123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601 |
- //===- arm_mve_defs.td - definitions and infrastructure for arm_mve.td ----===//
- //
- // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
- // See https://llvm.org/LICENSE.txt for license information.
- // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
- //
- //===----------------------------------------------------------------------===//
- //
- // The definitions in this file are designed to work in close conjunction with
- // clang/utils/TableGen/MveEmitter.cpp. Comments in there will probably be
- // useful as well.
- //
- //===----------------------------------------------------------------------===//
- // -----------------------------------------------------------------------------
- // Forward declarations.
- class Type;
- // -----------------------------------------------------------------------------
- // Dummy record used as the dag operator for the argument list of an intrinsic.
- //
- // We store arguments as a dag rather than a list<Type> so that we can give
- // each one a name, to be used in codegen. For example, (args Vector:$a,
- // Scalar:$b) defines the names $a and $b which the specification of the code
- // for that intrinsic can refer to.
- def args;
- // -----------------------------------------------------------------------------
- // Family of nodes for use in the codegen dag for an intrinsic, corresponding
- // to function calls that return LLVM IR nodes.
- class IRBuilderParam<int index_> { int index = index_; }
- class IRBuilderAddrParam<int index_> : IRBuilderParam<index_>;
- class IRBuilderIntParam<int index_, string type_> : IRBuilderParam<index_> {
- string type = type_;
- }
- class IRBuilderBase {
- // The prefix of the function call, including an open parenthesis.
- string prefix;
- // Any parameters that have types that have to be treated specially by the
- // Tablegen back end. Generally these will be types other than llvm::Value *,
- // although not all other types need special treatment (e.g. llvm::Type *).
- list<IRBuilderParam> special_params = [];
- }
- class IRBuilder<string func> : IRBuilderBase {
- // The usual case: a method called on the code gen function's instance of
- // llvm::IRBuilder.
- let prefix = "Builder." # func # "(";
- }
- class IRFunction<string func> : IRBuilderBase {
- // Some other function that doesn't use the IRBuilder at all.
- let prefix = func # "(";
- }
- class CGHelperFn<string func> : IRBuilderBase {
- // A helper function defined in CGBuiltin.cpp, which takes the IRBuilder as
- // an argument.
- let prefix = func # "(Builder, ";
- }
- class CGFHelperFn<string func> : IRBuilderBase {
- // Like CGHelperFn, but also takes the CodeGenFunction itself.
- let prefix = func # "(Builder, this, ";
- }
- def add: IRBuilder<"CreateAdd">;
- def mul: IRBuilder<"CreateMul">;
- def not: IRBuilder<"CreateNot">;
- def or: IRBuilder<"CreateOr">;
- def and: IRBuilder<"CreateAnd">;
- def xor: IRBuilder<"CreateXor">;
- def sub: IRBuilder<"CreateSub">;
- def shl: IRBuilder<"CreateShl">;
- def lshr: IRBuilder<"CreateLShr">;
- def immshr: CGHelperFn<"MVEImmediateShr"> {
- let special_params = [IRBuilderIntParam<1, "unsigned">,
- IRBuilderIntParam<2, "bool">];
- }
- def fadd: IRBuilder<"CreateFAdd">;
- def fmul: IRBuilder<"CreateFMul">;
- def fsub: IRBuilder<"CreateFSub">;
