csyr2k.c 16 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537
  1. /* csyr2k.f -- translated by f2c (version 20061008).
  2. You must link the resulting object file with libf2c:
  3. on Microsoft Windows system, link with libf2c.lib;
  4. on Linux or Unix systems, link with .../path/to/libf2c.a -lm
  5. or, if you install libf2c.a in a standard place, with -lf2c -lm
  6. -- in that order, at the end of the command line, as in
  7. cc *.o -lf2c -lm
  8. Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
  9. http://www.netlib.org/f2c/libf2c.zip
  10. */
  11. #include "f2c.h"
  12. #include "blaswrap.h"
  13. /* Subroutine */ int csyr2k_(char *uplo, char *trans, integer *n, integer *k,
  14. complex *alpha, complex *a, integer *lda, complex *b, integer *ldb,
  15. complex *beta, complex *c__, integer *ldc)
  16. {
  17. /* System generated locals */
  18. integer a_dim1, a_offset, b_dim1, b_offset, c_dim1, c_offset, i__1, i__2,
  19. i__3, i__4, i__5, i__6, i__7;
  20. complex q__1, q__2, q__3, q__4, q__5;
  21. /* Local variables */
  22. integer i__, j, l, info;
  23. complex temp1, temp2;
  24. extern logical lsame_(char *, char *);
  25. integer nrowa;
  26. logical upper;
  27. extern /* Subroutine */ int xerbla_(char *, integer *);
  28. /* .. Scalar Arguments .. */
  29. /* .. */
  30. /* .. Array Arguments .. */
  31. /* .. */
  32. /* Purpose */
  33. /* ======= */
  34. /* CSYR2K performs one of the symmetric rank 2k operations */
  35. /* C := alpha*A*B' + alpha*B*A' + beta*C, */
  36. /* or */
  37. /* C := alpha*A'*B + alpha*B'*A + beta*C, */
  38. /* where alpha and beta are scalars, C is an n by n symmetric matrix */
  39. /* and A and B are n by k matrices in the first case and k by n */
  40. /* matrices in the second case. */
  41. /* Arguments */
  42. /* ========== */
  43. /* UPLO - CHARACTER*1. */
  44. /* On entry, UPLO specifies whether the upper or lower */
  45. /* triangular part of the array C is to be referenced as */
  46. /* follows: */
  47. /* UPLO = 'U' or 'u' Only the upper triangular part of C */
  48. /* is to be referenced. */
  49. /* UPLO = 'L' or 'l' Only the lower triangular part of C */
  50. /* is to be referenced. */
  51. /* Unchanged on exit. */
  52. /* TRANS - CHARACTER*1. */
  53. /* On entry, TRANS specifies the operation to be performed as */
  54. /* follows: */
  55. /* TRANS = 'N' or 'n' C := alpha*A*B' + alpha*B*A' + */
  56. /* beta*C. */
  57. /* TRANS = 'T' or 't' C := alpha*A'*B + alpha*B'*A + */
  58. /* beta*C. */
  59. /* Unchanged on exit. */
  60. /* N - INTEGER. */
  61. /* On entry, N specifies the order of the matrix C. N must be */
  62. /* at least zero. */
  63. /* Unchanged on exit. */
  64. /* K - INTEGER. */
  65. /* On entry with TRANS = 'N' or 'n', K specifies the number */
  66. /* of columns of the matrices A and B, and on entry with */
  67. /* TRANS = 'T' or 't', K specifies the number of rows of the */
