */
- /* This computes C = 0 + A */
- /* */
- /* res is C, the result. C may be A */
- /* rhs is A */
- /* set is the context */
- /* */
- /* See also decNumberCopy for a quiet bitwise version of this. */
- /* C must have space for set->digits digits. */
- /* ------------------------------------------------------------------ */
- /* This simply uses AddOp; Add will take fast path after preparing A. */
- /* Performance is a concern here, as this routine is often used to */
- /* check operands and apply rounding and overflow/underflow testing. */
- /* ------------------------------------------------------------------ */
- U_CAPI decNumber * U_EXPORT2 uprv_decNumberPlus(decNumber *res, const decNumber *rhs,
- decContext *set) {
- decNumber dzero;
- uInt status=0; /* accumulator */
- #if DECCHECK
- if (decCheckOperands(res, DECUNUSED, rhs, set)) return res;
- #endif
- uprv_decNumberZero(&dzero); /* make 0 */
- dzero.exponent=rhs->exponent; /* [no coefficient expansion] */
- decAddOp(res, &dzero, rhs, set, 0, &status);
- if (status!=0) decStatus(res, status, set);
- #if DECCHECK
- decCheckInexact(res, set);
- #endif
- return res;
- } /* decNumberPlus */
- /* ------------------------------------------------------------------ */
- /* decNumberMultiply -- multiply two Numbers */
- /* */
- /* This computes C = A x B */
- /* */
- /* res is C, the result. C may be A and/or B (e.g., X=X+X) */
- /* lhs is A */
- /* rhs is B */
- /* set is the context */
- /* */
- /* C must have space for set->digits digits. */
- /* ------------------------------------------------------------------ */
- U_CAPI decNumber * U_EXPORT2 uprv_decNumberMultiply(decNumber *res, const decNumber *lhs,
- const decNumber *rhs, decContext *set) {
- uInt status=0; /* accumulator */
- decMultiplyOp(res, lhs, rhs, set, &status);
- if (status!=0) decStatus(res, status, set);
- #if DECCHECK
- decCheckInexact(res, set);
- #endif
- return res;
- } /* decNumberMultiply */
- /* ------------------------------------------------------------------ */
- /* decNumberPower -- raise a number to a power */
- /* */
- /* This computes C = A ** B */
- /* */
- /* res is C, the result. C may be A and/or B (e.g., X=X**X) */
- /* lhs is A */
- /* rhs is B */
- /* set is the context */
- /* */
- /* C must have space for set->digits digits. */
- /* */
- /* Mathematical function restrictions apply (see above); a NaN is */
- /* returned with Invalid_operation if a restriction is violated. */
- /* */
- /* However, if 1999999997<=B<=999999999 and B is an integer then the */
- /* restrictions on A and the context are relaxed to the usual bounds, */
- /* for compatibility with the earlier (integer power only) version */
- /* of this function. */
- /* */
- /* When B is an integer, the result may be exact, even if rounded. */
- /* */
- /* The final result is rounded according to the context; it will */
- /* almost always be correctly rounded, but may be up to 1 ulp in */
- /* error in rare cases. */
- /* ------------------------------------------------------------------ */
- U_CAPI decNumber * U_EXPORT2 uprv_decNumberPower(decNumber *res, const decNumber *lhs,
- const decNumber *rhs, decContext *set) {
- #if DECSUBSET
- decNumber *alloclhs=nullptr; /* non-nullptr if rounded lhs allocated */
- decNumber *allocrhs=nullptr; /* .., rhs */
- #endif
- decNumber *allocdac=nullptr; /* -> allocated acc buffer, iff used */
- decNumber *allocinv=nullptr; /* -> allocated 1/x buffer, iff used */
- Int reqdigits=set->digits; /* requested DIGITS */
- Int n; /* rhs in binary */
- Flag rhsint=0; /* 1 if rhs is an integer */
- Flag useint=0; /* 1 if can use integer calculation */
- Flag isoddint=0; /* 1 if rhs is an integer and odd */
- Int i; /* work */
- #if DECSUBSET
- Int dropped; /* .. */
- #endif
- uInt needbytes; /* buffer size needed */
- Flag seenbit; /* seen a bit while powering */
- Int residue=0; /* rounding residue */
- uInt status=0; /* accumulators */
- uByte bits=0; /* result sign if errors */
- decContext aset; /* working context */
- decNumber dnOne; /* work value 1... */
- /* local accumulator buffer [a decNumber, with digits+elength+1 digits] */
- decNumber dacbuff[D2N(DECBUFFER+9)];
- decNumber *dac=dacbuff; /* -> result accumulator */
- /* same again for possible 1/lhs calculation */
- decNumber invbuff[D2N(DECBUFFER+9)];
- #if DECCHECK
- if (decCheckOperands(res, lhs, rhs, set)) return res;
- #endif
- do { /* protect allocated storage */
- #if DECSUBSET
- if (!set->extended) { /* reduce operands and set status, as needed */
- if (lhs->digits>reqdigits) {
- alloclhs=decRoundOperand(lhs, set, &status);
- if (alloclhs==nullptr) break;
- lhs=alloclhs;
- }
- if (rhs->digits>reqdigits) {
- allocrhs=decRoundOperand(rhs, set, &status);
- if (allocrhs==nullptr) break;
- rhs=allocrhs;
- }
- }
- #endif
- /* [following code does not require input rounding] */
- /* handle NaNs and rhs Infinity (lhs infinity is harder) */
- if (SPECIALARGS) {
- if (decNumberIsNaN(lhs) || decNumberIsNaN(rhs)) { /* NaNs */
- decNaNs(res, lhs, rhs, set, &status);
- break;}
- if (decNumberIsInfinite(rhs)) { /* rhs Infinity */
- Flag rhsneg=rhs->bits&DECNEG; /* save rhs sign */
- if (decNumberIsNegative(lhs) /* lhs<0 */
- && !decNumberIsZero(lhs)) /* .. */
- status|=DEC_Invalid_operation;
- else { /* lhs >=0 */
- uprv_decNumberZero(&dnOne); /* set up 1 */
- dnOne.lsu[0]=1;
- uprv_decNumberCompare(dac, lhs, &dnOne, set); /* lhs ? 1 */
- uprv_decNumberZero(res); /* prepare for 0/1/Infinity */
- if (decNumberIsNegative(dac)) { /* lhs<1 */
- if (rhsneg) res->bits|=DECINF; /* +Infinity [else is +0] */
- }
- else if (dac->lsu[0]==0) { /* lhs=1 */
- /* 1**Infinity is inexact, so return fully-padded 1.0000 */
- Int shift=set->digits-1;
- *res->lsu=1; /* was 0, make int 1 */
- res->digits=decShiftToMost(res->lsu, 1, shift);
- res->exponent=-shift; /* make 1.0000... */
- status|=DEC_Inexact|DEC_Rounded; /* deemed inexact */
- }
- else { /* lhs>1 */
- if (!rhsneg) res->bits|=DECINF; /* +Infinity [else is +0] */
- }
- } /* lhs>=0 */
- break;}
- /* [lhs infinity drops through] */
- } /* specials */
- /* Original rhs may be an integer that fits and is in range */
- n=decGetInt(rhs);
- if (n!=BADINT) { /* it is an integer */
- rhsint=1; /* record the fact for 1**n */
- isoddint=(Flag)n&1; /* [works even if big] */
- if (n!=BIGEVEN && n!=BIGODD) /* can use integer path? */
- useint=1; /* looks good */
- }
- if (decNumberIsNegative(lhs) /* -x .. */
- && isoddint) bits=DECNEG; /* .. to an odd power */
- /* handle LHS infinity */
- if (decNumberIsInfinite(lhs)) { /* [NaNs already handled] */
- uByte rbits=rhs->bits; /* save */
- uprv_decNumberZero(res); /* prepare */
- if (n==0) *res->lsu=1; /* [-]Inf**0 => 1 */
- else {
- /* -Inf**nonint -> error */
- if (!rhsint && decNumberIsNegative(lhs)) {
- status|=DEC_Invalid_operation; /* -Inf**nonint is error */
- break;}
- if (!(rbits & DECNEG)) bits|=DECINF; /* was not a **-n */
- /* [otherwise will be 0 or -0] */
- res->bits=bits;
- }
- break;}
- /* similarly handle LHS zero */
- if (decNumberIsZero(lhs)) {
- if (n==0) { /* 0**0 => Error */
- #if DECSUBSET
- if (!set->extended) { /* [unless subset] */
- uprv_decNumberZero(res);
- *res->lsu=1; /* return 1 */
- break;}
- #endif
- status|=DEC_Invalid_operation;
- }
- else { /* 0**x */
- uByte rbits=rhs->bits; /* save */
- if (rbits & DECNEG) { /* was a 0**(-n) */
- #if DECSUBSET
- if (!set->extended) { /* [bad if subset] */
- status|=DEC_Invalid_operation;
- break;}
- #endif
- bits|=DECINF;
- }
- uprv_decNumberZero(res); /* prepare */
- /* [otherwise will be 0 or -0] */
- res->bits=bits;
- }
- break;}
- /* here both lhs and rhs are finite; rhs==0 is handled in the */
- /* integer path. Next handle the non-integer cases */
- if (!useint) { /* non-integral rhs */
- /* any -ve lhs is bad, as is either operand or context out of */
- /* bounds */
- if (decNumberIsNegative(lhs)) {
- status|=DEC_Invalid_operation;
- break;}
- if (decCheckMath(lhs, set, &status)
- || decCheckMath(rhs, set, &status)) break; /* variable status */
- uprv_decContextDefault(&aset, DEC_INIT_DECIMAL64); /* clean context */
- aset.emax=DEC_MAX_MATH; /* usual bounds */
- aset.emin=-DEC_MAX_MATH; /* .. */
- aset.clamp=0; /* and no concrete format */
- /* calculate the result using exp(ln(lhs)*rhs), which can */
- /* all be done into the accumulator, dac. The precision needed */
- /* is enough to contain the full information in the lhs (which */
- /* is the total digits, including exponent), or the requested */
- /* precision, if larger, + 4; 6 is used for the exponent */
- /* maximum length, and this is also used when it is shorter */
- /* than the requested digits as it greatly reduces the >0.5 ulp */
- /* cases at little cost (because Ln doubles digits each */
- /* iteration so a few extra digits rarely causes an extra */
- /* iteration) */
- aset.digits=MAXI(lhs->digits, set->digits)+6+4;
- } /* non-integer rhs */
- else { /* rhs is in-range integer */
- if (n==0) { /* x**0 = 1 */
- /* (0**0 was handled above) */
- uprv_decNumberZero(res); /* result=1 */
- *res->lsu=1; /* .. */
- break;}
- /* rhs is a non-zero integer */
- if (n<0) n=-n; /* use abs(n) */
- aset=*set; /* clone the context */
- aset.round=DEC_ROUND_HALF_EVEN; /* internally use balanced */
- /* calculate the working DIGITS */
- aset.digits=reqdigits+(rhs->digits+rhs->exponent)+2;
- #if DECSUBSET
- if (!set->extended) aset.digits--; /* use classic precision */
- #endif
- /* it's an error if this is more than can be handled */
- if (aset.digits>DECNUMMAXP) {status|=DEC_Invalid_operation; break;}
- } /* integer path */
- /* aset.digits is the count of digits for the accumulator needed */
- /* if accumulator is too long for local storage, then allocate */
- needbytes=sizeof(decNumber)+(D2U(aset.digits)-1)*sizeof(Unit);
- /* [needbytes also used below if 1/lhs needed] */
- if (needbytes>sizeof(dacbuff)) {
- allocdac=(decNumber *)malloc(needbytes);
- if (allocdac==nullptr) { /* hopeless -- abandon */
- status|=DEC_Insufficient_storage;
- break;}
- dac=allocdac; /* use the allocated space */
- }
- /* here, aset is set up and accumulator is ready for use */
- if (!useint) { /* non-integral rhs */
- /* x ** y; special-case x=1 here as it will otherwise always */
- /* reduce to integer 1; decLnOp has a fastpath which detects */
- /* the case of x=1 */
- decLnOp(dac, lhs, &aset, &status); /* dac=ln(lhs) */
- /* [no error possible, as lhs 0 already handled] */
- if (ISZERO(dac)) { /* x==1, 1.0, etc. */
- /* need to return fully-padded 1.0000 etc., but rhsint->1 */
- *dac->lsu=1; /* was 0, make int 1 */
- if (!rhsint) { /* add padding */
- Int shift=set->digits-1;
- dac->digits=decShiftToMost(dac->lsu, 1, shift);
- dac->exponent=-shift; /* make 1.0000... */
- status|=DEC_Inexact|DEC_Rounded; /* deemed inexact */
- }
- }
- else {
- decMultiplyOp(dac, dac, rhs, &aset, &status); /* dac=dac*rhs */
- decExpOp(dac, dac, &aset, &status); /* dac=exp(dac) */
- }
- /* and drop through for final rounding */
- } /* non-integer rhs */
- else { /* carry on with integer */
- uprv_decNumberZero(dac); /* acc=1 */
- *dac->lsu=1; /* .. */
- /* if a negative power the constant 1 is needed, and if not subset */
- /* invert the lhs now rather than inverting the result later */
- if (decNumberIsNegative(rhs)) { /* was a **-n [hence digits>0] */
- decNumber *inv=invbuff; /* assume use fixed buffer */
- uprv_decNumberCopy(&dnOne, dac); /* dnOne=1; [needed now or later] */
- #if DECSUBSET
- if (set->extended) { /* need to calculate 1/lhs */
- #endif
- /* divide lhs into 1, putting result in dac [dac=1/dac] */
- decDivideOp(dac, &dnOne, lhs, &aset, DIVIDE, &status);
- /* now locate or allocate space for the inverted lhs */
- if (needbytes>sizeof(invbuff)) {
- allocinv=(decNumber *)malloc(needbytes);
- if (allocinv==nullptr) { /* hopeless -- abandon */
- status|=DEC_Insufficient_storage;
- break;}
- inv=allocinv; /* use the allocated space */
- }
- /* [inv now points to big-enough buffer or allocated storage] */
- uprv_decNumberCopy(inv, dac); /* copy the 1/lhs */
- uprv_decNumberCopy(dac, &dnOne); /* restore acc=1 */
- lhs=inv; /* .. and go forward with new lhs */
- #if DECSUBSET
- }
- #endif
- }
- /* Raise-to-the-power loop... */
- seenbit=0; /* set once a 1-bit is encountered */
- for (i=1;;i++){ /* for each bit [top bit ignored] */
- /* abandon if had overflow or terminal underflow */
- if (status & (DEC_Overflow|DEC_Underflow)) { /* interesting? */
- if (status&DEC_Overflow || ISZERO(dac)) break;
- }
- /* [the following two lines revealed an optimizer bug in a C++ */
- /* compiler, with symptom: 5**3 -> 25, when n=n+n was used] */
- n=n<<1; /* move next bit to testable position */
- if (n<0) { /* top bit is set */
- seenbit=1; /* OK, significant bit seen */
- decMultiplyOp(dac, dac, lhs, &aset, &status); /* dac=dac*x */
- }
- if (i==31) break; /* that was the last bit */
- if (!seenbit) continue; /* no need to square 1 */
- decMultiplyOp(dac, dac, dac, &aset, &status); /* dac=dac*dac [square] */
- } /*i*/ /* 32 bits */
- /* complete internal overflow or underflow processing */
- if (status & (DEC_Overflow|DEC_Underflow)) {
- #if DECSUBSET
- /* If subset, and power was negative, reverse the kind of -erflow */
- /* [1/x not yet done] */
- if (!set->extended && decNumberIsNegative(rhs)) {
- if (status & DEC_Overflow)
- status^=DEC_Overflow | DEC_Underflow | DEC_Subnormal;
- else { /* trickier -- Underflow may or may not be set */
- status&=~(DEC_Underflow | DEC_Subnormal); /* [one or both] */
- status|=DEC_Overflow;
- }
- }
- #endif
- dac->bits=(dac->bits & ~DECNEG) | bits; /* force correct sign */
- /* round subnormals [to set.digits rather than aset.digits] */
- /* or set overflow result similarly as required */
- decFinalize(dac, set, &residue, &status);
- uprv_decNumberCopy(res, dac); /* copy to result (is now OK length) */
- break;
- }
- #if DECSUBSET
- if (!set->extended && /* subset math */
- decNumberIsNegative(rhs)) { /* was a **-n [hence digits>0] */
- /* so divide result into 1 [dac=1/dac] */
- decDivideOp(dac, &dnOne, dac, &aset, DIVIDE, &status);
- }
- #endif
- } /* rhs integer path */
- /* reduce result to the requested length and copy to result */
- decCopyFit(res, dac, set, &residue, &status);
- decFinish(res, set, &residue, &status); /* final cleanup */
- #if DECSUBSET
- if (!set->extended) decTrim(res, set, 0, 1, &dropped); /* trailing zeros */
- #endif
- } while(0); /* end protected */
- if (allocdac!=nullptr) free(allocdac); /* drop any storage used */
- if (allocinv!=nullptr) free(allocinv); /* .. */
- #if DECSUBSET
- if (alloclhs!=nullptr) free(alloclhs); /* .. */
- if (allocrhs!=nullptr) free(allocrhs); /* .. */
- #endif
- if (status!=0) decStatus(res, status, set);
- #if DECCHECK
- decCheckInexact(res, set);
- #endif
- return res;
- } /* decNumberPower */
- /* ------------------------------------------------------------------ */
- /* decNumberQuantize -- force exponent to requested value */
- /* */
- /* This computes C = op(A, B), where op adjusts the coefficient */
- /* of C (by rounding or shifting) such that the exponent (-scale) */
- /* of C has exponent of B. The numerical value of C will equal A, */
- /* except for the effects of any rounding that occurred. */
- /* */
- /* res is C, the result. C may be A or B */
- /* lhs is A, the number to adjust */
- /* rhs is B, the number with exponent to match */
- /* set is the context */
- /* */
- /* C must have space for set->digits digits. */
- /* */
- /* Unless there is an error or the result is infinite, the exponent */
- /* after the operation is guaranteed to be equal to that of B. */
- /* ------------------------------------------------------------------ */
- U_CAPI decNumber * U_EXPORT2 uprv_decNumberQuantize(decNumber *res, const decNumber *lhs,
- const decNumber *rhs, decContext *set) {
- uInt status=0; /* accumulator */
- decQuantizeOp(res, lhs, rhs, set, 1, &status);
- if (status!=0) decStatus(res, status, set);
- return res;
- } /* decNumberQuantize */
- /* ------------------------------------------------------------------ */
- /* decNumberReduce -- remove trailing zeros */
- /* */
- /* This computes C = 0 + A, and normalizes the result */
- /* */
- /* res is C, the result. C may be A */
- /* rhs is A */
- /* set is the context */
- /* */
- /* C must have space for set->digits digits. */
- /* ------------------------------------------------------------------ */
- /* Previously known as Normalize */
- U_CAPI decNumber * U_EXPORT2 uprv_decNumberNormalize(decNumber *res, const decNumber *rhs,
- decContext *set) {
- return uprv_decNumberReduce(res, rhs, set);
- } /* decNumberNormalize */
- U_CAPI decNumber * U_EXPORT2 uprv_decNumberReduce(decNumber *res, const decNumber *rhs,
- decContext *set) {
- #if DECSUBSET
- decNumber *allocrhs=nullptr; /* non-nullptr if rounded rhs allocated */
- #endif
- uInt status=0; /* as usual */
- Int residue=0; /* as usual */
- Int dropped; /* work */
- #if DECCHECK
- if (decCheckOperands(res, DECUNUSED, rhs, set)) return res;
- #endif
- do { /* protect allocated storage */
- #if DECSUBSET
- if (!set->extended) {
- /* reduce operand and set lostDigits status, as needed */
- if (rhs->digits>set->digits) {
- allocrhs=decRoundOperand(rhs, set, &status);
- if (allocrhs==nullptr) break;
- rhs=allocrhs;
- }
- }
- #endif
- /* [following code does not require input rounding] */
- /* Infinities copy through; NaNs need usual treatment */
- if (decNumberIsNaN(rhs)) {
- decNaNs(res, rhs, nullptr, set, &status);
- break;
- }
- /* reduce result to the requested length and copy to result */
- decCopyFit(res, rhs, set, &residue, &status); /* copy & round */
- decFinish(res, set, &residue, &status); /* cleanup/set flags */
- decTrim(res, set, 1, 0, &dropped); /* normalize in place */
- /* [may clamp] */
- } while(0); /* end protected */
- #if DECSUBSET
- if (allocrhs !=nullptr) free(allocrhs); /* .. */
- #endif
- if (status!=0) decStatus(res, status, set);/* then report status */
- return res;
- } /* decNumberReduce */
- /* ------------------------------------------------------------------ */
- /* decNumberRescale -- force exponent to requested value */
- /* */
- /* This computes C = op(A, B), where op adjusts the coefficient */
- /* of C (by rounding or shifting) such that the exponent (-scale) */
- /* of C has the value B. The numerical value of C will equal A, */
- /* except for the effects of any rounding that occurred. */
- /* */
- /* res is C, the result. C may be A or B */
- /* lhs is A, the number to adjust */
- /* rhs is B, the requested exponent */
- /* set is the context */
- /* */
- /* C must have space for set->digits digits. */
- /* */
- /* Unless there is an error or the result is infinite, the exponent */
- /* after the operation is guaranteed to be equal to B. */
- /* ------------------------------------------------------------------ */
- U_CAPI decNumber * U_EXPORT2 uprv_decNumberRescale(decNumber *res, const decNumber *lhs,
- const decNumber *rhs, decContext *set) {
- uInt status=0; /* accumulator */
- decQuantizeOp(res, lhs, rhs, set, 0, &status);
- if (status!=0) decStatus(res, status, set);
- return res;
- } /* decNumberRescale */
- /* ------------------------------------------------------------------ */
- /* decNumberRemainder -- divide and return remainder */
- /* */
- /* This computes C = A % B */
- /* */
- /* res is C, the result. C may be A and/or B (e.g., X=X%X) */
- /* lhs is A */
- /* rhs is B */
- /* set is the context */
- /* */
- /* C must have space for set->digits digits. */
- /* ------------------------------------------------------------------ */
- U_CAPI decNumber * U_EXPORT2 uprv_decNumberRemainder(decNumber *res, const decNumber *lhs,
- const decNumber *rhs, decContext *set) {
- uInt status=0; /* accumulator */
- decDivideOp(res, lhs, rhs, set, REMAINDER, &status);
- if (status!=0) decStatus(res, status, set);
- #if DECCHECK
- decCheckInexact(res, set);
- #endif
- return res;
- } /* decNumberRemainder */
- /* ------------------------------------------------------------------ */
- /* decNumberRemainderNear -- divide and return remainder from nearest */
- /* */
- /* This computes C = A % B, where % is the IEEE remainder operator */
- /* */
- /* res is C, the result. C may be A and/or B (e.g., X=X%X) */
- /* lhs is A */
- /* rhs is B */
- /* set is the context */
- /* */
- /* C must have space for set->digits digits. */
- /* ------------------------------------------------------------------ */
- U_CAPI decNumber * U_EXPORT2 uprv_decNumberRemainderNear(decNumber *res, const decNumber *lhs,
- const decNumber *rhs, decContext *set) {
- uInt status=0; /* accumulator */
- decDivideOp(res, lhs, rhs, set, REMNEAR, &status);
- if (status!=0) decStatus(res, status, set);
- #if DECCHECK
- decCheckInexact(res, set);
- #endif
- return res;
- } /* decNumberRemainderNear */
- /* ------------------------------------------------------------------ */
- /* decNumberRotate -- rotate the coefficient of a Number left/right */
- /* */
- /* This computes C = A rot B (in base ten and rotating set->digits */
- /* digits). */
- /* */
- /* res is C, the result. C may be A and/or B (e.g., X=XrotX) */
- /* lhs is A */
- /* rhs is B, the number of digits to rotate (-ve to right) */
- /* set is the context */
- /* */
- /* The digits of the coefficient of A are rotated to the left (if B */
- /* is positive) or to the right (if B is negative) without adjusting */
- /* the exponent or the sign of A. If lhs->digits is less than */
- /* set->digits the coefficient is padded with zeros on the left */
- /* before the rotate. Any leading zeros in the result are removed */
- /* as usual. */
- /* */
- /* B must be an integer (q=0) and in the range -set->digits through */
- /* +set->digits. */
- /* C must have space for set->digits digits. */
- /* NaNs are propagated as usual. Infinities are unaffected (but */
- /* B must be valid). No status is set unless B is invalid or an */
- /* operand is an sNaN. */
- /* ------------------------------------------------------------------ */
- U_CAPI decNumber * U_EXPORT2 uprv_decNumberRotate(decNumber *res, const decNumber *lhs,
- const decNumber *rhs, decContext *set) {
- uInt status=0; /* accumulator */
- Int rotate; /* rhs as an Int */
- #if DECCHECK
- if (decCheckOperands(res, lhs, rhs, set)) return res;
- #endif
- /* NaNs propagate as normal */
- if (decNumberIsNaN(lhs) || decNumberIsNaN(rhs))
- decNaNs(res, lhs, rhs, set, &status);
- /* rhs must be an integer */
- else if (decNumberIsInfinite(rhs) || rhs->exponent!=0)
- status=DEC_Invalid_operation;
- else { /* both numeric, rhs is an integer */
- rotate=decGetInt(rhs); /* [cannot fail] */
- if (rotate==BADINT /* something bad .. */
- || rotate==BIGODD || rotate==BIGEVEN /* .. very big .. */
- || abs(rotate)>set->digits) /* .. or out of range */
- status=DEC_Invalid_operation;
- else { /* rhs is OK */
- uprv_decNumberCopy(res, lhs);
- /* convert -ve rotate to equivalent positive rotation */
- if (rotate<0) rotate=set->digits+rotate;
- if (rotate!=0 && rotate!=set->digits /* zero or full rotation */
- && !decNumberIsInfinite(res)) { /* lhs was infinite */
- /* left-rotate to do; 0 < rotate < set->digits */
- uInt units, shift; /* work */
- uInt msudigits; /* digits in result msu */
- Unit *msu=res->lsu+D2U(res->digits)-1; /* current msu */
- Unit *msumax=res->lsu+D2U(set->digits)-1; /* rotation msu */
- for (msu++; msu<=msumax; msu++) *msu=0; /* ensure high units=0 */
- res->digits=set->digits; /* now full-length */
- msudigits=MSUDIGITS(res->digits); /* actual digits in msu */
- /* rotation here is done in-place, in three steps */
- /* 1. shift all to least up to one unit to unit-align final */
- /* lsd [any digits shifted out are rotated to the left, */
- /* abutted to the original msd (which may require split)] */
- /* */
- /* [if there are no whole units left to rotate, the */
- /* rotation is now complete] */
- /* */
- /* 2. shift to least, from below the split point only, so that */
- /* the final msd is in the right place in its Unit [any */
- /* digits shifted out will fit exactly in the current msu, */
- /* left aligned, no split required] */
- /* */
- /* 3. rotate all the units by reversing left part, right */
- /* part, and then whole */
- /* */
- /* example: rotate right 8 digits (2 units + 2), DECDPUN=3. */
- /* */
- /* start: 00a bcd efg hij klm npq */
- /* */
- /* 1a 000 0ab cde fgh|ijk lmn [pq saved] */
- /* 1b 00p qab cde fgh|ijk lmn */
- /* */
- /* 2a 00p qab cde fgh|00i jkl [mn saved] */
- /* 2b mnp qab cde fgh|00i jkl */
- /* */
- /* 3a fgh cde qab mnp|00i jkl */
- /* 3b fgh cde qab mnp|jkl 00i */
- /* 3c 00i jkl mnp qab cde fgh */
- /* Step 1: amount to shift is the partial right-rotate count */
- rotate=set->digits-rotate; /* make it right-rotate */
- units=rotate/DECDPUN; /* whole units to rotate */
- shift=rotate%DECDPUN; /* left-over digits count */
- if (shift>0) { /* not an exact number of units */
- uInt save=res->lsu[0]%powers[shift]; /* save low digit(s) */
- decShiftToLeast(res->lsu, D2U(res->digits), shift);
- if (shift>msudigits) { /* msumax-1 needs >0 digits */
- uInt rem=save%powers[shift-msudigits];/* split save */
- *msumax=(Unit)(save/powers[shift-msudigits]); /* and insert */
- *(msumax-1)=*(msumax-1)
- +(Unit)(rem*powers[DECDPUN-(shift-msudigits)]); /* .. */
- }
- else { /* all fits in msumax */
- *msumax=*msumax+(Unit)(save*powers[msudigits-shift]); /* [maybe *1] */
- }
- } /* digits shift needed */
- /* If whole units to rotate... */
- if (units>0) { /* some to do */
- /* Step 2: the units to touch are the whole ones in rotate, */
- /* if any, and the shift is DECDPUN-msudigits (which may be */
- /* 0, again) */
- shift=DECDPUN-msudigits;
- if (shift>0) { /* not an exact number of units */
- uInt save=res->lsu[0]%powers[shift]; /* save low digit(s) */
- decShiftToLeast(res->lsu, units, shift);
- *msumax=*msumax+(Unit)(save*powers[msudigits]);
- } /* partial shift needed */
- /* Step 3: rotate the units array using triple reverse */
- /* (reversing is easy and fast) */
- decReverse(res->lsu+units, msumax); /* left part */
- decReverse(res->lsu, res->lsu+units-1); /* right part */
- decReverse(res->lsu, msumax); /* whole */
- } /* whole units to rotate */
- /* the rotation may have left an undetermined number of zeros */
- /* on the left, so true length needs to be calculated */
- res->digits=decGetDigits(res->lsu, static_cast<int32_t>(msumax-res->lsu+1));
- } /* rotate needed */
- } /* rhs OK */
- } /* numerics */
- if (status!=0) decStatus(res, status, set);
- return res;
- } /* decNumberRotate */
- /* ------------------------------------------------------------------ */
- /* decNumberSameQuantum -- test for equal exponents */
- /* */
- /* res is the result number, which will contain either 0 or 1 */
- /* lhs is a number to test */
- /* rhs is the second (usually a pattern) */
- /* */
- /* No errors are possible and no context is needed. */
- /* ------------------------------------------------------------------ */
- U_CAPI decNumber * U_EXPORT2 uprv_decNumberSameQuantum(decNumber *res, const decNumber *lhs,
- const decNumber *rhs) {
- Unit ret=0; /* return value */
- #if DECCHECK
- if (decCheckOperands(res, lhs, rhs, DECUNCONT)) return res;
- #endif
- if (SPECIALARGS) {
- if (decNumberIsNaN(lhs) && decNumberIsNaN(rhs)) ret=1;
- else if (decNumberIsInfinite(lhs) && decNumberIsInfinite(rhs)) ret=1;
- /* [anything else with a special gives 0] */
- }
- else if (lhs->exponent==rhs->exponent) ret=1;
- uprv_decNumberZero(res); /* OK to overwrite an operand now */
- *res->lsu=ret;
- return res;
- } /* decNumberSameQuantum */
- /* ------------------------------------------------------------------ */
- /* decNumberScaleB -- multiply by a power of 10 */
- /* */
- /* This computes C = A x 10**B where B is an integer (q=0) with */
- /* maximum magnitude 2*(emax+digits) */
- /* */
- /* res is C, the result. C may be A or B */
- /* lhs is A, the number to adjust */
- /* rhs is B, the requested power of ten to use */
- /* set is the context */
- /* */
- /* C must have space for set->digits digits. */
- /* */
- /* The result may underflow or overflow. */
- /* ------------------------------------------------------------------ */
- U_CAPI decNumber * U_EXPORT2 uprv_decNumberScaleB(decNumber *res, const decNumber *lhs,
- const decNumber *rhs, decContext *set) {
- Int reqexp; /* requested exponent change [B] */
- uInt status=0; /* accumulator */
- Int residue; /* work */
- #if DECCHECK
- if (decCheckOperands(res, lhs, rhs, set)) return res;
- #endif
- /* Handle special values except lhs infinite */
- if (decNumberIsNaN(lhs) || decNumberIsNaN(rhs))
- decNaNs(res, lhs, rhs, set, &status);
- /* rhs must be an integer */
- else if (decNumberIsInfinite(rhs) || rhs->exponent!=0)
- status=DEC_Invalid_operation;
- else {
- /* lhs is a number; rhs is a finite with q==0 */
- reqexp=decGetInt(rhs); /* [cannot fail] */
- if (reqexp==BADINT /* something bad .. */
- || reqexp==BIGODD || reqexp==BIGEVEN /* .. very big .. */
- || abs(reqexp)>(2*(set->digits+set->emax))) /* .. or out of range */
- status=DEC_Invalid_operation;
- else { /* rhs is OK */
- uprv_decNumberCopy(res, lhs); /* all done if infinite lhs */
- if (!decNumberIsInfinite(res)) { /* prepare to scale */
- res->exponent+=reqexp; /* adjust the exponent */
- residue=0;
- decFinalize(res, set, &residue, &status); /* .. and check */
- } /* finite LHS */
- } /* rhs OK */
- } /* rhs finite */