- def load: IRBuilder<"CreateLoad"> {
- let special_params = [IRBuilderAddrParam<0>];
- }
- def store: IRBuilder<"CreateStore"> {
- let special_params = [IRBuilderAddrParam<1>];
- }
- def xval: IRBuilder<"CreateExtractValue"> {
- let special_params = [IRBuilderIntParam<1, "unsigned">];
- }
- def ielt_const: IRBuilder<"CreateInsertElement"> {
- let special_params = [IRBuilderIntParam<2, "uint64_t">];
- }
- def ielt_var: IRBuilder<"CreateInsertElement">;
- def xelt_var: IRBuilder<"CreateExtractElement">;
- def trunc: IRBuilder<"CreateTrunc">;
- def bitcast: IRBuilder<"CreateBitCast">;
- def vreinterpret: CGFHelperFn<"ARMMVEVectorReinterpret">;
- def extend: CGHelperFn<"SignOrZeroExtend"> {
- let special_params = [IRBuilderIntParam<2, "bool">];
- }
- def zeroinit: IRFunction<"llvm::Constant::getNullValue">;
- def int_min: CGHelperFn<"ARMMVEConstantSplat<1,0>">;
- def int_max: CGHelperFn<"ARMMVEConstantSplat<0,1>">;
- def uint_max: CGHelperFn<"ARMMVEConstantSplat<1,1>">;
- def undef: IRFunction<"UndefValue::get">;
- def icmp_eq: IRBuilder<"CreateICmpEQ">;
- def icmp_ne: IRBuilder<"CreateICmpNE">;
- def icmp_ugt: IRBuilder<"CreateICmpUGT">;
- def icmp_uge: IRBuilder<"CreateICmpUGE">;
- def icmp_ult: IRBuilder<"CreateICmpULT">;
- def icmp_ule: IRBuilder<"CreateICmpULE">;
- def icmp_sgt: IRBuilder<"CreateICmpSGT">;
- def icmp_sge: IRBuilder<"CreateICmpSGE">;
- def icmp_slt: IRBuilder<"CreateICmpSLT">;
- def icmp_sle: IRBuilder<"CreateICmpSLE">;
- def fcmp_eq: IRBuilder<"CreateFCmpOEQ">;
- def fcmp_ne: IRBuilder<"CreateFCmpUNE">; // not O: it must return true on NaNs
- def fcmp_gt: IRBuilder<"CreateFCmpOGT">;
- def fcmp_ge: IRBuilder<"CreateFCmpOGE">;
- def fcmp_lt: IRBuilder<"CreateFCmpOLT">;
- def fcmp_le: IRBuilder<"CreateFCmpOLE">;
- def splat: CGHelperFn<"ARMMVEVectorSplat">;
- def select: IRBuilder<"CreateSelect">;
- def fneg: IRBuilder<"CreateFNeg">;
- def sitofp: IRBuilder<"CreateSIToFP">;
- def uitofp: IRBuilder<"CreateUIToFP">;
- def fptosi: IRBuilder<"CreateFPToSI">;
- def fptoui: IRBuilder<"CreateFPToUI">;
- def vrev: CGHelperFn<"ARMMVEVectorElementReverse"> {
- let special_params = [IRBuilderIntParam<1, "unsigned">];
- }
- def unzip: CGHelperFn<"VectorUnzip"> {
- let special_params = [IRBuilderIntParam<1, "bool">];
- }
- def zip: CGHelperFn<"VectorZip">;
- // Trivial 'codegen' function that just returns its argument. Useful
- // for wrapping up a variable name like $foo into a thing you can pass
- // around as type 'dag'.
- def id: IRBuilderBase {
- // All the other cases of IRBuilderBase use 'prefix' to specify a function
- // call, including the open parenthesis. MveEmitter puts the closing paren on
- // the end. So if we _just_ specify an open paren with no function name
- // before it, then the generated C++ code will simply wrap the input value in
- // parentheses, returning it unchanged.
- let prefix = "(";
- }
- // Helper for making boolean flags in IR
- def i1: IRBuilderBase {
- let prefix = "llvm::ConstantInt::get(Builder.getInt1Ty(), ";
- let special_params = [IRBuilderIntParam<0, "bool">];
- }
- // A node that makes an Address out of a pointer-typed Value, by
- // providing an alignment as the second argument.
- def address;
- // Another node class you can use in the codegen dag. This one corresponds to
- // an IR intrinsic function, which has to be specialized to a particular list
- // of types.