  68. /* matrices A and B. K must be at least zero. */
  69. /* Unchanged on exit. */
  70. /* ALPHA - COMPLEX . */
  71. /* On entry, ALPHA specifies the scalar alpha. */
  72. /* Unchanged on exit. */
  73. /* A - COMPLEX array of DIMENSION ( LDA, ka ), where ka is */
  74. /* k when TRANS = 'N' or 'n', and is n otherwise. */
  75. /* Before entry with TRANS = 'N' or 'n', the leading n by k */
  76. /* part of the array A must contain the matrix A, otherwise */
  77. /* the leading k by n part of the array A must contain the */
  78. /* matrix A. */
  79. /* Unchanged on exit. */
  80. /* LDA - INTEGER. */
  81. /* On entry, LDA specifies the first dimension of A as declared */
  82. /* in the calling (sub) program. When TRANS = 'N' or 'n' */
  83. /* then LDA must be at least max( 1, n ), otherwise LDA must */
  84. /* be at least max( 1, k ). */
  85. /* Unchanged on exit. */
  86. /* B - COMPLEX array of DIMENSION ( LDB, kb ), where kb is */
  87. /* k when TRANS = 'N' or 'n', and is n otherwise. */
  88. /* Before entry with TRANS = 'N' or 'n', the leading n by k */
  89. /* part of the array B must contain the matrix B, otherwise */
  90. /* the leading k by n part of the array B must contain the */
  91. /* matrix B. */
  92. /* Unchanged on exit. */
  93. /* LDB - INTEGER. */
  94. /* On entry, LDB specifies the first dimension of B as declared */
  95. /* in the calling (sub) program. When TRANS = 'N' or 'n' */
  96. /* then LDB must be at least max( 1, n ), otherwise LDB must */
  97. /* be at least max( 1, k ). */
  98. /* Unchanged on exit. */
  99. /* BETA - COMPLEX . */
  100. /* On entry, BETA specifies the scalar beta. */
  101. /* Unchanged on exit. */
  102. /* C - COMPLEX array of DIMENSION ( LDC, n ). */
  103. /* Before entry with UPLO = 'U' or 'u', the leading n by n */
  104. /* upper triangular part of the array C must contain the upper */
  105. /* triangular part of the symmetric matrix and the strictly */
  106. /* lower triangular part of C is not referenced. On exit, the */
  107. /* upper triangular part of the array C is overwritten by the */
  108. /* upper triangular part of the updated matrix. */
  109. /* Before entry with UPLO = 'L' or 'l', the leading n by n */
  110. /* lower triangular part of the array C must contain the lower */
  111. /* triangular part of the symmetric matrix and the strictly */
  112. /* upper triangular part of C is not referenced. On exit, the */
  113. /* lower triangular part of the array C is overwritten by the */
  114. /* lower triangular part of the updated matrix. */
  115. /* LDC - INTEGER. */
  116. /* On entry, LDC specifies the first dimension of C as declared */
  117. /* in the calling (sub) program. LDC must be at least */
  118. /* max( 1, n ). */
  119. /* Unchanged on exit. */
  120. /* Level 3 Blas routine. */
  121. /* -- Written on 8-February-1989. */