- if (status!=0) decStatus(res, status, set);
- return res;
- } /* decNumberScaleB */
- /* ------------------------------------------------------------------ */
- /* decNumberShift -- shift the coefficient of a Number left or right */
- /* */
- /* This computes C = A << B or C = A >> -B (in base ten). */
- /* */
- /* res is C, the result. C may be A and/or B (e.g., X=X<<X) */
- /* lhs is A */
- /* rhs is B, the number of digits to shift (-ve to right) */
- /* set is the context */
- /* */
- /* The digits of the coefficient of A are shifted to the left (if B */
- /* is positive) or to the right (if B is negative) without adjusting */
- /* the exponent or the sign of A. */
- /* */
- /* B must be an integer (q=0) and in the range -set->digits through */
- /* +set->digits. */
- /* C must have space for set->digits digits. */
- /* NaNs are propagated as usual. Infinities are unaffected (but */
- /* B must be valid). No status is set unless B is invalid or an */
- /* operand is an sNaN. */
- /* ------------------------------------------------------------------ */
- U_CAPI decNumber * U_EXPORT2 uprv_decNumberShift(decNumber *res, const decNumber *lhs,
- const decNumber *rhs, decContext *set) {
- uInt status=0; /* accumulator */
- Int shift; /* rhs as an Int */
- #if DECCHECK
- if (decCheckOperands(res, lhs, rhs, set)) return res;
- #endif
- /* NaNs propagate as normal */
- if (decNumberIsNaN(lhs) || decNumberIsNaN(rhs))
- decNaNs(res, lhs, rhs, set, &status);
- /* rhs must be an integer */
- else if (decNumberIsInfinite(rhs) || rhs->exponent!=0)
- status=DEC_Invalid_operation;
- else { /* both numeric, rhs is an integer */
- shift=decGetInt(rhs); /* [cannot fail] */
- if (shift==BADINT /* something bad .. */
- || shift==BIGODD || shift==BIGEVEN /* .. very big .. */
- || abs(shift)>set->digits) /* .. or out of range */
- status=DEC_Invalid_operation;
- else { /* rhs is OK */
- uprv_decNumberCopy(res, lhs);
- if (shift!=0 && !decNumberIsInfinite(res)) { /* something to do */
- if (shift>0) { /* to left */
- if (shift==set->digits) { /* removing all */
- *res->lsu=0; /* so place 0 */
- res->digits=1; /* .. */
- }
- else { /* */
- /* first remove leading digits if necessary */
- if (res->digits+shift>set->digits) {
- decDecap(res, res->digits+shift-set->digits);
- /* that updated res->digits; may have gone to 1 (for a */
- /* single digit or for zero */
- }
- if (res->digits>1 || *res->lsu) /* if non-zero.. */
- res->digits=decShiftToMost(res->lsu, res->digits, shift);
- } /* partial left */
- } /* left */
- else { /* to right */
- if (-shift>=res->digits) { /* discarding all */
- *res->lsu=0; /* so place 0 */
- res->digits=1; /* .. */
- }
- else {
- decShiftToLeast(res->lsu, D2U(res->digits), -shift);
- res->digits-=(-shift);
- }
- } /* to right */
- } /* non-0 non-Inf shift */
- } /* rhs OK */
- } /* numerics */
- if (status!=0) decStatus(res, status, set);
- return res;
- } /* decNumberShift */
- /* ------------------------------------------------------------------ */
- /* decNumberSquareRoot -- square root operator */
- /* */
- /* This computes C = squareroot(A) */
- /* */
- /* res is C, the result. C may be A */
- /* rhs is A */
- /* set is the context; note that rounding mode has no effect */
- /* */
- /* C must have space for set->digits digits. */
- /* ------------------------------------------------------------------ */
- /* This uses the following varying-precision algorithm in: */
- /* */
- /* Properly Rounded Variable Precision Square Root, T. E. Hull and */
- /* A. Abrham, ACM Transactions on Mathematical Software, Vol 11 #3, */
- /* pp229-237, ACM, September 1985. */
- /* */
- /* The square-root is calculated using Newton's method, after which */
- /* a check is made to ensure the result is correctly rounded. */
- /* */
- /* % [Reformatted original Numerical Turing source code follows.] */
- /* function sqrt(x : real) : real */
- /* % sqrt(x) returns the properly rounded approximation to the square */
- /* % root of x, in the precision of the calling environment, or it */
- /* % fails if x < 0. */
- /* % t e hull and a abrham, august, 1984 */
- /* if x <= 0 then */
- /* if x < 0 then */
- /* assert false */
- /* else */
- /* result 0 */
- /* end if */
- /* end if */
- /* var f := setexp(x, 0) % fraction part of x [0.1 <= x < 1] */
- /* var e := getexp(x) % exponent part of x */
- /* var approx : real */
- /* if e mod 2 = 0 then */
- /* approx := .259 + .819 * f % approx to root of f */
- /* else */
- /* f := f/l0 % adjustments */
- /* e := e + 1 % for odd */
- /* approx := .0819 + 2.59 * f % exponent */
- /* end if */
- /* */
- /* var p:= 3 */
- /* const maxp := currentprecision + 2 */
- /* loop */
- /* p := min(2*p - 2, maxp) % p = 4,6,10, . . . , maxp */
- /* precision p */
- /* approx := .5 * (approx + f/approx) */
- /* exit when p = maxp */
- /* end loop */
- /* */
- /* % approx is now within 1 ulp of the properly rounded square root */
- /* % of f; to ensure proper rounding, compare squares of (approx - */
- /* % l/2 ulp) and (approx + l/2 ulp) with f. */
- /* p := currentprecision */
- /* begin */
- /* precision p + 2 */
- /* const approxsubhalf := approx - setexp(.5, -p) */
- /* if mulru(approxsubhalf, approxsubhalf) > f then */
- /* approx := approx - setexp(.l, -p + 1) */
- /* else */
- /* const approxaddhalf := approx + setexp(.5, -p) */
- /* if mulrd(approxaddhalf, approxaddhalf) < f then */
- /* approx := approx + setexp(.l, -p + 1) */
- /* end if */
- /* end if */
- /* end */
- /* result setexp(approx, e div 2) % fix exponent */
- /* end sqrt */
- /* ------------------------------------------------------------------ */
- #if defined(__clang__) || U_GCC_MAJOR_MINOR >= 406
- #pragma GCC diagnostic push
- #pragma GCC diagnostic ignored "-Warray-bounds"
- #endif
- U_CAPI decNumber * U_EXPORT2 uprv_decNumberSquareRoot(decNumber *res, const decNumber *rhs,
- decContext *set) {
- decContext workset, approxset; /* work contexts */
- decNumber dzero; /* used for constant zero */
- Int maxp; /* largest working precision */
- Int workp; /* working precision */
- Int residue=0; /* rounding residue */
- uInt status=0, ignore=0; /* status accumulators */
- uInt rstatus; /* .. */
- Int exp; /* working exponent */
- Int ideal; /* ideal (preferred) exponent */
- Int needbytes; /* work */
- Int dropped; /* .. */
- #if DECSUBSET
- decNumber *allocrhs=nullptr; /* non-nullptr if rounded rhs allocated */
- #endif
- /* buffer for f [needs +1 in case DECBUFFER 0] */
- decNumber buff[D2N(DECBUFFER+1)];
- /* buffer for a [needs +2 to match likely maxp] */
- decNumber bufa[D2N(DECBUFFER+2)];
- /* buffer for temporary, b [must be same size as a] */
- decNumber bufb[D2N(DECBUFFER+2)];
- decNumber *allocbuff=nullptr; /* -> allocated buff, iff allocated */
- decNumber *allocbufa=nullptr; /* -> allocated bufa, iff allocated */
- decNumber *allocbufb=nullptr; /* -> allocated bufb, iff allocated */
- decNumber *f=buff; /* reduced fraction */
- decNumber *a=bufa; /* approximation to result */
- decNumber *b=bufb; /* intermediate result */
- /* buffer for temporary variable, up to 3 digits */
- decNumber buft[D2N(3)];
- decNumber *t=buft; /* up-to-3-digit constant or work */
- #if DECCHECK
- if (decCheckOperands(res, DECUNUSED, rhs, set)) return res;
- #endif
- do { /* protect allocated storage */
- #if DECSUBSET
- if (!set->extended) {
- /* reduce operand and set lostDigits status, as needed */
- if (rhs->digits>set->digits) {
- allocrhs=decRoundOperand(rhs, set, &status);
- if (allocrhs==nullptr) break;
- /* [Note: 'f' allocation below could reuse this buffer if */
- /* used, but as this is rare they are kept separate for clarity.] */
- rhs=allocrhs;
- }
- }
- #endif
- /* [following code does not require input rounding] */
- /* handle infinities and NaNs */
- if (SPECIALARG) {
- if (decNumberIsInfinite(rhs)) { /* an infinity */
- if (decNumberIsNegative(rhs)) status|=DEC_Invalid_operation;
- else uprv_decNumberCopy(res, rhs); /* +Infinity */
- }
- else decNaNs(res, rhs, nullptr, set, &status); /* a NaN */
- break;
- }
- /* calculate the ideal (preferred) exponent [floor(exp/2)] */
- /* [It would be nicer to write: ideal=rhs->exponent>>1, but this */
- /* generates a compiler warning. Generated code is the same.] */
- ideal=(rhs->exponent&~1)/2; /* target */
- /* handle zeros */
- if (ISZERO(rhs)) {
- uprv_decNumberCopy(res, rhs); /* could be 0 or -0 */
- res->exponent=ideal; /* use the ideal [safe] */
- /* use decFinish to clamp any out-of-range exponent, etc. */
- decFinish(res, set, &residue, &status);
- break;
- }
- /* any other -x is an oops */
- if (decNumberIsNegative(rhs)) {
- status|=DEC_Invalid_operation;
- break;
- }
- /* space is needed for three working variables */
- /* f -- the same precision as the RHS, reduced to 0.01->0.99... */
- /* a -- Hull's approximation -- precision, when assigned, is */
- /* currentprecision+1 or the input argument precision, */
- /* whichever is larger (+2 for use as temporary) */
- /* b -- intermediate temporary result (same size as a) */
- /* if any is too long for local storage, then allocate */
- workp=MAXI(set->digits+1, rhs->digits); /* actual rounding precision */
- workp=MAXI(workp, 7); /* at least 7 for low cases */
- maxp=workp+2; /* largest working precision */
- needbytes=sizeof(decNumber)+(D2U(rhs->digits)-1)*sizeof(Unit);
- if (needbytes>(Int)sizeof(buff)) {
- allocbuff=(decNumber *)malloc(needbytes);
- if (allocbuff==nullptr) { /* hopeless -- abandon */
- status|=DEC_Insufficient_storage;
- break;}
- f=allocbuff; /* use the allocated space */
- }
- /* a and b both need to be able to hold a maxp-length number */
- needbytes=sizeof(decNumber)+(D2U(maxp)-1)*sizeof(Unit);
- if (needbytes>(Int)sizeof(bufa)) { /* [same applies to b] */
- allocbufa=(decNumber *)malloc(needbytes);
- allocbufb=(decNumber *)malloc(needbytes);
- if (allocbufa==nullptr || allocbufb==nullptr) { /* hopeless */
- status|=DEC_Insufficient_storage;
- break;}
- a=allocbufa; /* use the allocated spaces */
- b=allocbufb; /* .. */
- }
- /* copy rhs -> f, save exponent, and reduce so 0.1 <= f < 1 */
- uprv_decNumberCopy(f, rhs);
- exp=f->exponent+f->digits; /* adjusted to Hull rules */
- f->exponent=-(f->digits); /* to range */
- /* set up working context */
- uprv_decContextDefault(&workset, DEC_INIT_DECIMAL64);
- workset.emax=DEC_MAX_EMAX;
- workset.emin=DEC_MIN_EMIN;
- /* [Until further notice, no error is possible and status bits */
- /* (Rounded, etc.) should be ignored, not accumulated.] */
- /* Calculate initial approximation, and allow for odd exponent */
- workset.digits=workp; /* p for initial calculation */
- t->bits=0; t->digits=3;
- a->bits=0; a->digits=3;
- if ((exp & 1)==0) { /* even exponent */
- /* Set t=0.259, a=0.819 */
- t->exponent=-3;
- a->exponent=-3;
- #if DECDPUN>=3
- t->lsu[0]=259;
- a->lsu[0]=819;
- #elif DECDPUN==2
- t->lsu[0]=59; t->lsu[1]=2;
- a->lsu[0]=19; a->lsu[1]=8;
- #else
- t->lsu[0]=9; t->lsu[1]=5; t->lsu[2]=2;
- a->lsu[0]=9; a->lsu[1]=1; a->lsu[2]=8;
- #endif
- }
- else { /* odd exponent */
- /* Set t=0.0819, a=2.59 */
- f->exponent--; /* f=f/10 */
- exp++; /* e=e+1 */
- t->exponent=-4;
- a->exponent=-2;
- #if DECDPUN>=3
- t->lsu[0]=819;
- a->lsu[0]=259;
- #elif DECDPUN==2
- t->lsu[0]=19; t->lsu[1]=8;
- a->lsu[0]=59; a->lsu[1]=2;
- #else
- t->lsu[0]=9; t->lsu[1]=1; t->lsu[2]=8;
- a->lsu[0]=9; a->lsu[1]=5; a->lsu[2]=2;
- #endif
- }
- decMultiplyOp(a, a, f, &workset, &ignore); /* a=a*f */
- decAddOp(a, a, t, &workset, 0, &ignore); /* ..+t */
- /* [a is now the initial approximation for sqrt(f), calculated with */
- /* currentprecision, which is also a's precision.] */
- /* the main calculation loop */
- uprv_decNumberZero(&dzero); /* make 0 */
- uprv_decNumberZero(t); /* set t = 0.5 */
- t->lsu[0]=5; /* .. */
- t->exponent=-1; /* .. */
- workset.digits=3; /* initial p */
- for (; workset.digits<maxp;) {
- /* set p to min(2*p - 2, maxp) [hence 3; or: 4, 6, 10, ... , maxp] */
- workset.digits=MINI(workset.digits*2-2, maxp);
- /* a = 0.5 * (a + f/a) */
- /* [calculated at p then rounded to currentprecision] */
- decDivideOp(b, f, a, &workset, DIVIDE, &ignore); /* b=f/a */
- decAddOp(b, b, a, &workset, 0, &ignore); /* b=b+a */
- decMultiplyOp(a, b, t, &workset, &ignore); /* a=b*0.5 */
- } /* loop */
- /* Here, 0.1 <= a < 1 [Hull], and a has maxp digits */
- /* now reduce to length, etc.; this needs to be done with a */
- /* having the correct exponent so as to handle subnormals */
- /* correctly */
- approxset=*set; /* get emin, emax, etc. */
- approxset.round=DEC_ROUND_HALF_EVEN;
- a->exponent+=exp/2; /* set correct exponent */
- rstatus=0; /* clear status */
- residue=0; /* .. and accumulator */
- decCopyFit(a, a, &approxset, &residue, &rstatus); /* reduce (if needed) */
- decFinish(a, &approxset, &residue, &rstatus); /* clean and finalize */
- /* Overflow was possible if the input exponent was out-of-range, */
- /* in which case quit */
- if (rstatus&DEC_Overflow) {
- status=rstatus; /* use the status as-is */
- uprv_decNumberCopy(res, a); /* copy to result */
- break;
- }
- /* Preserve status except Inexact/Rounded */
- status|=(rstatus & ~(DEC_Rounded|DEC_Inexact));
- /* Carry out the Hull correction */
- a->exponent-=exp/2; /* back to 0.1->1 */
- /* a is now at final precision and within 1 ulp of the properly */
- /* rounded square root of f; to ensure proper rounding, compare */
- /* squares of (a - l/2 ulp) and (a + l/2 ulp) with f. */
- /* Here workset.digits=maxp and t=0.5, and a->digits determines */
- /* the ulp */
- workset.digits--; /* maxp-1 is OK now */
- t->exponent=-a->digits-1; /* make 0.5 ulp */
- decAddOp(b, a, t, &workset, DECNEG, &ignore); /* b = a - 0.5 ulp */
- workset.round=DEC_ROUND_UP;
- decMultiplyOp(b, b, b, &workset, &ignore); /* b = mulru(b, b) */
- decCompareOp(b, f, b, &workset, COMPARE, &ignore); /* b ? f, reversed */
- if (decNumberIsNegative(b)) { /* f < b [i.e., b > f] */
- /* this is the more common adjustment, though both are rare */
- t->exponent++; /* make 1.0 ulp */
- t->lsu[0]=1; /* .. */
- decAddOp(a, a, t, &workset, DECNEG, &ignore); /* a = a - 1 ulp */
- /* assign to approx [round to length] */
- approxset.emin-=exp/2; /* adjust to match a */
- approxset.emax-=exp/2;
- decAddOp(a, &dzero, a, &approxset, 0, &ignore);
- }
- else {
- decAddOp(b, a, t, &workset, 0, &ignore); /* b = a + 0.5 ulp */
- workset.round=DEC_ROUND_DOWN;
- decMultiplyOp(b, b, b, &workset, &ignore); /* b = mulrd(b, b) */
- decCompareOp(b, b, f, &workset, COMPARE, &ignore); /* b ? f */
- if (decNumberIsNegative(b)) { /* b < f */
- t->exponent++; /* make 1.0 ulp */
- t->lsu[0]=1; /* .. */
- decAddOp(a, a, t, &workset, 0, &ignore); /* a = a + 1 ulp */
- /* assign to approx [round to length] */
- approxset.emin-=exp/2; /* adjust to match a */
- approxset.emax-=exp/2;
- decAddOp(a, &dzero, a, &approxset, 0, &ignore);
- }
- }
- /* [no errors are possible in the above, and rounding/inexact during */
- /* estimation are irrelevant, so status was not accumulated] */
- /* Here, 0.1 <= a < 1 (still), so adjust back */
- a->exponent+=exp/2; /* set correct exponent */
- /* count droppable zeros [after any subnormal rounding] by */
- /* trimming a copy */
- uprv_decNumberCopy(b, a);
- decTrim(b, set, 1, 1, &dropped); /* [drops trailing zeros] */
- /* Set Inexact and Rounded. The answer can only be exact if */
- /* it is short enough so that squaring it could fit in workp */
- /* digits, so this is the only (relatively rare) condition that */
- /* a careful check is needed */
- if (b->digits*2-1 > workp) { /* cannot fit */
- status|=DEC_Inexact|DEC_Rounded;
- }
- else { /* could be exact/unrounded */
- uInt mstatus=0; /* local status */
- decMultiplyOp(b, b, b, &workset, &mstatus); /* try the multiply */
- if (mstatus&DEC_Overflow) { /* result just won't fit */
- status|=DEC_Inexact|DEC_Rounded;
- }
- else { /* plausible */
- decCompareOp(t, b, rhs, &workset, COMPARE, &mstatus); /* b ? rhs */
- if (!ISZERO(t)) status|=DEC_Inexact|DEC_Rounded; /* not equal */
- else { /* is Exact */
- /* here, dropped is the count of trailing zeros in 'a' */
- /* use closest exponent to ideal... */
- Int todrop=ideal-a->exponent; /* most that can be dropped */
- if (todrop<0) status|=DEC_Rounded; /* ideally would add 0s */
- else { /* unrounded */
- /* there are some to drop, but emax may not allow all */
- Int maxexp=set->emax-set->digits+1;
- Int maxdrop=maxexp-a->exponent;
- if (todrop>maxdrop && set->clamp) { /* apply clamping */
- todrop=maxdrop;
- status|=DEC_Clamped;
- }
- if (dropped<todrop) { /* clamp to those available */
- todrop=dropped;
- status|=DEC_Clamped;
- }
- if (todrop>0) { /* have some to drop */
- decShiftToLeast(a->lsu, D2U(a->digits), todrop);
- a->exponent+=todrop; /* maintain numerical value */
- a->digits-=todrop; /* new length */
- }
- }
- }
- }
- }
- /* double-check Underflow, as perhaps the result could not have */
- /* been subnormal (initial argument too big), or it is now Exact */
- if (status&DEC_Underflow) {
- Int ae=rhs->exponent+rhs->digits-1; /* adjusted exponent */
- /* check if truly subnormal */
- #if DECEXTFLAG /* DEC_Subnormal too */
- if (ae>=set->emin*2) status&=~(DEC_Subnormal|DEC_Underflow);
- #else
- if (ae>=set->emin*2) status&=~DEC_Underflow;
- #endif
- /* check if truly inexact */
- if (!(status&DEC_Inexact)) status&=~DEC_Underflow;
- }
- uprv_decNumberCopy(res, a); /* a is now the result */
- } while(0); /* end protected */
- if (allocbuff!=nullptr) free(allocbuff); /* drop any storage used */
- if (allocbufa!=nullptr) free(allocbufa); /* .. */
- if (allocbufb!=nullptr) free(allocbufb); /* .. */
- #if DECSUBSET
- if (allocrhs !=nullptr) free(allocrhs); /* .. */
- #endif
- if (status!=0) decStatus(res, status, set);/* then report status */
- #if DECCHECK
- decCheckInexact(res, set);
- #endif
- return res;
- } /* decNumberSquareRoot */
- #if defined(__clang__) || U_GCC_MAJOR_MINOR >= 406
- #pragma GCC diagnostic pop
- #endif
- /* ------------------------------------------------------------------ */
- /* decNumberSubtract -- subtract two Numbers */
- /* */
- /* This computes C = A - B */
- /* */
- /* res is C, the result. C may be A and/or B (e.g., X=X-X) */
- /* lhs is A */
- /* rhs is B */
- /* set is the context */
- /* */
- /* C must have space for set->digits digits. */
- /* ------------------------------------------------------------------ */
- U_CAPI decNumber * U_EXPORT2 uprv_decNumberSubtract(decNumber *res, const decNumber *lhs,
- const decNumber *rhs, decContext *set) {
- uInt status=0; /* accumulator */
- decAddOp(res, lhs, rhs, set, DECNEG, &status);
- if (status!=0) decStatus(res, status, set);
- #if DECCHECK
- decCheckInexact(res, set);
- #endif
- return res;
- } /* decNumberSubtract */
- /* ------------------------------------------------------------------ */
- /* decNumberToIntegralExact -- round-to-integral-value with InExact */
- /* decNumberToIntegralValue -- round-to-integral-value */
- /* */
- /* res is the result */
- /* rhs is input number */
- /* set is the context */
- /* */
- /* res must have space for any value of rhs. */
- /* */
- /* This implements the IEEE special operators and therefore treats */
- /* special values as valid. For finite numbers it returns */
- /* rescale(rhs, 0) if rhs->exponent is <0. */
- /* Otherwise the result is rhs (so no error is possible, except for */
- /* sNaN). */
- /* */
- /* The context is used for rounding mode and status after sNaN, but */
- /* the digits setting is ignored. The Exact version will signal */
- /* Inexact if the result differs numerically from rhs; the other */
- /* never signals Inexact. */
- /* ------------------------------------------------------------------ */
- U_CAPI decNumber * U_EXPORT2 uprv_decNumberToIntegralExact(decNumber *res, const decNumber *rhs,
- decContext *set) {
- decNumber dn;
- decContext workset; /* working context */
- uInt status=0; /* accumulator */
- #if DECCHECK
- if (decCheckOperands(res, DECUNUSED, rhs, set)) return res;
- #endif
- /* handle infinities and NaNs */
- if (SPECIALARG) {
- if (decNumberIsInfinite(rhs)) uprv_decNumberCopy(res, rhs); /* an Infinity */
- else decNaNs(res, rhs, nullptr, set, &status); /* a NaN */
- }
- else { /* finite */
- /* have a finite number; no error possible (res must be big enough) */
- if (rhs->exponent>=0) return uprv_decNumberCopy(res, rhs);
- /* that was easy, but if negative exponent there is work to do... */
- workset=*set; /* clone rounding, etc. */
- workset.digits=rhs->digits; /* no length rounding */
- workset.traps=0; /* no traps */
- uprv_decNumberZero(&dn); /* make a number with exponent 0 */
- uprv_decNumberQuantize(res, rhs, &dn, &workset);
- status|=workset.status;
- }
- if (status!=0) decStatus(res, status, set);
- return res;
- } /* decNumberToIntegralExact */
- U_CAPI decNumber * U_EXPORT2 uprv_decNumberToIntegralValue(decNumber *res, const decNumber *rhs,
- decContext *set) {
- decContext workset=*set; /* working context */
- workset.traps=0; /* no traps */
- uprv_decNumberToIntegralExact(res, rhs, &workset);
- /* this never affects set, except for sNaNs; NaN will have been set */
- /* or propagated already, so no need to call decStatus */
- set->status|=workset.status&DEC_Invalid_operation;
- return res;
- } /* decNumberToIntegralValue */
- /* ------------------------------------------------------------------ */
- /* decNumberXor -- XOR two Numbers, digitwise */
- /* */
- /* This computes C = A ^ B */
- /* */
- /* res is C, the result. C may be A and/or B (e.g., X=X^X) */
- /* lhs is A */
- /* rhs is B */
- /* set is the context (used for result length and error report) */
- /* */
- /* C must have space for set->digits digits. */
- /* */
- /* Logical function restrictions apply (see above); a NaN is */
- /* returned with Invalid_operation if a restriction is violated. */
- /* ------------------------------------------------------------------ */
- U_CAPI decNumber * U_EXPORT2 uprv_decNumberXor(decNumber *res, const decNumber *lhs,
- const decNumber *rhs, decContext *set) {
- const Unit *ua, *ub; /* -> operands */
- const Unit *msua, *msub; /* -> operand msus */
- Unit *uc, *msuc; /* -> result and its msu */
- Int msudigs; /* digits in res msu */
- #if DECCHECK
- if (decCheckOperands(res, lhs, rhs, set)) return res;
- #endif
- if (lhs->exponent!=0 || decNumberIsSpecial(lhs) || decNumberIsNegative(lhs)
- || rhs->exponent!=0 || decNumberIsSpecial(rhs) || decNumberIsNegative(rhs)) {
- decStatus(res, DEC_Invalid_operation, set);
- return res;
- }
- /* operands are valid */
- ua=lhs->lsu; /* bottom-up */
- ub=rhs->lsu; /* .. */
- uc=res->lsu; /* .. */
- msua=ua+D2U(lhs->digits)-1; /* -> msu of lhs */
- msub=ub+D2U(rhs->digits)-1; /* -> msu of rhs */
- msuc=uc+D2U(set->digits)-1; /* -> msu of result */
- msudigs=MSUDIGITS(set->digits); /* [faster than remainder] */
- for (; uc<=msuc; ua++, ub++, uc++) { /* Unit loop */
- Unit a, b; /* extract units */
- if (ua>msua) a=0;
- else a=*ua;
- if (ub>msub) b=0;
- else b=*ub;
- *uc=0; /* can now write back */
- if (a|b) { /* maybe 1 bits to examine */
- Int i, j;
- /* This loop could be unrolled and/or use BIN2BCD tables */
- for (i=0; i<DECDPUN; i++) {
- if ((a^b)&1) *uc=*uc+(Unit)powers[i]; /* effect XOR */
- j=a%10;
- a=a/10;
- j|=b%10;
- b=b/10;
- if (j>1) {
- decStatus(res, DEC_Invalid_operation, set);
- return res;
- }
- if (uc==msuc && i==msudigs-1) break; /* just did final digit */
- } /* each digit */
- } /* non-zero */
- } /* each unit */
- /* [here uc-1 is the msu of the result] */
- res->digits=decGetDigits(res->lsu, static_cast<int32_t>(uc-res->lsu));
- res->exponent=0; /* integer */
- res->bits=0; /* sign=0 */
- return res; /* [no status to set] */
- } /* decNumberXor */
- /* ================================================================== */
- /* Utility routines */
- /* ================================================================== */
- /* ------------------------------------------------------------------ */
- /* decNumberClass -- return the decClass of a decNumber */
- /* dn -- the decNumber to test */
- /* set -- the context to use for Emin */
- /* returns the decClass enum */
- /* ------------------------------------------------------------------ */
- enum decClass uprv_decNumberClass(const decNumber *dn, decContext *set) {
- if (decNumberIsSpecial(dn)) {
- if (decNumberIsQNaN(dn)) return DEC_CLASS_QNAN;
- if (decNumberIsSNaN(dn)) return DEC_CLASS_SNAN;
- /* must be an infinity */
- if (decNumberIsNegative(dn)) return DEC_CLASS_NEG_INF;
- return DEC_CLASS_POS_INF;
- }
- /* is finite */
- if (uprv_decNumberIsNormal(dn, set)) { /* most common */
- if (decNumberIsNegative(dn)) return DEC_CLASS_NEG_NORMAL;
- return DEC_CLASS_POS_NORMAL;
- }
- /* is subnormal or zero */
- if (decNumberIsZero(dn)) { /* most common */
- if (decNumberIsNegative(dn)) return DEC_CLASS_NEG_ZERO;
- return DEC_CLASS_POS_ZERO;
- }
- if (decNumberIsNegative(dn)) return DEC_CLASS_NEG_SUBNORMAL;
- return DEC_CLASS_POS_SUBNORMAL;
- } /* decNumberClass */
- /* ------------------------------------------------------------------ */
- /* decNumberClassToString -- convert decClass to a string */
- /* */
- /* eclass is a valid decClass */
- /* returns a constant string describing the class (max 13+1 chars) */
- /* ------------------------------------------------------------------ */
- const char *uprv_decNumberClassToString(enum decClass eclass) {
- if (eclass==DEC_CLASS_POS_NORMAL) return DEC_ClassString_PN;
- if (eclass==DEC_CLASS_NEG_NORMAL) return DEC_ClassString_NN;
- if (eclass==DEC_CLASS_POS_ZERO) return DEC_ClassString_PZ;
- if (eclass==DEC_CLASS_NEG_ZERO) return DEC_ClassString_NZ;
- if (eclass==DEC_CLASS_POS_SUBNORMAL) return DEC_ClassString_PS;
- if (eclass==DEC_CLASS_NEG_SUBNORMAL) return DEC_ClassString_NS;
- if (eclass==DEC_CLASS_POS_INF) return DEC_ClassString_PI;
- if (eclass==DEC_CLASS_NEG_INF) return DEC_ClassString_NI;
- if (eclass==DEC_CLASS_QNAN) return DEC_ClassString_QN;
- if (eclass==DEC_CLASS_SNAN) return DEC_ClassString_SN;
- return DEC_ClassString_UN; /* Unknown */
- } /* decNumberClassToString */
- /* ------------------------------------------------------------------ */
- /* decNumberCopy -- copy a number */
- /* */
- /* dest is the target decNumber */
- /* src is the source decNumber */
- /* returns dest */
- /* */
- /* (dest==src is allowed and is a no-op) */
- /* All fields are updated as required. This is a utility operation, */
- /* so special values are unchanged and no error is possible. */
- /* ------------------------------------------------------------------ */
- U_CAPI decNumber * U_EXPORT2 uprv_decNumberCopy(decNumber *dest, const decNumber *src) {
- #if DECCHECK
- if (src==nullptr) return uprv_decNumberZero(dest);
- #endif
- if (dest==src) return dest; /* no copy required */
- /* Use explicit assignments here as structure assignment could copy */
- /* more than just the lsu (for small DECDPUN). This would not affect */
- /* the value of the results, but could disturb test harness spill */
- /* checking. */
- dest->bits=src->bits;
- dest->exponent=src->exponent;
- dest->digits=src->digits;
- dest->lsu[0]=src->lsu[0];
- if (src->digits>DECDPUN) { /* more Units to come */
- const Unit *smsup, *s; /* work */
- Unit *d; /* .. */
- /* memcpy for the remaining Units would be safe as they cannot */
- /* overlap. However, this explicit loop is faster in short cases. */
- d=dest->lsu+1; /* -> first destination */
- smsup=src->lsu+D2U(src->digits); /* -> source msu+1 */
- for (s=src->lsu+1; s<smsup; s++, d++) *d=*s;
- }
- return dest;
- } /* decNumberCopy */
- /* ------------------------------------------------------------------ */
- /* decNumberCopyAbs -- quiet absolute value operator */
- /* */
- /* This sets C = abs(A) */
- /* */
- /* res is C, the result. C may be A */
- /* rhs is A */
- /* */
- /* C must have space for set->digits digits. */
- /* No exception or error can occur; this is a quiet bitwise operation.*/
- /* See also decNumberAbs for a checking version of this. */
- /* ------------------------------------------------------------------ */
- U_CAPI decNumber * U_EXPORT2 uprv_decNumberCopyAbs(decNumber *res, const decNumber *rhs) {
- #if DECCHECK
- if (decCheckOperands(res, DECUNUSED, rhs, DECUNCONT)) return res;
- #endif
- uprv_decNumberCopy(res, rhs);
- res->bits&=~DECNEG; /* turn off sign */
- return res;
- } /* decNumberCopyAbs */
- /* ------------------------------------------------------------------ */
- /* decNumberCopyNegate -- quiet negate value operator */
- /* */
- /* This sets C = negate(A) */
- /* */
- /* res is C, the result. C may be A */
- /* rhs is A */
- /* */
- /* C must have space for set->digits digits. */
- /* No exception or error can occur; this is a quiet bitwise operation.*/
- /* See also decNumberMinus for a checking version of this. */
- /* ------------------------------------------------------------------ */
- U_CAPI decNumber * U_EXPORT2 uprv_decNumberCopyNegate(decNumber *res, const decNumber *rhs) {
- #if DECCHECK
- if (decCheckOperands(res, DECUNUSED, rhs, DECUNCONT)) return res;
- #endif
- uprv_decNumberCopy(res, rhs);
- res->bits^=DECNEG; /* invert the sign */
- return res;
- } /* decNumberCopyNegate */
- /* ------------------------------------------------------------------ */
- /* decNumberCopySign -- quiet copy and set sign operator */
- /* */
- /* This sets C = A with the sign of B */
- /* */
- /* res is C, the result. C may be A */
- /* lhs is A */
- /* rhs is B */
- /* */
- /* C must have space for set->digits digits. */