- class IRIntBase<string name_, list<Type> params_ = [], bit appendKind_ = 0> {
- string intname = name_; // base name of the intrinsic
- list<Type> params = params_; // list of parameter types
- // If this flag is set, then the IR intrinsic name will get a suffix _s, _u
- // or _f depending on whether the main parameter type of the ACLE intrinsic
- // being generated is a signed integer, unsigned integer, or float. Mostly
- // this is useful for signed vs unsigned integers, because the ACLE
- // intrinsics and the source-level integer types distinguish them, but at IR
- // level the distinction has moved from the type system into the operations
- // and you just have i32 or i16 etc. So when an IR intrinsic has to vary with
- // signedness, you set this bit, and then you can still put the signed and
- // unsigned versions in the same subclass of Intrinsic, and the Tablegen
- // backend will take care of adding _s or _u as appropriate in each instance.
- bit appendKind = appendKind_;
- }
- // Mostly we'll be using @llvm.arm.mve.* intrinsics, so here's a trivial
- // subclass that puts on that prefix.
- class IRInt<string name, list<Type> params = [], bit appendKind = 0>
- : IRIntBase<"arm_mve_" # name, params, appendKind>;
- // The 'seq' node in a codegen dag specifies a set of IR operations to be
- // performed in order. It has the special ability to define extra variable
- // names, on top of the ones that refer to the intrinsic's parameters. For
- // example:
- //
- // (seq (foo this, that):$a,
- // (bar this, $a):$b
- // (add $a, $b))
- //
- // defines the name $a to refer to the return value of the 'foo' operation;
- // then the 'bar' operation uses $a as one of its arguments, and the return
- // value of that is assigned the name $b; finally, $a and $b are added to give
- // the return value of the seq construction as a whole.
- def seq;
- // Another magic operation is 'unsignedflag', which you give a scalar
- // _type_ as an argument, and it expands into 1 for an unsigned type
- // and 0 for a signed (or floating) one.
- def unsignedflag;
- // 'bitsize' also takes a scalar type, and expands into an integer
- // constant giving its size in bits.
- def bitsize;
- // If you put CustomCodegen<"foo"> in an intrinsic's codegen field, it
- // indicates that the IR generation for that intrinsic is done by handwritten
- // C++ and not autogenerated at all. The effect in the MVE builtin codegen
- // function is to break out of the main switch and fall through to the
- // manual-codegen cases below it, having set the CustomCodeGenType enumerated
- // variable to the value given by the 'type' string here.
- class CustomCodegen<string type_> { string type = type_; }
- // -----------------------------------------------------------------------------
- // System for building up complex instances of Type from simple ones.
- // ComplexType is used to represent any more complicated type: vectors,
- // multivectors, pointers etc. Its dag argument specifies how the type should
- // be constructed from simpler types. The operator of the dag will always be an
- // instance of ComplexTypeOp, defined below.
- class ComplexType<dag spec_>: Type { dag spec = spec_; }
- // Operators you can use in the ComplexType spec dag. These are an intermediate
- // layer, interpreted by MveEmitter::getType() in the Tablegen backend, and
- // only used in the definitions below. Actual intrinsic definitions in
- // arm_mve.td will use the defs defined below here.
- class ComplexTypeOp;
- def CTO_Parameter: ComplexTypeOp;
- def CTO_Vec: ComplexTypeOp;
- def CTO_Pred: ComplexTypeOp;
- class CTO_Tuple<int n_>: ComplexTypeOp { int n = n_; }
- class CTO_Pointer<bit const_>: ComplexTypeOp { bit const = const_; }
- def CTO_CopyKind: ComplexTypeOp;
- class CTO_ScaleSize<int num_, int denom_>: ComplexTypeOp {
- int num = num_;
- int denom = denom_;
- }
- // -----------------------------------------------------------------------------
- // Instances of Type intended to be used directly in the specification of an
- // intrinsic in arm_mve.td.
- // The type Void can be used for the return type of an intrinsic, and as the
- // parameter type for intrinsics that aren't actually parameterised by any kind
- // of _s32 / _f16 / _u8 suffix.
- def Void : Type;
- // A wrapper you can put on an intrinsic's argument type to prevent it from
- // being automatically promoted to i32 from a smaller integer type.
