123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453 |
- /* strmm.f -- translated by f2c (version 20061008).
- You must link the resulting object file with libf2c:
- on Microsoft Windows system, link with libf2c.lib;
- on Linux or Unix systems, link with .../path/to/libf2c.a -lm
- or, if you install libf2c.a in a standard place, with -lf2c -lm
- -- in that order, at the end of the command line, as in
- cc *.o -lf2c -lm
- Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
- http://www.netlib.org/f2c/libf2c.zip
- */
- #include "f2c.h"
- #include "blaswrap.h"
- /* Subroutine */ int strmm_(char *side, char *uplo, char *transa, char *diag,
- integer *m, integer *n, real *alpha, real *a, integer *lda, real *b,
- integer *ldb)
- {
- /* System generated locals */
- integer a_dim1, a_offset, b_dim1, b_offset, i__1, i__2, i__3;
- /* Local variables */
- integer i__, j, k, info;
- real temp;
- logical lside;
- extern logical lsame_(char *, char *);
- integer nrowa;
- logical upper;
- extern /* Subroutine */ int xerbla_(char *, integer *);
- logical nounit;
- /* .. Scalar Arguments .. */
- /* .. */
- /* .. Array Arguments .. */
- /* .. */
- /* Purpose */
- /* ======= */
- /* STRMM performs one of the matrix-matrix operations */
- /* B := alpha*op( A )*B, or B := alpha*B*op( A ), */
- /* where alpha is a scalar, B is an m by n matrix, A is a unit, or */
- /* non-unit, upper or lower triangular matrix and op( A ) is one of */
- /* op( A ) = A or op( A ) = A'. */
- /* Arguments */
- /* ========== */
- /* SIDE - CHARACTER*1. */
- /* On entry, SIDE specifies whether op( A ) multiplies B from */
- /* the left or right as follows: */
- /* SIDE = 'L' or 'l' B := alpha*op( A )*B. */
- /* SIDE = 'R' or 'r' B := alpha*B*op( A ). */
- /* Unchanged on exit. */
- /* UPLO - CHARACTER*1. */
- /* On entry, UPLO specifies whether the matrix A is an upper or */
- /* lower triangular matrix as follows: */
- /* UPLO = 'U' or 'u' A is an upper triangular matrix. */
- /* UPLO = 'L' or 'l' A is a lower triangular matrix. */
- /* Unchanged on exit. */
- /* TRANSA - CHARACTER*1. */
- /* On entry, TRANSA specifies the form of op( A ) to be used in */
- /* the matrix multiplication as follows: */
- /* TRANSA = 'N' or 'n' op( A ) = A. */
- /* TRANSA = 'T' or 't' op( A ) = A'. */
- /* TRANSA = 'C' or 'c' op( A ) = A'. */
- /* Unchanged on exit. */
- /* DIAG - CHARACTER*1. */
- /* On entry, DIAG specifies whether or not A is unit triangular */
- /* as follows: */
- /* DIAG = 'U' or 'u' A is assumed to be unit triangular. */
- /* DIAG = 'N' or 'n' A is not assumed to be unit */
- /* triangular. */
- /* Unchanged on exit. */
- /* M - INTEGER. */
- /* On entry, M specifies the number of rows of B. M must be at */
- /* least zero. */
- /* Unchanged on exit. */
- /* N - INTEGER. */
- /* On entry, N specifies the number of columns of B. N must be */
- /* at least zero. */
- /* Unchanged on exit. */
- /* ALPHA - REAL . */
- /* On entry, ALPHA specifies the scalar alpha. When alpha is */
- /* zero then A is not referenced and B need not be set before */
- /* entry. */
- /* Unchanged on exit. */
- /* A - REAL array of DIMENSION ( LDA, k ), where k is m */
- /* when SIDE = 'L' or 'l' and is n when SIDE = 'R' or 'r'. */
- /* Before entry with UPLO = 'U' or 'u', the leading k by k */
- /* upper triangular part of the array A must contain the upper */
- /* triangular matrix and the strictly lower triangular part of */