- /* No exception or error can occur; this is a quiet bitwise operation.*/
- /* ------------------------------------------------------------------ */
- U_CAPI decNumber * U_EXPORT2 uprv_decNumberCopySign(decNumber *res, const decNumber *lhs,
- const decNumber *rhs) {
- uByte sign; /* rhs sign */
- #if DECCHECK
- if (decCheckOperands(res, DECUNUSED, rhs, DECUNCONT)) return res;
- #endif
- sign=rhs->bits & DECNEG; /* save sign bit */
- uprv_decNumberCopy(res, lhs);
- res->bits&=~DECNEG; /* clear the sign */
- res->bits|=sign; /* set from rhs */
- return res;
- } /* decNumberCopySign */
- /* ------------------------------------------------------------------ */
- /* decNumberGetBCD -- get the coefficient in BCD8 */
- /* dn is the source decNumber */
- /* bcd is the uInt array that will receive dn->digits BCD bytes, */
- /* most-significant at offset 0 */
- /* returns bcd */
- /* */
- /* bcd must have at least dn->digits bytes. No error is possible; if */
- /* dn is a NaN or Infinite, digits must be 1 and the coefficient 0. */
- /* ------------------------------------------------------------------ */
- U_CAPI uByte * U_EXPORT2 uprv_decNumberGetBCD(const decNumber *dn, uByte *bcd) {
- uByte *ub=bcd+dn->digits-1; /* -> lsd */
- const Unit *up=dn->lsu; /* Unit pointer, -> lsu */
- #if DECDPUN==1 /* trivial simple copy */
- for (; ub>=bcd; ub--, up++) *ub=*up;
- #else /* chopping needed */
- uInt u=*up; /* work */
- uInt cut=DECDPUN; /* downcounter through unit */
- for (; ub>=bcd; ub--) {
- *ub=(uByte)(u%10); /* [*6554 trick inhibits, here] */
- u=u/10;
- cut--;
- if (cut>0) continue; /* more in this unit */
- up++;
- u=*up;
- cut=DECDPUN;
- }
- #endif
- return bcd;
- } /* decNumberGetBCD */
- /* ------------------------------------------------------------------ */
- /* decNumberSetBCD -- set (replace) the coefficient from BCD8 */
- /* dn is the target decNumber */
- /* bcd is the uInt array that will source n BCD bytes, most- */
- /* significant at offset 0 */
- /* n is the number of digits in the source BCD array (bcd) */
- /* returns dn */
- /* */
- /* dn must have space for at least n digits. No error is possible; */
- /* if dn is a NaN, or Infinite, or is to become a zero, n must be 1 */
- /* and bcd[0] zero. */
- /* ------------------------------------------------------------------ */
- U_CAPI decNumber * U_EXPORT2 uprv_decNumberSetBCD(decNumber *dn, const uByte *bcd, uInt n) {
- Unit *up=dn->lsu+D2U(dn->digits)-1; /* -> msu [target pointer] */
- const uByte *ub=bcd; /* -> source msd */
- #if DECDPUN==1 /* trivial simple copy */
- for (; ub<bcd+n; ub++, up--) *up=*ub;
- #else /* some assembly needed */
- /* calculate how many digits in msu, and hence first cut */
- Int cut=MSUDIGITS(n); /* [faster than remainder] */
- for (;up>=dn->lsu; up--) { /* each Unit from msu */
- *up=0; /* will take <=DECDPUN digits */
- for (; cut>0; ub++, cut--) *up=X10(*up)+*ub;
- cut=DECDPUN; /* next Unit has all digits */
- }
- #endif
- dn->digits=n; /* set digit count */
- return dn;
- } /* decNumberSetBCD */
- /* ------------------------------------------------------------------ */
- /* decNumberIsNormal -- test normality of a decNumber */
- /* dn is the decNumber to test */
- /* set is the context to use for Emin */
- /* returns 1 if |dn| is finite and >=Nmin, 0 otherwise */
- /* ------------------------------------------------------------------ */
- Int uprv_decNumberIsNormal(const decNumber *dn, decContext *set) {
- Int ae; /* adjusted exponent */
- #if DECCHECK
- if (decCheckOperands(DECUNRESU, DECUNUSED, dn, set)) return 0;
- #endif
- if (decNumberIsSpecial(dn)) return 0; /* not finite */
- if (decNumberIsZero(dn)) return 0; /* not non-zero */
- ae=dn->exponent+dn->digits-1; /* adjusted exponent */
- if (ae<set->emin) return 0; /* is subnormal */
- return 1;
- } /* decNumberIsNormal */
- /* ------------------------------------------------------------------ */
- /* decNumberIsSubnormal -- test subnormality of a decNumber */
- /* dn is the decNumber to test */
- /* set is the context to use for Emin */
- /* returns 1 if |dn| is finite, non-zero, and <Nmin, 0 otherwise */
- /* ------------------------------------------------------------------ */
- Int uprv_decNumberIsSubnormal(const decNumber *dn, decContext *set) {
- Int ae; /* adjusted exponent */
- #if DECCHECK
- if (decCheckOperands(DECUNRESU, DECUNUSED, dn, set)) return 0;
- #endif
- if (decNumberIsSpecial(dn)) return 0; /* not finite */
- if (decNumberIsZero(dn)) return 0; /* not non-zero */
- ae=dn->exponent+dn->digits-1; /* adjusted exponent */
- if (ae<set->emin) return 1; /* is subnormal */
- return 0;
- } /* decNumberIsSubnormal */
- /* ------------------------------------------------------------------ */
- /* decNumberTrim -- remove insignificant zeros */
- /* */
- /* dn is the number to trim */
- /* returns dn */
- /* */
- /* All fields are updated as required. This is a utility operation, */
- /* so special values are unchanged and no error is possible. The */
- /* zeros are removed unconditionally. */
- /* ------------------------------------------------------------------ */
- U_CAPI decNumber * U_EXPORT2 uprv_decNumberTrim(decNumber *dn) {
- Int dropped; /* work */
- decContext set; /* .. */
- #if DECCHECK
- if (decCheckOperands(DECUNRESU, DECUNUSED, dn, DECUNCONT)) return dn;
- #endif
- uprv_decContextDefault(&set, DEC_INIT_BASE); /* clamp=0 */
- return decTrim(dn, &set, 0, 1, &dropped);
- } /* decNumberTrim */
- /* ------------------------------------------------------------------ */
- /* decNumberVersion -- return the name and version of this module */
- /* */
- /* No error is possible. */
- /* ------------------------------------------------------------------ */
- const char * uprv_decNumberVersion() {
- return DECVERSION;
- } /* decNumberVersion */
- /* ------------------------------------------------------------------ */
- /* decNumberZero -- set a number to 0 */
- /* */
- /* dn is the number to set, with space for one digit */
- /* returns dn */
- /* */
- /* No error is possible. */
- /* ------------------------------------------------------------------ */
- /* Memset is not used as it is much slower in some environments. */
- U_CAPI decNumber * U_EXPORT2 uprv_decNumberZero(decNumber *dn) {
- #if DECCHECK
- if (decCheckOperands(dn, DECUNUSED, DECUNUSED, DECUNCONT)) return dn;
- #endif
- dn->bits=0;
- dn->exponent=0;
- dn->digits=1;
- dn->lsu[0]=0;
- return dn;
- } /* decNumberZero */
- /* ================================================================== */
- /* Local routines */
- /* ================================================================== */
- /* ------------------------------------------------------------------ */
- /* decToString -- lay out a number into a string */
- /* */
- /* dn is the number to lay out */
- /* string is where to lay out the number */
- /* eng is 1 if Engineering, 0 if Scientific */
- /* */
- /* string must be at least dn->digits+14 characters long */
- /* No error is possible. */
- /* */
- /* Note that this routine can generate a -0 or 0.000. These are */
- /* never generated in subset to-number or arithmetic, but can occur */
- /* in non-subset arithmetic (e.g., -1*0 or 1.234-1.234). */
- /* ------------------------------------------------------------------ */
- /* If DECCHECK is enabled the string "?" is returned if a number is */
- /* invalid. */
- static void decToString(const decNumber *dn, char *string, Flag eng) {
- Int exp=dn->exponent; /* local copy */
- Int e; /* E-part value */
- Int pre; /* digits before the '.' */
- Int cut; /* for counting digits in a Unit */
- char *c=string; /* work [output pointer] */
- const Unit *up=dn->lsu+D2U(dn->digits)-1; /* -> msu [input pointer] */
- uInt u, pow; /* work */
- #if DECCHECK
- if (decCheckOperands(DECUNRESU, dn, DECUNUSED, DECUNCONT)) {
- strcpy(string, "?");
- return;}
- #endif
- if (decNumberIsNegative(dn)) { /* Negatives get a minus */
- *c='-';
- c++;
- }
- if (dn->bits&DECSPECIAL) { /* Is a special value */
- if (decNumberIsInfinite(dn)) {
- strcpy(c, "Inf");
- strcpy(c+3, "inity");
- return;}
- /* a NaN */
- if (dn->bits&DECSNAN) { /* signalling NaN */
- *c='s';
- c++;
- }
- strcpy(c, "NaN");
- c+=3; /* step past */
- /* if not a clean non-zero coefficient, that's all there is in a */
- /* NaN string */
- if (exp!=0 || (*dn->lsu==0 && dn->digits==1)) return;
- /* [drop through to add integer] */
- }
- /* calculate how many digits in msu, and hence first cut */
- cut=MSUDIGITS(dn->digits); /* [faster than remainder] */
- cut--; /* power of ten for digit */
- if (exp==0) { /* simple integer [common fastpath] */
- for (;up>=dn->lsu; up--) { /* each Unit from msu */
- u=*up; /* contains DECDPUN digits to lay out */
- for (; cut>=0; c++, cut--) TODIGIT(u, cut, c, pow);
- cut=DECDPUN-1; /* next Unit has all digits */
- }
- *c='\0'; /* terminate the string */
- return;}
- /* non-0 exponent -- assume plain form */
- pre=dn->digits+exp; /* digits before '.' */
- e=0; /* no E */
- if ((exp>0) || (pre<-5)) { /* need exponential form */
- e=exp+dn->digits-1; /* calculate E value */
- pre=1; /* assume one digit before '.' */
- if (eng && (e!=0)) { /* engineering: may need to adjust */
- Int adj; /* adjustment */
- /* The C remainder operator is undefined for negative numbers, so */
- /* a positive remainder calculation must be used here */
- if (e<0) {
- adj=(-e)%3;
- if (adj!=0) adj=3-adj;
- }
- else { /* e>0 */
- adj=e%3;
- }
- e=e-adj;
- /* if dealing with zero still produce an exponent which is a */
- /* multiple of three, as expected, but there will only be the */
- /* one zero before the E, still. Otherwise note the padding. */
- if (!ISZERO(dn)) pre+=adj;
- else { /* is zero */
- if (adj!=0) { /* 0.00Esnn needed */
- e=e+3;
- pre=-(2-adj);
- }
- } /* zero */
- } /* eng */
- } /* need exponent */
- /* lay out the digits of the coefficient, adding 0s and . as needed */
- u=*up;
- if (pre>0) { /* xxx.xxx or xx00 (engineering) form */
- Int n=pre;
- for (; pre>0; pre--, c++, cut--) {
- if (cut<0) { /* need new Unit */
- if (up==dn->lsu) break; /* out of input digits (pre>digits) */
- up--;
- cut=DECDPUN-1;
- u=*up;
- }
- TODIGIT(u, cut, c, pow);
- }
- if (n<dn->digits) { /* more to come, after '.' */
- *c='.'; c++;
- for (;; c++, cut--) {
- if (cut<0) { /* need new Unit */
- if (up==dn->lsu) break; /* out of input digits */
- up--;
- cut=DECDPUN-1;
- u=*up;
- }
- TODIGIT(u, cut, c, pow);
- }
- }
- else for (; pre>0; pre--, c++) *c='0'; /* 0 padding (for engineering) needed */
- }
- else { /* 0.xxx or 0.000xxx form */
- *c='0'; c++;
- *c='.'; c++;
- for (; pre<0; pre++, c++) *c='0'; /* add any 0's after '.' */
- for (; ; c++, cut--) {
- if (cut<0) { /* need new Unit */
- if (up==dn->lsu) break; /* out of input digits */
- up--;
- cut=DECDPUN-1;
- u=*up;
- }
- TODIGIT(u, cut, c, pow);
- }
- }
- /* Finally add the E-part, if needed. It will never be 0, has a
- base maximum and minimum of +999999999 through -999999999, but
- could range down to -1999999998 for abnormal numbers */
- if (e!=0) {
- Flag had=0; /* 1=had non-zero */
- *c='E'; c++;
- *c='+'; c++; /* assume positive */
- u=e; /* .. */
- if (e<0) {
- *(c-1)='-'; /* oops, need - */
- u=-e; /* uInt, please */
- }
- /* lay out the exponent [_itoa or equivalent is not ANSI C] */
- for (cut=9; cut>=0; cut--) {
- TODIGIT(u, cut, c, pow);
- if (*c=='0' && !had) continue; /* skip leading zeros */
- had=1; /* had non-0 */
- c++; /* step for next */
- } /* cut */
- }
- *c='\0'; /* terminate the string (all paths) */
- return;
- } /* decToString */
- /* ------------------------------------------------------------------ */
- /* decAddOp -- add/subtract operation */
- /* */
- /* This computes C = A + B */
- /* */
- /* res is C, the result. C may be A and/or B (e.g., X=X+X) */
- /* lhs is A */
- /* rhs is B */
- /* set is the context */
- /* negate is DECNEG if rhs should be negated, or 0 otherwise */
- /* status accumulates status for the caller */
- /* */
- /* C must have space for set->digits digits. */
- /* Inexact in status must be 0 for correct Exact zero sign in result */
- /* ------------------------------------------------------------------ */
- /* If possible, the coefficient is calculated directly into C. */
- /* However, if: */
- /* -- a digits+1 calculation is needed because the numbers are */
- /* unaligned and span more than set->digits digits */
- /* -- a carry to digits+1 digits looks possible */
- /* -- C is the same as A or B, and the result would destructively */
- /* overlap the A or B coefficient */
- /* then the result must be calculated into a temporary buffer. In */
- /* this case a local (stack) buffer is used if possible, and only if */
- /* too long for that does malloc become the final resort. */
- /* */
- /* Misalignment is handled as follows: */
- /* Apad: (AExp>BExp) Swap operands and proceed as for BExp>AExp. */
- /* BPad: Apply the padding by a combination of shifting (whole */
- /* units) and multiplication (part units). */
- /* */
- /* Addition, especially x=x+1, is speed-critical. */
- /* The static buffer is larger than might be expected to allow for */
- /* calls from higher-level functions (notable exp). */
- /* ------------------------------------------------------------------ */
- static decNumber * decAddOp(decNumber *res, const decNumber *lhs,
- const decNumber *rhs, decContext *set,
- uByte negate, uInt *status) {
- #if DECSUBSET
- decNumber *alloclhs=nullptr; /* non-nullptr if rounded lhs allocated */
- decNumber *allocrhs=nullptr; /* .., rhs */
- #endif
- Int rhsshift; /* working shift (in Units) */
- Int maxdigits; /* longest logical length */
- Int mult; /* multiplier */
- Int residue; /* rounding accumulator */
- uByte bits; /* result bits */
- Flag diffsign; /* non-0 if arguments have different sign */
- Unit *acc; /* accumulator for result */
- Unit accbuff[SD2U(DECBUFFER*2+20)]; /* local buffer [*2+20 reduces many */
- /* allocations when called from */
- /* other operations, notable exp] */
- Unit *allocacc=nullptr; /* -> allocated acc buffer, iff allocated */
- Int reqdigits=set->digits; /* local copy; requested DIGITS */
- Int padding; /* work */
- #if DECCHECK
- if (decCheckOperands(res, lhs, rhs, set)) return res;
- #endif
- do { /* protect allocated storage */
- #if DECSUBSET
- if (!set->extended) {
- /* reduce operands and set lostDigits status, as needed */
- if (lhs->digits>reqdigits) {
- alloclhs=decRoundOperand(lhs, set, status);
- if (alloclhs==nullptr) break;
- lhs=alloclhs;
- }
- if (rhs->digits>reqdigits) {
- allocrhs=decRoundOperand(rhs, set, status);
- if (allocrhs==nullptr) break;
- rhs=allocrhs;
- }
- }
- #endif
- /* [following code does not require input rounding] */
- /* note whether signs differ [used all paths] */
- diffsign=(Flag)((lhs->bits^rhs->bits^negate)&DECNEG);
- /* handle infinities and NaNs */
- if (SPECIALARGS) { /* a special bit set */
- if (SPECIALARGS & (DECSNAN | DECNAN)) /* a NaN */
- decNaNs(res, lhs, rhs, set, status);
- else { /* one or two infinities */
- if (decNumberIsInfinite(lhs)) { /* LHS is infinity */
- /* two infinities with different signs is invalid */
- if (decNumberIsInfinite(rhs) && diffsign) {
- *status|=DEC_Invalid_operation;
- break;
- }
- bits=lhs->bits & DECNEG; /* get sign from LHS */
- }
- else bits=(rhs->bits^negate) & DECNEG;/* RHS must be Infinity */
- bits|=DECINF;
- uprv_decNumberZero(res);
- res->bits=bits; /* set +/- infinity */
- } /* an infinity */
- break;
- }
- /* Quick exit for add 0s; return the non-0, modified as need be */
- if (ISZERO(lhs)) {
- Int adjust; /* work */
- Int lexp=lhs->exponent; /* save in case LHS==RES */
- bits=lhs->bits; /* .. */
- residue=0; /* clear accumulator */
- decCopyFit(res, rhs, set, &residue, status); /* copy (as needed) */
- res->bits^=negate; /* flip if rhs was negated */
- #if DECSUBSET
- if (set->extended) { /* exponents on zeros count */
- #endif
- /* exponent will be the lower of the two */
- adjust=lexp-res->exponent; /* adjustment needed [if -ve] */
- if (ISZERO(res)) { /* both 0: special IEEE 754 rules */
- if (adjust<0) res->exponent=lexp; /* set exponent */
- /* 0-0 gives +0 unless rounding to -infinity, and -0-0 gives -0 */
- if (diffsign) {
- if (set->round!=DEC_ROUND_FLOOR) res->bits=0;
- else res->bits=DECNEG; /* preserve 0 sign */
- }
- }
- else { /* non-0 res */
- if (adjust<0) { /* 0-padding needed */
- if ((res->digits-adjust)>set->digits) {
- adjust=res->digits-set->digits; /* to fit exactly */
- *status|=DEC_Rounded; /* [but exact] */
- }
- res->digits=decShiftToMost(res->lsu, res->digits, -adjust);
- res->exponent+=adjust; /* set the exponent. */
- }
- } /* non-0 res */
- #if DECSUBSET
- } /* extended */
- #endif
- decFinish(res, set, &residue, status); /* clean and finalize */
- break;}
- if (ISZERO(rhs)) { /* [lhs is non-zero] */
- Int adjust; /* work */
- Int rexp=rhs->exponent; /* save in case RHS==RES */
- bits=rhs->bits; /* be clean */
- residue=0; /* clear accumulator */
- decCopyFit(res, lhs, set, &residue, status); /* copy (as needed) */
- #if DECSUBSET
- if (set->extended) { /* exponents on zeros count */
- #endif
- /* exponent will be the lower of the two */
- /* [0-0 case handled above] */
- adjust=rexp-res->exponent; /* adjustment needed [if -ve] */
- if (adjust<0) { /* 0-padding needed */
- if ((res->digits-adjust)>set->digits) {
- adjust=res->digits-set->digits; /* to fit exactly */
- *status|=DEC_Rounded; /* [but exact] */
- }
- res->digits=decShiftToMost(res->lsu, res->digits, -adjust);
- res->exponent+=adjust; /* set the exponent. */
- }
- #if DECSUBSET
- } /* extended */
- #endif
- decFinish(res, set, &residue, status); /* clean and finalize */
- break;}
- /* [NB: both fastpath and mainpath code below assume these cases */
- /* (notably 0-0) have already been handled] */
- /* calculate the padding needed to align the operands */
- padding=rhs->exponent-lhs->exponent;
- /* Fastpath cases where the numbers are aligned and normal, the RHS */
- /* is all in one unit, no operand rounding is needed, and no carry, */
- /* lengthening, or borrow is needed */
- if (padding==0
- && rhs->digits<=DECDPUN
- && rhs->exponent>=set->emin /* [some normals drop through] */
- && rhs->exponent<=set->emax-set->digits+1 /* [could clamp] */
- && rhs->digits<=reqdigits
- && lhs->digits<=reqdigits) {
- Int partial=*lhs->lsu;
- if (!diffsign) { /* adding */
- partial+=*rhs->lsu;
- if ((partial<=DECDPUNMAX) /* result fits in unit */
- && (lhs->digits>=DECDPUN || /* .. and no digits-count change */
- partial<(Int)powers[lhs->digits])) { /* .. */
- if (res!=lhs) uprv_decNumberCopy(res, lhs); /* not in place */
- *res->lsu=(Unit)partial; /* [copy could have overwritten RHS] */
- break;
- }
- /* else drop out for careful add */
- }
- else { /* signs differ */
- partial-=*rhs->lsu;
- if (partial>0) { /* no borrow needed, and non-0 result */
- if (res!=lhs) uprv_decNumberCopy(res, lhs); /* not in place */
- *res->lsu=(Unit)partial;
- /* this could have reduced digits [but result>0] */
- res->digits=decGetDigits(res->lsu, D2U(res->digits));
- break;
- }
- /* else drop out for careful subtract */
- }
- }
- /* Now align (pad) the lhs or rhs so they can be added or */
- /* subtracted, as necessary. If one number is much larger than */
- /* the other (that is, if in plain form there is a least one */
- /* digit between the lowest digit of one and the highest of the */
- /* other) padding with up to DIGITS-1 trailing zeros may be */
- /* needed; then apply rounding (as exotic rounding modes may be */
- /* affected by the residue). */
- rhsshift=0; /* rhs shift to left (padding) in Units */
- bits=lhs->bits; /* assume sign is that of LHS */
- mult=1; /* likely multiplier */
- /* [if padding==0 the operands are aligned; no padding is needed] */
- if (padding!=0) {
- /* some padding needed; always pad the RHS, as any required */
- /* padding can then be effected by a simple combination of */
- /* shifts and a multiply */
- Flag swapped=0;
- if (padding<0) { /* LHS needs the padding */
- const decNumber *t;
- padding=-padding; /* will be +ve */
- bits=(uByte)(rhs->bits^negate); /* assumed sign is now that of RHS */
- t=lhs; lhs=rhs; rhs=t;
- swapped=1;
- }
- /* If, after pad, rhs would be longer than lhs by digits+1 or */
- /* more then lhs cannot affect the answer, except as a residue, */
- /* so only need to pad up to a length of DIGITS+1. */
- if (rhs->digits+padding > lhs->digits+reqdigits+1) {
- /* The RHS is sufficient */
- /* for residue use the relative sign indication... */
- Int shift=reqdigits-rhs->digits; /* left shift needed */
- residue=1; /* residue for rounding */
- if (diffsign) residue=-residue; /* signs differ */
- /* copy, shortening if necessary */
- decCopyFit(res, rhs, set, &residue, status);
- /* if it was already shorter, then need to pad with zeros */
- if (shift>0) {
- res->digits=decShiftToMost(res->lsu, res->digits, shift);
- res->exponent-=shift; /* adjust the exponent. */
- }
- /* flip the result sign if unswapped and rhs was negated */
- if (!swapped) res->bits^=negate;
- decFinish(res, set, &residue, status); /* done */
- break;}
- /* LHS digits may affect result */
- rhsshift=D2U(padding+1)-1; /* this much by Unit shift .. */
- mult=powers[padding-(rhsshift*DECDPUN)]; /* .. this by multiplication */
- } /* padding needed */
- if (diffsign) mult=-mult; /* signs differ */
- /* determine the longer operand */
- maxdigits=rhs->digits+padding; /* virtual length of RHS */
- if (lhs->digits>maxdigits) maxdigits=lhs->digits;
- /* Decide on the result buffer to use; if possible place directly */
- /* into result. */
- acc=res->lsu; /* assume add direct to result */
- /* If destructive overlap, or the number is too long, or a carry or */
- /* borrow to DIGITS+1 might be possible, a buffer must be used. */
- /* [Might be worth more sophisticated tests when maxdigits==reqdigits] */
- if ((maxdigits>=reqdigits) /* is, or could be, too large */
- || (res==rhs && rhsshift>0)) { /* destructive overlap */
- /* buffer needed, choose it; units for maxdigits digits will be */
- /* needed, +1 Unit for carry or borrow */
- Int need=D2U(maxdigits)+1;
- acc=accbuff; /* assume use local buffer */
- if (need*sizeof(Unit)>sizeof(accbuff)) {
- /* printf("malloc add %ld %ld\n", need, sizeof(accbuff)); */
- allocacc=(Unit *)malloc(need*sizeof(Unit));
- if (allocacc==nullptr) { /* hopeless -- abandon */
- *status|=DEC_Insufficient_storage;
- break;}
- acc=allocacc;
- }
- }
- res->bits=(uByte)(bits&DECNEG); /* it's now safe to overwrite.. */
- res->exponent=lhs->exponent; /* .. operands (even if aliased) */
- #if DECTRACE
- decDumpAr('A', lhs->lsu, D2U(lhs->digits));
- decDumpAr('B', rhs->lsu, D2U(rhs->digits));
- printf(" :h: %ld %ld\n", rhsshift, mult);
- #endif
- /* add [A+B*m] or subtract [A+B*(-m)] */
- U_ASSERT(rhs->digits > 0);
- U_ASSERT(lhs->digits > 0);
- res->digits=decUnitAddSub(lhs->lsu, D2U(lhs->digits),
- rhs->lsu, D2U(rhs->digits),
- rhsshift, acc, mult)
- *DECDPUN; /* [units -> digits] */
- if (res->digits<0) { /* borrowed... */
- res->digits=-res->digits;
- res->bits^=DECNEG; /* flip the sign */
- }
- #if DECTRACE
- decDumpAr('+', acc, D2U(res->digits));
- #endif
- /* If a buffer was used the result must be copied back, possibly */
- /* shortening. (If no buffer was used then the result must have */
- /* fit, so can't need rounding and residue must be 0.) */
- residue=0; /* clear accumulator */
- if (acc!=res->lsu) {
- #if DECSUBSET
- if (set->extended) { /* round from first significant digit */
- #endif
- /* remove leading zeros that were added due to rounding up to */
- /* integral Units -- before the test for rounding. */
- if (res->digits>reqdigits)
- res->digits=decGetDigits(acc, D2U(res->digits));
- decSetCoeff(res, set, acc, res->digits, &residue, status);
- #if DECSUBSET
- }
- else { /* subset arithmetic rounds from original significant digit */
- /* May have an underestimate. This only occurs when both */
- /* numbers fit in DECDPUN digits and are padding with a */
- /* negative multiple (-10, -100...) and the top digit(s) become */
- /* 0. (This only matters when using X3.274 rules where the */
- /* leading zero could be included in the rounding.) */
- if (res->digits<maxdigits) {
- *(acc+D2U(res->digits))=0; /* ensure leading 0 is there */
- res->digits=maxdigits;
- }
- else {
- /* remove leading zeros that added due to rounding up to */
- /* integral Units (but only those in excess of the original */
- /* maxdigits length, unless extended) before test for rounding. */
- if (res->digits>reqdigits) {
- res->digits=decGetDigits(acc, D2U(res->digits));
- if (res->digits<maxdigits) res->digits=maxdigits;
- }
- }
- decSetCoeff(res, set, acc, res->digits, &residue, status);
- /* Now apply rounding if needed before removing leading zeros. */
- /* This is safe because subnormals are not a possibility */
- if (residue!=0) {
- decApplyRound(res, set, residue, status);
- residue=0; /* did what needed to be done */
- }
- } /* subset */
- #endif
- } /* used buffer */
- /* strip leading zeros [these were left on in case of subset subtract] */
- res->digits=decGetDigits(res->lsu, D2U(res->digits));
- /* apply checks and rounding */
- decFinish(res, set, &residue, status);
- /* "When the sum of two operands with opposite signs is exactly */
- /* zero, the sign of that sum shall be '+' in all rounding modes */
- /* except round toward -Infinity, in which mode that sign shall be */
- /* '-'." [Subset zeros also never have '-', set by decFinish.] */
- if (ISZERO(res) && diffsign
- #if DECSUBSET
- && set->extended
- #endif
- && (*status&DEC_Inexact)==0) {
- if (set->round==DEC_ROUND_FLOOR) res->bits|=DECNEG; /* sign - */
- else res->bits&=~DECNEG; /* sign + */
- }
- } while(0); /* end protected */
- if (allocacc!=nullptr) free(allocacc); /* drop any storage used */
- #if DECSUBSET
- if (allocrhs!=nullptr) free(allocrhs); /* .. */
- if (alloclhs!=nullptr) free(alloclhs); /* .. */
- #endif
- return res;
- } /* decAddOp */
- /* ------------------------------------------------------------------ */
- /* decDivideOp -- division operation */
- /* */
- /* This routine performs the calculations for all four division */
- /* operators (divide, divideInteger, remainder, remainderNear). */
- /* */
- /* C=A op B */
- /* */
- /* res is C, the result. C may be A and/or B (e.g., X=X/X) */
- /* lhs is A */
- /* rhs is B */
- /* set is the context */
- /* op is DIVIDE, DIVIDEINT, REMAINDER, or REMNEAR respectively. */
- /* status is the usual accumulator */
- /* */
- /* C must have space for set->digits digits. */
- /* */
- /* ------------------------------------------------------------------ */
- /* The underlying algorithm of this routine is the same as in the */
- /* 1981 S/370 implementation, that is, non-restoring long division */
- /* with bi-unit (rather than bi-digit) estimation for each unit */
- /* multiplier. In this pseudocode overview, complications for the */
- /* Remainder operators and division residues for exact rounding are */
- /* omitted for clarity. */
- /* */
- /* Prepare operands and handle special values */
- /* Test for x/0 and then 0/x */
- /* Exp =Exp1 - Exp2 */
- /* Exp =Exp +len(var1) -len(var2) */
- /* Sign=Sign1 * Sign2 */
- /* Pad accumulator (Var1) to double-length with 0's (pad1) */
- /* Pad Var2 to same length as Var1 */
- /* msu2pair/plus=1st 2 or 1 units of var2, +1 to allow for round */
- /* have=0 */
- /* Do until (have=digits+1 OR residue=0) */
- /* if exp<0 then if integer divide/residue then leave */
- /* this_unit=0 */
- /* Do forever */
- /* compare numbers */
- /* if <0 then leave inner_loop */
- /* if =0 then (* quick exit without subtract *) do */
- /* this_unit=this_unit+1; output this_unit */
- /* leave outer_loop; end */
- /* Compare lengths of numbers (mantissae): */
- /* If same then tops2=msu2pair -- {units 1&2 of var2} */
- /* else tops2=msu2plus -- {0, unit 1 of var2} */
- /* tops1=first_unit_of_Var1*10**DECDPUN +second_unit_of_var1 */
- /* mult=tops1/tops2 -- Good and safe guess at divisor */
- /* if mult=0 then mult=1 */
- /* this_unit=this_unit+mult */
- /* subtract */
- /* end inner_loop */
- /* if have\=0 | this_unit\=0 then do */
- /* output this_unit */
- /* have=have+1; end */
- /* var2=var2/10 */
- /* exp=exp-1 */
- /* end outer_loop */
- /* exp=exp+1 -- set the proper exponent */
- /* if have=0 then generate answer=0 */
- /* Return (Result is defined by Var1) */
- /* */
- /* ------------------------------------------------------------------ */
- /* Two working buffers are needed during the division; one (digits+ */
- /* 1) to accumulate the result, and the other (up to 2*digits+1) for */
- /* long subtractions. These are acc and var1 respectively. */
- /* var1 is a copy of the lhs coefficient, var2 is the rhs coefficient.*/
- /* The static buffers may be larger than might be expected to allow */
- /* for calls from higher-level functions (notable exp). */
- /* ------------------------------------------------------------------ */
- static decNumber * decDivideOp(decNumber *res,
- const decNumber *lhs, const decNumber *rhs,
- decContext *set, Flag op, uInt *status) {
- #if DECSUBSET
- decNumber *alloclhs=nullptr; /* non-nullptr if rounded lhs allocated */
- decNumber *allocrhs=nullptr; /* .., rhs */
- #endif
- Unit accbuff[SD2U(DECBUFFER+DECDPUN+10)]; /* local buffer */
- Unit *acc=accbuff; /* -> accumulator array for result */
- Unit *allocacc=nullptr; /* -> allocated buffer, iff allocated */