- class unpromoted<Type t> : Type { Type underlying_type = t; }
- // Primitive types: base class, and an instance for the set of scalar integer
- // and floating types that MVE uses.
- class PrimitiveType<string kind_, int size_>: Type {
- string kind = kind_;
- int size = size_;
- string nameOverride = "";
- }
- // The type records defined by these foreaches have names like s32, f16, u8.
- foreach size = [8, 16, 32, 64] in
- foreach kind = ["u", "s"] in
- def kind # size: PrimitiveType<kind, size>;
- foreach size = [16, 32] in
- foreach kind = ["f"] in
- def kind # size: PrimitiveType<kind, size>;
- // Sometimes we need to refer to a type by a different name in C, when
- // ACLE defines a function parameter to be something like 'unsigned'
- // rather than uint32_t.
- def uint: PrimitiveType<"u", 32> { let nameOverride = "unsigned"; }
- def sint: PrimitiveType<"s", 32> { let nameOverride = "int"; }
- // VecOf<t> expects t to be a scalar, and gives a 128-bit vector of whatever it
- // is.
- class VecOf<Type t>: ComplexType<(CTO_Vec t)>;
- // NarrowedVecOf<t,v> expects t to be a scalar type, and v to be a vector
- // type. It returns a vector type whose element type is t, and whose lane
- // count is the same as the lane count of v. (Used as an intermediate value
- // type in the IR representation of a widening load: you load a vector of
- // small things out of memory, and then zext/sext them into a full 128-bit
- // output vector.)
- class NarrowedVecOf<Type t, Type v>: ComplexType<(CTO_Vec t, v)>;
- // PredOf expects t to be a scalar, and expands to a predicate vector which
- // (logically speaking) has the same number of lanes as VecOf<t> would.
- class PredOf<Type t>: ComplexType<(CTO_Pred t)>;
- // Scalar expands to whatever is the main parameter type of the current
- // intrinsic. Vector and Predicate expand to the vector and predicate types
- // corresponding to that.
- def Scalar: ComplexType<(CTO_Parameter)>;
- def Vector: VecOf<Scalar>;
- def Predicate: PredOf<Scalar>;
- // MultiVector<n> expands to a type containing n instances of Vector. (There's
- // no need to define this for a general underlying vector type, since it's only
- // used by vld2q and friends, which don't need that generality.)
- class MultiVector<int n>: ComplexType<(CTO_Tuple<n> Vector)>;
- // Ptr<t> and CPtr<t> expand to a pointer to t, or a pointer to const t,
- // respectively.
- class Ptr<Type t>: ComplexType<(CTO_Pointer<0> t)>;
- class CPtr<Type t>: ComplexType<(CTO_Pointer<1> t)>;
- // CopyKind<s,k> expects s and k to be scalar types. It returns a scalar type
- // whose kind (signed, unsigned or float) matches that of k, and whose size
- // matches that of s.
- class CopyKind<Type s, Type k>: ComplexType<(CTO_CopyKind s, k)>;
- // DoubleSize<k> expects k to be a scalar type. It returns a scalar type
- // whose kind (signed, unsigned or float) matches that of k, and whose size
- // is double that of k, if possible.
- class DoubleSize<Type k> : ComplexType<(CTO_ScaleSize<2, 1> k)>;
- class HalfSize<Type k> : ComplexType<(CTO_ScaleSize<1, 2> k)>;
- // Unsigned<t> expects t to be a scalar type, and expands to the unsigned
- // integer scalar of the same size. So it returns u16 if you give it s16 or
- // f16 (or u16 itself). Similarly, Signed<t> makes the type signed.
- class Unsigned<Type t>: ComplexType<(CTO_CopyKind t, u32)>;
- class Signed<Type t>: ComplexType<(CTO_CopyKind t, s32)>;
- // UScalar and UVector expand to the unsigned-integer versions of
- // Scalar and Vector. SScalar and SVector are signed-integer versions.