  122. /* Jack Dongarra, Argonne National Laboratory. */
  123. /* Iain Duff, AERE Harwell. */
  124. /* Jeremy Du Croz, Numerical Algorithms Group Ltd. */
  125. /* Sven Hammarling, Numerical Algorithms Group Ltd. */
  126. /* .. External Functions .. */
  127. /* .. */
  128. /* .. External Subroutines .. */
  129. /* .. */
  130. /* .. Intrinsic Functions .. */
  131. /* .. */
  132. /* .. Local Scalars .. */
  133. /* .. */
  134. /* .. Parameters .. */
  135. /* .. */
  136. /* Test the input parameters. */
  137. /* Parameter adjustments */
  138. a_dim1 = *lda;
  139. a_offset = 1 + a_dim1;
  140. a -= a_offset;
  141. b_dim1 = *ldb;
  142. b_offset = 1 + b_dim1;
  143. b -= b_offset;
  144. c_dim1 = *ldc;
  145. c_offset = 1 + c_dim1;
  146. c__ -= c_offset;
  147. /* Function Body */
  148. if (lsame_(trans, "N")) {
  149. nrowa = *n;
  150. } else {
  151. nrowa = *k;
  152. }
  153. upper = lsame_(uplo, "U");
  154. info = 0;
  155. if (! upper && ! lsame_(uplo, "L")) {
  156. info = 1;
  157. } else if (! lsame_(trans, "N") && ! lsame_(trans,
  158. "T")) {
  159. info = 2;
  160. } else if (*n < 0) {
  161. info = 3;
  162. } else if (*k < 0) {
  163. info = 4;
  164. } else if (*lda < max(1,nrowa)) {
  165. info = 7;
  166. } else if (*ldb < max(1,nrowa)) {
  167. info = 9;
  168. } else if (*ldc < max(1,*n)) {
  169. info = 12;
  170. }
  171. if (info != 0) {
  172. xerbla_("CSYR2K", &info);
  173. return 0;
  174. }
  175. /* Quick return if possible. */
  176. if (*n == 0 || (alpha->r == 0.f && alpha->i == 0.f || *k == 0) && (
  177. beta->r == 1.f && beta->i == 0.f)) {
  178. return 0;
  179. }
  180. /* And when alpha.eq.zero. */
  181. if (alpha->r == 0.f && alpha->i == 0.f) {
  182. if (upper) {
  183. if (beta->r == 0.f && beta->i == 0.f) {
  184. i__1 = *n;
  185. for (j = 1; j <= i__1; ++j) {
  186. i__2 = j;
  187. for (i__ = 1; i__ <= i__2; ++i__) {
  188. i__3 = i__ + j * c_dim1;
  189. c__[i__3].r = 0.f, c__[i__3].i = 0.f;
  190. /* L10: */
  191. }
  192. /* L20: */
  193. }
  194. } else {
  195. i__1 = *n;
  196. for (j = 1; j <= i__1; ++j) {
  197. i__2 = j;
  198. for (i__ = 1; i__ <= i__2; ++i__) {
  199. i__3 = i__ + j * c_dim1;
  200. i__4 = i__ + j * c_dim1;
  201. q__1.r = beta->r * c__[i__4].r - beta->i * c__[i__4]
  202. .i, q__1.i = beta->r * c__[i__4].i + beta->i *
  203. c__[i__4].r;
  204. c__[i__3].r = q__1.r, c__[i__3].i = q__1.i;
  205. /* L30: */
  206. }
  207. /* L40: */
  208. }
  209. }
  210. } else {
  211. if (beta->r == 0.f && beta->i == 0.f) {
  212. i__1 = *n;
  213. for (j = 1; j <= i__1; ++j) {
  214. i__2 = *n;
  215. for (i__ = j; i__ <= i__2; ++i__) {
  216. i__3 = i__ + j * c_dim1;
  217. c__[i__3].r = 0.f, c__[i__3].i = 0.f;
  218. /* L50: */
  219. }
  220. /* L60: */
  221. }
  222. } else {
  223. i__1 = *n;
  224. for (j = 1; j <= i__1; ++j) {
  225. i__2 = *n;
  226. for (i__ = j; i__ <= i__2; ++i__) {