- Unit *accnext; /* -> where next digit will go */
- Int acclength; /* length of acc needed [Units] */
- Int accunits; /* count of units accumulated */
- Int accdigits; /* count of digits accumulated */
- Unit varbuff[SD2U(DECBUFFER*2+DECDPUN)]; /* buffer for var1 */
- Unit *var1=varbuff; /* -> var1 array for long subtraction */
- Unit *varalloc=nullptr; /* -> allocated buffer, iff used */
- Unit *msu1; /* -> msu of var1 */
- const Unit *var2; /* -> var2 array */
- const Unit *msu2; /* -> msu of var2 */
- Int msu2plus; /* msu2 plus one [does not vary] */
- eInt msu2pair; /* msu2 pair plus one [does not vary] */
- Int var1units, var2units; /* actual lengths */
- Int var2ulen; /* logical length (units) */
- Int var1initpad=0; /* var1 initial padding (digits) */
- Int maxdigits; /* longest LHS or required acc length */
- Int mult; /* multiplier for subtraction */
- Unit thisunit; /* current unit being accumulated */
- Int residue; /* for rounding */
- Int reqdigits=set->digits; /* requested DIGITS */
- Int exponent; /* working exponent */
- Int maxexponent=0; /* DIVIDE maximum exponent if unrounded */
- uByte bits; /* working sign */
- Unit *target; /* work */
- const Unit *source; /* .. */
- uInt const *pow; /* .. */
- Int shift, cut; /* .. */
- #if DECSUBSET
- Int dropped; /* work */
- #endif
- #if DECCHECK
- if (decCheckOperands(res, lhs, rhs, set)) return res;
- #endif
- do { /* protect allocated storage */
- #if DECSUBSET
- if (!set->extended) {
- /* reduce operands and set lostDigits status, as needed */
- if (lhs->digits>reqdigits) {
- alloclhs=decRoundOperand(lhs, set, status);
- if (alloclhs==nullptr) break;
- lhs=alloclhs;
- }
- if (rhs->digits>reqdigits) {
- allocrhs=decRoundOperand(rhs, set, status);
- if (allocrhs==nullptr) break;
- rhs=allocrhs;
- }
- }
- #endif
- /* [following code does not require input rounding] */
- bits=(lhs->bits^rhs->bits)&DECNEG; /* assumed sign for divisions */
- /* handle infinities and NaNs */
- if (SPECIALARGS) { /* a special bit set */
- if (SPECIALARGS & (DECSNAN | DECNAN)) { /* one or two NaNs */
- decNaNs(res, lhs, rhs, set, status);
- break;
- }
- /* one or two infinities */
- if (decNumberIsInfinite(lhs)) { /* LHS (dividend) is infinite */
- if (decNumberIsInfinite(rhs) || /* two infinities are invalid .. */
- op & (REMAINDER | REMNEAR)) { /* as is remainder of infinity */
- *status|=DEC_Invalid_operation;
- break;
- }
- /* [Note that infinity/0 raises no exceptions] */
- uprv_decNumberZero(res);
- res->bits=bits|DECINF; /* set +/- infinity */
- break;
- }
- else { /* RHS (divisor) is infinite */
- residue=0;
- if (op&(REMAINDER|REMNEAR)) {
- /* result is [finished clone of] lhs */
- decCopyFit(res, lhs, set, &residue, status);
- }
- else { /* a division */
- uprv_decNumberZero(res);
- res->bits=bits; /* set +/- zero */
- /* for DIVIDEINT the exponent is always 0. For DIVIDE, result */
- /* is a 0 with infinitely negative exponent, clamped to minimum */
- if (op&DIVIDE) {
- res->exponent=set->emin-set->digits+1;
- *status|=DEC_Clamped;
- }
- }
- decFinish(res, set, &residue, status);
- break;
- }
- }
- /* handle 0 rhs (x/0) */
- if (ISZERO(rhs)) { /* x/0 is always exceptional */
- if (ISZERO(lhs)) {
- uprv_decNumberZero(res); /* [after lhs test] */
- *status|=DEC_Division_undefined;/* 0/0 will become NaN */
- }
- else {
- uprv_decNumberZero(res);
- if (op&(REMAINDER|REMNEAR)) *status|=DEC_Invalid_operation;
- else {
- *status|=DEC_Division_by_zero; /* x/0 */
- res->bits=bits|DECINF; /* .. is +/- Infinity */
- }
- }
- break;}
- /* handle 0 lhs (0/x) */
- if (ISZERO(lhs)) { /* 0/x [x!=0] */
- #if DECSUBSET
- if (!set->extended) uprv_decNumberZero(res);
- else {
- #endif
- if (op&DIVIDE) {
- residue=0;
- exponent=lhs->exponent-rhs->exponent; /* ideal exponent */
- uprv_decNumberCopy(res, lhs); /* [zeros always fit] */
- res->bits=bits; /* sign as computed */
- res->exponent=exponent; /* exponent, too */
- decFinalize(res, set, &residue, status); /* check exponent */
- }
- else if (op&DIVIDEINT) {
- uprv_decNumberZero(res); /* integer 0 */
- res->bits=bits; /* sign as computed */
- }
- else { /* a remainder */
- exponent=rhs->exponent; /* [save in case overwrite] */
- uprv_decNumberCopy(res, lhs); /* [zeros always fit] */
- if (exponent<res->exponent) res->exponent=exponent; /* use lower */
- }
- #if DECSUBSET
- }
- #endif
- break;}
- /* Precalculate exponent. This starts off adjusted (and hence fits */
- /* in 31 bits) and becomes the usual unadjusted exponent as the */
- /* division proceeds. The order of evaluation is important, here, */
- /* to avoid wrap. */
- exponent=(lhs->exponent+lhs->digits)-(rhs->exponent+rhs->digits);
- /* If the working exponent is -ve, then some quick exits are */
- /* possible because the quotient is known to be <1 */
- /* [for REMNEAR, it needs to be < -1, as -0.5 could need work] */
- if (exponent<0 && !(op==DIVIDE)) {
- if (op&DIVIDEINT) {
- uprv_decNumberZero(res); /* integer part is 0 */
- #if DECSUBSET
- if (set->extended)
- #endif
- res->bits=bits; /* set +/- zero */
- break;}
- /* fastpath remainders so long as the lhs has the smaller */
- /* (or equal) exponent */
- if (lhs->exponent<=rhs->exponent) {
- if (op&REMAINDER || exponent<-1) {
- /* It is REMAINDER or safe REMNEAR; result is [finished */
- /* clone of] lhs (r = x - 0*y) */
- residue=0;
- decCopyFit(res, lhs, set, &residue, status);
- decFinish(res, set, &residue, status);
- break;
- }
- /* [unsafe REMNEAR drops through] */
- }
- } /* fastpaths */
- /* Long (slow) division is needed; roll up the sleeves... */
- /* The accumulator will hold the quotient of the division. */
- /* If it needs to be too long for stack storage, then allocate. */
- acclength=D2U(reqdigits+DECDPUN); /* in Units */
- if (acclength*sizeof(Unit)>sizeof(accbuff)) {
- /* printf("malloc dvacc %ld units\n", acclength); */
- allocacc=(Unit *)malloc(acclength*sizeof(Unit));
- if (allocacc==nullptr) { /* hopeless -- abandon */
- *status|=DEC_Insufficient_storage;
- break;}
- acc=allocacc; /* use the allocated space */
- }
- /* var1 is the padded LHS ready for subtractions. */
- /* If it needs to be too long for stack storage, then allocate. */
- /* The maximum units needed for var1 (long subtraction) is: */
- /* Enough for */
- /* (rhs->digits+reqdigits-1) -- to allow full slide to right */
- /* or (lhs->digits) -- to allow for long lhs */
- /* whichever is larger */
- /* +1 -- for rounding of slide to right */
- /* +1 -- for leading 0s */
- /* +1 -- for pre-adjust if a remainder or DIVIDEINT */
- /* [Note: unused units do not participate in decUnitAddSub data] */
- maxdigits=rhs->digits+reqdigits-1;
- if (lhs->digits>maxdigits) maxdigits=lhs->digits;
- var1units=D2U(maxdigits)+2;
- /* allocate a guard unit above msu1 for REMAINDERNEAR */
- if (!(op&DIVIDE)) var1units++;
- if ((var1units+1)*sizeof(Unit)>sizeof(varbuff)) {
- /* printf("malloc dvvar %ld units\n", var1units+1); */
- varalloc=(Unit *)malloc((var1units+1)*sizeof(Unit));
- if (varalloc==nullptr) { /* hopeless -- abandon */
- *status|=DEC_Insufficient_storage;
- break;}
- var1=varalloc; /* use the allocated space */
- }
- /* Extend the lhs and rhs to full long subtraction length. The lhs */
- /* is truly extended into the var1 buffer, with 0 padding, so a */
- /* subtract in place is always possible. The rhs (var2) has */
- /* virtual padding (implemented by decUnitAddSub). */
- /* One guard unit was allocated above msu1 for rem=rem+rem in */
- /* REMAINDERNEAR. */
- msu1=var1+var1units-1; /* msu of var1 */
- source=lhs->lsu+D2U(lhs->digits)-1; /* msu of input array */
- for (target=msu1; source>=lhs->lsu; source--, target--) *target=*source;
- for (; target>=var1; target--) *target=0;
- /* rhs (var2) is left-aligned with var1 at the start */
- var2ulen=var1units; /* rhs logical length (units) */
- var2units=D2U(rhs->digits); /* rhs actual length (units) */
- var2=rhs->lsu; /* -> rhs array */
- msu2=var2+var2units-1; /* -> msu of var2 [never changes] */
- /* now set up the variables which will be used for estimating the */
- /* multiplication factor. If these variables are not exact, add */
- /* 1 to make sure that the multiplier is never overestimated. */
- msu2plus=*msu2; /* it's value .. */
- if (var2units>1) msu2plus++; /* .. +1 if any more */
- msu2pair=(eInt)*msu2*(DECDPUNMAX+1);/* top two pair .. */
- if (var2units>1) { /* .. [else treat 2nd as 0] */
- msu2pair+=*(msu2-1); /* .. */
- if (var2units>2) msu2pair++; /* .. +1 if any more */
- }
- /* The calculation is working in units, which may have leading zeros, */
- /* but the exponent was calculated on the assumption that they are */
- /* both left-aligned. Adjust the exponent to compensate: add the */
- /* number of leading zeros in var1 msu and subtract those in var2 msu. */
- /* [This is actually done by counting the digits and negating, as */
- /* lead1=DECDPUN-digits1, and similarly for lead2.] */
- for (pow=&powers[1]; *msu1>=*pow; pow++) exponent--;
- for (pow=&powers[1]; *msu2>=*pow; pow++) exponent++;
- /* Now, if doing an integer divide or remainder, ensure that */
- /* the result will be Unit-aligned. To do this, shift the var1 */
- /* accumulator towards least if need be. (It's much easier to */
- /* do this now than to reassemble the residue afterwards, if */
- /* doing a remainder.) Also ensure the exponent is not negative. */
- if (!(op&DIVIDE)) {
- Unit *u; /* work */
- /* save the initial 'false' padding of var1, in digits */
- var1initpad=(var1units-D2U(lhs->digits))*DECDPUN;
- /* Determine the shift to do. */
- if (exponent<0) cut=-exponent;
- else cut=DECDPUN-exponent%DECDPUN;
- decShiftToLeast(var1, var1units, cut);
- exponent+=cut; /* maintain numerical value */
- var1initpad-=cut; /* .. and reduce padding */
- /* clean any most-significant units which were just emptied */
- for (u=msu1; cut>=DECDPUN; cut-=DECDPUN, u--) *u=0;
- } /* align */
- else { /* is DIVIDE */
- maxexponent=lhs->exponent-rhs->exponent; /* save */
- /* optimization: if the first iteration will just produce 0, */
- /* preadjust to skip it [valid for DIVIDE only] */
- if (*msu1<*msu2) {
- var2ulen--; /* shift down */
- exponent-=DECDPUN; /* update the exponent */
- }
- }
- /* ---- start the long-division loops ------------------------------ */
- accunits=0; /* no units accumulated yet */
- accdigits=0; /* .. or digits */
- accnext=acc+acclength-1; /* -> msu of acc [NB: allows digits+1] */
- for (;;) { /* outer forever loop */
- thisunit=0; /* current unit assumed 0 */
- /* find the next unit */
- for (;;) { /* inner forever loop */
- /* strip leading zero units [from either pre-adjust or from */
- /* subtract last time around]. Leave at least one unit. */
- for (; *msu1==0 && msu1>var1; msu1--) var1units--;
- if (var1units<var2ulen) break; /* var1 too low for subtract */
- if (var1units==var2ulen) { /* unit-by-unit compare needed */
- /* compare the two numbers, from msu */
- const Unit *pv1, *pv2;
- Unit v2; /* units to compare */
- pv2=msu2; /* -> msu */
- for (pv1=msu1; ; pv1--, pv2--) {
- /* v1=*pv1 -- always OK */
- v2=0; /* assume in padding */
- if (pv2>=var2) v2=*pv2; /* in range */
- if (*pv1!=v2) break; /* no longer the same */
- if (pv1==var1) break; /* done; leave pv1 as is */
- }
- /* here when all inspected or a difference seen */
- if (*pv1<v2) break; /* var1 too low to subtract */
- if (*pv1==v2) { /* var1 == var2 */
- /* reach here if var1 and var2 are identical; subtraction */
- /* would increase digit by one, and the residue will be 0 so */
- /* the calculation is done; leave the loop with residue=0. */
- thisunit++; /* as though subtracted */
- *var1=0; /* set var1 to 0 */
- var1units=1; /* .. */
- break; /* from inner */
- } /* var1 == var2 */
- /* *pv1>v2. Prepare for real subtraction; the lengths are equal */
- /* Estimate the multiplier (there's always a msu1-1)... */
- /* Bring in two units of var2 to provide a good estimate. */
- mult=(Int)(((eInt)*msu1*(DECDPUNMAX+1)+*(msu1-1))/msu2pair);
- } /* lengths the same */
- else { /* var1units > var2ulen, so subtraction is safe */
- /* The var2 msu is one unit towards the lsu of the var1 msu, */
- /* so only one unit for var2 can be used. */
- mult=(Int)(((eInt)*msu1*(DECDPUNMAX+1)+*(msu1-1))/msu2plus);
- }
- if (mult==0) mult=1; /* must always be at least 1 */
- /* subtraction needed; var1 is > var2 */
- thisunit=(Unit)(thisunit+mult); /* accumulate */
- /* subtract var1-var2, into var1; only the overlap needs */
- /* processing, as this is an in-place calculation */
- shift=var2ulen-var2units;
- #if DECTRACE
- decDumpAr('1', &var1[shift], var1units-shift);
- decDumpAr('2', var2, var2units);
- printf("m=%ld\n", -mult);
- #endif
- decUnitAddSub(&var1[shift], var1units-shift,
- var2, var2units, 0,
- &var1[shift], -mult);
- #if DECTRACE
- decDumpAr('#', &var1[shift], var1units-shift);
- #endif
- /* var1 now probably has leading zeros; these are removed at the */
- /* top of the inner loop. */
- } /* inner loop */
- /* The next unit has been calculated in full; unless it's a */
- /* leading zero, add to acc */
- if (accunits!=0 || thisunit!=0) { /* is first or non-zero */
- *accnext=thisunit; /* store in accumulator */
- /* account exactly for the new digits */
- if (accunits==0) {
- accdigits++; /* at least one */
- for (pow=&powers[1]; thisunit>=*pow; pow++) accdigits++;
- }
- else accdigits+=DECDPUN;
- accunits++; /* update count */
- accnext--; /* ready for next */
- if (accdigits>reqdigits) break; /* have enough digits */
- }
- /* if the residue is zero, the operation is done (unless divide */
- /* or divideInteger and still not enough digits yet) */
- if (*var1==0 && var1units==1) { /* residue is 0 */
- if (op&(REMAINDER|REMNEAR)) break;
- if ((op&DIVIDE) && (exponent<=maxexponent)) break;
- /* [drop through if divideInteger] */
- }
- /* also done enough if calculating remainder or integer */
- /* divide and just did the last ('units') unit */
- if (exponent==0 && !(op&DIVIDE)) break;
- /* to get here, var1 is less than var2, so divide var2 by the per- */
- /* Unit power of ten and go for the next digit */
- var2ulen--; /* shift down */
- exponent-=DECDPUN; /* update the exponent */
- } /* outer loop */
- /* ---- division is complete --------------------------------------- */
- /* here: acc has at least reqdigits+1 of good results (or fewer */
- /* if early stop), starting at accnext+1 (its lsu) */
- /* var1 has any residue at the stopping point */
- /* accunits is the number of digits collected in acc */
- if (accunits==0) { /* acc is 0 */
- accunits=1; /* show have a unit .. */
- accdigits=1; /* .. */
- *accnext=0; /* .. whose value is 0 */
- }
- else accnext++; /* back to last placed */
- /* accnext now -> lowest unit of result */
- residue=0; /* assume no residue */
- if (op&DIVIDE) {
- /* record the presence of any residue, for rounding */
- if (*var1!=0 || var1units>1) residue=1;
- else { /* no residue */
- /* Had an exact division; clean up spurious trailing 0s. */
- /* There will be at most DECDPUN-1, from the final multiply, */
- /* and then only if the result is non-0 (and even) and the */
- /* exponent is 'loose'. */
- #if DECDPUN>1
- Unit lsu=*accnext;
- if (!(lsu&0x01) && (lsu!=0)) {
- /* count the trailing zeros */
- Int drop=0;
- for (;; drop++) { /* [will terminate because lsu!=0] */
- if (exponent>=maxexponent) break; /* don't chop real 0s */
- #if DECDPUN<=4
- if ((lsu-QUOT10(lsu, drop+1)
- *powers[drop+1])!=0) break; /* found non-0 digit */
- #else
- if (lsu%powers[drop+1]!=0) break; /* found non-0 digit */
- #endif
- exponent++;
- }
- if (drop>0) {
- accunits=decShiftToLeast(accnext, accunits, drop);
- accdigits=decGetDigits(accnext, accunits);
- accunits=D2U(accdigits);
- /* [exponent was adjusted in the loop] */
- }
- } /* neither odd nor 0 */
- #endif
- } /* exact divide */
- } /* divide */
- else /* op!=DIVIDE */ {
- /* check for coefficient overflow */
- if (accdigits+exponent>reqdigits) {
- *status|=DEC_Division_impossible;
- break;
- }
- if (op & (REMAINDER|REMNEAR)) {
- /* [Here, the exponent will be 0, because var1 was adjusted */
- /* appropriately.] */
- Int postshift; /* work */
- Flag wasodd=0; /* integer was odd */
- Unit *quotlsu; /* for save */
- Int quotdigits; /* .. */
- bits=lhs->bits; /* remainder sign is always as lhs */
- /* Fastpath when residue is truly 0 is worthwhile [and */
- /* simplifies the code below] */
- if (*var1==0 && var1units==1) { /* residue is 0 */
- Int exp=lhs->exponent; /* save min(exponents) */
- if (rhs->exponent<exp) exp=rhs->exponent;
- uprv_decNumberZero(res); /* 0 coefficient */
- #if DECSUBSET
- if (set->extended)
- #endif
- res->exponent=exp; /* .. with proper exponent */
- res->bits=(uByte)(bits&DECNEG); /* [cleaned] */
- decFinish(res, set, &residue, status); /* might clamp */
- break;
- }
- /* note if the quotient was odd */
- if (*accnext & 0x01) wasodd=1; /* acc is odd */
- quotlsu=accnext; /* save in case need to reinspect */
- quotdigits=accdigits; /* .. */
- /* treat the residue, in var1, as the value to return, via acc */
- /* calculate the unused zero digits. This is the smaller of: */
- /* var1 initial padding (saved above) */
- /* var2 residual padding, which happens to be given by: */
- postshift=var1initpad+exponent-lhs->exponent+rhs->exponent;
- /* [the 'exponent' term accounts for the shifts during divide] */
- if (var1initpad<postshift) postshift=var1initpad;
- /* shift var1 the requested amount, and adjust its digits */
- var1units=decShiftToLeast(var1, var1units, postshift);
- accnext=var1;
- accdigits=decGetDigits(var1, var1units);
- accunits=D2U(accdigits);
- exponent=lhs->exponent; /* exponent is smaller of lhs & rhs */
- if (rhs->exponent<exponent) exponent=rhs->exponent;
- /* Now correct the result if doing remainderNear; if it */
- /* (looking just at coefficients) is > rhs/2, or == rhs/2 and */
- /* the integer was odd then the result should be rem-rhs. */
- if (op&REMNEAR) {
- Int compare, tarunits; /* work */
- Unit *up; /* .. */
- /* calculate remainder*2 into the var1 buffer (which has */
- /* 'headroom' of an extra unit and hence enough space) */
- /* [a dedicated 'double' loop would be faster, here] */
- tarunits=decUnitAddSub(accnext, accunits, accnext, accunits,
- 0, accnext, 1);
- /* decDumpAr('r', accnext, tarunits); */
- /* Here, accnext (var1) holds tarunits Units with twice the */
- /* remainder's coefficient, which must now be compared to the */
- /* RHS. The remainder's exponent may be smaller than the RHS's. */
- compare=decUnitCompare(accnext, tarunits, rhs->lsu, D2U(rhs->digits),
- rhs->exponent-exponent);
- if (compare==BADINT) { /* deep trouble */
- *status|=DEC_Insufficient_storage;
- break;}
- /* now restore the remainder by dividing by two; the lsu */
- /* is known to be even. */
- for (up=accnext; up<accnext+tarunits; up++) {
- Int half; /* half to add to lower unit */
- half=*up & 0x01;
- *up/=2; /* [shift] */
- if (!half) continue;
- *(up-1)+=(DECDPUNMAX+1)/2;
- }
- /* [accunits still describes the original remainder length] */
- if (compare>0 || (compare==0 && wasodd)) { /* adjustment needed */
- Int exp, expunits, exprem; /* work */
- /* This is effectively causing round-up of the quotient, */
- /* so if it was the rare case where it was full and all */
- /* nines, it would overflow and hence division-impossible */
- /* should be raised */
- Flag allnines=0; /* 1 if quotient all nines */
- if (quotdigits==reqdigits) { /* could be borderline */
- for (up=quotlsu; ; up++) {
- if (quotdigits>DECDPUN) {
- if (*up!=DECDPUNMAX) break;/* non-nines */
- }
- else { /* this is the last Unit */
- if (*up==powers[quotdigits]-1) allnines=1;
- break;
- }
- quotdigits-=DECDPUN; /* checked those digits */
- } /* up */
- } /* borderline check */
- if (allnines) {
- *status|=DEC_Division_impossible;
- break;}
- /* rem-rhs is needed; the sign will invert. Again, var1 */
- /* can safely be used for the working Units array. */
- exp=rhs->exponent-exponent; /* RHS padding needed */
- /* Calculate units and remainder from exponent. */
- expunits=exp/DECDPUN;
- exprem=exp%DECDPUN;
- /* subtract [A+B*(-m)]; the result will always be negative */
- accunits=-decUnitAddSub(accnext, accunits,
- rhs->lsu, D2U(rhs->digits),
- expunits, accnext, -(Int)powers[exprem]);
- accdigits=decGetDigits(accnext, accunits); /* count digits exactly */
- accunits=D2U(accdigits); /* and recalculate the units for copy */
- /* [exponent is as for original remainder] */
- bits^=DECNEG; /* flip the sign */
- }
- } /* REMNEAR */
- } /* REMAINDER or REMNEAR */
- } /* not DIVIDE */
- /* Set exponent and bits */
- res->exponent=exponent;
- res->bits=(uByte)(bits&DECNEG); /* [cleaned] */
- /* Now the coefficient. */
- decSetCoeff(res, set, accnext, accdigits, &residue, status);
- decFinish(res, set, &residue, status); /* final cleanup */
- #if DECSUBSET
- /* If a divide then strip trailing zeros if subset [after round] */
- if (!set->extended && (op==DIVIDE)) decTrim(res, set, 0, 1, &dropped);
- #endif
- } while(0); /* end protected */
- if (varalloc!=nullptr) free(varalloc); /* drop any storage used */
- if (allocacc!=nullptr) free(allocacc); /* .. */
- #if DECSUBSET
- if (allocrhs!=nullptr) free(allocrhs); /* .. */
- if (alloclhs!=nullptr) free(alloclhs); /* .. */
- #endif
- return res;
- } /* decDivideOp */
- /* ------------------------------------------------------------------ */
- /* decMultiplyOp -- multiplication operation */
- /* */
- /* This routine performs the multiplication C=A x B. */
- /* */
- /* res is C, the result. C may be A and/or B (e.g., X=X*X) */
- /* lhs is A */
- /* rhs is B */
- /* set is the context */
- /* status is the usual accumulator */
- /* */
- /* C must have space for set->digits digits. */
- /* */
- /* ------------------------------------------------------------------ */
- /* 'Classic' multiplication is used rather than Karatsuba, as the */
- /* latter would give only a minor improvement for the short numbers */
- /* expected to be handled most (and uses much more memory). */
- /* */
- /* There are two major paths here: the general-purpose ('old code') */
- /* path which handles all DECDPUN values, and a fastpath version */
- /* which is used if 64-bit ints are available, DECDPUN<=4, and more */
- /* than two calls to decUnitAddSub would be made. */
- /* */
- /* The fastpath version lumps units together into 8-digit or 9-digit */
- /* chunks, and also uses a lazy carry strategy to minimise expensive */
- /* 64-bit divisions. The chunks are then broken apart again into */
- /* units for continuing processing. Despite this overhead, the */
- /* fastpath can speed up some 16-digit operations by 10x (and much */
- /* more for higher-precision calculations). */
- /* */
- /* A buffer always has to be used for the accumulator; in the */
- /* fastpath, buffers are also always needed for the chunked copies of */
- /* of the operand coefficients. */
- /* Static buffers are larger than needed just for multiply, to allow */
- /* for calls from other operations (notably exp). */
- /* ------------------------------------------------------------------ */
- #define FASTMUL (DECUSE64 && DECDPUN<5)
- static decNumber * decMultiplyOp(decNumber *res, const decNumber *lhs,
- const decNumber *rhs, decContext *set,
- uInt *status) {
- Int accunits; /* Units of accumulator in use */
- Int exponent; /* work */
- Int residue=0; /* rounding residue */
- uByte bits; /* result sign */
- Unit *acc; /* -> accumulator Unit array */
- Int needbytes; /* size calculator */
- void *allocacc=nullptr; /* -> allocated accumulator, iff allocated */
- Unit accbuff[SD2U(DECBUFFER*4+1)]; /* buffer (+1 for DECBUFFER==0, */
- /* *4 for calls from other operations) */
- const Unit *mer, *mermsup; /* work */
- Int madlength; /* Units in multiplicand */
- Int shift; /* Units to shift multiplicand by */
- #if FASTMUL
- /* if DECDPUN is 1 or 3 work in base 10**9, otherwise */
- /* (DECDPUN is 2 or 4) then work in base 10**8 */
- #if DECDPUN & 1 /* odd */
- #define FASTBASE 1000000000 /* base */
- #define FASTDIGS 9 /* digits in base */
- #define FASTLAZY 18 /* carry resolution point [1->18] */
- #else
- #define FASTBASE 100000000
- #define FASTDIGS 8
- #define FASTLAZY 1844 /* carry resolution point [1->1844] */
- #endif
- /* three buffers are used, two for chunked copies of the operands */
- /* (base 10**8 or base 10**9) and one base 2**64 accumulator with */
- /* lazy carry evaluation */
- uInt zlhibuff[(DECBUFFER*2+1)/8+1]; /* buffer (+1 for DECBUFFER==0) */
- uInt *zlhi=zlhibuff; /* -> lhs array */
- uInt *alloclhi=nullptr; /* -> allocated buffer, iff allocated */
- uInt zrhibuff[(DECBUFFER*2+1)/8+1]; /* buffer (+1 for DECBUFFER==0) */
- uInt *zrhi=zrhibuff; /* -> rhs array */
- uInt *allocrhi=nullptr; /* -> allocated buffer, iff allocated */
- uLong zaccbuff[(DECBUFFER*2+1)/4+2]; /* buffer (+1 for DECBUFFER==0) */
- /* [allocacc is shared for both paths, as only one will run] */
- uLong *zacc=zaccbuff; /* -> accumulator array for exact result */
- #if DECDPUN==1
- Int zoff; /* accumulator offset */
- #endif
- uInt *lip, *rip; /* item pointers */
- uInt *lmsi, *rmsi; /* most significant items */
- Int ilhs, irhs, iacc; /* item counts in the arrays */
- Int lazy; /* lazy carry counter */
- uLong lcarry; /* uLong carry */
- uInt carry; /* carry (NB not uLong) */
- Int count; /* work */
- const Unit *cup; /* .. */
- Unit *up; /* .. */
- uLong *lp; /* .. */
- Int p; /* .. */
- #endif
- #if DECSUBSET
- decNumber *alloclhs=nullptr; /* -> allocated buffer, iff allocated */
- decNumber *allocrhs=nullptr; /* -> allocated buffer, iff allocated */
- #endif
- #if DECCHECK
- if (decCheckOperands(res, lhs, rhs, set)) return res;
- #endif
- /* precalculate result sign */
- bits=(uByte)((lhs->bits^rhs->bits)&DECNEG);
- /* handle infinities and NaNs */
- if (SPECIALARGS) { /* a special bit set */
- if (SPECIALARGS & (DECSNAN | DECNAN)) { /* one or two NaNs */
- decNaNs(res, lhs, rhs, set, status);
- return res;}
- /* one or two infinities; Infinity * 0 is invalid */
- if (((lhs->bits & DECINF)==0 && ISZERO(lhs))
- ||((rhs->bits & DECINF)==0 && ISZERO(rhs))) {
- *status|=DEC_Invalid_operation;
- return res;}
- uprv_decNumberZero(res);
- res->bits=bits|DECINF; /* infinity */
- return res;}
- /* For best speed, as in DMSRCN [the original Rexx numerics */
- /* module], use the shorter number as the multiplier (rhs) and */
- /* the longer as the multiplicand (lhs) to minimise the number of */
- /* adds (partial products) */
- if (lhs->digits<rhs->digits) { /* swap... */
- const decNumber *hold=lhs;
- lhs=rhs;
- rhs=hold;
- }
- do { /* protect allocated storage */
- #if DECSUBSET
- if (!set->extended) {
- /* reduce operands and set lostDigits status, as needed */
- if (lhs->digits>set->digits) {
- alloclhs=decRoundOperand(lhs, set, status);
- if (alloclhs==nullptr) break;
- lhs=alloclhs;
- }
- if (rhs->digits>set->digits) {
- allocrhs=decRoundOperand(rhs, set, status);
- if (allocrhs==nullptr) break;
- rhs=allocrhs;
- }
- }
- #endif
- /* [following code does not require input rounding] */
- #if FASTMUL /* fastpath can be used */
- /* use the fast path if there are enough digits in the shorter */
- /* operand to make the setup and takedown worthwhile */
- #define NEEDTWO (DECDPUN*2) /* within two decUnitAddSub calls */
- if (rhs->digits>NEEDTWO) { /* use fastpath... */
- /* calculate the number of elements in each array */
- ilhs=(lhs->digits+FASTDIGS-1)/FASTDIGS; /* [ceiling] */
- irhs=(rhs->digits+FASTDIGS-1)/FASTDIGS; /* .. */
- iacc=ilhs+irhs;
- /* allocate buffers if required, as usual */
- needbytes=ilhs*sizeof(uInt);
- if (needbytes>(Int)sizeof(zlhibuff)) {
- alloclhi=(uInt *)malloc(needbytes);
- zlhi=alloclhi;}
- needbytes=irhs*sizeof(uInt);
- if (needbytes>(Int)sizeof(zrhibuff)) {
- allocrhi=(uInt *)malloc(needbytes);
- zrhi=allocrhi;}
- /* Allocating the accumulator space needs a special case when */
- /* DECDPUN=1 because when converting the accumulator to Units */
- /* after the multiplication each 8-byte item becomes 9 1-byte */
- /* units. Therefore iacc extra bytes are needed at the front */
- /* (rounded up to a multiple of 8 bytes), and the uLong */
- /* accumulator starts offset the appropriate number of units */
- /* to the right to avoid overwrite during the unchunking. */
- /* Make sure no signed int overflow below. This is always true */
- /* if the given numbers have less digits than DEC_MAX_DIGITS. */
- U_ASSERT((uint32_t)iacc <= INT32_MAX/sizeof(uLong));
- needbytes=iacc*sizeof(uLong);
- #if DECDPUN==1
- zoff=(iacc+7)/8; /* items to offset by */
- needbytes+=zoff*8;
- #endif
- if (needbytes>(Int)sizeof(zaccbuff)) {
- allocacc=(uLong *)malloc(needbytes);
- zacc=(uLong *)allocacc;}
- if (zlhi==nullptr||zrhi==nullptr||zacc==nullptr) {
- *status|=DEC_Insufficient_storage;
- break;}
- acc=(Unit *)zacc; /* -> target Unit array */
- #if DECDPUN==1
- zacc+=zoff; /* start uLong accumulator to right */
- #endif
- /* assemble the chunked copies of the left and right sides */
- for (count=lhs->digits, cup=lhs->lsu, lip=zlhi; count>0; lip++)
- for (p=0, *lip=0; p<FASTDIGS && count>0;
- p+=DECDPUN, cup++, count-=DECDPUN)
- *lip+=*cup*powers[p];
- lmsi=lip-1; /* save -> msi */
- for (count=rhs->digits, cup=rhs->lsu, rip=zrhi; count>0; rip++)
- for (p=0, *rip=0; p<FASTDIGS && count>0;
- p+=DECDPUN, cup++, count-=DECDPUN)
- *rip+=*cup*powers[p];
- rmsi=rip-1; /* save -> msi */
- /* zero the accumulator */
- for (lp=zacc; lp<zacc+iacc; lp++) *lp=0;
- /* Start the multiplication */