- def UScalar: Unsigned<Scalar>;
- def UVector: VecOf<UScalar>;
- def SScalar: Signed<Scalar>;
- def SVector: VecOf<SScalar>;
- // DblVector expands to a vector of scalars of size twice the size of Scalar.
- // DblPredicate expands to a predicate corresponding to DblVector
- // HalfVector, similarly, expands to a vector of half-sized scalars. And
- // UHalfVector is a vector of half-sized _unsigned integers_.
- def DblVector: VecOf<DoubleSize<Scalar>>;
- def DblPredicate: PredOf<DoubleSize<Scalar>>;
- def HalfScalar: HalfSize<Scalar>;
- def HalfVector: VecOf<HalfScalar>;
- def UHalfScalar: Unsigned<HalfSize<Scalar>>;
- def UHalfVector: VecOf<UHalfScalar>;
- // Expands to the 32-bit integer of the same signedness as Scalar.
- def Scalar32: CopyKind<u32, Scalar>;
- // Expands to the 64-bit integer of the same signedness as Scalar.
- def Scalar64: CopyKind<u64, Scalar>;
- // -----------------------------------------------------------------------------
- // Internal definitions for specifying immediate arguments for an intrinsic.
- class ImmediateBounds;
- class Immediate<Type type_, ImmediateBounds bounds_>: Type {
- Type type = type_;
- ImmediateBounds bounds = bounds_;
- string extra;
- string extraarg;
- }
- class IB_ConstRange<int lo_, int hi_> : ImmediateBounds {
- int lo = lo_;
- int hi = hi_;
- }
- def IB_UEltValue : ImmediateBounds;
- def IB_LaneIndex : ImmediateBounds;
- class IB_EltBit<int base_, Type type_ = Scalar> : ImmediateBounds {
- int base = base_;
- Type type = type_;
- }
- def IB_ExtraArg_LaneSize;
- // -----------------------------------------------------------------------------
- // End-user definitions for immediate arguments.
- // imm_simd and imm_simd_restrictive are used for the immediate operands to
- // intrinsics like vmvnq or vorrq. imm_simd_restrictive has to be an 8-bit
- // value shifted left by a whole number of bytes; imm_simd_vmvn can also be of
- // the form 0xXXFF for some byte value XX.
- def imm_simd_restrictive : Immediate<Scalar, IB_UEltValue> {
- let extra = "ShiftedByte";
- let extraarg = "!lanesize";
- }
- def imm_simd_vmvn : Immediate<Scalar, IB_UEltValue> {
- let extra = "ShiftedByteOrXXFF";
- let extraarg = "!lanesize";
- }
- // imm_1toN can take any value from 1 to N inclusive, where N is the number of
- // bits in the main parameter type. (E.g. an immediate shift count, in an
- // intrinsic that shifts every lane of a vector by the same amount.)
- //
- // imm_0toNm1 is the same but with the range offset by 1, i.e. 0 to N-1
- // inclusive.
- //
- // imm_1toHalfN is like imm_1toN, but applied to a half-width type.
- // (So if Scalar is s16, for example, it'll give you the range 1 to 8.)
- def imm_1toN : Immediate<sint, IB_EltBit<1>>;
- def imm_0toNm1 : Immediate<sint, IB_EltBit<0>>;
- def imm_1toHalfN : Immediate<sint, IB_EltBit<1, HalfSize<Scalar>>>;
- // imm_lane has to be the index of a vector lane in the main vector type, i.e
- // it can range from 0 to (128 / size of scalar)-1 inclusive. (e.g. vgetq_lane)
- def imm_lane : Immediate<sint, IB_LaneIndex>;
- // imm_1to32 can be in the range 1 to 32, unconditionally. (e.g. scalar shift
- // intrinsics)
- def imm_1to32 : Immediate<sint, IB_ConstRange<1, 32>>;
- // imm_1248 can be 1, 2, 4 or 8. (e.g. vidupq)
- def imm_1248 : Immediate<sint, IB_ConstRange<1, 8>> {
- let extra = "Power2";
- }
- // imm_mem7bit<n> is a valid immediate offset for a load/store intrinsic whose
- // memory access size is n bytes (e.g. 1 for vldrb_[whatever], 2 for vldrh,
- // ...). The set of valid immediates for these is {-127*n, ..., -1*n, 0*n, 1*n,
- // ..., 127*n}.