  227. i__3 = i__ + j * c_dim1;
  228. i__4 = i__ + j * c_dim1;
  229. q__1.r = beta->r * c__[i__4].r - beta->i * c__[i__4]
  230. .i, q__1.i = beta->r * c__[i__4].i + beta->i *
  231. c__[i__4].r;
  232. c__[i__3].r = q__1.r, c__[i__3].i = q__1.i;
  233. /* L70: */
  234. }
  235. /* L80: */
  236. }
  237. }
  238. }
  239. return 0;
  240. }
  241. /* Start the operations. */
  242. if (lsame_(trans, "N")) {
  243. /* Form C := alpha*A*B' + alpha*B*A' + C. */
  244. if (upper) {
  245. i__1 = *n;
  246. for (j = 1; j <= i__1; ++j) {
  247. if (beta->r == 0.f && beta->i == 0.f) {
  248. i__2 = j;
  249. for (i__ = 1; i__ <= i__2; ++i__) {
  250. i__3 = i__ + j * c_dim1;
  251. c__[i__3].r = 0.f, c__[i__3].i = 0.f;
  252. /* L90: */
  253. }
  254. } else if (beta->r != 1.f || beta->i != 0.f) {
  255. i__2 = j;
  256. for (i__ = 1; i__ <= i__2; ++i__) {
  257. i__3 = i__ + j * c_dim1;
  258. i__4 = i__ + j * c_dim1;
  259. q__1.r = beta->r * c__[i__4].r - beta->i * c__[i__4]
  260. .i, q__1.i = beta->r * c__[i__4].i + beta->i *
  261. c__[i__4].r;
  262. c__[i__3].r = q__1.r, c__[i__3].i = q__1.i;
  263. /* L100: */
  264. }
  265. }
  266. i__2 = *k;
  267. for (l = 1; l <= i__2; ++l) {
  268. i__3 = j + l * a_dim1;
  269. i__4 = j + l * b_dim1;
  270. if (a[i__3].r != 0.f || a[i__3].i != 0.f || (b[i__4].r !=
  271. 0.f || b[i__4].i != 0.f)) {
  272. i__3 = j + l * b_dim1;
  273. q__1.r = alpha->r * b[i__3].r - alpha->i * b[i__3].i,
  274. q__1.i = alpha->r * b[i__3].i + alpha->i * b[
  275. i__3].r;
  276. temp1.r = q__1.r, temp1.i = q__1.i;
  277. i__3 = j + l * a_dim1;
  278. q__1.r = alpha->r * a[i__3].r - alpha->i * a[i__3].i,
  279. q__1.i = alpha->r * a[i__3].i + alpha->i * a[
  280. i__3].r;
  281. temp2.r = q__1.r, temp2.i = q__1.i;
  282. i__3 = j;
  283. for (i__ = 1; i__ <= i__3; ++i__) {
  284. i__4 = i__ + j * c_dim1;
  285. i__5 = i__ + j * c_dim1;
  286. i__6 = i__ + l * a_dim1;
  287. q__3.r = a[i__6].r * temp1.r - a[i__6].i *
  288. temp1.i, q__3.i = a[i__6].r * temp1.i + a[
  289. i__6].i * temp1.r;
  290. q__2.r = c__[i__5].r + q__3.r, q__2.i = c__[i__5]
  291. .i + q__3.i;
  292. i__7 = i__ + l * b_dim1;
  293. q__4.r = b[i__7].r * temp2.r - b[i__7].i *
  294. temp2.i, q__4.i = b[i__7].r * temp2.i + b[
  295. i__7].i * temp2.r;
  296. q__1.r = q__2.r + q__4.r, q__1.i = q__2.i +
  297. q__4.i;
  298. c__[i__4].r = q__1.r, c__[i__4].i = q__1.i;
  299. /* L110: */
  300. }
  301. }
  302. /* L120: */
  303. }
  304. /* L130: */
  305. }
  306. } else {
  307. i__1 = *n;
  308. for (j = 1; j <= i__1; ++j) {
  309. if (beta->r == 0.f && beta->i == 0.f) {
  310. i__2 = *n;
  311. for (i__ = j; i__ <= i__2; ++i__) {
  312. i__3 = i__ + j * c_dim1;
  313. c__[i__3].r = 0.f, c__[i__3].i = 0.f;
  314. /* L140: */
  315. }
  316. } else if (beta->r != 1.f || beta->i != 0.f) {
  317. i__2 = *n;
  318. for (i__ = j; i__ <= i__2; ++i__) {