- /* Resolving carries can dominate the cost of accumulating the */
- /* partial products, so this is only done when necessary. */
- /* Each uLong item in the accumulator can hold values up to */
- /* 2**64-1, and each partial product can be as large as */
- /* (10**FASTDIGS-1)**2. When FASTDIGS=9, this can be added to */
- /* itself 18.4 times in a uLong without overflowing, so during */
- /* the main calculation resolution is carried out every 18th */
- /* add -- every 162 digits. Similarly, when FASTDIGS=8, the */
- /* partial products can be added to themselves 1844.6 times in */
- /* a uLong without overflowing, so intermediate carry */
- /* resolution occurs only every 14752 digits. Hence for common */
- /* short numbers usually only the one final carry resolution */
- /* occurs. */
- /* (The count is set via FASTLAZY to simplify experiments to */
- /* measure the value of this approach: a 35% improvement on a */
- /* [34x34] multiply.) */
- lazy=FASTLAZY; /* carry delay count */
- for (rip=zrhi; rip<=rmsi; rip++) { /* over each item in rhs */
- lp=zacc+(rip-zrhi); /* where to add the lhs */
- for (lip=zlhi; lip<=lmsi; lip++, lp++) { /* over each item in lhs */
- *lp+=(uLong)(*lip)*(*rip); /* [this should in-line] */
- } /* lip loop */
- lazy--;
- if (lazy>0 && rip!=rmsi) continue;
- lazy=FASTLAZY; /* reset delay count */
- /* spin up the accumulator resolving overflows */
- for (lp=zacc; lp<zacc+iacc; lp++) {
- if (*lp<FASTBASE) continue; /* it fits */
- lcarry=*lp/FASTBASE; /* top part [slow divide] */
- /* lcarry can exceed 2**32-1, so check again; this check */
- /* and occasional extra divide (slow) is well worth it, as */
- /* it allows FASTLAZY to be increased to 18 rather than 4 */
- /* in the FASTDIGS=9 case */
- if (lcarry<FASTBASE) carry=(uInt)lcarry; /* [usual] */
- else { /* two-place carry [fairly rare] */
- uInt carry2=(uInt)(lcarry/FASTBASE); /* top top part */
- *(lp+2)+=carry2; /* add to item+2 */
- *lp-=((uLong)FASTBASE*FASTBASE*carry2); /* [slow] */
- carry=(uInt)(lcarry-((uLong)FASTBASE*carry2)); /* [inline] */
- }
- *(lp+1)+=carry; /* add to item above [inline] */
- *lp-=((uLong)FASTBASE*carry); /* [inline] */
- } /* carry resolution */
- } /* rip loop */
- /* The multiplication is complete; time to convert back into */
- /* units. This can be done in-place in the accumulator and in */
- /* 32-bit operations, because carries were resolved after the */
- /* final add. This needs N-1 divides and multiplies for */
- /* each item in the accumulator (which will become up to N */
- /* units, where 2<=N<=9). */
- for (lp=zacc, up=acc; lp<zacc+iacc; lp++) {
- uInt item=(uInt)*lp; /* decapitate to uInt */
- for (p=0; p<FASTDIGS-DECDPUN; p+=DECDPUN, up++) {
- uInt part=item/(DECDPUNMAX+1);
- *up=(Unit)(item-(part*(DECDPUNMAX+1)));
- item=part;
- } /* p */
- *up=(Unit)item; up++; /* [final needs no division] */
- } /* lp */
- accunits = static_cast<int32_t>(up-acc); /* count of units */
- }
- else { /* here to use units directly, without chunking ['old code'] */
- #endif
- /* if accumulator will be too long for local storage, then allocate */
- acc=accbuff; /* -> assume buffer for accumulator */
- needbytes=(D2U(lhs->digits)+D2U(rhs->digits))*sizeof(Unit);
- if (needbytes>(Int)sizeof(accbuff)) {
- allocacc=(Unit *)malloc(needbytes);
- if (allocacc==nullptr) {*status|=DEC_Insufficient_storage; break;}
- acc=(Unit *)allocacc; /* use the allocated space */
- }
- /* Now the main long multiplication loop */
- /* Unlike the equivalent in the IBM Java implementation, there */
- /* is no advantage in calculating from msu to lsu. So, do it */
- /* by the book, as it were. */
- /* Each iteration calculates ACC=ACC+MULTAND*MULT */
- accunits=1; /* accumulator starts at '0' */
- *acc=0; /* .. (lsu=0) */
- shift=0; /* no multiplicand shift at first */
- madlength=D2U(lhs->digits); /* this won't change */
- mermsup=rhs->lsu+D2U(rhs->digits); /* -> msu+1 of multiplier */
- for (mer=rhs->lsu; mer<mermsup; mer++) {
- /* Here, *mer is the next Unit in the multiplier to use */
- /* If non-zero [optimization] add it... */
- if (*mer!=0) accunits=decUnitAddSub(&acc[shift], accunits-shift,
- lhs->lsu, madlength, 0,
- &acc[shift], *mer)
- + shift;
- else { /* extend acc with a 0; it will be used shortly */
- *(acc+accunits)=0; /* [this avoids length of <=0 later] */
- accunits++;
- }
- /* multiply multiplicand by 10**DECDPUN for next Unit to left */
- shift++; /* add this for 'logical length' */
- } /* n */
- #if FASTMUL
- } /* unchunked units */
- #endif
- /* common end-path */
- #if DECTRACE
- decDumpAr('*', acc, accunits); /* Show exact result */
- #endif
- /* acc now contains the exact result of the multiplication, */
- /* possibly with a leading zero unit; build the decNumber from */
- /* it, noting if any residue */
- res->bits=bits; /* set sign */
- res->digits=decGetDigits(acc, accunits); /* count digits exactly */
- /* There can be a 31-bit wrap in calculating the exponent. */
- /* This can only happen if both input exponents are negative and */
- /* both their magnitudes are large. If there was a wrap, set a */
- /* safe very negative exponent, from which decFinalize() will */
- /* raise a hard underflow shortly. */
- exponent=lhs->exponent+rhs->exponent; /* calculate exponent */
- if (lhs->exponent<0 && rhs->exponent<0 && exponent>0)
- exponent=-2*DECNUMMAXE; /* force underflow */
- res->exponent=exponent; /* OK to overwrite now */
- /* Set the coefficient. If any rounding, residue records */
- decSetCoeff(res, set, acc, res->digits, &residue, status);
- decFinish(res, set, &residue, status); /* final cleanup */
- } while(0); /* end protected */
- if (allocacc!=nullptr) free(allocacc); /* drop any storage used */
- #if DECSUBSET
- if (allocrhs!=nullptr) free(allocrhs); /* .. */
- if (alloclhs!=nullptr) free(alloclhs); /* .. */
- #endif
- #if FASTMUL
- if (allocrhi!=nullptr) free(allocrhi); /* .. */
- if (alloclhi!=nullptr) free(alloclhi); /* .. */
- #endif
- return res;
- } /* decMultiplyOp */
- /* ------------------------------------------------------------------ */
- /* decExpOp -- effect exponentiation */
- /* */
- /* This computes C = exp(A) */
- /* */
- /* res is C, the result. C may be A */
- /* rhs is A */
- /* set is the context; note that rounding mode has no effect */
- /* */
- /* C must have space for set->digits digits. status is updated but */
- /* not set. */
- /* */
- /* Restrictions: */
- /* */
- /* digits, emax, and -emin in the context must be less than */
- /* 2*DEC_MAX_MATH (1999998), and the rhs must be within these */
- /* bounds or a zero. This is an internal routine, so these */
- /* restrictions are contractual and not enforced. */
- /* */
- /* A finite result is rounded using DEC_ROUND_HALF_EVEN; it will */
- /* almost always be correctly rounded, but may be up to 1 ulp in */
- /* error in rare cases. */
- /* */
- /* Finite results will always be full precision and Inexact, except */
- /* when A is a zero or -Infinity (giving 1 or 0 respectively). */
- /* ------------------------------------------------------------------ */
- /* This approach used here is similar to the algorithm described in */
- /* */
- /* Variable Precision Exponential Function, T. E. Hull and */
- /* A. Abrham, ACM Transactions on Mathematical Software, Vol 12 #2, */
- /* pp79-91, ACM, June 1986. */
- /* */
- /* with the main difference being that the iterations in the series */
- /* evaluation are terminated dynamically (which does not require the */
- /* extra variable-precision variables which are expensive in this */
- /* context). */
- /* */
- /* The error analysis in Hull & Abrham's paper applies except for the */
- /* round-off error accumulation during the series evaluation. This */
- /* code does not precalculate the number of iterations and so cannot */
- /* use Horner's scheme. Instead, the accumulation is done at double- */
- /* precision, which ensures that the additions of the terms are exact */
- /* and do not accumulate round-off (and any round-off errors in the */
- /* terms themselves move 'to the right' faster than they can */
- /* accumulate). This code also extends the calculation by allowing, */
- /* in the spirit of other decNumber operators, the input to be more */
- /* precise than the result (the precision used is based on the more */
- /* precise of the input or requested result). */
- /* */
- /* Implementation notes: */
- /* */
- /* 1. This is separated out as decExpOp so it can be called from */
- /* other Mathematical functions (notably Ln) with a wider range */
- /* than normal. In particular, it can handle the slightly wider */
- /* (double) range needed by Ln (which has to be able to calculate */
- /* exp(-x) where x can be the tiniest number (Ntiny). */
- /* */
- /* 2. Normalizing x to be <=0.1 (instead of <=1) reduces loop */
- /* iterations by approximately a third with additional (although */
- /* diminishing) returns as the range is reduced to even smaller */
- /* fractions. However, h (the power of 10 used to correct the */
- /* result at the end, see below) must be kept <=8 as otherwise */
- /* the final result cannot be computed. Hence the leverage is a */
- /* sliding value (8-h), where potentially the range is reduced */
- /* more for smaller values. */
- /* */
- /* The leverage that can be applied in this way is severely */
- /* limited by the cost of the raise-to-the power at the end, */
- /* which dominates when the number of iterations is small (less */
- /* than ten) or when rhs is short. As an example, the adjustment */
- /* x**10,000,000 needs 31 multiplications, all but one full-width. */
- /* */
- /* 3. The restrictions (especially precision) could be raised with */
- /* care, but the full decNumber range seems very hard within the */
- /* 32-bit limits. */
- /* */
- /* 4. The working precisions for the static buffers are twice the */
- /* obvious size to allow for calls from decNumberPower. */
- /* ------------------------------------------------------------------ */
- decNumber * decExpOp(decNumber *res, const decNumber *rhs,
- decContext *set, uInt *status) {
- uInt ignore=0; /* working status */
- Int h; /* adjusted exponent for 0.xxxx */
- Int p; /* working precision */
- Int residue; /* rounding residue */
- uInt needbytes; /* for space calculations */
- const decNumber *x=rhs; /* (may point to safe copy later) */
- decContext aset, tset, dset; /* working contexts */
- Int comp; /* work */
- /* the argument is often copied to normalize it, so (unusually) it */
- /* is treated like other buffers, using DECBUFFER, +1 in case */
- /* DECBUFFER is 0 */
- decNumber bufr[D2N(DECBUFFER*2+1)];
- decNumber *allocrhs=nullptr; /* non-nullptr if rhs buffer allocated */
- /* the working precision will be no more than set->digits+8+1 */
- /* so for on-stack buffers DECBUFFER+9 is used, +1 in case DECBUFFER */
- /* is 0 (and twice that for the accumulator) */
- /* buffer for t, term (working precision plus) */
- decNumber buft[D2N(DECBUFFER*2+9+1)];
- decNumber *allocbuft=nullptr; /* -> allocated buft, iff allocated */
- decNumber *t=buft; /* term */
- /* buffer for a, accumulator (working precision * 2), at least 9 */
- decNumber bufa[D2N(DECBUFFER*4+18+1)];
- decNumber *allocbufa=nullptr; /* -> allocated bufa, iff allocated */
- decNumber *a=bufa; /* accumulator */
- /* decNumber for the divisor term; this needs at most 9 digits */
- /* and so can be fixed size [16 so can use standard context] */
- decNumber bufd[D2N(16)];
- decNumber *d=bufd; /* divisor */
- decNumber numone; /* constant 1 */
- #if DECCHECK
- Int iterations=0; /* for later sanity check */
- if (decCheckOperands(res, DECUNUSED, rhs, set)) return res;
- #endif
- do { /* protect allocated storage */
- if (SPECIALARG) { /* handle infinities and NaNs */
- if (decNumberIsInfinite(rhs)) { /* an infinity */
- if (decNumberIsNegative(rhs)) /* -Infinity -> +0 */
- uprv_decNumberZero(res);
- else uprv_decNumberCopy(res, rhs); /* +Infinity -> self */
- }
- else decNaNs(res, rhs, nullptr, set, status); /* a NaN */
- break;}
- if (ISZERO(rhs)) { /* zeros -> exact 1 */
- uprv_decNumberZero(res); /* make clean 1 */
- *res->lsu=1; /* .. */
- break;} /* [no status to set] */
- /* e**x when 0 < x < 0.66 is < 1+3x/2, hence can fast-path */
- /* positive and negative tiny cases which will result in inexact */
- /* 1. This also allows the later add-accumulate to always be */
- /* exact (because its length will never be more than twice the */
- /* working precision). */
- /* The comparator (tiny) needs just one digit, so use the */
- /* decNumber d for it (reused as the divisor, etc., below); its */
- /* exponent is such that if x is positive it will have */
- /* set->digits-1 zeros between the decimal point and the digit, */
- /* which is 4, and if x is negative one more zero there as the */
- /* more precise result will be of the form 0.9999999 rather than */
- /* 1.0000001. Hence, tiny will be 0.0000004 if digits=7 and x>0 */
- /* or 0.00000004 if digits=7 and x<0. If RHS not larger than */
- /* this then the result will be 1.000000 */
- uprv_decNumberZero(d); /* clean */
- *d->lsu=4; /* set 4 .. */
- d->exponent=-set->digits; /* * 10**(-d) */
- if (decNumberIsNegative(rhs)) d->exponent--; /* negative case */
- comp=decCompare(d, rhs, 1); /* signless compare */
- if (comp==BADINT) {
- *status|=DEC_Insufficient_storage;
- break;}
- if (comp>=0) { /* rhs < d */
- Int shift=set->digits-1;
- uprv_decNumberZero(res); /* set 1 */
- *res->lsu=1; /* .. */
- res->digits=decShiftToMost(res->lsu, 1, shift);
- res->exponent=-shift; /* make 1.0000... */
- *status|=DEC_Inexact | DEC_Rounded; /* .. inexactly */
- break;} /* tiny */
- /* set up the context to be used for calculating a, as this is */
- /* used on both paths below */
- uprv_decContextDefault(&aset, DEC_INIT_DECIMAL64);
- /* accumulator bounds are as requested (could underflow) */
- aset.emax=set->emax; /* usual bounds */
- aset.emin=set->emin; /* .. */
- aset.clamp=0; /* and no concrete format */
- /* calculate the adjusted (Hull & Abrham) exponent (where the */
- /* decimal point is just to the left of the coefficient msd) */
- h=rhs->exponent+rhs->digits;
- /* if h>8 then 10**h cannot be calculated safely; however, when */
- /* h=8 then exp(|rhs|) will be at least exp(1E+7) which is at */
- /* least 6.59E+4342944, so (due to the restriction on Emax/Emin) */
- /* overflow (or underflow to 0) is guaranteed -- so this case can */
- /* be handled by simply forcing the appropriate excess */
- if (h>8) { /* overflow/underflow */
- /* set up here so Power call below will over or underflow to */
- /* zero; set accumulator to either 2 or 0.02 */
- /* [stack buffer for a is always big enough for this] */
- uprv_decNumberZero(a);
- *a->lsu=2; /* not 1 but < exp(1) */
- if (decNumberIsNegative(rhs)) a->exponent=-2; /* make 0.02 */
- h=8; /* clamp so 10**h computable */
- p=9; /* set a working precision */
- }
- else { /* h<=8 */
- Int maxlever=(rhs->digits>8?1:0);
- /* [could/should increase this for precisions >40 or so, too] */
- /* if h is 8, cannot normalize to a lower upper limit because */
- /* the final result will not be computable (see notes above), */
- /* but leverage can be applied whenever h is less than 8. */
- /* Apply as much as possible, up to a MAXLEVER digits, which */
- /* sets the tradeoff against the cost of the later a**(10**h). */
- /* As h is increased, the working precision below also */
- /* increases to compensate for the "constant digits at the */
- /* front" effect. */
- Int lever=MINI(8-h, maxlever); /* leverage attainable */
- Int use=-rhs->digits-lever; /* exponent to use for RHS */
- h+=lever; /* apply leverage selected */
- if (h<0) { /* clamp */
- use+=h; /* [may end up subnormal] */
- h=0;
- }
- /* Take a copy of RHS if it needs normalization (true whenever x>=1) */
- if (rhs->exponent!=use) {
- decNumber *newrhs=bufr; /* assume will fit on stack */
- needbytes=sizeof(decNumber)+(D2U(rhs->digits)-1)*sizeof(Unit);
- if (needbytes>sizeof(bufr)) { /* need malloc space */
- allocrhs=(decNumber *)malloc(needbytes);
- if (allocrhs==nullptr) { /* hopeless -- abandon */
- *status|=DEC_Insufficient_storage;
- break;}
- newrhs=allocrhs; /* use the allocated space */
- }
- uprv_decNumberCopy(newrhs, rhs); /* copy to safe space */
- newrhs->exponent=use; /* normalize; now <1 */
- x=newrhs; /* ready for use */
- /* decNumberShow(x); */
- }
- /* Now use the usual power series to evaluate exp(x). The */
- /* series starts as 1 + x + x^2/2 ... so prime ready for the */
- /* third term by setting the term variable t=x, the accumulator */
- /* a=1, and the divisor d=2. */
- /* First determine the working precision. From Hull & Abrham */
- /* this is set->digits+h+2. However, if x is 'over-precise' we */
- /* need to allow for all its digits to potentially participate */
- /* (consider an x where all the excess digits are 9s) so in */
- /* this case use x->digits+h+2 */
- p=MAXI(x->digits, set->digits)+h+2; /* [h<=8] */
- /* a and t are variable precision, and depend on p, so space */
- /* must be allocated for them if necessary */
- /* the accumulator needs to be able to hold 2p digits so that */
- /* the additions on the second and subsequent iterations are */
- /* sufficiently exact. */
- needbytes=sizeof(decNumber)+(D2U(p*2)-1)*sizeof(Unit);
- if (needbytes>sizeof(bufa)) { /* need malloc space */
- allocbufa=(decNumber *)malloc(needbytes);
- if (allocbufa==nullptr) { /* hopeless -- abandon */
- *status|=DEC_Insufficient_storage;
- break;}
- a=allocbufa; /* use the allocated space */
- }
- /* the term needs to be able to hold p digits (which is */
- /* guaranteed to be larger than x->digits, so the initial copy */
- /* is safe); it may also be used for the raise-to-power */
- /* calculation below, which needs an extra two digits */
- needbytes=sizeof(decNumber)+(D2U(p+2)-1)*sizeof(Unit);
- if (needbytes>sizeof(buft)) { /* need malloc space */
- allocbuft=(decNumber *)malloc(needbytes);
- if (allocbuft==nullptr) { /* hopeless -- abandon */
- *status|=DEC_Insufficient_storage;
- break;}
- t=allocbuft; /* use the allocated space */
- }
- uprv_decNumberCopy(t, x); /* term=x */
- uprv_decNumberZero(a); *a->lsu=1; /* accumulator=1 */
- uprv_decNumberZero(d); *d->lsu=2; /* divisor=2 */
- uprv_decNumberZero(&numone); *numone.lsu=1; /* constant 1 for increment */
- /* set up the contexts for calculating a, t, and d */
- uprv_decContextDefault(&tset, DEC_INIT_DECIMAL64);
- dset=tset;
- /* accumulator bounds are set above, set precision now */
- aset.digits=p*2; /* double */
- /* term bounds avoid any underflow or overflow */
- tset.digits=p;
- tset.emin=DEC_MIN_EMIN; /* [emax is plenty] */
- /* [dset.digits=16, etc., are sufficient] */
- /* finally ready to roll */
- for (;;) {
- #if DECCHECK
- iterations++;
- #endif
- /* only the status from the accumulation is interesting */
- /* [but it should remain unchanged after first add] */
- decAddOp(a, a, t, &aset, 0, status); /* a=a+t */
- decMultiplyOp(t, t, x, &tset, &ignore); /* t=t*x */
- decDivideOp(t, t, d, &tset, DIVIDE, &ignore); /* t=t/d */
- /* the iteration ends when the term cannot affect the result, */
- /* if rounded to p digits, which is when its value is smaller */
- /* than the accumulator by p+1 digits. There must also be */
- /* full precision in a. */
- if (((a->digits+a->exponent)>=(t->digits+t->exponent+p+1))
- && (a->digits>=p)) break;
- decAddOp(d, d, &numone, &dset, 0, &ignore); /* d=d+1 */
- } /* iterate */
- #if DECCHECK
- /* just a sanity check; comment out test to show always */
- if (iterations>p+3)
- printf("Exp iterations=%ld, status=%08lx, p=%ld, d=%ld\n",
- (LI)iterations, (LI)*status, (LI)p, (LI)x->digits);
- #endif
- } /* h<=8 */
- /* apply postconditioning: a=a**(10**h) -- this is calculated */
- /* at a slightly higher precision than Hull & Abrham suggest */
- if (h>0) {
- Int seenbit=0; /* set once a 1-bit is seen */
- Int i; /* counter */
- Int n=powers[h]; /* always positive */
- aset.digits=p+2; /* sufficient precision */
- /* avoid the overhead and many extra digits of decNumberPower */
- /* as all that is needed is the short 'multipliers' loop; here */
- /* accumulate the answer into t */
- uprv_decNumberZero(t); *t->lsu=1; /* acc=1 */
- for (i=1;;i++){ /* for each bit [top bit ignored] */
- /* abandon if have had overflow or terminal underflow */
- if (*status & (DEC_Overflow|DEC_Underflow)) { /* interesting? */
- if (*status&DEC_Overflow || ISZERO(t)) break;}
- n=n<<1; /* move next bit to testable position */
- if (n<0) { /* top bit is set */
- seenbit=1; /* OK, have a significant bit */
- decMultiplyOp(t, t, a, &aset, status); /* acc=acc*x */
- }
- if (i==31) break; /* that was the last bit */
- if (!seenbit) continue; /* no need to square 1 */
- decMultiplyOp(t, t, t, &aset, status); /* acc=acc*acc [square] */
- } /*i*/ /* 32 bits */
- /* decNumberShow(t); */
- a=t; /* and carry on using t instead of a */
- }
- /* Copy and round the result to res */
- residue=1; /* indicate dirt to right .. */
- if (ISZERO(a)) residue=0; /* .. unless underflowed to 0 */
- aset.digits=set->digits; /* [use default rounding] */
- decCopyFit(res, a, &aset, &residue, status); /* copy & shorten */
- decFinish(res, set, &residue, status); /* cleanup/set flags */
- } while(0); /* end protected */
- if (allocrhs !=nullptr) free(allocrhs); /* drop any storage used */
- if (allocbufa!=nullptr) free(allocbufa); /* .. */
- if (allocbuft!=nullptr) free(allocbuft); /* .. */
- /* [status is handled by caller] */
- return res;
- } /* decExpOp */
- /* ------------------------------------------------------------------ */
- /* Initial-estimate natural logarithm table */
- /* */
- /* LNnn -- 90-entry 16-bit table for values from .10 through .99. */
- /* The result is a 4-digit encode of the coefficient (c=the */
- /* top 14 bits encoding 0-9999) and a 2-digit encode of the */
- /* exponent (e=the bottom 2 bits encoding 0-3) */
- /* */
- /* The resulting value is given by: */
- /* */
- /* v = -c * 10**(-e-3) */
- /* */
- /* where e and c are extracted from entry k = LNnn[x-10] */
- /* where x is truncated (NB) into the range 10 through 99, */
- /* and then c = k>>2 and e = k&3. */
- /* ------------------------------------------------------------------ */
- static const uShort LNnn[90]={9016, 8652, 8316, 8008, 7724, 7456, 7208,
- 6972, 6748, 6540, 6340, 6148, 5968, 5792, 5628, 5464, 5312,
- 5164, 5020, 4884, 4748, 4620, 4496, 4376, 4256, 4144, 4032,
- 39233, 38181, 37157, 36157, 35181, 34229, 33297, 32389, 31501, 30629,
- 29777, 28945, 28129, 27329, 26545, 25777, 25021, 24281, 23553, 22837,
- 22137, 21445, 20769, 20101, 19445, 18801, 18165, 17541, 16925, 16321,
- 15721, 15133, 14553, 13985, 13421, 12865, 12317, 11777, 11241, 10717,
- 10197, 9685, 9177, 8677, 8185, 7697, 7213, 6737, 6269, 5801,
- 5341, 4889, 4437, 39930, 35534, 31186, 26886, 22630, 18418, 14254,
- 10130, 6046, 20055};
- /* ------------------------------------------------------------------ */
- /* decLnOp -- effect natural logarithm */
- /* */
- /* This computes C = ln(A) */
- /* */
- /* res is C, the result. C may be A */
- /* rhs is A */
- /* set is the context; note that rounding mode has no effect */
- /* */
- /* C must have space for set->digits digits. */
- /* */
- /* Notable cases: */
- /* A<0 -> Invalid */
- /* A=0 -> -Infinity (Exact) */
- /* A=+Infinity -> +Infinity (Exact) */
- /* A=1 exactly -> 0 (Exact) */
- /* */
- /* Restrictions (as for Exp): */
- /* */
- /* digits, emax, and -emin in the context must be less than */
- /* DEC_MAX_MATH+11 (1000010), and the rhs must be within these */
- /* bounds or a zero. This is an internal routine, so these */
- /* restrictions are contractual and not enforced. */
- /* */
- /* A finite result is rounded using DEC_ROUND_HALF_EVEN; it will */
- /* almost always be correctly rounded, but may be up to 1 ulp in */
- /* error in rare cases. */
- /* ------------------------------------------------------------------ */
- /* The result is calculated using Newton's method, with each */
- /* iteration calculating a' = a + x * exp(-a) - 1. See, for example, */
- /* Epperson 1989. */
- /* */
- /* The iteration ends when the adjustment x*exp(-a)-1 is tiny enough. */
- /* This has to be calculated at the sum of the precision of x and the */
- /* working precision. */
- /* */
- /* Implementation notes: */
- /* */
- /* 1. This is separated out as decLnOp so it can be called from */
- /* other Mathematical functions (e.g., Log 10) with a wider range */
- /* than normal. In particular, it can handle the slightly wider */
- /* (+9+2) range needed by a power function. */
- /* */
- /* 2. The speed of this function is about 10x slower than exp, as */
- /* it typically needs 4-6 iterations for short numbers, and the */
- /* extra precision needed adds a squaring effect, twice. */
- /* */
- /* 3. Fastpaths are included for ln(10) and ln(2), up to length 40, */
- /* as these are common requests. ln(10) is used by log10(x). */
- /* */
- /* 4. An iteration might be saved by widening the LNnn table, and */
- /* would certainly save at least one if it were made ten times */
- /* bigger, too (for truncated fractions 0.100 through 0.999). */
- /* However, for most practical evaluations, at least four or five */
- /* iterations will be needed -- so this would only speed up by */
- /* 20-25% and that probably does not justify increasing the table */
- /* size. */
- /* */
- /* 5. The static buffers are larger than might be expected to allow */
- /* for calls from decNumberPower. */
- /* ------------------------------------------------------------------ */
- #if defined(__clang__) || U_GCC_MAJOR_MINOR >= 406
- #pragma GCC diagnostic push
- #pragma GCC diagnostic ignored "-Warray-bounds"
- #endif
- decNumber * decLnOp(decNumber *res, const decNumber *rhs,
- decContext *set, uInt *status) {
- uInt ignore=0; /* working status accumulator */
- uInt needbytes; /* for space calculations */
- Int residue; /* rounding residue */
- Int r; /* rhs=f*10**r [see below] */
- Int p; /* working precision */
- Int pp; /* precision for iteration */
- Int t; /* work */
- /* buffers for a (accumulator, typically precision+2) and b */
- /* (adjustment calculator, same size) */
- decNumber bufa[D2N(DECBUFFER+12)];
- decNumber *allocbufa=nullptr; /* -> allocated bufa, iff allocated */
- decNumber *a=bufa; /* accumulator/work */
- decNumber bufb[D2N(DECBUFFER*2+2)];
- decNumber *allocbufb=nullptr; /* -> allocated bufa, iff allocated */
- decNumber *b=bufb; /* adjustment/work */
- decNumber numone; /* constant 1 */
- decNumber cmp; /* work */
- decContext aset, bset; /* working contexts */
- #if DECCHECK
- Int iterations=0; /* for later sanity check */
- if (decCheckOperands(res, DECUNUSED, rhs, set)) return res;
- #endif
- do { /* protect allocated storage */
- if (SPECIALARG) { /* handle infinities and NaNs */
- if (decNumberIsInfinite(rhs)) { /* an infinity */
- if (decNumberIsNegative(rhs)) /* -Infinity -> error */
- *status|=DEC_Invalid_operation;
- else uprv_decNumberCopy(res, rhs); /* +Infinity -> self */
- }
- else decNaNs(res, rhs, nullptr, set, status); /* a NaN */
- break;}
- if (ISZERO(rhs)) { /* +/- zeros -> -Infinity */
- uprv_decNumberZero(res); /* make clean */
- res->bits=DECINF|DECNEG; /* set - infinity */
- break;} /* [no status to set] */
- /* Non-zero negatives are bad... */
- if (decNumberIsNegative(rhs)) { /* -x -> error */
- *status|=DEC_Invalid_operation;
- break;}
- /* Here, rhs is positive, finite, and in range */
- /* lookaside fastpath code for ln(2) and ln(10) at common lengths */
- if (rhs->exponent==0 && set->digits<=40) {
- #if DECDPUN==1
- if (rhs->lsu[0]==0 && rhs->lsu[1]==1 && rhs->digits==2) { /* ln(10) */
- #else
- if (rhs->lsu[0]==10 && rhs->digits==2) { /* ln(10) */
- #endif
- aset=*set; aset.round=DEC_ROUND_HALF_EVEN;
- #define LN10 "2.302585092994045684017991454684364207601"
- uprv_decNumberFromString(res, LN10, &aset);
- *status|=(DEC_Inexact | DEC_Rounded); /* is inexact */
- break;}
- if (rhs->lsu[0]==2 && rhs->digits==1) { /* ln(2) */
- aset=*set; aset.round=DEC_ROUND_HALF_EVEN;
- #define LN2 "0.6931471805599453094172321214581765680755"
- uprv_decNumberFromString(res, LN2, &aset);
- *status|=(DEC_Inexact | DEC_Rounded);
- break;}
- } /* integer and short */
- /* Determine the working precision. This is normally the */
- /* requested precision + 2, with a minimum of 9. However, if */
- /* the rhs is 'over-precise' then allow for all its digits to */
- /* potentially participate (consider an rhs where all the excess */
- /* digits are 9s) so in this case use rhs->digits+2. */
- p=MAXI(rhs->digits, MAXI(set->digits, 7))+2;
- /* Allocate space for the accumulator and the high-precision */
- /* adjustment calculator, if necessary. The accumulator must */
- /* be able to hold p digits, and the adjustment up to */
- /* rhs->digits+p digits. They are also made big enough for 16 */
- /* digits so that they can be used for calculating the initial */
- /* estimate. */
- needbytes=sizeof(decNumber)+(D2U(MAXI(p,16))-1)*sizeof(Unit);
- if (needbytes>sizeof(bufa)) { /* need malloc space */
- allocbufa=(decNumber *)malloc(needbytes);
- if (allocbufa==nullptr) { /* hopeless -- abandon */
- *status|=DEC_Insufficient_storage;
- break;}
- a=allocbufa; /* use the allocated space */
- }
- pp=p+rhs->digits;
- needbytes=sizeof(decNumber)+(D2U(MAXI(pp,16))-1)*sizeof(Unit);
- if (needbytes>sizeof(bufb)) { /* need malloc space */
- allocbufb=(decNumber *)malloc(needbytes);