- class imm_mem7bit<int membytes>
- : Immediate<sint, IB_ConstRange<!mul(membytes, -127), !mul(membytes, 127)>> {
- let extra = !if(!eq(membytes, 1), ?, "Multiple");
- let extraarg = !cast<string>(membytes);
- }
- // -----------------------------------------------------------------------------
- // Specification of ways that the full name of an intrinsic can be mapped to
- // its shorter polymorphic name.
- class PolymorphicNameType<int nt_, string x_> {
- int NumTypeSuffixesToDiscard = nt_;
- string ExtraSuffixToDiscard = x_;
- }
- // PNT_None: the intrinsic is not polymorphic at all, so its short name is the
- // same as its long name. (E.g. scalar shift intrinsics such as uqshl.)
- def PNT_None: PolymorphicNameType<0, ?>;
- // PNT_Type: the usual case, in which the polymorphic name is made by dropping
- // the type suffix, so it ends up the same as the Tablegen record name. E.g.
- // vaddq_u16 -> vaddq.
- def PNT_Type: PolymorphicNameType<1, ?>;
- // PNT_2Type: the polymorphic name is made by dropping _two_ type suffixes.
- // E.g. vcvtq_f16_u16 -> vcvtq.
- def PNT_2Type: PolymorphicNameType<2, ?>;
- // PNT_NType: the polymorphic name is made by dropping an "_n" suffix and a
- // type. E.g. vaddq_n_u16 -> vaddq.
- def PNT_NType: PolymorphicNameType<1, "n">;
- // PNT_NType: the polymorphic name is made by just dropping an "_n" suffix
- // (even if it isn't at the end of the name). E.g. vidupq_n_u16 -> vidupq_u16.
- def PNT_N: PolymorphicNameType<0, "n">;
- // PNT_WBType: the polymorphic name is made by dropping an "_wb" suffix and a
- // type. E.g. vidupq_m_wb_u16 -> vidupq_m.
- def PNT_WBType: PolymorphicNameType<1, "wb">;
- // PNT_WB: the polymorphic name is made by just dropping "_wb". E.g.
- // vidupq_wb_u16 -> vidupq_u16.
- def PNT_WB: PolymorphicNameType<0, "wb">;
- // -----------------------------------------------------------------------------
- // The main class Intrinsic. Define one of these for each family of ACLE
- // intrinsics which are the same apart from some final type suffix (e.g.
- // vaddq_{s8,u8,f16,...}.
- //
- // The record's name plus that type suffix is taken to be the full unambiguous
- // name of the function. Its shorter polymorphic name is constructed from that
- // in turn, in a way specified by the PolymorphicNameType system above.
- class Intrinsic<Type ret_, dag args_, dag codegen_> {
- // List of parameter types to suffix to this intrinsic's name. A separate
- // actual ACLE intrinsic will be generated for each of these. Set it to
- // [Void] if the intrinsic is not polymorphic at all.
- list<Type> params;
- // Return type and arguments for the intrinsic.
- Type ret = ret_;
- dag args = args_;
- // Specification of how to generate its IR.
- dag codegen = codegen_;
- // Default to PNT_Type, which is by far the most common case.
- PolymorphicNameType pnt = PNT_Type;
- // A very few intrinsics _only_ have a polymorphic name.
- bit polymorphicOnly = 0;
- // True if the builtin has to avoid evaluating its arguments.
- bit nonEvaluating = 0;
- // True if the intrinsic needs only the C header part (no codegen, semantic
- // checks, etc). Used for redeclaring MVE intrinsics in the arm_cde.h header.
- bit headerOnly = 0;
- // Use to override the suffix letter to make e.g.vfooq_p16
- // with an override suffix letter of "p".
