123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372 |
- /* ssyrk.f -- translated by f2c (version 20061008).
- You must link the resulting object file with libf2c:
- on Microsoft Windows system, link with libf2c.lib;
- on Linux or Unix systems, link with .../path/to/libf2c.a -lm
- or, if you install libf2c.a in a standard place, with -lf2c -lm
- -- in that order, at the end of the command line, as in
- cc *.o -lf2c -lm
- Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
- http://www.netlib.org/f2c/libf2c.zip
- */
- #include "f2c.h"
- #include "blaswrap.h"
- /* Subroutine */ int ssyrk_(char *uplo, char *trans, integer *n, integer *k,
- real *alpha, real *a, integer *lda, real *beta, real *c__, integer *
- ldc)
- {
- /* System generated locals */
- integer a_dim1, a_offset, c_dim1, c_offset, i__1, i__2, i__3;
- /* Local variables */
- integer i__, j, l, info;
- real temp;
- extern logical lsame_(char *, char *);
- integer nrowa;
- logical upper;
- extern /* Subroutine */ int xerbla_(char *, integer *);
- /* .. Scalar Arguments .. */
- /* .. */
- /* .. Array Arguments .. */
- /* .. */
- /* Purpose */
- /* ======= */
- /* SSYRK performs one of the symmetric rank k operations */
- /* C := alpha*A*A' + beta*C, */
- /* or */
- /* C := alpha*A'*A + beta*C, */
- /* where alpha and beta are scalars, C is an n by n symmetric matrix */
- /* and A is an n by k matrix in the first case and a k by n matrix */
- /* in the second case. */
- /* Arguments */
- /* ========== */
- /* UPLO - CHARACTER*1. */
- /* On entry, UPLO specifies whether the upper or lower */
- /* triangular part of the array C is to be referenced as */
- /* follows: */
- /* UPLO = 'U' or 'u' Only the upper triangular part of C */
- /* is to be referenced. */
- /* UPLO = 'L' or 'l' Only the lower triangular part of C */
- /* is to be referenced. */
- /* Unchanged on exit. */
- /* TRANS - CHARACTER*1. */
- /* On entry, TRANS specifies the operation to be performed as */
- /* follows: */
- /* TRANS = 'N' or 'n' C := alpha*A*A' + beta*C. */
- /* TRANS = 'T' or 't' C := alpha*A'*A + beta*C. */
- /* TRANS = 'C' or 'c' C := alpha*A'*A + beta*C. */
- /* Unchanged on exit. */
- /* N - INTEGER. */
- /* On entry, N specifies the order of the matrix C. N must be */
- /* at least zero. */
- /* Unchanged on exit. */
- /* K - INTEGER. */
- /* On entry with TRANS = 'N' or 'n', K specifies the number */
- /* of columns of the matrix A, and on entry with */
- /* TRANS = 'T' or 't' or 'C' or 'c', K specifies the number */
- /* of rows of the matrix A. K must be at least zero. */
- /* Unchanged on exit. */
- /* ALPHA - REAL . */
- /* On entry, ALPHA specifies the scalar alpha. */
- /* Unchanged on exit. */
- /* A - REAL array of DIMENSION ( LDA, ka ), where ka is */
- /* k when TRANS = 'N' or 'n', and is n otherwise. */
- /* Before entry with TRANS = 'N' or 'n', the leading n by k */
- /* part of the array A must contain the matrix A, otherwise */
- /* the leading k by n part of the array A must contain the */
- /* matrix A. */
- /* Unchanged on exit. */
- /* LDA - INTEGER. */
- /* On entry, LDA specifies the first dimension of A as declared */
- /* in the calling (sub) program. When TRANS = 'N' or 'n' */
- /* then LDA must be at least max( 1, n ), otherwise LDA must */
- /* be at least max( 1, k ). */
- /* Unchanged on exit. */
- /* BETA - REAL . */
- /* On entry, BETA specifies the scalar beta. */
- /* Unchanged on exit. */
- /* C - REAL array of DIMENSION ( LDC, n ). */
- /* Before entry with UPLO = 'U' or 'u', the leading n by n */
- /* upper triangular part of the array C must contain the upper */
- /* triangular part of the symmetric matrix and the strictly */
- /* lower triangular part of C is not referenced. On exit, the */
- /* upper triangular part of the array C is overwritten by the */
- /* upper triangular part of the updated matrix. */
- /* Before entry with UPLO = 'L' or 'l', the leading n by n */
- /* lower triangular part of the array C must contain the lower */
- /* triangular part of the symmetric matrix and the strictly */
- /* upper triangular part of C is not referenced. On exit, the */
- /* lower triangular part of the array C is overwritten by the */
- /* lower triangular part of the updated matrix. */
- /* LDC - INTEGER. */
- /* On entry, LDC specifies the first dimension of C as declared */
- /* in the calling (sub) program. LDC must be at least */
- /* max( 1, n ). */
- /* Unchanged on exit. */
- /* Level 3 Blas routine. */