- if (allocbufb==nullptr) { /* hopeless -- abandon */
- *status|=DEC_Insufficient_storage;
- break;}
- b=allocbufb; /* use the allocated space */
- }
- /* Prepare an initial estimate in acc. Calculate this by */
- /* considering the coefficient of x to be a normalized fraction, */
- /* f, with the decimal point at far left and multiplied by */
- /* 10**r. Then, rhs=f*10**r and 0.1<=f<1, and */
- /* ln(x) = ln(f) + ln(10)*r */
- /* Get the initial estimate for ln(f) from a small lookup */
- /* table (see above) indexed by the first two digits of f, */
- /* truncated. */
- uprv_decContextDefault(&aset, DEC_INIT_DECIMAL64); /* 16-digit extended */
- r=rhs->exponent+rhs->digits; /* 'normalised' exponent */
- uprv_decNumberFromInt32(a, r); /* a=r */
- uprv_decNumberFromInt32(b, 2302585); /* b=ln(10) (2.302585) */
- b->exponent=-6; /* .. */
- decMultiplyOp(a, a, b, &aset, &ignore); /* a=a*b */
- /* now get top two digits of rhs into b by simple truncate and */
- /* force to integer */
- residue=0; /* (no residue) */
- aset.digits=2; aset.round=DEC_ROUND_DOWN;
- decCopyFit(b, rhs, &aset, &residue, &ignore); /* copy & shorten */
- b->exponent=0; /* make integer */
- t=decGetInt(b); /* [cannot fail] */
- if (t<10) t=X10(t); /* adjust single-digit b */
- t=LNnn[t-10]; /* look up ln(b) */
- uprv_decNumberFromInt32(b, t>>2); /* b=ln(b) coefficient */
- b->exponent=-(t&3)-3; /* set exponent */
- b->bits=DECNEG; /* ln(0.10)->ln(0.99) always -ve */
- aset.digits=16; aset.round=DEC_ROUND_HALF_EVEN; /* restore */
- decAddOp(a, a, b, &aset, 0, &ignore); /* acc=a+b */
- /* the initial estimate is now in a, with up to 4 digits correct. */
- /* When rhs is at or near Nmax the estimate will be low, so we */
- /* will approach it from below, avoiding overflow when calling exp. */
- uprv_decNumberZero(&numone); *numone.lsu=1; /* constant 1 for adjustment */
- /* accumulator bounds are as requested (could underflow, but */
- /* cannot overflow) */
- aset.emax=set->emax;
- aset.emin=set->emin;
- aset.clamp=0; /* no concrete format */
- /* set up a context to be used for the multiply and subtract */
- bset=aset;
- bset.emax=DEC_MAX_MATH*2; /* use double bounds for the */
- bset.emin=-DEC_MAX_MATH*2; /* adjustment calculation */
- /* [see decExpOp call below] */
- /* for each iteration double the number of digits to calculate, */
- /* up to a maximum of p */
- pp=9; /* initial precision */
- /* [initially 9 as then the sequence starts 7+2, 16+2, and */
- /* 34+2, which is ideal for standard-sized numbers] */
- aset.digits=pp; /* working context */
- bset.digits=pp+rhs->digits; /* wider context */
- for (;;) { /* iterate */
- #if DECCHECK
- iterations++;
- if (iterations>24) break; /* consider 9 * 2**24 */
- #endif
- /* calculate the adjustment (exp(-a)*x-1) into b. This is a */
- /* catastrophic subtraction but it really is the difference */
- /* from 1 that is of interest. */
- /* Use the internal entry point to Exp as it allows the double */
- /* range for calculating exp(-a) when a is the tiniest subnormal. */
- a->bits^=DECNEG; /* make -a */
- decExpOp(b, a, &bset, &ignore); /* b=exp(-a) */
- a->bits^=DECNEG; /* restore sign of a */
- /* now multiply by rhs and subtract 1, at the wider precision */
- decMultiplyOp(b, b, rhs, &bset, &ignore); /* b=b*rhs */
- decAddOp(b, b, &numone, &bset, DECNEG, &ignore); /* b=b-1 */
- /* the iteration ends when the adjustment cannot affect the */
- /* result by >=0.5 ulp (at the requested digits), which */
- /* is when its value is smaller than the accumulator by */
- /* set->digits+1 digits (or it is zero) -- this is a looser */
- /* requirement than for Exp because all that happens to the */
- /* accumulator after this is the final rounding (but note that */
- /* there must also be full precision in a, or a=0). */
- if (decNumberIsZero(b) ||
- (a->digits+a->exponent)>=(b->digits+b->exponent+set->digits+1)) {
- if (a->digits==p) break;
- if (decNumberIsZero(a)) {
- decCompareOp(&cmp, rhs, &numone, &aset, COMPARE, &ignore); /* rhs=1 ? */
- if (cmp.lsu[0]==0) a->exponent=0; /* yes, exact 0 */
- else *status|=(DEC_Inexact | DEC_Rounded); /* no, inexact */
- break;
- }
- /* force padding if adjustment has gone to 0 before full length */
- if (decNumberIsZero(b)) b->exponent=a->exponent-p;
- }
- /* not done yet ... */
- decAddOp(a, a, b, &aset, 0, &ignore); /* a=a+b for next estimate */
- if (pp==p) continue; /* precision is at maximum */
- /* lengthen the next calculation */
- pp=pp*2; /* double precision */
- if (pp>p) pp=p; /* clamp to maximum */
- aset.digits=pp; /* working context */
- bset.digits=pp+rhs->digits; /* wider context */
- } /* Newton's iteration */
- #if DECCHECK
- /* just a sanity check; remove the test to show always */
- if (iterations>24)
- printf("Ln iterations=%ld, status=%08lx, p=%ld, d=%ld\n",
- (LI)iterations, (LI)*status, (LI)p, (LI)rhs->digits);
- #endif
- /* Copy and round the result to res */
- residue=1; /* indicate dirt to right */
- if (ISZERO(a)) residue=0; /* .. unless underflowed to 0 */
- aset.digits=set->digits; /* [use default rounding] */
- decCopyFit(res, a, &aset, &residue, status); /* copy & shorten */
- decFinish(res, set, &residue, status); /* cleanup/set flags */
- } while(0); /* end protected */
- if (allocbufa!=nullptr) free(allocbufa); /* drop any storage used */
- if (allocbufb!=nullptr) free(allocbufb); /* .. */
- /* [status is handled by caller] */
- return res;
- } /* decLnOp */
- #if defined(__clang__) || U_GCC_MAJOR_MINOR >= 406
- #pragma GCC diagnostic pop
- #endif
- /* ------------------------------------------------------------------ */
- /* decQuantizeOp -- force exponent to requested value */
- /* */
- /* This computes C = op(A, B), where op adjusts the coefficient */
- /* of C (by rounding or shifting) such that the exponent (-scale) */
- /* of C has the value B or matches the exponent of B. */
- /* The numerical value of C will equal A, except for the effects of */
- /* any rounding that occurred. */
- /* */
- /* res is C, the result. C may be A or B */
- /* lhs is A, the number to adjust */
- /* rhs is B, the requested exponent */
- /* set is the context */
- /* quant is 1 for quantize or 0 for rescale */
- /* status is the status accumulator (this can be called without */
- /* risk of control loss) */
- /* */
- /* C must have space for set->digits digits. */
- /* */
- /* Unless there is an error or the result is infinite, the exponent */
- /* after the operation is guaranteed to be that requested. */
- /* ------------------------------------------------------------------ */
- static decNumber * decQuantizeOp(decNumber *res, const decNumber *lhs,
- const decNumber *rhs, decContext *set,
- Flag quant, uInt *status) {
- #if DECSUBSET
- decNumber *alloclhs=nullptr; /* non-nullptr if rounded lhs allocated */
- decNumber *allocrhs=nullptr; /* .., rhs */
- #endif
- const decNumber *inrhs=rhs; /* save original rhs */
- Int reqdigits=set->digits; /* requested DIGITS */
- Int reqexp; /* requested exponent [-scale] */
- Int residue=0; /* rounding residue */
- Int etiny=set->emin-(reqdigits-1);
- #if DECCHECK
- if (decCheckOperands(res, lhs, rhs, set)) return res;
- #endif
- do { /* protect allocated storage */
- #if DECSUBSET
- if (!set->extended) {
- /* reduce operands and set lostDigits status, as needed */
- if (lhs->digits>reqdigits) {
- alloclhs=decRoundOperand(lhs, set, status);
- if (alloclhs==nullptr) break;
- lhs=alloclhs;
- }
- if (rhs->digits>reqdigits) { /* [this only checks lostDigits] */
- allocrhs=decRoundOperand(rhs, set, status);
- if (allocrhs==nullptr) break;
- rhs=allocrhs;
- }
- }
- #endif
- /* [following code does not require input rounding] */
- /* Handle special values */
- if (SPECIALARGS) {
- /* NaNs get usual processing */
- if (SPECIALARGS & (DECSNAN | DECNAN))
- decNaNs(res, lhs, rhs, set, status);
- /* one infinity but not both is bad */
- else if ((lhs->bits ^ rhs->bits) & DECINF)
- *status|=DEC_Invalid_operation;
- /* both infinity: return lhs */
- else uprv_decNumberCopy(res, lhs); /* [nop if in place] */
- break;
- }
- /* set requested exponent */
- if (quant) reqexp=inrhs->exponent; /* quantize -- match exponents */
- else { /* rescale -- use value of rhs */
- /* Original rhs must be an integer that fits and is in range, */
- /* which could be from -1999999997 to +999999999, thanks to */
- /* subnormals */
- reqexp=decGetInt(inrhs); /* [cannot fail] */
- }
- #if DECSUBSET
- if (!set->extended) etiny=set->emin; /* no subnormals */
- #endif
- if (reqexp==BADINT /* bad (rescale only) or .. */
- || reqexp==BIGODD || reqexp==BIGEVEN /* very big (ditto) or .. */
- || (reqexp<etiny) /* < lowest */
- || (reqexp>set->emax)) { /* > emax */
- *status|=DEC_Invalid_operation;
- break;}
- /* the RHS has been processed, so it can be overwritten now if necessary */
- if (ISZERO(lhs)) { /* zero coefficient unchanged */
- uprv_decNumberCopy(res, lhs); /* [nop if in place] */
- res->exponent=reqexp; /* .. just set exponent */
- #if DECSUBSET
- if (!set->extended) res->bits=0; /* subset specification; no -0 */
- #endif
- }
- else { /* non-zero lhs */
- Int adjust=reqexp-lhs->exponent; /* digit adjustment needed */
- /* if adjusted coefficient will definitely not fit, give up now */
- if ((lhs->digits-adjust)>reqdigits) {
- *status|=DEC_Invalid_operation;
- break;
- }
- if (adjust>0) { /* increasing exponent */
- /* this will decrease the length of the coefficient by adjust */
- /* digits, and must round as it does so */
- decContext workset; /* work */
- workset=*set; /* clone rounding, etc. */
- workset.digits=lhs->digits-adjust; /* set requested length */
- /* [note that the latter can be <1, here] */
- decCopyFit(res, lhs, &workset, &residue, status); /* fit to result */
- decApplyRound(res, &workset, residue, status); /* .. and round */
- residue=0; /* [used] */
- /* If just rounded a 999s case, exponent will be off by one; */
- /* adjust back (after checking space), if so. */
- if (res->exponent>reqexp) {
- /* re-check needed, e.g., for quantize(0.9999, 0.001) under */
- /* set->digits==3 */
- if (res->digits==reqdigits) { /* cannot shift by 1 */
- *status&=~(DEC_Inexact | DEC_Rounded); /* [clean these] */
- *status|=DEC_Invalid_operation;
- break;
- }
- res->digits=decShiftToMost(res->lsu, res->digits, 1); /* shift */
- res->exponent--; /* (re)adjust the exponent. */
- }
- #if DECSUBSET
- if (ISZERO(res) && !set->extended) res->bits=0; /* subset; no -0 */
- #endif
- } /* increase */
- else /* adjust<=0 */ { /* decreasing or = exponent */
- /* this will increase the length of the coefficient by -adjust */
- /* digits, by adding zero or more trailing zeros; this is */
- /* already checked for fit, above */
- uprv_decNumberCopy(res, lhs); /* [it will fit] */
- /* if padding needed (adjust<0), add it now... */
- if (adjust<0) {
- res->digits=decShiftToMost(res->lsu, res->digits, -adjust);
- res->exponent+=adjust; /* adjust the exponent */
- }
- } /* decrease */
- } /* non-zero */
- /* Check for overflow [do not use Finalize in this case, as an */
- /* overflow here is a "don't fit" situation] */
- if (res->exponent>set->emax-res->digits+1) { /* too big */
- *status|=DEC_Invalid_operation;
- break;
- }
- else {
- decFinalize(res, set, &residue, status); /* set subnormal flags */
- *status&=~DEC_Underflow; /* suppress Underflow [as per 754] */
- }
- } while(0); /* end protected */
- #if DECSUBSET
- if (allocrhs!=nullptr) free(allocrhs); /* drop any storage used */
- if (alloclhs!=nullptr) free(alloclhs); /* .. */
- #endif
- return res;
- } /* decQuantizeOp */
- /* ------------------------------------------------------------------ */
- /* decCompareOp -- compare, min, or max two Numbers */
- /* */
- /* This computes C = A ? B and carries out one of four operations: */
- /* COMPARE -- returns the signum (as a number) giving the */
- /* result of a comparison unless one or both */
- /* operands is a NaN (in which case a NaN results) */
- /* COMPSIG -- as COMPARE except that a quiet NaN raises */
- /* Invalid operation. */
- /* COMPMAX -- returns the larger of the operands, using the */
- /* 754 maxnum operation */
- /* COMPMAXMAG -- ditto, comparing absolute values */
- /* COMPMIN -- the 754 minnum operation */
- /* COMPMINMAG -- ditto, comparing absolute values */
- /* COMTOTAL -- returns the signum (as a number) giving the */
- /* result of a comparison using 754 total ordering */
- /* */
- /* res is C, the result. C may be A and/or B (e.g., X=X?X) */
- /* lhs is A */
- /* rhs is B */
- /* set is the context */
- /* op is the operation flag */
- /* status is the usual accumulator */
- /* */
- /* C must have space for one digit for COMPARE or set->digits for */
- /* COMPMAX, COMPMIN, COMPMAXMAG, or COMPMINMAG. */
- /* ------------------------------------------------------------------ */
- /* The emphasis here is on speed for common cases, and avoiding */
- /* coefficient comparison if possible. */
- /* ------------------------------------------------------------------ */
- static decNumber * decCompareOp(decNumber *res, const decNumber *lhs,
- const decNumber *rhs, decContext *set,
- Flag op, uInt *status) {
- #if DECSUBSET
- decNumber *alloclhs=nullptr; /* non-nullptr if rounded lhs allocated */
- decNumber *allocrhs=nullptr; /* .., rhs */
- #endif
- Int result=0; /* default result value */
- uByte merged; /* work */
- #if DECCHECK
- if (decCheckOperands(res, lhs, rhs, set)) return res;
- #endif
- do { /* protect allocated storage */
- #if DECSUBSET
- if (!set->extended) {
- /* reduce operands and set lostDigits status, as needed */
- if (lhs->digits>set->digits) {
- alloclhs=decRoundOperand(lhs, set, status);
- if (alloclhs==nullptr) {result=BADINT; break;}
- lhs=alloclhs;
- }
- if (rhs->digits>set->digits) {
- allocrhs=decRoundOperand(rhs, set, status);
- if (allocrhs==nullptr) {result=BADINT; break;}
- rhs=allocrhs;
- }
- }
- #endif
- /* [following code does not require input rounding] */
- /* If total ordering then handle differing signs 'up front' */
- if (op==COMPTOTAL) { /* total ordering */
- if (decNumberIsNegative(lhs) && !decNumberIsNegative(rhs)) {
- result=-1;
- break;
- }
- if (!decNumberIsNegative(lhs) && decNumberIsNegative(rhs)) {
- result=+1;
- break;
- }
- }
- /* handle NaNs specially; let infinities drop through */
- /* This assumes sNaN (even just one) leads to NaN. */
- merged=(lhs->bits | rhs->bits) & (DECSNAN | DECNAN);
- if (merged) { /* a NaN bit set */
- if (op==COMPARE); /* result will be NaN */
- else if (op==COMPSIG) /* treat qNaN as sNaN */
- *status|=DEC_Invalid_operation | DEC_sNaN;
- else if (op==COMPTOTAL) { /* total ordering, always finite */
- /* signs are known to be the same; compute the ordering here */
- /* as if the signs are both positive, then invert for negatives */
- if (!decNumberIsNaN(lhs)) result=-1;
- else if (!decNumberIsNaN(rhs)) result=+1;
- /* here if both NaNs */
- else if (decNumberIsSNaN(lhs) && decNumberIsQNaN(rhs)) result=-1;
- else if (decNumberIsQNaN(lhs) && decNumberIsSNaN(rhs)) result=+1;
- else { /* both NaN or both sNaN */
- /* now it just depends on the payload */
- result=decUnitCompare(lhs->lsu, D2U(lhs->digits),
- rhs->lsu, D2U(rhs->digits), 0);
- /* [Error not possible, as these are 'aligned'] */
- } /* both same NaNs */
- if (decNumberIsNegative(lhs)) result=-result;
- break;
- } /* total order */
- else if (merged & DECSNAN); /* sNaN -> qNaN */
- else { /* here if MIN or MAX and one or two quiet NaNs */
- /* min or max -- 754 rules ignore single NaN */
- if (!decNumberIsNaN(lhs) || !decNumberIsNaN(rhs)) {
- /* just one NaN; force choice to be the non-NaN operand */
- op=COMPMAX;
- if (lhs->bits & DECNAN) result=-1; /* pick rhs */
- else result=+1; /* pick lhs */
- break;
- }
- } /* max or min */
- op=COMPNAN; /* use special path */
- decNaNs(res, lhs, rhs, set, status); /* propagate NaN */
- break;
- }
- /* have numbers */
- if (op==COMPMAXMAG || op==COMPMINMAG) result=decCompare(lhs, rhs, 1);
- else result=decCompare(lhs, rhs, 0); /* sign matters */
- } while(0); /* end protected */
- if (result==BADINT) *status|=DEC_Insufficient_storage; /* rare */
- else {
- if (op==COMPARE || op==COMPSIG ||op==COMPTOTAL) { /* returning signum */
- if (op==COMPTOTAL && result==0) {
- /* operands are numerically equal or same NaN (and same sign, */
- /* tested first); if identical, leave result 0 */
- if (lhs->exponent!=rhs->exponent) {
- if (lhs->exponent<rhs->exponent) result=-1;
- else result=+1;
- if (decNumberIsNegative(lhs)) result=-result;
- } /* lexp!=rexp */
- } /* total-order by exponent */
- uprv_decNumberZero(res); /* [always a valid result] */
- if (result!=0) { /* must be -1 or +1 */
- *res->lsu=1;
- if (result<0) res->bits=DECNEG;
- }
- }
- else if (op==COMPNAN); /* special, drop through */
- else { /* MAX or MIN, non-NaN result */
- Int residue=0; /* rounding accumulator */
- /* choose the operand for the result */
- const decNumber *choice;
- if (result==0) { /* operands are numerically equal */
- /* choose according to sign then exponent (see 754) */
- uByte slhs=(lhs->bits & DECNEG);
- uByte srhs=(rhs->bits & DECNEG);
- #if DECSUBSET
- if (!set->extended) { /* subset: force left-hand */
- op=COMPMAX;
- result=+1;
- }
- else
- #endif
- if (slhs!=srhs) { /* signs differ */
- if (slhs) result=-1; /* rhs is max */
- else result=+1; /* lhs is max */
- }
- else if (slhs && srhs) { /* both negative */
- if (lhs->exponent<rhs->exponent) result=+1;
- else result=-1;
- /* [if equal, use lhs, technically identical] */
- }
- else { /* both positive */
- if (lhs->exponent>rhs->exponent) result=+1;
- else result=-1;
- /* [ditto] */
- }
- } /* numerically equal */
- /* here result will be non-0; reverse if looking for MIN */
- if (op==COMPMIN || op==COMPMINMAG) result=-result;
- choice=(result>0 ? lhs : rhs); /* choose */
- /* copy chosen to result, rounding if need be */
- decCopyFit(res, choice, set, &residue, status);
- decFinish(res, set, &residue, status);
- }
- }
- #if DECSUBSET
- if (allocrhs!=nullptr) free(allocrhs); /* free any storage used */
- if (alloclhs!=nullptr) free(alloclhs); /* .. */
- #endif
- return res;
- } /* decCompareOp */
- /* ------------------------------------------------------------------ */
- /* decCompare -- compare two decNumbers by numerical value */
- /* */
- /* This routine compares A ? B without altering them. */
- /* */
- /* Arg1 is A, a decNumber which is not a NaN */
- /* Arg2 is B, a decNumber which is not a NaN */
- /* Arg3 is 1 for a sign-independent compare, 0 otherwise */
- /* */
- /* returns -1, 0, or 1 for A<B, A==B, or A>B, or BADINT if failure */
- /* (the only possible failure is an allocation error) */
- /* ------------------------------------------------------------------ */
- static Int decCompare(const decNumber *lhs, const decNumber *rhs,
- Flag abs_c) {
- Int result; /* result value */
- Int sigr; /* rhs signum */
- Int compare; /* work */
- result=1; /* assume signum(lhs) */
- if (ISZERO(lhs)) result=0;
- if (abs_c) {
- if (ISZERO(rhs)) return result; /* LHS wins or both 0 */
- /* RHS is non-zero */
- if (result==0) return -1; /* LHS is 0; RHS wins */
- /* [here, both non-zero, result=1] */
- }
- else { /* signs matter */
- if (result && decNumberIsNegative(lhs)) result=-1;
- sigr=1; /* compute signum(rhs) */
- if (ISZERO(rhs)) sigr=0;
- else if (decNumberIsNegative(rhs)) sigr=-1;
- if (result > sigr) return +1; /* L > R, return 1 */
- if (result < sigr) return -1; /* L < R, return -1 */
- if (result==0) return 0; /* both 0 */
- }
- /* signums are the same; both are non-zero */
- if ((lhs->bits | rhs->bits) & DECINF) { /* one or more infinities */
- if (decNumberIsInfinite(rhs)) {
- if (decNumberIsInfinite(lhs)) result=0;/* both infinite */
- else result=-result; /* only rhs infinite */
- }
- return result;
- }
- /* must compare the coefficients, allowing for exponents */
- if (lhs->exponent>rhs->exponent) { /* LHS exponent larger */
- /* swap sides, and sign */
- const decNumber *temp=lhs;
- lhs=rhs;
- rhs=temp;
- result=-result;
- }
- compare=decUnitCompare(lhs->lsu, D2U(lhs->digits),
- rhs->lsu, D2U(rhs->digits),
- rhs->exponent-lhs->exponent);
- if (compare!=BADINT) compare*=result; /* comparison succeeded */
- return compare;
- } /* decCompare */
- /* ------------------------------------------------------------------ */
- /* decUnitCompare -- compare two >=0 integers in Unit arrays */
- /* */
- /* This routine compares A ? B*10**E where A and B are unit arrays */
- /* A is a plain integer */
- /* B has an exponent of E (which must be non-negative) */
- /* */
- /* Arg1 is A first Unit (lsu) */
- /* Arg2 is A length in Units */
- /* Arg3 is B first Unit (lsu) */
- /* Arg4 is B length in Units */
- /* Arg5 is E (0 if the units are aligned) */
- /* */
- /* returns -1, 0, or 1 for A<B, A==B, or A>B, or BADINT if failure */
- /* (the only possible failure is an allocation error, which can */
- /* only occur if E!=0) */
- /* ------------------------------------------------------------------ */
- static Int decUnitCompare(const Unit *a, Int alength,
- const Unit *b, Int blength, Int exp) {
- Unit *acc; /* accumulator for result */
- Unit accbuff[SD2U(DECBUFFER*2+1)]; /* local buffer */
- Unit *allocacc=nullptr; /* -> allocated acc buffer, iff allocated */
- Int accunits, need; /* units in use or needed for acc */
- const Unit *l, *r, *u; /* work */
- Int expunits, exprem, result; /* .. */
- if (exp==0) { /* aligned; fastpath */
- if (alength>blength) return 1;
- if (alength<blength) return -1;
- /* same number of units in both -- need unit-by-unit compare */
- l=a+alength-1;
- r=b+alength-1;
- for (;l>=a; l--, r--) {
- if (*l>*r) return 1;
- if (*l<*r) return -1;
- }
- return 0; /* all units match */
- } /* aligned */
- /* Unaligned. If one is >1 unit longer than the other, padded */
- /* approximately, then can return easily */
- if (alength>blength+(Int)D2U(exp)) return 1;
- if (alength+1<blength+(Int)D2U(exp)) return -1;
- /* Need to do a real subtract. For this, a result buffer is needed */
- /* even though only the sign is of interest. Its length needs */
- /* to be the larger of alength and padded blength, +2 */
- need=blength+D2U(exp); /* maximum real length of B */
- if (need<alength) need=alength;
- need+=2;
- acc=accbuff; /* assume use local buffer */
- if (need*sizeof(Unit)>sizeof(accbuff)) {
- allocacc=(Unit *)malloc(need*sizeof(Unit));
- if (allocacc==nullptr) return BADINT; /* hopeless -- abandon */
- acc=allocacc;
- }
- /* Calculate units and remainder from exponent. */
- expunits=exp/DECDPUN;
- exprem=exp%DECDPUN;
- /* subtract [A+B*(-m)] */
- accunits=decUnitAddSub(a, alength, b, blength, expunits, acc,
- -(Int)powers[exprem]);
- /* [UnitAddSub result may have leading zeros, even on zero] */
- if (accunits<0) result=-1; /* negative result */
- else { /* non-negative result */
- /* check units of the result before freeing any storage */
- for (u=acc; u<acc+accunits-1 && *u==0;) u++;
- result=(*u==0 ? 0 : +1);
- }
- /* clean up and return the result */
- if (allocacc!=nullptr) free(allocacc); /* drop any storage used */
- return result;
- } /* decUnitCompare */
- /* ------------------------------------------------------------------ */
- /* decUnitAddSub -- add or subtract two >=0 integers in Unit arrays */
- /* */
- /* This routine performs the calculation: */
- /* */
- /* C=A+(B*M) */
- /* */
- /* Where M is in the range -DECDPUNMAX through +DECDPUNMAX. */
- /* */
- /* A may be shorter or longer than B. */
- /* */
- /* Leading zeros are not removed after a calculation. The result is */
- /* either the same length as the longer of A and B (adding any */
- /* shift), or one Unit longer than that (if a Unit carry occurred). */
- /* */
- /* A and B content are not altered unless C is also A or B. */
- /* C may be the same array as A or B, but only if no zero padding is */
- /* requested (that is, C may be B only if bshift==0). */
- /* C is filled from the lsu; only those units necessary to complete */
- /* the calculation are referenced. */
- /* */
- /* Arg1 is A first Unit (lsu) */
- /* Arg2 is A length in Units */
- /* Arg3 is B first Unit (lsu) */
- /* Arg4 is B length in Units */
- /* Arg5 is B shift in Units (>=0; pads with 0 units if positive) */
- /* Arg6 is C first Unit (lsu) */
- /* Arg7 is M, the multiplier */
- /* */
- /* returns the count of Units written to C, which will be non-zero */
- /* and negated if the result is negative. That is, the sign of the */
- /* returned Int is the sign of the result (positive for zero) and */
- /* the absolute value of the Int is the count of Units. */
- /* */
- /* It is the caller's responsibility to make sure that C size is */
- /* safe, allowing space if necessary for a one-Unit carry. */
- /* */
- /* This routine is severely performance-critical; *any* change here */
- /* must be measured (timed) to assure no performance degradation. */
- /* In particular, trickery here tends to be counter-productive, as */
- /* increased complexity of code hurts register optimizations on */
- /* register-poor architectures. Avoiding divisions is nearly */
- /* always a Good Idea, however. */
- /* */
- /* Special thanks to Rick McGuire (IBM Cambridge, MA) and Dave Clark */
- /* (IBM Warwick, UK) for some of the ideas used in this routine. */
- /* ------------------------------------------------------------------ */
- static Int decUnitAddSub(const Unit *a, Int alength,
- const Unit *b, Int blength, Int bshift,
- Unit *c, Int m) {
- const Unit *alsu=a; /* A lsu [need to remember it] */
- Unit *clsu=c; /* C ditto */
- Unit *minC; /* low water mark for C */
- Unit *maxC; /* high water mark for C */
- eInt carry=0; /* carry integer (could be Long) */
- Int add; /* work */
- #if DECDPUN<=4 /* myriadal, millenary, etc. */
- Int est; /* estimated quotient */
- #endif
- #if DECTRACE
- if (alength<1 || blength<1)
- printf("decUnitAddSub: alen blen m %ld %ld [%ld]\n", alength, blength, m);
- #endif
- maxC=c+alength; /* A is usually the longer */
- minC=c+blength; /* .. and B the shorter */
- if (bshift!=0) { /* B is shifted; low As copy across */
- minC+=bshift;
- /* if in place [common], skip copy unless there's a gap [rare] */
- if (a==c && bshift<=alength) {
- c+=bshift;
- a+=bshift;
- }
- else for (; c<clsu+bshift; a++, c++) { /* copy needed */
- if (a<alsu+alength) *c=*a;
- else *c=0;
- }
- }
- if (minC>maxC) { /* swap */
- Unit *hold=minC;
- minC=maxC;
- maxC=hold;
- }
- /* For speed, do the addition as two loops; the first where both A */
- /* and B contribute, and the second (if necessary) where only one or */
- /* other of the numbers contribute. */
- /* Carry handling is the same (i.e., duplicated) in each case. */
- for (; c<minC; c++) {
- carry+=*a;
- a++;
- carry+=((eInt)*b)*m; /* [special-casing m=1/-1 */
- b++; /* here is not a win] */
- /* here carry is new Unit of digits; it could be +ve or -ve */
- if ((ueInt)carry<=DECDPUNMAX) { /* fastpath 0-DECDPUNMAX */
- *c=(Unit)carry;
- carry=0;
- continue;
- }
- #if DECDPUN==4 /* use divide-by-multiply */
- if (carry>=0) {
- est=(((ueInt)carry>>11)*53687)>>18;
- *c=(Unit)(carry-est*(DECDPUNMAX+1)); /* remainder */
- carry=est; /* likely quotient [89%] */
- if (*c<DECDPUNMAX+1) continue; /* estimate was correct */
- carry++;
- *c-=DECDPUNMAX+1;
- continue;
- }
- /* negative case */
- carry=carry+(eInt)(DECDPUNMAX+1)*(DECDPUNMAX+1); /* make positive */
- est=(((ueInt)carry>>11)*53687)>>18;
- *c=(Unit)(carry-est*(DECDPUNMAX+1));
- carry=est-(DECDPUNMAX+1); /* correctly negative */
- if (*c<DECDPUNMAX+1) continue; /* was OK */
- carry++;
- *c-=DECDPUNMAX+1;
- #elif DECDPUN==3
- if (carry>=0) {
- est=(((ueInt)carry>>3)*16777)>>21;
- *c=(Unit)(carry-est*(DECDPUNMAX+1)); /* remainder */
- carry=est; /* likely quotient [99%] */
- if (*c<DECDPUNMAX+1) continue; /* estimate was correct */
- carry++;
- *c-=DECDPUNMAX+1;
- continue;
- }
- /* negative case */
- carry=carry+(eInt)(DECDPUNMAX+1)*(DECDPUNMAX+1); /* make positive */
- est=(((ueInt)carry>>3)*16777)>>21;
- *c=(Unit)(carry-est*(DECDPUNMAX+1));
- carry=est-(DECDPUNMAX+1); /* correctly negative */
- if (*c<DECDPUNMAX+1) continue; /* was OK */
- carry++;
- *c-=DECDPUNMAX+1;
- #elif DECDPUN<=2
- /* Can use QUOT10 as carry <= 4 digits */
- if (carry>=0) {
- est=QUOT10(carry, DECDPUN);
- *c=(Unit)(carry-est*(DECDPUNMAX+1)); /* remainder */
- carry=est; /* quotient */
- continue;
- }
- /* negative case */
- carry=carry+(eInt)(DECDPUNMAX+1)*(DECDPUNMAX+1); /* make positive */
- est=QUOT10(carry, DECDPUN);
- *c=(Unit)(carry-est*(DECDPUNMAX+1));
- carry=est-(DECDPUNMAX+1); /* correctly negative */
- #else
- /* remainder operator is undefined if negative, so must test */
- if ((ueInt)carry<(DECDPUNMAX+1)*2) { /* fastpath carry +1 */
- *c=(Unit)(carry-(DECDPUNMAX+1)); /* [helps additions] */
- carry=1;
- continue;
- }
- if (carry>=0) {
- *c=(Unit)(carry%(DECDPUNMAX+1));
- carry=carry/(DECDPUNMAX+1);
- continue;
- }
- /* negative case */
- carry=carry+(eInt)(DECDPUNMAX+1)*(DECDPUNMAX+1); /* make positive */
- *c=(Unit)(carry%(DECDPUNMAX+1));
- carry=carry/(DECDPUNMAX+1)-(DECDPUNMAX+1);
- #endif
- } /* c */
- /* now may have one or other to complete */
- /* [pretest to avoid loop setup/shutdown] */
- if (c<maxC) for (; c<maxC; c++) {
- if (a<alsu+alength) { /* still in A */
- carry+=*a;
- a++;
- }
- else { /* inside B */
- carry+=((eInt)*b)*m;
- b++;
- }
- /* here carry is new Unit of digits; it could be +ve or -ve and */
- /* magnitude up to DECDPUNMAX squared */