- /* A is not referenced. */
- /* Before entry with UPLO = 'L' or 'l', the leading k by k */
- /* lower triangular part of the array A must contain the lower */
- /* triangular matrix and the strictly upper triangular part of */
- /* A is not referenced. */
- /* Note that when DIAG = 'U' or 'u', the diagonal elements of */
- /* A are not referenced either, but are assumed to be unity. */
- /* Unchanged on exit. */
- /* LDA - INTEGER. */
- /* On entry, LDA specifies the first dimension of A as declared */
- /* in the calling (sub) program. When SIDE = 'L' or 'l' then */
- /* LDA must be at least max( 1, m ), when SIDE = 'R' or 'r' */
- /* then LDA must be at least max( 1, n ). */
- /* Unchanged on exit. */
- /* B - REAL array of DIMENSION ( LDB, n ). */
- /* Before entry, the leading m by n part of the array B must */
- /* contain the matrix B, and on exit is overwritten by the */
- /* transformed matrix. */
- /* LDB - INTEGER. */
- /* On entry, LDB specifies the first dimension of B as declared */
- /* in the calling (sub) program. LDB must be at least */
- /* max( 1, m ). */
- /* Unchanged on exit. */
- /* Level 3 Blas routine. */
- /* -- Written on 8-February-1989. */
- /* Jack Dongarra, Argonne National Laboratory. */
- /* Iain Duff, AERE Harwell. */
- /* Jeremy Du Croz, Numerical Algorithms Group Ltd. */
- /* Sven Hammarling, Numerical Algorithms Group Ltd. */
- /* .. External Functions .. */
- /* .. */
- /* .. External Subroutines .. */
- /* .. */
- /* .. Intrinsic Functions .. */
- /* .. */
- /* .. Local Scalars .. */
- /* .. */
- /* .. Parameters .. */
- /* .. */
- /* Test the input parameters. */
- /* Parameter adjustments */
- a_dim1 = *lda;
- a_offset = 1 + a_dim1;
- a -= a_offset;
- b_dim1 = *ldb;
- b_offset = 1 + b_dim1;
- b -= b_offset;
- /* Function Body */
- lside = lsame_(side, "L");
- if (lside) {
- nrowa = *m;
- } else {
- nrowa = *n;
- }
- nounit = lsame_(diag, "N");
- upper = lsame_(uplo, "U");
- info = 0;
- if (! lside && ! lsame_(side, "R")) {
- info = 1;
- } else if (! upper && ! lsame_(uplo, "L")) {
- info = 2;
- } else if (! lsame_(transa, "N") && ! lsame_(transa,
- "T") && ! lsame_(transa, "C")) {
- info = 3;
- } else if (! lsame_(diag, "U") && ! lsame_(diag,
- "N")) {
- info = 4;
- } else if (*m < 0) {
- info = 5;
- } else if (*n < 0) {
- info = 6;
- } else if (*lda < max(1,nrowa)) {
- info = 9;
- } else if (*ldb < max(1,*m)) {
- info = 11;
- }
- if (info != 0) {
- xerbla_("STRMM ", &info);
- return 0;
- }
- /* Quick return if possible. */
- if (*m == 0 || *n == 0) {
- return 0;
- }
- /* And when alpha.eq.zero. */
- if (*alpha == 0.f) {
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- i__2 = *m;
- for (i__ = 1; i__ <= i__2; ++i__) {
- b[i__ + j * b_dim1] = 0.f;
- /* L10: */
- }
- /* L20: */
- }
- return 0;
- }
- /* Start the operations. */
- if (lside) {
- if (lsame_(transa, "N")) {
- /* Form B := alpha*A*B. */
- if (upper) {
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- i__2 = *m;
- for (k = 1; k <= i__2; ++k) {
- if (b[k + j * b_dim1] != 0.f) {
- temp = *alpha * b[k + j * b_dim1];
- i__3 = k - 1;
- for (i__ = 1; i__ <= i__3; ++i__) {
- b[i__ + j * b_dim1] += temp * a[i__ + k *
- a_dim1];
- /* L30: */
- }
- if (nounit) {
- temp *= a[k + k * a_dim1];
- }
- b[k + j * b_dim1] = temp;
- }
- /* L40: */
- }
- /* L50: */
- }
- } else {
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- for (k = *m; k >= 1; --k) {
- if (b[k + j * b_dim1] != 0.f) {