  319. i__3 = i__ + j * c_dim1;
  320. i__4 = i__ + j * c_dim1;
  321. q__1.r = beta->r * c__[i__4].r - beta->i * c__[i__4]
  322. .i, q__1.i = beta->r * c__[i__4].i + beta->i *
  323. c__[i__4].r;
  324. c__[i__3].r = q__1.r, c__[i__3].i = q__1.i;
  325. /* L150: */
  326. }
  327. }
  328. i__2 = *k;
  329. for (l = 1; l <= i__2; ++l) {
  330. i__3 = j + l * a_dim1;
  331. i__4 = j + l * b_dim1;
  332. if (a[i__3].r != 0.f || a[i__3].i != 0.f || (b[i__4].r !=
  333. 0.f || b[i__4].i != 0.f)) {
  334. i__3 = j + l * b_dim1;
  335. q__1.r = alpha->r * b[i__3].r - alpha->i * b[i__3].i,
  336. q__1.i = alpha->r * b[i__3].i + alpha->i * b[
  337. i__3].r;
  338. temp1.r = q__1.r, temp1.i = q__1.i;
  339. i__3 = j + l * a_dim1;
  340. q__1.r = alpha->r * a[i__3].r - alpha->i * a[i__3].i,
  341. q__1.i = alpha->r * a[i__3].i + alpha->i * a[
  342. i__3].r;
  343. temp2.r = q__1.r, temp2.i = q__1.i;
  344. i__3 = *n;
  345. for (i__ = j; i__ <= i__3; ++i__) {
  346. i__4 = i__ + j * c_dim1;
  347. i__5 = i__ + j * c_dim1;
  348. i__6 = i__ + l * a_dim1;
  349. q__3.r = a[i__6].r * temp1.r - a[i__6].i *
  350. temp1.i, q__3.i = a[i__6].r * temp1.i + a[
  351. i__6].i * temp1.r;
  352. q__2.r = c__[i__5].r + q__3.r, q__2.i = c__[i__5]
  353. .i + q__3.i;
  354. i__7 = i__ + l * b_dim1;
  355. q__4.r = b[i__7].r * temp2.r - b[i__7].i *
  356. temp2.i, q__4.i = b[i__7].r * temp2.i + b[
  357. i__7].i * temp2.r;
  358. q__1.r = q__2.r + q__4.r, q__1.i = q__2.i +
  359. q__4.i;
  360. c__[i__4].r = q__1.r, c__[i__4].i = q__1.i;
  361. /* L160: */
  362. }
  363. }
  364. /* L170: */
  365. }
  366. /* L180: */
  367. }
  368. }
  369. } else {
  370. /* Form C := alpha*A'*B + alpha*B'*A + C. */
  371. if (upper) {
  372. i__1 = *n;
  373. for (j = 1; j <= i__1; ++j) {
  374. i__2 = j;
  375. for (i__ = 1; i__ <= i__2; ++i__) {
  376. temp1.r = 0.f, temp1.i = 0.f;
  377. temp2.r = 0.f, temp2.i = 0.f;
  378. i__3 = *k;
  379. for (l = 1; l <= i__3; ++l) {
  380. i__4 = l + i__ * a_dim1;
  381. i__5 = l + j * b_dim1;
  382. q__2.r = a[i__4].r * b[i__5].r - a[i__4].i * b[i__5]
  383. .i, q__2.i = a[i__4].r * b[i__5].i + a[i__4]
  384. .i * b[i__5].r;
  385. q__1.r = temp1.r + q__2.r, q__1.i = temp1.i + q__2.i;
  386. temp1.r = q__1.r, temp1.i = q__1.i;
  387. i__4 = l + i__ * b_dim1;
  388. i__5 = l + j * a_dim1;
  389. q__2.r = b[i__4].r * a[i__5].r - b[i__4].i * a[i__5]
  390. .i, q__2.i = b[i__4].r * a[i__5].i + b[i__4]
  391. .i * a[i__5].r;
  392. q__1.r = temp2.r + q__2.r, q__1.i = temp2.i + q__2.i;
  393. temp2.r = q__1.r, temp2.i = q__1.i;
  394. /* L190: */
  395. }
  396. if (beta->r == 0.f && beta->i == 0.f) {
  397. i__3 = i__ + j * c_dim1;
  398. q__2.r = alpha->r * temp1.r - alpha->i * temp1.i,
  399. q__2.i = alpha->r * temp1.i + alpha->i *
  400. temp1.r;
  401. q__3.r = alpha->r * temp2.r - alpha->i * temp2.i,
  402. q__3.i = alpha->r * temp2.i + alpha->i *