- /* -- Written on 8-February-1989. */
- /* Jack Dongarra, Argonne National Laboratory. */
- /* Iain Duff, AERE Harwell. */
- /* Jeremy Du Croz, Numerical Algorithms Group Ltd. */
- /* Sven Hammarling, Numerical Algorithms Group Ltd. */
- /* .. External Functions .. */
- /* .. */
- /* .. External Subroutines .. */
- /* .. */
- /* .. Intrinsic Functions .. */
- /* .. */
- /* .. Local Scalars .. */
- /* .. */
- /* .. Parameters .. */
- /* .. */
- /* Test the input parameters. */
- /* Parameter adjustments */
- a_dim1 = *lda;
- a_offset = 1 + a_dim1;
- a -= a_offset;
- c_dim1 = *ldc;
- c_offset = 1 + c_dim1;
- c__ -= c_offset;
- /* Function Body */
- if (lsame_(trans, "N")) {
- nrowa = *n;
- } else {
- nrowa = *k;
- }
- upper = lsame_(uplo, "U");
- info = 0;
- if (! upper && ! lsame_(uplo, "L")) {
- info = 1;
- } else if (! lsame_(trans, "N") && ! lsame_(trans,
- "T") && ! lsame_(trans, "C")) {
- info = 2;
- } else if (*n < 0) {
- info = 3;
- } else if (*k < 0) {
- info = 4;
- } else if (*lda < max(1,nrowa)) {
- info = 7;
- } else if (*ldc < max(1,*n)) {
- info = 10;
- }
- if (info != 0) {
- xerbla_("SSYRK ", &info);
- return 0;
- }
- /* Quick return if possible. */
- if (*n == 0 || (*alpha == 0.f || *k == 0) && *beta == 1.f) {
- return 0;
- }
- /* And when alpha.eq.zero. */
- if (*alpha == 0.f) {
- if (upper) {
- if (*beta == 0.f) {
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- i__2 = j;
- for (i__ = 1; i__ <= i__2; ++i__) {
- c__[i__ + j * c_dim1] = 0.f;
- /* L10: */
- }
- /* L20: */
- }
- } else {
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- i__2 = j;
- for (i__ = 1; i__ <= i__2; ++i__) {
- c__[i__ + j * c_dim1] = *beta * c__[i__ + j * c_dim1];
- /* L30: */
- }
- /* L40: */
- }
- }
- } else {
- if (*beta == 0.f) {
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- i__2 = *n;
- for (i__ = j; i__ <= i__2; ++i__) {
- c__[i__ + j * c_dim1] = 0.f;
- /* L50: */
- }
- /* L60: */
- }
- } else {
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- i__2 = *n;
- for (i__ = j; i__ <= i__2; ++i__) {
- c__[i__ + j * c_dim1] = *beta * c__[i__ + j * c_dim1];
- /* L70: */
- }
- /* L80: */
- }
- }
- }
- return 0;
- }
- /* Start the operations. */
- if (lsame_(trans, "N")) {
- /* Form C := alpha*A*A' + beta*C. */
- if (upper) {
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- if (*beta == 0.f) {
- i__2 = j;
- for (i__ = 1; i__ <= i__2; ++i__) {
- c__[i__ + j * c_dim1] = 0.f;
- /* L90: */
- }
- } else if (*beta != 1.f) {
- i__2 = j;
- for (i__ = 1; i__ <= i__2; ++i__) {
- c__[i__ + j * c_dim1] = *beta * c__[i__ + j * c_dim1];
- /* L100: */
- }
- }
- i__2 = *k;
- for (l = 1; l <= i__2; ++l) {
- if (a[j + l * a_dim1] != 0.f) {
- temp = *alpha * a[j + l * a_dim1];
- i__3 = j;
- for (i__ = 1; i__ <= i__3; ++i__) {
- c__[i__ + j * c_dim1] += temp * a[i__ + l *
- a_dim1];
- /* L110: */
- }
- }
- /* L120: */
- }
- /* L130: */
- }
- } else {
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- if (*beta == 0.f) {
- i__2 = *n;
- for (i__ = j; i__ <= i__2; ++i__) {
- c__[i__ + j * c_dim1] = 0.f;
- /* L140: */
- }
- } else if (*beta != 1.f) {
- i__2 = *n;
- for (i__ = j; i__ <= i__2; ++i__) {
- c__[i__ + j * c_dim1] = *beta * c__[i__ + j * c_dim1];
- /* L150: */
- }
- }
- i__2 = *k;
- for (l = 1; l <= i__2; ++l) {
- if (a[j + l * a_dim1] != 0.f) {
- temp = *alpha * a[j + l * a_dim1];
- i__3 = *n;
- for (i__ = j; i__ <= i__3; ++i__) {
- c__[i__ + j * c_dim1] += temp * a[i__ + l *
- a_dim1];
- /* L160: */
- }
- }
- /* L170: */
- }
- /* L180: */
- }
- }
- } else {
- /* Form C := alpha*A'*A + beta*C. */
- if (upper) {
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- i__2 = j;
- for (i__ = 1; i__ <= i__2; ++i__) {
- temp = 0.f;
- i__3 = *k;
- for (l = 1; l <= i__3; ++l) {
- temp += a[l + i__ * a_dim1] * a[l + j * a_dim1];
- /* L190: */
- }
- if (*beta == 0.f) {
- c__[i__ + j * c_dim1] = *alpha * temp;
- } else {
- c__[i__ + j * c_dim1] = *alpha * temp + *beta * c__[
- i__ + j * c_dim1];
- }
- /* L200: */
- }
- /* L210: */
- }
- } else {
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- i__2 = *n;
- for (i__ = j; i__ <= i__2; ++i__) {
- temp = 0.f;
- i__3 = *k;
- for (l = 1; l <= i__3; ++l) {
- temp += a[l + i__ * a_dim1] * a[l + j * a_dim1];
- /* L220: */
- }
- if (*beta == 0.f) {
- c__[i__ + j * c_dim1] = *alpha * temp;
- } else {
- c__[i__ + j * c_dim1] = *alpha * temp + *beta * c__[
- i__ + j * c_dim1];
- }
- /* L230: */
- }
- /* L240: */
- }
- }
- }
- return 0;
- /* End of SSYRK . */
- } /* ssyrk_ */
|