- if ((ueInt)carry<=DECDPUNMAX) { /* fastpath 0-DECDPUNMAX */
- *c=(Unit)carry;
- carry=0;
- continue;
- }
- /* result for this unit is negative or >DECDPUNMAX */
- #if DECDPUN==4 /* use divide-by-multiply */
- if (carry>=0) {
- est=(((ueInt)carry>>11)*53687)>>18;
- *c=(Unit)(carry-est*(DECDPUNMAX+1)); /* remainder */
- carry=est; /* likely quotient [79.7%] */
- if (*c<DECDPUNMAX+1) continue; /* estimate was correct */
- carry++;
- *c-=DECDPUNMAX+1;
- continue;
- }
- /* negative case */
- carry=carry+(eInt)(DECDPUNMAX+1)*(DECDPUNMAX+1); /* make positive */
- est=(((ueInt)carry>>11)*53687)>>18;
- *c=(Unit)(carry-est*(DECDPUNMAX+1));
- carry=est-(DECDPUNMAX+1); /* correctly negative */
- if (*c<DECDPUNMAX+1) continue; /* was OK */
- carry++;
- *c-=DECDPUNMAX+1;
- #elif DECDPUN==3
- if (carry>=0) {
- est=(((ueInt)carry>>3)*16777)>>21;
- *c=(Unit)(carry-est*(DECDPUNMAX+1)); /* remainder */
- carry=est; /* likely quotient [99%] */
- if (*c<DECDPUNMAX+1) continue; /* estimate was correct */
- carry++;
- *c-=DECDPUNMAX+1;
- continue;
- }
- /* negative case */
- carry=carry+(eInt)(DECDPUNMAX+1)*(DECDPUNMAX+1); /* make positive */
- est=(((ueInt)carry>>3)*16777)>>21;
- *c=(Unit)(carry-est*(DECDPUNMAX+1));
- carry=est-(DECDPUNMAX+1); /* correctly negative */
- if (*c<DECDPUNMAX+1) continue; /* was OK */
- carry++;
- *c-=DECDPUNMAX+1;
- #elif DECDPUN<=2
- if (carry>=0) {
- est=QUOT10(carry, DECDPUN);
- *c=(Unit)(carry-est*(DECDPUNMAX+1)); /* remainder */
- carry=est; /* quotient */
- continue;
- }
- /* negative case */
- carry=carry+(eInt)(DECDPUNMAX+1)*(DECDPUNMAX+1); /* make positive */
- est=QUOT10(carry, DECDPUN);
- *c=(Unit)(carry-est*(DECDPUNMAX+1));
- carry=est-(DECDPUNMAX+1); /* correctly negative */
- #else
- if ((ueInt)carry<(DECDPUNMAX+1)*2){ /* fastpath carry 1 */
- *c=(Unit)(carry-(DECDPUNMAX+1));
- carry=1;
- continue;
- }
- /* remainder operator is undefined if negative, so must test */
- if (carry>=0) {
- *c=(Unit)(carry%(DECDPUNMAX+1));
- carry=carry/(DECDPUNMAX+1);
- continue;
- }
- /* negative case */
- carry=carry+(eInt)(DECDPUNMAX+1)*(DECDPUNMAX+1); /* make positive */
- *c=(Unit)(carry%(DECDPUNMAX+1));
- carry=carry/(DECDPUNMAX+1)-(DECDPUNMAX+1);
- #endif
- } /* c */
- /* OK, all A and B processed; might still have carry or borrow */
- /* return number of Units in the result, negated if a borrow */
- if (carry==0) return static_cast<int32_t>(c-clsu); /* no carry, so no more to do */
- if (carry>0) { /* positive carry */
- *c=(Unit)carry; /* place as new unit */
- c++; /* .. */
- return static_cast<int32_t>(c-clsu);
- }
- /* -ve carry: it's a borrow; complement needed */
- add=1; /* temporary carry... */
- for (c=clsu; c<maxC; c++) {
- add=DECDPUNMAX+add-*c;
- if (add<=DECDPUNMAX) {
- *c=(Unit)add;
- add=0;
- }
- else {
- *c=0;
- add=1;
- }
- }
- /* add an extra unit iff it would be non-zero */
- #if DECTRACE
- printf("UAS borrow: add %ld, carry %ld\n", add, carry);
- #endif
- if ((add-carry-1)!=0) {
- *c=(Unit)(add-carry-1);
- c++; /* interesting, include it */
- }
- return static_cast<int32_t>(clsu-c); /* -ve result indicates borrowed */
- } /* decUnitAddSub */
- /* ------------------------------------------------------------------ */
- /* decTrim -- trim trailing zeros or normalize */
- /* */
- /* dn is the number to trim or normalize */
- /* set is the context to use to check for clamp */
- /* all is 1 to remove all trailing zeros, 0 for just fraction ones */
- /* noclamp is 1 to unconditional (unclamped) trim */
- /* dropped returns the number of discarded trailing zeros */
- /* returns dn */
- /* */
- /* If clamp is set in the context then the number of zeros trimmed */
- /* may be limited if the exponent is high. */
- /* All fields are updated as required. This is a utility operation, */
- /* so special values are unchanged and no error is possible. */
- /* ------------------------------------------------------------------ */
- static decNumber * decTrim(decNumber *dn, decContext *set, Flag all,
- Flag noclamp, Int *dropped) {
- Int d, exp; /* work */
- uInt cut; /* .. */
- Unit *up; /* -> current Unit */
- #if DECCHECK
- if (decCheckOperands(dn, DECUNUSED, DECUNUSED, DECUNCONT)) return dn;
- #endif
- *dropped=0; /* assume no zeros dropped */
- if ((dn->bits & DECSPECIAL) /* fast exit if special .. */
- || (*dn->lsu & 0x01)) return dn; /* .. or odd */
- if (ISZERO(dn)) { /* .. or 0 */
- dn->exponent=0; /* (sign is preserved) */
- return dn;
- }
- /* have a finite number which is even */
- exp=dn->exponent;
- cut=1; /* digit (1-DECDPUN) in Unit */
- up=dn->lsu; /* -> current Unit */
- for (d=0; d<dn->digits-1; d++) { /* [don't strip the final digit] */
- /* slice by powers */
- #if DECDPUN<=4
- uInt quot=QUOT10(*up, cut);
- if ((*up-quot*powers[cut])!=0) break; /* found non-0 digit */
- #else
- if (*up%powers[cut]!=0) break; /* found non-0 digit */
- #endif
- /* have a trailing 0 */
- if (!all) { /* trimming */
- /* [if exp>0 then all trailing 0s are significant for trim] */
- if (exp<=0) { /* if digit might be significant */
- if (exp==0) break; /* then quit */
- exp++; /* next digit might be significant */
- }
- }
- cut++; /* next power */
- if (cut>DECDPUN) { /* need new Unit */
- up++;
- cut=1;
- }
- } /* d */
- if (d==0) return dn; /* none to drop */
- /* may need to limit drop if clamping */
- if (set->clamp && !noclamp) {
- Int maxd=set->emax-set->digits+1-dn->exponent;
- if (maxd<=0) return dn; /* nothing possible */
- if (d>maxd) d=maxd;
- }
- /* effect the drop */
- decShiftToLeast(dn->lsu, D2U(dn->digits), d);
- dn->exponent+=d; /* maintain numerical value */
- dn->digits-=d; /* new length */
- *dropped=d; /* report the count */
- return dn;
- } /* decTrim */
- /* ------------------------------------------------------------------ */
- /* decReverse -- reverse a Unit array in place */
- /* */
- /* ulo is the start of the array */
- /* uhi is the end of the array (highest Unit to include) */
- /* */
- /* The units ulo through uhi are reversed in place (if the number */
- /* of units is odd, the middle one is untouched). Note that the */
- /* digit(s) in each unit are unaffected. */
- /* ------------------------------------------------------------------ */
- static void decReverse(Unit *ulo, Unit *uhi) {
- Unit temp;
- for (; ulo<uhi; ulo++, uhi--) {
- temp=*ulo;
- *ulo=*uhi;
- *uhi=temp;
- }
- return;
- } /* decReverse */
- /* ------------------------------------------------------------------ */
- /* decShiftToMost -- shift digits in array towards most significant */
- /* */
- /* uar is the array */
- /* digits is the count of digits in use in the array */
- /* shift is the number of zeros to pad with (least significant); */
- /* it must be zero or positive */
- /* */
- /* returns the new length of the integer in the array, in digits */
- /* */
- /* No overflow is permitted (that is, the uar array must be known to */
- /* be large enough to hold the result, after shifting). */
- /* ------------------------------------------------------------------ */
- static Int decShiftToMost(Unit *uar, Int digits, Int shift) {
- Unit *target, *source, *first; /* work */
- Int cut; /* odd 0's to add */
- uInt next; /* work */
- if (shift==0) return digits; /* [fastpath] nothing to do */
- if ((digits+shift)<=DECDPUN) { /* [fastpath] single-unit case */
- *uar=(Unit)(*uar*powers[shift]);
- return digits+shift;
- }
- next=0; /* all paths */
- source=uar+D2U(digits)-1; /* where msu comes from */
- target=source+D2U(shift); /* where upper part of first cut goes */
- cut=DECDPUN-MSUDIGITS(shift); /* where to slice */
- if (cut==0) { /* unit-boundary case */
- for (; source>=uar; source--, target--) *target=*source;
- }
- else {
- first=uar+D2U(digits+shift)-1; /* where msu of source will end up */
- for (; source>=uar; source--, target--) {
- /* split the source Unit and accumulate remainder for next */
- #if DECDPUN<=4
- uInt quot=QUOT10(*source, cut);
- uInt rem=*source-quot*powers[cut];
- next+=quot;
- #else
- uInt rem=*source%powers[cut];
- next+=*source/powers[cut];
- #endif
- if (target<=first) *target=(Unit)next; /* write to target iff valid */
- next=rem*powers[DECDPUN-cut]; /* save remainder for next Unit */
- }
- } /* shift-move */
- /* propagate any partial unit to one below and clear the rest */
- for (; target>=uar; target--) {
- *target=(Unit)next;
- next=0;
- }
- return digits+shift;
- } /* decShiftToMost */
- /* ------------------------------------------------------------------ */
- /* decShiftToLeast -- shift digits in array towards least significant */
- /* */
- /* uar is the array */
- /* units is length of the array, in units */
- /* shift is the number of digits to remove from the lsu end; it */
- /* must be zero or positive and <= than units*DECDPUN. */
- /* */
- /* returns the new length of the integer in the array, in units */
- /* */
- /* Removed digits are discarded (lost). Units not required to hold */
- /* the final result are unchanged. */
- /* ------------------------------------------------------------------ */
- static Int decShiftToLeast(Unit *uar, Int units, Int shift) {
- Unit *target, *up; /* work */
- Int cut, count; /* work */
- Int quot, rem; /* for division */
- if (shift==0) return units; /* [fastpath] nothing to do */
- if (shift==units*DECDPUN) { /* [fastpath] little to do */
- *uar=0; /* all digits cleared gives zero */
- return 1; /* leaves just the one */
- }
- target=uar; /* both paths */
- cut=MSUDIGITS(shift);
- if (cut==DECDPUN) { /* unit-boundary case; easy */
- up=uar+D2U(shift);
- for (; up<uar+units; target++, up++) *target=*up;
- return static_cast<int32_t>(target-uar);
- }
- /* messier */
- up=uar+D2U(shift-cut); /* source; correct to whole Units */
- count=units*DECDPUN-shift; /* the maximum new length */
- #if DECDPUN<=4
- quot=QUOT10(*up, cut);
- #else
- quot=*up/powers[cut];
- #endif
- for (; ; target++) {
- *target=(Unit)quot;
- count-=(DECDPUN-cut);
- if (count<=0) break;
- up++;
- quot=*up;
- #if DECDPUN<=4
- quot=QUOT10(quot, cut);
- rem=*up-quot*powers[cut];
- #else
- rem=quot%powers[cut];
- quot=quot/powers[cut];
- #endif
- *target=(Unit)(*target+rem*powers[DECDPUN-cut]);
- count-=cut;
- if (count<=0) break;
- }
- return static_cast<int32_t>(target-uar+1);
- } /* decShiftToLeast */
- #if DECSUBSET
- /* ------------------------------------------------------------------ */
- /* decRoundOperand -- round an operand [used for subset only] */
- /* */
- /* dn is the number to round (dn->digits is > set->digits) */
- /* set is the relevant context */
- /* status is the status accumulator */
- /* */
- /* returns an allocated decNumber with the rounded result. */
- /* */
- /* lostDigits and other status may be set by this. */
- /* */
- /* Since the input is an operand, it must not be modified. */
- /* Instead, return an allocated decNumber, rounded as required. */
- /* It is the caller's responsibility to free the allocated storage. */
- /* */
- /* If no storage is available then the result cannot be used, so nullptr */
- /* is returned. */
- /* ------------------------------------------------------------------ */
- static decNumber *decRoundOperand(const decNumber *dn, decContext *set,
- uInt *status) {
- decNumber *res; /* result structure */
- uInt newstatus=0; /* status from round */
- Int residue=0; /* rounding accumulator */
- /* Allocate storage for the returned decNumber, big enough for the */
- /* length specified by the context */
- res=(decNumber *)malloc(sizeof(decNumber)
- +(D2U(set->digits)-1)*sizeof(Unit));
- if (res==nullptr) {
- *status|=DEC_Insufficient_storage;
- return nullptr;
- }
- decCopyFit(res, dn, set, &residue, &newstatus);
- decApplyRound(res, set, residue, &newstatus);
- /* If that set Inexact then "lost digits" is raised... */
- if (newstatus & DEC_Inexact) newstatus|=DEC_Lost_digits;
- *status|=newstatus;
- return res;
- } /* decRoundOperand */
- #endif
- /* ------------------------------------------------------------------ */
- /* decCopyFit -- copy a number, truncating the coefficient if needed */
- /* */
- /* dest is the target decNumber */
- /* src is the source decNumber */
- /* set is the context [used for length (digits) and rounding mode] */
- /* residue is the residue accumulator */
- /* status contains the current status to be updated */
- /* */
- /* (dest==src is allowed and will be a no-op if fits) */
- /* All fields are updated as required. */
- /* ------------------------------------------------------------------ */
- static void decCopyFit(decNumber *dest, const decNumber *src,
- decContext *set, Int *residue, uInt *status) {
- dest->bits=src->bits;
- dest->exponent=src->exponent;
- decSetCoeff(dest, set, src->lsu, src->digits, residue, status);
- } /* decCopyFit */
- /* ------------------------------------------------------------------ */
- /* decSetCoeff -- set the coefficient of a number */
- /* */
- /* dn is the number whose coefficient array is to be set. */
- /* It must have space for set->digits digits */
- /* set is the context [for size] */
- /* lsu -> lsu of the source coefficient [may be dn->lsu] */
- /* len is digits in the source coefficient [may be dn->digits] */
- /* residue is the residue accumulator. This has values as in */
- /* decApplyRound, and will be unchanged unless the */
- /* target size is less than len. In this case, the */
- /* coefficient is truncated and the residue is updated to */
- /* reflect the previous residue and the dropped digits. */
- /* status is the status accumulator, as usual */
- /* */
- /* The coefficient may already be in the number, or it can be an */
- /* external intermediate array. If it is in the number, lsu must == */
- /* dn->lsu and len must == dn->digits. */
- /* */
- /* Note that the coefficient length (len) may be < set->digits, and */
- /* in this case this merely copies the coefficient (or is a no-op */
- /* if dn->lsu==lsu). */
- /* */
- /* Note also that (only internally, from decQuantizeOp and */
- /* decSetSubnormal) the value of set->digits may be less than one, */
- /* indicating a round to left. This routine handles that case */
- /* correctly; caller ensures space. */
- /* */
- /* dn->digits, dn->lsu (and as required), and dn->exponent are */
- /* updated as necessary. dn->bits (sign) is unchanged. */
- /* */
- /* DEC_Rounded status is set if any digits are discarded. */
- /* DEC_Inexact status is set if any non-zero digits are discarded, or */
- /* incoming residue was non-0 (implies rounded) */
- /* ------------------------------------------------------------------ */
- /* mapping array: maps 0-9 to canonical residues, so that a residue */
- /* can be adjusted in the range [-1, +1] and achieve correct rounding */
- /* 0 1 2 3 4 5 6 7 8 9 */
- static const uByte resmap[10]={0, 3, 3, 3, 3, 5, 7, 7, 7, 7};
- static void decSetCoeff(decNumber *dn, decContext *set, const Unit *lsu,
- Int len, Int *residue, uInt *status) {
- Int discard; /* number of digits to discard */
- uInt cut; /* cut point in Unit */
- const Unit *up; /* work */
- Unit *target; /* .. */
- Int count; /* .. */
- #if DECDPUN<=4
- uInt temp; /* .. */
- #endif
- discard=len-set->digits; /* digits to discard */
- if (discard<=0) { /* no digits are being discarded */
- if (dn->lsu!=lsu) { /* copy needed */
- /* copy the coefficient array to the result number; no shift needed */
- count=len; /* avoids D2U */
- up=lsu;
- for (target=dn->lsu; count>0; target++, up++, count-=DECDPUN)
- *target=*up;
- dn->digits=len; /* set the new length */
- }
- /* dn->exponent and residue are unchanged, record any inexactitude */
- if (*residue!=0) *status|=(DEC_Inexact | DEC_Rounded);
- return;
- }
- /* some digits must be discarded ... */
- dn->exponent+=discard; /* maintain numerical value */
- *status|=DEC_Rounded; /* accumulate Rounded status */
- if (*residue>1) *residue=1; /* previous residue now to right, so reduce */
- if (discard>len) { /* everything, +1, is being discarded */
- /* guard digit is 0 */
- /* residue is all the number [NB could be all 0s] */
- if (*residue<=0) { /* not already positive */
- count=len; /* avoids D2U */
- for (up=lsu; count>0; up++, count-=DECDPUN) if (*up!=0) { /* found non-0 */
- *residue=1;
- break; /* no need to check any others */
- }
- }
- if (*residue!=0) *status|=DEC_Inexact; /* record inexactitude */
- *dn->lsu=0; /* coefficient will now be 0 */
- dn->digits=1; /* .. */
- return;
- } /* total discard */
- /* partial discard [most common case] */
- /* here, at least the first (most significant) discarded digit exists */
- /* spin up the number, noting residue during the spin, until get to */
- /* the Unit with the first discarded digit. When reach it, extract */
- /* it and remember its position */
- count=0;
- for (up=lsu;; up++) {
- count+=DECDPUN;
- if (count>=discard) break; /* full ones all checked */
- if (*up!=0) *residue=1;
- } /* up */
- /* here up -> Unit with first discarded digit */
- cut=discard-(count-DECDPUN)-1;
- if (cut==DECDPUN-1) { /* unit-boundary case (fast) */
- Unit half=(Unit)powers[DECDPUN]>>1;
- /* set residue directly */
- if (*up>=half) {
- if (*up>half) *residue=7;
- else *residue+=5; /* add sticky bit */
- }
- else { /* <half */
- if (*up!=0) *residue=3; /* [else is 0, leave as sticky bit] */
- }
- if (set->digits<=0) { /* special for Quantize/Subnormal :-( */
- *dn->lsu=0; /* .. result is 0 */
- dn->digits=1; /* .. */
- }
- else { /* shift to least */
- count=set->digits; /* now digits to end up with */
- dn->digits=count; /* set the new length */
- up++; /* move to next */
- /* on unit boundary, so shift-down copy loop is simple */
- for (target=dn->lsu; count>0; target++, up++, count-=DECDPUN)
- *target=*up;
- }
- } /* unit-boundary case */
- else { /* discard digit is in low digit(s), and not top digit */
- uInt discard1; /* first discarded digit */
- uInt quot, rem; /* for divisions */
- if (cut==0) quot=*up; /* is at bottom of unit */
- else /* cut>0 */ { /* it's not at bottom of unit */
- #if DECDPUN<=4
- U_ASSERT(/* cut >= 0 &&*/ cut <= 4);
- quot=QUOT10(*up, cut);
- rem=*up-quot*powers[cut];
- #else
- rem=*up%powers[cut];
- quot=*up/powers[cut];
- #endif
- if (rem!=0) *residue=1;
- }
- /* discard digit is now at bottom of quot */
- #if DECDPUN<=4
- temp=(quot*6554)>>16; /* fast /10 */
- /* Vowels algorithm here not a win (9 instructions) */
- discard1=quot-X10(temp);
- quot=temp;
- #else
- discard1=quot%10;
- quot=quot/10;
- #endif
- /* here, discard1 is the guard digit, and residue is everything */
- /* else [use mapping array to accumulate residue safely] */
- *residue+=resmap[discard1];
- cut++; /* update cut */
- /* here: up -> Unit of the array with bottom digit */
- /* cut is the division point for each Unit */
- /* quot holds the uncut high-order digits for the current unit */
- if (set->digits<=0) { /* special for Quantize/Subnormal :-( */
- *dn->lsu=0; /* .. result is 0 */
- dn->digits=1; /* .. */
- }
- else { /* shift to least needed */
- count=set->digits; /* now digits to end up with */
- dn->digits=count; /* set the new length */
- /* shift-copy the coefficient array to the result number */
- for (target=dn->lsu; ; target++) {
- *target=(Unit)quot;
- count-=(DECDPUN-cut);
- if (count<=0) break;
- up++;
- quot=*up;
- #if DECDPUN<=4
- quot=QUOT10(quot, cut);
- rem=*up-quot*powers[cut];
- #else
- rem=quot%powers[cut];
- quot=quot/powers[cut];
- #endif
- *target=(Unit)(*target+rem*powers[DECDPUN-cut]);
- count-=cut;
- if (count<=0) break;
- } /* shift-copy loop */
- } /* shift to least */
- } /* not unit boundary */
- if (*residue!=0) *status|=DEC_Inexact; /* record inexactitude */
- return;
- } /* decSetCoeff */
- /* ------------------------------------------------------------------ */
- /* decApplyRound -- apply pending rounding to a number */
- /* */
- /* dn is the number, with space for set->digits digits */
- /* set is the context [for size and rounding mode] */
- /* residue indicates pending rounding, being any accumulated */
- /* guard and sticky information. It may be: */
- /* 6-9: rounding digit is >5 */
- /* 5: rounding digit is exactly half-way */
- /* 1-4: rounding digit is <5 and >0 */
- /* 0: the coefficient is exact */
- /* -1: as 1, but the hidden digits are subtractive, that */
- /* is, of the opposite sign to dn. In this case the */
- /* coefficient must be non-0. This case occurs when */
- /* subtracting a small number (which can be reduced to */
- /* a sticky bit); see decAddOp. */
- /* status is the status accumulator, as usual */
- /* */
- /* This routine applies rounding while keeping the length of the */
- /* coefficient constant. The exponent and status are unchanged */
- /* except if: */
- /* */
- /* -- the coefficient was increased and is all nines (in which */
- /* case Overflow could occur, and is handled directly here so */
- /* the caller does not need to re-test for overflow) */
- /* */
- /* -- the coefficient was decreased and becomes all nines (in which */
- /* case Underflow could occur, and is also handled directly). */
- /* */
- /* All fields in dn are updated as required. */
- /* */
- /* ------------------------------------------------------------------ */
- static void decApplyRound(decNumber *dn, decContext *set, Int residue,
- uInt *status) {
- Int bump; /* 1 if coefficient needs to be incremented */
- /* -1 if coefficient needs to be decremented */
- if (residue==0) return; /* nothing to apply */
- bump=0; /* assume a smooth ride */
- /* now decide whether, and how, to round, depending on mode */
- switch (set->round) {
- case DEC_ROUND_05UP: { /* round zero or five up (for reround) */
- /* This is the same as DEC_ROUND_DOWN unless there is a */
- /* positive residue and the lsd of dn is 0 or 5, in which case */
- /* it is bumped; when residue is <0, the number is therefore */
- /* bumped down unless the final digit was 1 or 6 (in which */
- /* case it is bumped down and then up -- a no-op) */
- Int lsd5=*dn->lsu%5; /* get lsd and quintate */
- if (residue<0 && lsd5!=1) bump=-1;
- else if (residue>0 && lsd5==0) bump=1;
- /* [bump==1 could be applied directly; use common path for clarity] */
- break;} /* r-05 */
- case DEC_ROUND_DOWN: {
- /* no change, except if negative residue */
- if (residue<0) bump=-1;
- break;} /* r-d */
- case DEC_ROUND_HALF_DOWN: {
- if (residue>5) bump=1;
- break;} /* r-h-d */
- case DEC_ROUND_HALF_EVEN: {
- if (residue>5) bump=1; /* >0.5 goes up */
- else if (residue==5) { /* exactly 0.5000... */
- /* 0.5 goes up iff [new] lsd is odd */
- if (*dn->lsu & 0x01) bump=1;
- }
- break;} /* r-h-e */
- case DEC_ROUND_HALF_UP: {
- if (residue>=5) bump=1;
- break;} /* r-h-u */
- case DEC_ROUND_UP: {
- if (residue>0) bump=1;
- break;} /* r-u */
- case DEC_ROUND_CEILING: {
- /* same as _UP for positive numbers, and as _DOWN for negatives */
- /* [negative residue cannot occur on 0] */
- if (decNumberIsNegative(dn)) {
- if (residue<0) bump=-1;
- }
- else {
- if (residue>0) bump=1;
- }
- break;} /* r-c */
- case DEC_ROUND_FLOOR: {
- /* same as _UP for negative numbers, and as _DOWN for positive */
- /* [negative residue cannot occur on 0] */
- if (!decNumberIsNegative(dn)) {
- if (residue<0) bump=-1;
- }
- else {
- if (residue>0) bump=1;
- }
- break;} /* r-f */
- default: { /* e.g., DEC_ROUND_MAX */
- *status|=DEC_Invalid_context;
- #if DECTRACE || (DECCHECK && DECVERB)
- printf("Unknown rounding mode: %d\n", set->round);
- #endif
- break;}
- } /* switch */
- /* now bump the number, up or down, if need be */
- if (bump==0) return; /* no action required */
- /* Simply use decUnitAddSub unless bumping up and the number is */
- /* all nines. In this special case set to 100... explicitly */
- /* and adjust the exponent by one (as otherwise could overflow */
- /* the array) */
- /* Similarly handle all-nines result if bumping down. */
- if (bump>0) {
- Unit *up; /* work */
- uInt count=dn->digits; /* digits to be checked */
- for (up=dn->lsu; ; up++) {
- if (count<=DECDPUN) {
- /* this is the last Unit (the msu) */
- if (*up!=powers[count]-1) break; /* not still 9s */
- /* here if it, too, is all nines */
- *up=(Unit)powers[count-1]; /* here 999 -> 100 etc. */
- for (up=up-1; up>=dn->lsu; up--) *up=0; /* others all to 0 */
- dn->exponent++; /* and bump exponent */
- /* [which, very rarely, could cause Overflow...] */
- if ((dn->exponent+dn->digits)>set->emax+1) {
- decSetOverflow(dn, set, status);
- }
- return; /* done */
- }
- /* a full unit to check, with more to come */
- if (*up!=DECDPUNMAX) break; /* not still 9s */
- count-=DECDPUN;
- } /* up */
- } /* bump>0 */
- else { /* -1 */
- /* here checking for a pre-bump of 1000... (leading 1, all */
- /* other digits zero) */
- Unit *up, *sup; /* work */
- uInt count=dn->digits; /* digits to be checked */
- for (up=dn->lsu; ; up++) {
- if (count<=DECDPUN) {
- /* this is the last Unit (the msu) */
- if (*up!=powers[count-1]) break; /* not 100.. */
- /* here if have the 1000... case */
- sup=up; /* save msu pointer */
- *up=(Unit)powers[count]-1; /* here 100 in msu -> 999 */
- /* others all to all-nines, too */
- for (up=up-1; up>=dn->lsu; up--) *up=(Unit)powers[DECDPUN]-1;
- dn->exponent--; /* and bump exponent */
- /* iff the number was at the subnormal boundary (exponent=etiny) */
- /* then the exponent is now out of range, so it will in fact get */
- /* clamped to etiny and the final 9 dropped. */
- /* printf(">> emin=%d exp=%d sdig=%d\n", set->emin, */
- /* dn->exponent, set->digits); */
- if (dn->exponent+1==set->emin-set->digits+1) {
- if (count==1 && dn->digits==1) *sup=0; /* here 9 -> 0[.9] */
- else {
- *sup=(Unit)powers[count-1]-1; /* here 999.. in msu -> 99.. */
- dn->digits--;
- }
- dn->exponent++;
- *status|=DEC_Underflow | DEC_Subnormal | DEC_Inexact | DEC_Rounded;
- }
- return; /* done */
- }
- /* a full unit to check, with more to come */
- if (*up!=0) break; /* not still 0s */
- count-=DECDPUN;
- } /* up */
- } /* bump<0 */
- /* Actual bump needed. Do it. */
- decUnitAddSub(dn->lsu, D2U(dn->digits), uarrone, 1, 0, dn->lsu, bump);
- } /* decApplyRound */
- #if DECSUBSET
- /* ------------------------------------------------------------------ */
- /* decFinish -- finish processing a number */
- /* */
- /* dn is the number */
- /* set is the context */
- /* residue is the rounding accumulator (as in decApplyRound) */
- /* status is the accumulator */
- /* */
- /* This finishes off the current number by: */
- /* 1. If not extended: */
- /* a. Converting a zero result to clean '0' */
- /* b. Reducing positive exponents to 0, if would fit in digits */
- /* 2. Checking for overflow and subnormals (always) */
- /* Note this is just Finalize when no subset arithmetic. */
- /* All fields are updated as required. */
- /* ------------------------------------------------------------------ */
- static void decFinish(decNumber *dn, decContext *set, Int *residue,
- uInt *status) {
- if (!set->extended) {
- if ISZERO(dn) { /* value is zero */
- dn->exponent=0; /* clean exponent .. */
- dn->bits=0; /* .. and sign */
- return; /* no error possible */
- }
- if (dn->exponent>=0) { /* non-negative exponent */
- /* >0; reduce to integer if possible */
- if (set->digits >= (dn->exponent+dn->digits)) {
- dn->digits=decShiftToMost(dn->lsu, dn->digits, dn->exponent);
- dn->exponent=0;
- }
- }
- } /* !extended */
- decFinalize(dn, set, residue, status);
- } /* decFinish */
- #endif
- /* ------------------------------------------------------------------ */
- /* decFinalize -- final check, clamp, and round of a number */
- /* */
- /* dn is the number */
- /* set is the context */
- /* residue is the rounding accumulator (as in decApplyRound) */
- /* status is the status accumulator */
- /* */
- /* This finishes off the current number by checking for subnormal */
- /* results, applying any pending rounding, checking for overflow, */
- /* and applying any clamping. */
- /* Underflow and overflow conditions are raised as appropriate. */
- /* All fields are updated as required. */
- /* ------------------------------------------------------------------ */
- static void decFinalize(decNumber *dn, decContext *set, Int *residue,
- uInt *status) {
- Int shift; /* shift needed if clamping */
- Int tinyexp=set->emin-dn->digits+1; /* precalculate subnormal boundary */
- /* Must be careful, here, when checking the exponent as the */
- /* adjusted exponent could overflow 31 bits [because it may already */
- /* be up to twice the expected]. */
- /* First test for subnormal. This must be done before any final */
- /* round as the result could be rounded to Nmin or 0. */
- if (dn->exponent<=tinyexp) { /* prefilter */
- Int comp;
- decNumber nmin;
- /* A very nasty case here is dn == Nmin and residue<0 */
- if (dn->exponent<tinyexp) {
- /* Go handle subnormals; this will apply round if needed. */
- decSetSubnormal(dn, set, residue, status);
- return;
- }
- /* Equals case: only subnormal if dn=Nmin and negative residue */
- uprv_decNumberZero(&nmin);
- nmin.lsu[0]=1;
- nmin.exponent=set->emin;
- comp=decCompare(dn, &nmin, 1); /* (signless compare) */
- if (comp==BADINT) { /* oops */
- *status|=DEC_Insufficient_storage; /* abandon... */
- return;
- }
- if (*residue<0 && comp==0) { /* neg residue and dn==Nmin */
- decApplyRound(dn, set, *residue, status); /* might force down */
- decSetSubnormal(dn, set, residue, status);
- return;
- }
- }
- /* now apply any pending round (this could raise overflow). */
- if (*residue!=0) decApplyRound(dn, set, *residue, status);
- /* Check for overflow [redundant in the 'rare' case] or clamp */