  403. temp2.r;
  404. q__1.r = q__2.r + q__3.r, q__1.i = q__2.i + q__3.i;
  405. c__[i__3].r = q__1.r, c__[i__3].i = q__1.i;
  406. } else {
  407. i__3 = i__ + j * c_dim1;
  408. i__4 = i__ + j * c_dim1;
  409. q__3.r = beta->r * c__[i__4].r - beta->i * c__[i__4]
  410. .i, q__3.i = beta->r * c__[i__4].i + beta->i *
  411. c__[i__4].r;
  412. q__4.r = alpha->r * temp1.r - alpha->i * temp1.i,
  413. q__4.i = alpha->r * temp1.i + alpha->i *
  414. temp1.r;
  415. q__2.r = q__3.r + q__4.r, q__2.i = q__3.i + q__4.i;
  416. q__5.r = alpha->r * temp2.r - alpha->i * temp2.i,
  417. q__5.i = alpha->r * temp2.i + alpha->i *
  418. temp2.r;
  419. q__1.r = q__2.r + q__5.r, q__1.i = q__2.i + q__5.i;
  420. c__[i__3].r = q__1.r, c__[i__3].i = q__1.i;
  421. }
  422. /* L200: */
  423. }
  424. /* L210: */
  425. }
  426. } else {
  427. i__1 = *n;
  428. for (j = 1; j <= i__1; ++j) {
  429. i__2 = *n;
  430. for (i__ = j; i__ <= i__2; ++i__) {
  431. temp1.r = 0.f, temp1.i = 0.f;
  432. temp2.r = 0.f, temp2.i = 0.f;
  433. i__3 = *k;
  434. for (l = 1; l <= i__3; ++l) {
  435. i__4 = l + i__ * a_dim1;
  436. i__5 = l + j * b_dim1;
  437. q__2.r = a[i__4].r * b[i__5].r - a[i__4].i * b[i__5]
  438. .i, q__2.i = a[i__4].r * b[i__5].i + a[i__4]
  439. .i * b[i__5].r;
  440. q__1.r = temp1.r + q__2.r, q__1.i = temp1.i + q__2.i;
  441. temp1.r = q__1.r, temp1.i = q__1.i;
  442. i__4 = l + i__ * b_dim1;
  443. i__5 = l + j * a_dim1;
  444. q__2.r = b[i__4].r * a[i__5].r - b[i__4].i * a[i__5]
  445. .i, q__2.i = b[i__4].r * a[i__5].i + b[i__4]
  446. .i * a[i__5].r;
  447. q__1.r = temp2.r + q__2.r, q__1.i = temp2.i + q__2.i;
  448. temp2.r = q__1.r, temp2.i = q__1.i;
  449. /* L220: */
  450. }
  451. if (beta->r == 0.f && beta->i == 0.f) {
  452. i__3 = i__ + j * c_dim1;
  453. q__2.r = alpha->r * temp1.r - alpha->i * temp1.i,
  454. q__2.i = alpha->r * temp1.i + alpha->i *
  455. temp1.r;
  456. q__3.r = alpha->r * temp2.r - alpha->i * temp2.i,
  457. q__3.i = alpha->r * temp2.i + alpha->i *
  458. temp2.r;
  459. q__1.r = q__2.r + q__3.r, q__1.i = q__2.i + q__3.i;
  460. c__[i__3].r = q__1.r, c__[i__3].i = q__1.i;
  461. } else {
  462. i__3 = i__ + j * c_dim1;
  463. i__4 = i__ + j * c_dim1;
  464. q__3.r = beta->r * c__[i__4].r - beta->i * c__[i__4]
  465. .i, q__3.i = beta->r * c__[i__4].i + beta->i *
  466. c__[i__4].r;
  467. q__4.r = alpha->r * temp1.r - alpha->i * temp1.i,
  468. q__4.i = alpha->r * temp1.i + alpha->i *
  469. temp1.r;
  470. q__2.r = q__3.r + q__4.r, q__2.i = q__3.i + q__4.i;
  471. q__5.r = alpha->r * temp2.r - alpha->i * temp2.i,
  472. q__5.i = alpha->r * temp2.i + alpha->i *
  473. temp2.r;
  474. q__1.r = q__2.r + q__5.r, q__1.i = q__2.i + q__5.i;
  475. c__[i__3].r = q__1.r, c__[i__3].i = q__1.i;
  476. }
  477. /* L230: */
  478. }
  479. /* L240: */
  480. }
  481. }
  482. }
  483. return 0;
  484. /* End of CSYR2K. */
  485. } /* csyr2k_ */