- string overrideKindLetter = "";
- // Name of the architecture extension, used in the Clang builtin name
- string builtinExtension = "mve";
- }
- // Sometimes you have to use two separate Intrinsic declarations to
- // declare intrinsics that are logically the same family (e.g. vaddq,
- // because it needs to expand to an Add or FAdd IR node depending on
- // type). For that purpose, you can derive from NameOverride to
- // specify the intrinsic's base name independently of the Tablegen
- // record name.
- class NameOverride<string basename_> {
- string basename = basename_;
- }
- // A wrapper to define both _m and _x versions of a predicated
- // intrinsic.
- //
- // We provide optional parameters to override the polymorphic name
- // types separately for the _m and _x variants, because sometimes they
- // polymorph differently (typically because the type of the inactive
- // parameter can be used as a disambiguator if it's present).
- multiclass IntrinsicMX<Type rettype, dag arguments, dag cg,
- bit wantXVariant = 1,
- string nameSuffix = "",
- PolymorphicNameType pnt_m = PNT_Type,
- PolymorphicNameType pnt_x = PNT_Type> {
- // The _m variant takes an initial parameter called $inactive, which
- // provides the input value of the output register, i.e. all the
- // inactive lanes in the predicated operation take their values from
- // this.
- def : Intrinsic<rettype, !con((args rettype:$inactive), arguments), cg>,
- NameOverride<NAME # "_m" # nameSuffix> {
- let pnt = pnt_m;
- }
- if wantXVariant then {
- // The _x variant leaves off that parameter, and simply uses an
- // undef value of the same type.
- def : Intrinsic<rettype, arguments, (seq (undef rettype):$inactive, cg)>,
- NameOverride<NAME # "_x" # nameSuffix> {
- let pnt = pnt_x;
- }
- }
- }
- // Same as above, but with an additional parameter 'basename' which overrides
- // the C intrinsic base name
- multiclass IntrinsicMXNameOverride<Type rettype, dag arguments, dag cg,
- string basename, bit wantXVariant = 1,
- string nameSuffix = "",
- PolymorphicNameType pnt_m = PNT_Type,
- PolymorphicNameType pnt_x = PNT_Type> {
- def "_m" # nameSuffix:
- Intrinsic<rettype, !con((args rettype:$inactive), arguments), cg>,
- NameOverride<basename # "_m" # nameSuffix> {
- let pnt = pnt_m;
- }
- if wantXVariant then {
- def "_x" # nameSuffix:
- Intrinsic<rettype, arguments, (seq (undef rettype):$inactive, cg)>,
- NameOverride<basename # "_x" # nameSuffix> {
- let pnt = pnt_x;
- }
- }
- }
- // -----------------------------------------------------------------------------
- // Convenience lists of parameter types. 'T' is just a container record, so you
- // can define a typical intrinsic with 'let Params = T.Usual', or similar,
- // instead of having to repeat a long list every time.
- def T {
- list<Type> None = [Void];
- list<Type> Signed = [s8, s16, s32];
- list<Type> Unsigned = [u8, u16, u32];
- list<Type> Int = Signed # Unsigned;
- list<Type> Float = [f16, f32];
- list<Type> Usual = Int # Float;
- list<Type> Int8 = [s8, u8];
- list<Type> Int16 = [s16, u16];
- list<Type> Int32 = [s32, u32];
- list<Type> Int64 = [s64, u64];
- list<Type> Poly = [u8, u16]; // Actually p8 and p16
- list<Type> All8 = Int8;
- list<Type> All16 = Int16 # [f16];
- list<Type> All32 = Int32 # [f32];
- list<Type> All64 = Int64;
- list<Type> All = Usual # All64;
- }
- // -----------------------------------------------------------------------------
- // Container record for DAG constant values. These constants are used because
- // bit/int class/multiclass parameters cannot be used to produce a dag node:
- // for example (u32 x) where x is 0 is transformed into (u32 { 0 }) by the
- // Tablegen parser.
- def V {
- dag False = (u32 0);
- dag True = (u32 1);
- }
|