- temp = *alpha * b[k + j * b_dim1];
- b[k + j * b_dim1] = temp;
- if (nounit) {
- b[k + j * b_dim1] *= a[k + k * a_dim1];
- }
- i__2 = *m;
- for (i__ = k + 1; i__ <= i__2; ++i__) {
- b[i__ + j * b_dim1] += temp * a[i__ + k *
- a_dim1];
- /* L60: */
- }
- }
- /* L70: */
- }
- /* L80: */
- }
- }
- } else {
- /* Form B := alpha*A'*B. */
- if (upper) {
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- for (i__ = *m; i__ >= 1; --i__) {
- temp = b[i__ + j * b_dim1];
- if (nounit) {
- temp *= a[i__ + i__ * a_dim1];
- }
- i__2 = i__ - 1;
- for (k = 1; k <= i__2; ++k) {
- temp += a[k + i__ * a_dim1] * b[k + j * b_dim1];
- /* L90: */
- }
- b[i__ + j * b_dim1] = *alpha * temp;
- /* L100: */
- }
- /* L110: */
- }
- } else {
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- i__2 = *m;
- for (i__ = 1; i__ <= i__2; ++i__) {
- temp = b[i__ + j * b_dim1];
- if (nounit) {
- temp *= a[i__ + i__ * a_dim1];
- }
- i__3 = *m;
- for (k = i__ + 1; k <= i__3; ++k) {
- temp += a[k + i__ * a_dim1] * b[k + j * b_dim1];
- /* L120: */
- }
- b[i__ + j * b_dim1] = *alpha * temp;
- /* L130: */
- }
- /* L140: */
- }
- }
- }
- } else {
- if (lsame_(transa, "N")) {
- /* Form B := alpha*B*A. */
- if (upper) {
- for (j = *n; j >= 1; --j) {
- temp = *alpha;
- if (nounit) {
- temp *= a[j + j * a_dim1];
- }
- i__1 = *m;
- for (i__ = 1; i__ <= i__1; ++i__) {
- b[i__ + j * b_dim1] = temp * b[i__ + j * b_dim1];
- /* L150: */
- }
- i__1 = j - 1;
- for (k = 1; k <= i__1; ++k) {
- if (a[k + j * a_dim1] != 0.f) {
- temp = *alpha * a[k + j * a_dim1];
- i__2 = *m;
- for (i__ = 1; i__ <= i__2; ++i__) {
- b[i__ + j * b_dim1] += temp * b[i__ + k *
- b_dim1];
- /* L160: */
- }
- }
- /* L170: */
- }
- /* L180: */
- }
- } else {
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- temp = *alpha;
- if (nounit) {
- temp *= a[j + j * a_dim1];
- }
- i__2 = *m;
- for (i__ = 1; i__ <= i__2; ++i__) {
- b[i__ + j * b_dim1] = temp * b[i__ + j * b_dim1];
- /* L190: */
- }
- i__2 = *n;
- for (k = j + 1; k <= i__2; ++k) {
- if (a[k + j * a_dim1] != 0.f) {
- temp = *alpha * a[k + j * a_dim1];
- i__3 = *m;
- for (i__ = 1; i__ <= i__3; ++i__) {
- b[i__ + j * b_dim1] += temp * b[i__ + k *
- b_dim1];
- /* L200: */
- }
- }
- /* L210: */
- }
- /* L220: */
- }
- }
- } else {
- /* Form B := alpha*B*A'. */
- if (upper) {
- i__1 = *n;
- for (k = 1; k <= i__1; ++k) {
- i__2 = k - 1;
- for (j = 1; j <= i__2; ++j) {
- if (a[j + k * a_dim1] != 0.f) {
- temp = *alpha * a[j + k * a_dim1];
- i__3 = *m;
- for (i__ = 1; i__ <= i__3; ++i__) {
- b[i__ + j * b_dim1] += temp * b[i__ + k *
- b_dim1];
- /* L230: */
- }
- }
- /* L240: */
- }
- temp = *alpha;
- if (nounit) {
- temp *= a[k + k * a_dim1];
- }
- if (temp != 1.f) {
- i__2 = *m;
- for (i__ = 1; i__ <= i__2; ++i__) {
- b[i__ + k * b_dim1] = temp * b[i__ + k * b_dim1];
- /* L250: */
- }
- }
- /* L260: */
- }
- } else {
- for (k = *n; k >= 1; --k) {
- i__1 = *n;
- for (j = k + 1; j <= i__1; ++j) {
- if (a[j + k * a_dim1] != 0.f) {
- temp = *alpha * a[j + k * a_dim1];
- i__2 = *m;
- for (i__ = 1; i__ <= i__2; ++i__) {
- b[i__ + j * b_dim1] += temp * b[i__ + k *
- b_dim1];
- /* L270: */
- }
- }
- /* L280: */
- }
- temp = *alpha;
- if (nounit) {
- temp *= a[k + k * a_dim1];
- }
- if (temp != 1.f) {
- i__1 = *m;
- for (i__ = 1; i__ <= i__1; ++i__) {
- b[i__ + k * b_dim1] = temp * b[i__ + k * b_dim1];
- /* L290: */
- }
- }
- /* L300: */
- }
- }
- }
- }
- return 0;
- /* End of STRMM . */
- } /* strmm_ */
|