- if (dn->exponent<=set->emax-set->digits+1) return; /* neither needed */
- /* here when might have an overflow or clamp to do */
- if (dn->exponent>set->emax-dn->digits+1) { /* too big */
- decSetOverflow(dn, set, status);
- return;
- }
- /* here when the result is normal but in clamp range */
- if (!set->clamp) return;
- /* here when need to apply the IEEE exponent clamp (fold-down) */
- shift=dn->exponent-(set->emax-set->digits+1);
- /* shift coefficient (if non-zero) */
- if (!ISZERO(dn)) {
- dn->digits=decShiftToMost(dn->lsu, dn->digits, shift);
- }
- dn->exponent-=shift; /* adjust the exponent to match */
- *status|=DEC_Clamped; /* and record the dirty deed */
- return;
- } /* decFinalize */
- /* ------------------------------------------------------------------ */
- /* decSetOverflow -- set number to proper overflow value */
- /* */
- /* dn is the number (used for sign [only] and result) */
- /* set is the context [used for the rounding mode, etc.] */
- /* status contains the current status to be updated */
- /* */
- /* This sets the sign of a number and sets its value to either */
- /* Infinity or the maximum finite value, depending on the sign of */
- /* dn and the rounding mode, following IEEE 754 rules. */
- /* ------------------------------------------------------------------ */
- static void decSetOverflow(decNumber *dn, decContext *set, uInt *status) {
- Flag needmax=0; /* result is maximum finite value */
- uByte sign=dn->bits&DECNEG; /* clean and save sign bit */
- if (ISZERO(dn)) { /* zero does not overflow magnitude */
- Int emax=set->emax; /* limit value */
- if (set->clamp) emax-=set->digits-1; /* lower if clamping */
- if (dn->exponent>emax) { /* clamp required */
- dn->exponent=emax;
- *status|=DEC_Clamped;
- }
- return;
- }
- uprv_decNumberZero(dn);
- switch (set->round) {
- case DEC_ROUND_DOWN: {
- needmax=1; /* never Infinity */
- break;} /* r-d */
- case DEC_ROUND_05UP: {
- needmax=1; /* never Infinity */
- break;} /* r-05 */
- case DEC_ROUND_CEILING: {
- if (sign) needmax=1; /* Infinity if non-negative */
- break;} /* r-c */
- case DEC_ROUND_FLOOR: {
- if (!sign) needmax=1; /* Infinity if negative */
- break;} /* r-f */
- default: break; /* Infinity in all other cases */
- }
- if (needmax) {
- decSetMaxValue(dn, set);
- dn->bits=sign; /* set sign */
- }
- else dn->bits=sign|DECINF; /* Value is +/-Infinity */
- *status|=DEC_Overflow | DEC_Inexact | DEC_Rounded;
- } /* decSetOverflow */
- /* ------------------------------------------------------------------ */
- /* decSetMaxValue -- set number to +Nmax (maximum normal value) */
- /* */
- /* dn is the number to set */
- /* set is the context [used for digits and emax] */
- /* */
- /* This sets the number to the maximum positive value. */
- /* ------------------------------------------------------------------ */
- static void decSetMaxValue(decNumber *dn, decContext *set) {
- Unit *up; /* work */
- Int count=set->digits; /* nines to add */
- dn->digits=count;
- /* fill in all nines to set maximum value */
- for (up=dn->lsu; ; up++) {
- if (count>DECDPUN) *up=DECDPUNMAX; /* unit full o'nines */
- else { /* this is the msu */
- *up=(Unit)(powers[count]-1);
- break;
- }
- count-=DECDPUN; /* filled those digits */
- } /* up */
- dn->bits=0; /* + sign */
- dn->exponent=set->emax-set->digits+1;
- } /* decSetMaxValue */
- /* ------------------------------------------------------------------ */
- /* decSetSubnormal -- process value whose exponent is <Emin */
- /* */
- /* dn is the number (used as input as well as output; it may have */
- /* an allowed subnormal value, which may need to be rounded) */
- /* set is the context [used for the rounding mode] */
- /* residue is any pending residue */
- /* status contains the current status to be updated */
- /* */
- /* If subset mode, set result to zero and set Underflow flags. */
- /* */
- /* Value may be zero with a low exponent; this does not set Subnormal */
- /* but the exponent will be clamped to Etiny. */
- /* */
- /* Otherwise ensure exponent is not out of range, and round as */
- /* necessary. Underflow is set if the result is Inexact. */
- /* ------------------------------------------------------------------ */
- static void decSetSubnormal(decNumber *dn, decContext *set, Int *residue,
- uInt *status) {
- decContext workset; /* work */
- Int etiny, adjust; /* .. */
- #if DECSUBSET
- /* simple set to zero and 'hard underflow' for subset */
- if (!set->extended) {
- uprv_decNumberZero(dn);
- /* always full overflow */
- *status|=DEC_Underflow | DEC_Subnormal | DEC_Inexact | DEC_Rounded;
- return;
- }
- #endif
- /* Full arithmetic -- allow subnormals, rounded to minimum exponent */
- /* (Etiny) if needed */
- etiny=set->emin-(set->digits-1); /* smallest allowed exponent */
- if ISZERO(dn) { /* value is zero */
- /* residue can never be non-zero here */
- #if DECCHECK
- if (*residue!=0) {
- printf("++ Subnormal 0 residue %ld\n", (LI)*residue);
- *status|=DEC_Invalid_operation;
- }
- #endif
- if (dn->exponent<etiny) { /* clamp required */
- dn->exponent=etiny;
- *status|=DEC_Clamped;
- }
- return;
- }
- *status|=DEC_Subnormal; /* have a non-zero subnormal */
- adjust=etiny-dn->exponent; /* calculate digits to remove */
- if (adjust<=0) { /* not out of range; unrounded */
- /* residue can never be non-zero here, except in the Nmin-residue */
- /* case (which is a subnormal result), so can take fast-path here */
- /* it may already be inexact (from setting the coefficient) */
- if (*status&DEC_Inexact) *status|=DEC_Underflow;
- return;
- }
- /* adjust>0, so need to rescale the result so exponent becomes Etiny */
- /* [this code is similar to that in rescale] */
- workset=*set; /* clone rounding, etc. */
- workset.digits=dn->digits-adjust; /* set requested length */
- workset.emin-=adjust; /* and adjust emin to match */
- /* [note that the latter can be <1, here, similar to Rescale case] */
- decSetCoeff(dn, &workset, dn->lsu, dn->digits, residue, status);
- decApplyRound(dn, &workset, *residue, status);
- /* Use 754 default rule: Underflow is set iff Inexact */
- /* [independent of whether trapped] */
- if (*status&DEC_Inexact) *status|=DEC_Underflow;
- /* if rounded up a 999s case, exponent will be off by one; adjust */
- /* back if so [it will fit, because it was shortened earlier] */
- if (dn->exponent>etiny) {
- dn->digits=decShiftToMost(dn->lsu, dn->digits, 1);
- dn->exponent--; /* (re)adjust the exponent. */
- }
- /* if rounded to zero, it is by definition clamped... */
- if (ISZERO(dn)) *status|=DEC_Clamped;
- } /* decSetSubnormal */
- /* ------------------------------------------------------------------ */
- /* decCheckMath - check entry conditions for a math function */
- /* */
- /* This checks the context and the operand */
- /* */
- /* rhs is the operand to check */
- /* set is the context to check */
- /* status is unchanged if both are good */
- /* */
- /* returns non-zero if status is changed, 0 otherwise */
- /* */
- /* Restrictions enforced: */
- /* */
- /* digits, emax, and -emin in the context must be less than */
- /* DEC_MAX_MATH (999999), and A must be within these bounds if */
- /* non-zero. Invalid_operation is set in the status if a */
- /* restriction is violated. */
- /* ------------------------------------------------------------------ */
- static uInt decCheckMath(const decNumber *rhs, decContext *set,
- uInt *status) {
- uInt save=*status; /* record */
- if (set->digits>DEC_MAX_MATH
- || set->emax>DEC_MAX_MATH
- || -set->emin>DEC_MAX_MATH) *status|=DEC_Invalid_context;
- else if ((rhs->digits>DEC_MAX_MATH
- || rhs->exponent+rhs->digits>DEC_MAX_MATH+1
- || rhs->exponent+rhs->digits<2*(1-DEC_MAX_MATH))
- && !ISZERO(rhs)) *status|=DEC_Invalid_operation;
- return (*status!=save);
- } /* decCheckMath */
- /* ------------------------------------------------------------------ */
- /* decGetInt -- get integer from a number */
- /* */
- /* dn is the number [which will not be altered] */
- /* */
- /* returns one of: */
- /* BADINT if there is a non-zero fraction */
- /* the converted integer */
- /* BIGEVEN if the integer is even and magnitude > 2*10**9 */
- /* BIGODD if the integer is odd and magnitude > 2*10**9 */
- /* */
- /* This checks and gets a whole number from the input decNumber. */
- /* The sign can be determined from dn by the caller when BIGEVEN or */
- /* BIGODD is returned. */
- /* ------------------------------------------------------------------ */
- static Int decGetInt(const decNumber *dn) {
- Int theInt; /* result accumulator */
- const Unit *up; /* work */
- Int got; /* digits (real or not) processed */
- Int ilength=dn->digits+dn->exponent; /* integral length */
- Flag neg=decNumberIsNegative(dn); /* 1 if -ve */
- /* The number must be an integer that fits in 10 digits */
- /* Assert, here, that 10 is enough for any rescale Etiny */
- #if DEC_MAX_EMAX > 999999999
- #error GetInt may need updating [for Emax]
- #endif
- #if DEC_MIN_EMIN < -999999999
- #error GetInt may need updating [for Emin]
- #endif
- if (ISZERO(dn)) return 0; /* zeros are OK, with any exponent */
- up=dn->lsu; /* ready for lsu */
- theInt=0; /* ready to accumulate */
- if (dn->exponent>=0) { /* relatively easy */
- /* no fractional part [usual]; allow for positive exponent */
- got=dn->exponent;
- }
- else { /* -ve exponent; some fractional part to check and discard */
- Int count=-dn->exponent; /* digits to discard */
- /* spin up whole units until reach the Unit with the unit digit */
- for (; count>=DECDPUN; up++) {
- if (*up!=0) return BADINT; /* non-zero Unit to discard */
- count-=DECDPUN;
- }
- if (count==0) got=0; /* [a multiple of DECDPUN] */
- else { /* [not multiple of DECDPUN] */
- Int rem; /* work */
- /* slice off fraction digits and check for non-zero */
- #if DECDPUN<=4
- theInt=QUOT10(*up, count);
- rem=*up-theInt*powers[count];
- #else
- rem=*up%powers[count]; /* slice off discards */
- theInt=*up/powers[count];
- #endif
- if (rem!=0) return BADINT; /* non-zero fraction */
- /* it looks good */
- got=DECDPUN-count; /* number of digits so far */
- up++; /* ready for next */
- }
- }
- /* now it's known there's no fractional part */
- /* tricky code now, to accumulate up to 9.3 digits */
- if (got==0) {theInt=*up; got+=DECDPUN; up++;} /* ensure lsu is there */
- if (ilength<11) {
- Int save=theInt;
- /* collect any remaining unit(s) */
- for (; got<ilength; up++) {
- theInt+=*up*powers[got];
- got+=DECDPUN;
- }
- if (ilength==10) { /* need to check for wrap */
- if (theInt/(Int)powers[got-DECDPUN]!=(Int)*(up-1)) ilength=11;
- /* [that test also disallows the BADINT result case] */
- else if (neg && theInt>1999999997) ilength=11;
- else if (!neg && theInt>999999999) ilength=11;
- if (ilength==11) theInt=save; /* restore correct low bit */
- }
- }
- if (ilength>10) { /* too big */
- if (theInt&1) return BIGODD; /* bottom bit 1 */
- return BIGEVEN; /* bottom bit 0 */
- }
- if (neg) theInt=-theInt; /* apply sign */
- return theInt;
- } /* decGetInt */
- /* ------------------------------------------------------------------ */
- /* decDecap -- decapitate the coefficient of a number */
- /* */
- /* dn is the number to be decapitated */
- /* drop is the number of digits to be removed from the left of dn; */
- /* this must be <= dn->digits (if equal, the coefficient is */
- /* set to 0) */
- /* */
- /* Returns dn; dn->digits will be <= the initial digits less drop */
- /* (after removing drop digits there may be leading zero digits */
- /* which will also be removed). Only dn->lsu and dn->digits change. */
- /* ------------------------------------------------------------------ */
- static decNumber *decDecap(decNumber *dn, Int drop) {
- Unit *msu; /* -> target cut point */
- Int cut; /* work */
- if (drop>=dn->digits) { /* losing the whole thing */
- #if DECCHECK
- if (drop>dn->digits)
- printf("decDecap called with drop>digits [%ld>%ld]\n",
- (LI)drop, (LI)dn->digits);
- #endif
- dn->lsu[0]=0;
- dn->digits=1;
- return dn;
- }
- msu=dn->lsu+D2U(dn->digits-drop)-1; /* -> likely msu */
- cut=MSUDIGITS(dn->digits-drop); /* digits to be in use in msu */
- if (cut!=DECDPUN) *msu%=powers[cut]; /* clear left digits */
- /* that may have left leading zero digits, so do a proper count... */
- dn->digits=decGetDigits(dn->lsu, static_cast<int32_t>(msu-dn->lsu+1));
- return dn;
- } /* decDecap */
- /* ------------------------------------------------------------------ */
- /* decBiStr -- compare string with pairwise options */
- /* */
- /* targ is the string to compare */
- /* str1 is one of the strings to compare against (length may be 0) */
- /* str2 is the other; it must be the same length as str1 */
- /* */
- /* returns 1 if strings compare equal, (that is, it is the same */
- /* length as str1 and str2, and each character of targ is in either */
- /* str1 or str2 in the corresponding position), or 0 otherwise */
- /* */
- /* This is used for generic caseless compare, including the awkward */
- /* case of the Turkish dotted and dotless Is. Use as (for example): */
- /* if (decBiStr(test, "mike", "MIKE")) ... */
- /* ------------------------------------------------------------------ */
- static Flag decBiStr(const char *targ, const char *str1, const char *str2) {
- for (;;targ++, str1++, str2++) {
- if (*targ!=*str1 && *targ!=*str2) return 0;
- /* *targ has a match in one (or both, if terminator) */
- if (*targ=='\0') break;
- } /* forever */
- return 1;
- } /* decBiStr */
- /* ------------------------------------------------------------------ */
- /* decNaNs -- handle NaN operand or operands */
- /* */
- /* res is the result number */
- /* lhs is the first operand */
- /* rhs is the second operand, or nullptr if none */
- /* context is used to limit payload length */
- /* status contains the current status */
- /* returns res in case convenient */
- /* */
- /* Called when one or both operands is a NaN, and propagates the */
- /* appropriate result to res. When an sNaN is found, it is changed */
- /* to a qNaN and Invalid operation is set. */
- /* ------------------------------------------------------------------ */
- static decNumber * decNaNs(decNumber *res, const decNumber *lhs,
- const decNumber *rhs, decContext *set,
- uInt *status) {
- /* This decision tree ends up with LHS being the source pointer, */
- /* and status updated if need be */
- if (lhs->bits & DECSNAN)
- *status|=DEC_Invalid_operation | DEC_sNaN;
- else if (rhs==nullptr);
- else if (rhs->bits & DECSNAN) {
- lhs=rhs;
- *status|=DEC_Invalid_operation | DEC_sNaN;
- }
- else if (lhs->bits & DECNAN);
- else lhs=rhs;
- /* propagate the payload */
- if (lhs->digits<=set->digits) uprv_decNumberCopy(res, lhs); /* easy */
- else { /* too long */
- const Unit *ul;
- Unit *ur, *uresp1;
- /* copy safe number of units, then decapitate */
- res->bits=lhs->bits; /* need sign etc. */
- uresp1=res->lsu+D2U(set->digits);
- for (ur=res->lsu, ul=lhs->lsu; ur<uresp1; ur++, ul++) *ur=*ul;
- res->digits=D2U(set->digits)*DECDPUN;
- /* maybe still too long */
- if (res->digits>set->digits) decDecap(res, res->digits-set->digits);
- }
- res->bits&=~DECSNAN; /* convert any sNaN to NaN, while */
- res->bits|=DECNAN; /* .. preserving sign */
- res->exponent=0; /* clean exponent */
- /* [coefficient was copied/decapitated] */
- return res;
- } /* decNaNs */
- /* ------------------------------------------------------------------ */
- /* decStatus -- apply non-zero status */
- /* */
- /* dn is the number to set if error */
- /* status contains the current status (not yet in context) */
- /* set is the context */
- /* */
- /* If the status is an error status, the number is set to a NaN, */
- /* unless the error was an overflow, divide-by-zero, or underflow, */
- /* in which case the number will have already been set. */
- /* */
- /* The context status is then updated with the new status. Note that */
- /* this may raise a signal, so control may never return from this */
- /* routine (hence resources must be recovered before it is called). */
- /* ------------------------------------------------------------------ */
- static void decStatus(decNumber *dn, uInt status, decContext *set) {
- if (status & DEC_NaNs) { /* error status -> NaN */
- /* if cause was an sNaN, clear and propagate [NaN is already set up] */
- if (status & DEC_sNaN) status&=~DEC_sNaN;
- else {
- uprv_decNumberZero(dn); /* other error: clean throughout */
- dn->bits=DECNAN; /* and make a quiet NaN */
- }
- }
- uprv_decContextSetStatus(set, status); /* [may not return] */
- return;
- } /* decStatus */
- /* ------------------------------------------------------------------ */
- /* decGetDigits -- count digits in a Units array */
- /* */
- /* uar is the Unit array holding the number (this is often an */
- /* accumulator of some sort) */
- /* len is the length of the array in units [>=1] */
- /* */
- /* returns the number of (significant) digits in the array */
- /* */
- /* All leading zeros are excluded, except the last if the array has */
- /* only zero Units. */
- /* ------------------------------------------------------------------ */
- /* This may be called twice during some operations. */
- static Int decGetDigits(Unit *uar, Int len) {
- Unit *up=uar+(len-1); /* -> msu */
- Int digits=(len-1)*DECDPUN+1; /* possible digits excluding msu */
- #if DECDPUN>4
- uInt const *pow; /* work */
- #endif
- /* (at least 1 in final msu) */
- #if DECCHECK
- if (len<1) printf("decGetDigits called with len<1 [%ld]\n", (LI)len);
- #endif
- for (; up>=uar; up--) {
- if (*up==0) { /* unit is all 0s */
- if (digits==1) break; /* a zero has one digit */
- digits-=DECDPUN; /* adjust for 0 unit */
- continue;}
- /* found the first (most significant) non-zero Unit */
- #if DECDPUN>1 /* not done yet */
- if (*up<10) break; /* is 1-9 */
- digits++;
- #if DECDPUN>2 /* not done yet */
- if (*up<100) break; /* is 10-99 */
- digits++;
- #if DECDPUN>3 /* not done yet */
- if (*up<1000) break; /* is 100-999 */
- digits++;
- #if DECDPUN>4 /* count the rest ... */
- for (pow=&powers[4]; *up>=*pow; pow++) digits++;
- #endif
- #endif
- #endif
- #endif
- break;
- } /* up */
- return digits;
- } /* decGetDigits */
- #if DECTRACE | DECCHECK
- /* ------------------------------------------------------------------ */
- /* decNumberShow -- display a number [debug aid] */
- /* dn is the number to show */
- /* */
- /* Shows: sign, exponent, coefficient (msu first), digits */
- /* or: sign, special-value */
- /* ------------------------------------------------------------------ */
- /* this is public so other modules can use it */
- void uprv_decNumberShow(const decNumber *dn) {
- const Unit *up; /* work */
- uInt u, d; /* .. */
- Int cut; /* .. */
- char isign='+'; /* main sign */
- if (dn==nullptr) {
- printf("nullptr\n");
- return;}
- if (decNumberIsNegative(dn)) isign='-';
- printf(" >> %c ", isign);
- if (dn->bits&DECSPECIAL) { /* Is a special value */
- if (decNumberIsInfinite(dn)) printf("Infinity");
- else { /* a NaN */
- if (dn->bits&DECSNAN) printf("sNaN"); /* signalling NaN */
- else printf("NaN");
- }
- /* if coefficient and exponent are 0, no more to do */
- if (dn->exponent==0 && dn->digits==1 && *dn->lsu==0) {
- printf("\n");
- return;}
- /* drop through to report other information */
- printf(" ");
- }
- /* now carefully display the coefficient */
- up=dn->lsu+D2U(dn->digits)-1; /* msu */
- printf("%ld", (LI)*up);
- for (up=up-1; up>=dn->lsu; up--) {
- u=*up;
- printf(":");
- for (cut=DECDPUN-1; cut>=0; cut--) {
- d=u/powers[cut];
- u-=d*powers[cut];
- printf("%ld", (LI)d);
- } /* cut */
- } /* up */
- if (dn->exponent!=0) {
- char esign='+';
- if (dn->exponent<0) esign='-';
- printf(" E%c%ld", esign, (LI)abs(dn->exponent));
- }
- printf(" [%ld]\n", (LI)dn->digits);
- } /* decNumberShow */
- #endif
- #if DECTRACE || DECCHECK
- /* ------------------------------------------------------------------ */
- /* decDumpAr -- display a unit array [debug/check aid] */
- /* name is a single-character tag name */
- /* ar is the array to display */
- /* len is the length of the array in Units */
- /* ------------------------------------------------------------------ */
- static void decDumpAr(char name, const Unit *ar, Int len) {
- Int i;
- const char *spec;
- #if DECDPUN==9
- spec="%09d ";
- #elif DECDPUN==8
- spec="%08d ";
- #elif DECDPUN==7
- spec="%07d ";
- #elif DECDPUN==6
- spec="%06d ";
- #elif DECDPUN==5
- spec="%05d ";
- #elif DECDPUN==4
- spec="%04d ";
- #elif DECDPUN==3
- spec="%03d ";
- #elif DECDPUN==2
- spec="%02d ";
- #else
- spec="%d ";
- #endif
- printf(" :%c: ", name);
- for (i=len-1; i>=0; i--) {
- if (i==len-1) printf("%ld ", (LI)ar[i]);
- else printf(spec, ar[i]);
- }
- printf("\n");
- return;}
- #endif
- #if DECCHECK
- /* ------------------------------------------------------------------ */
- /* decCheckOperands -- check operand(s) to a routine */
- /* res is the result structure (not checked; it will be set to */
- /* quiet NaN if error found (and it is not nullptr)) */
- /* lhs is the first operand (may be DECUNRESU) */
- /* rhs is the second (may be DECUNUSED) */
- /* set is the context (may be DECUNCONT) */
- /* returns 0 if both operands, and the context are clean, or 1 */
- /* otherwise (in which case the context will show an error, */
- /* unless nullptr). Note that res is not cleaned; caller should */
- /* handle this so res=nullptr case is safe. */
- /* The caller is expected to abandon immediately if 1 is returned. */
- /* ------------------------------------------------------------------ */
- static Flag decCheckOperands(decNumber *res, const decNumber *lhs,
- const decNumber *rhs, decContext *set) {
- Flag bad=0;
- if (set==nullptr) { /* oops; hopeless */
- #if DECTRACE || DECVERB
- printf("Reference to context is nullptr.\n");
- #endif
- bad=1;
- return 1;}
- else if (set!=DECUNCONT
- && (set->digits<1 || set->round>=DEC_ROUND_MAX)) {
- bad=1;
- #if DECTRACE || DECVERB
- printf("Bad context [digits=%ld round=%ld].\n",
- (LI)set->digits, (LI)set->round);
- #endif
- }
- else {
- if (res==nullptr) {
- bad=1;
- #if DECTRACE
- /* this one not DECVERB as standard tests include nullptr */
- printf("Reference to result is nullptr.\n");
- #endif
- }
- if (!bad && lhs!=DECUNUSED) bad=(decCheckNumber(lhs));
- if (!bad && rhs!=DECUNUSED) bad=(decCheckNumber(rhs));
- }
- if (bad) {
- if (set!=DECUNCONT) uprv_decContextSetStatus(set, DEC_Invalid_operation);
- if (res!=DECUNRESU && res!=nullptr) {
- uprv_decNumberZero(res);
- res->bits=DECNAN; /* qNaN */
- }
- }
- return bad;
- } /* decCheckOperands */
- /* ------------------------------------------------------------------ */
- /* decCheckNumber -- check a number */
- /* dn is the number to check */
- /* returns 0 if the number is clean, or 1 otherwise */
- /* */
- /* The number is considered valid if it could be a result from some */
- /* operation in some valid context. */
- /* ------------------------------------------------------------------ */
- static Flag decCheckNumber(const decNumber *dn) {
- const Unit *up; /* work */
- uInt maxuint; /* .. */
- Int ae, d, digits; /* .. */
- Int emin, emax; /* .. */
- if (dn==nullptr) { /* hopeless */
- #if DECTRACE
- /* this one not DECVERB as standard tests include nullptr */
- printf("Reference to decNumber is nullptr.\n");
- #endif
- return 1;}
- /* check special values */
- if (dn->bits & DECSPECIAL) {
- if (dn->exponent!=0) {
- #if DECTRACE || DECVERB
- printf("Exponent %ld (not 0) for a special value [%02x].\n",
- (LI)dn->exponent, dn->bits);
- #endif
- return 1;}
- /* 2003.09.08: NaNs may now have coefficients, so next tests Inf only */
- if (decNumberIsInfinite(dn)) {
- if (dn->digits!=1) {
- #if DECTRACE || DECVERB
- printf("Digits %ld (not 1) for an infinity.\n", (LI)dn->digits);
- #endif
- return 1;}
- if (*dn->lsu!=0) {
- #if DECTRACE || DECVERB
- printf("LSU %ld (not 0) for an infinity.\n", (LI)*dn->lsu);
- #endif
- decDumpAr('I', dn->lsu, D2U(dn->digits));
- return 1;}
- } /* Inf */
- /* 2002.12.26: negative NaNs can now appear through proposed IEEE */
- /* concrete formats (decimal64, etc.). */
- return 0;
- }
- /* check the coefficient */
- if (dn->digits<1 || dn->digits>DECNUMMAXP) {
- #if DECTRACE || DECVERB
- printf("Digits %ld in number.\n", (LI)dn->digits);
- #endif
- return 1;}
- d=dn->digits;
- for (up=dn->lsu; d>0; up++) {
- if (d>DECDPUN) maxuint=DECDPUNMAX;
- else { /* reached the msu */
- maxuint=powers[d]-1;
- if (dn->digits>1 && *up<powers[d-1]) {
- #if DECTRACE || DECVERB
- printf("Leading 0 in number.\n");
- uprv_decNumberShow(dn);
- #endif
- return 1;}
- }
- if (*up>maxuint) {
- #if DECTRACE || DECVERB
- printf("Bad Unit [%08lx] in %ld-digit number at offset %ld [maxuint %ld].\n",
- (LI)*up, (LI)dn->digits, (LI)(up-dn->lsu), (LI)maxuint);
- #endif
- return 1;}
- d-=DECDPUN;
- }
- /* check the exponent. Note that input operands can have exponents */
- /* which are out of the set->emin/set->emax and set->digits range */
- /* (just as they can have more digits than set->digits). */
- ae=dn->exponent+dn->digits-1; /* adjusted exponent */
- emax=DECNUMMAXE;
- emin=DECNUMMINE;
- digits=DECNUMMAXP;
- if (ae<emin-(digits-1)) {
- #if DECTRACE || DECVERB
- printf("Adjusted exponent underflow [%ld].\n", (LI)ae);
- uprv_decNumberShow(dn);
- #endif
- return 1;}
- if (ae>+emax) {
- #if DECTRACE || DECVERB
- printf("Adjusted exponent overflow [%ld].\n", (LI)ae);
- uprv_decNumberShow(dn);
- #endif
- return 1;}
- return 0; /* it's OK */
- } /* decCheckNumber */
- /* ------------------------------------------------------------------ */
- /* decCheckInexact -- check a normal finite inexact result has digits */
- /* dn is the number to check */
- /* set is the context (for status and precision) */
- /* sets Invalid operation, etc., if some digits are missing */
- /* [this check is not made for DECSUBSET compilation or when */
- /* subnormal is not set] */
- /* ------------------------------------------------------------------ */
- static void decCheckInexact(const decNumber *dn, decContext *set) {
- #if !DECSUBSET && DECEXTFLAG
- if ((set->status & (DEC_Inexact|DEC_Subnormal))==DEC_Inexact
- && (set->digits!=dn->digits) && !(dn->bits & DECSPECIAL)) {
- #if DECTRACE || DECVERB
- printf("Insufficient digits [%ld] on normal Inexact result.\n",
- (LI)dn->digits);
- uprv_decNumberShow(dn);
- #endif
- uprv_decContextSetStatus(set, DEC_Invalid_operation);
- }
- #else
- /* next is a noop for quiet compiler */
- if (dn!=nullptr && dn->digits==0) set->status|=DEC_Invalid_operation;
- #endif
- return;
- } /* decCheckInexact */
- #endif
- #if DECALLOC
- #undef malloc
- #undef free
- /* ------------------------------------------------------------------ */
- /* decMalloc -- accountable allocation routine */
- /* n is the number of bytes to allocate */
- /* */
- /* Semantics is the same as the stdlib malloc routine, but bytes */
- /* allocated are accounted for globally, and corruption fences are */
- /* added before and after the 'actual' storage. */
- /* ------------------------------------------------------------------ */
- /* This routine allocates storage with an extra twelve bytes; 8 are */
- /* at the start and hold: */
- /* 0-3 the original length requested */
- /* 4-7 buffer corruption detection fence (DECFENCE, x4) */
- /* The 4 bytes at the end also hold a corruption fence (DECFENCE, x4) */
- /* ------------------------------------------------------------------ */
- static void *decMalloc(size_t n) {
- uInt size=n+12; /* true size */
- void *alloc; /* -> allocated storage */
- uByte *b, *b0; /* work */
- uInt uiwork; /* for macros */
- alloc=malloc(size); /* -> allocated storage */
- if (alloc==nullptr) return nullptr; /* out of strorage */
- b0=(uByte *)alloc; /* as bytes */
- decAllocBytes+=n; /* account for storage */
- UBFROMUI(alloc, n); /* save n */
- /* printf(" alloc ++ dAB: %ld (%ld)\n", (LI)decAllocBytes, (LI)n); */
- for (b=b0+4; b<b0+8; b++) *b=DECFENCE;
- for (b=b0+n+8; b<b0+n+12; b++) *b=DECFENCE;
- return b0+8; /* -> play area */
- } /* decMalloc */
- /* ------------------------------------------------------------------ */
- /* decFree -- accountable free routine */
- /* alloc is the storage to free */
- /* */
- /* Semantics is the same as the stdlib malloc routine, except that */
- /* the global storage accounting is updated and the fences are */
- /* checked to ensure that no routine has written 'out of bounds'. */
- /* ------------------------------------------------------------------ */
- /* This routine first checks that the fences have not been corrupted. */
- /* It then frees the storage using the 'truw' storage address (that */
- /* is, offset by 8). */
- /* ------------------------------------------------------------------ */
- static void decFree(void *alloc) {
- uInt n; /* original length */
- uByte *b, *b0; /* work */
- uInt uiwork; /* for macros */
- if (alloc==nullptr) return; /* allowed; it's a nop */
- b0=(uByte *)alloc; /* as bytes */
- b0-=8; /* -> true start of storage */
- n=UBTOUI(b0); /* lift length */
- for (b=b0+4; b<b0+8; b++) if (*b!=DECFENCE)
- printf("=== Corrupt byte [%02x] at offset %d from %ld ===\n", *b,
- b-b0-8, (LI)b0);
- for (b=b0+n+8; b<b0+n+12; b++) if (*b!=DECFENCE)
- printf("=== Corrupt byte [%02x] at offset +%d from %ld, n=%ld ===\n", *b,
- b-b0-8, (LI)b0, (LI)n);
- free(b0); /* drop the storage */
- decAllocBytes-=n; /* account for storage */
- /* printf(" free -- dAB: %d (%d)\n", decAllocBytes, -n); */
- } /* decFree */
- #define malloc(a) decMalloc(a)
- #define free(a) decFree(a)
- #endif
|