123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339 |
- /* chpr.f -- translated by f2c (version 20061008).
- You must link the resulting object file with libf2c:
- on Microsoft Windows system, link with libf2c.lib;
- on Linux or Unix systems, link with .../path/to/libf2c.a -lm
- or, if you install libf2c.a in a standard place, with -lf2c -lm
- -- in that order, at the end of the command line, as in
- cc *.o -lf2c -lm
- Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
- http://www.netlib.org/f2c/libf2c.zip
- */
- #include "f2c.h"
- #include "blaswrap.h"
- /* Subroutine */ int chpr_(char *uplo, integer *n, real *alpha, complex *x,
- integer *incx, complex *ap)
- {
- /* System generated locals */
- integer i__1, i__2, i__3, i__4, i__5;
- real r__1;
- complex q__1, q__2;
- /* Builtin functions */
- void r_cnjg(complex *, complex *);
- /* Local variables */
- integer i__, j, k, kk, ix, jx, kx, info;
- complex temp;
- extern logical lsame_(char *, char *);
- extern /* Subroutine */ int xerbla_(char *, integer *);
- /* .. Scalar Arguments .. */
- /* .. */
- /* .. Array Arguments .. */
- /* .. */
- /* Purpose */
- /* ======= */
- /* CHPR performs the hermitian rank 1 operation */
- /* A := alpha*x*conjg( x' ) + A, */
- /* where alpha is a real scalar, x is an n element vector and A is an */
- /* n by n hermitian matrix, supplied in packed form. */
- /* Arguments */
- /* ========== */
- /* UPLO - CHARACTER*1. */
- /* On entry, UPLO specifies whether the upper or lower */
- /* triangular part of the matrix A is supplied in the packed */
- /* array AP as follows: */
- /* UPLO = 'U' or 'u' The upper triangular part of A is */
- /* supplied in AP. */
- /* UPLO = 'L' or 'l' The lower triangular part of A is */
- /* supplied in AP. */
- /* Unchanged on exit. */
- /* N - INTEGER. */
- /* On entry, N specifies the order of the matrix A. */
- /* N must be at least zero. */
- /* Unchanged on exit. */
- /* ALPHA - REAL . */
- /* On entry, ALPHA specifies the scalar alpha. */
- /* Unchanged on exit. */
- /* X - COMPLEX array of dimension at least */
- /* ( 1 + ( n - 1 )*abs( INCX ) ). */
- /* Before entry, the incremented array X must contain the n */
- /* element vector x. */
- /* Unchanged on exit. */
- /* INCX - INTEGER. */
- /* On entry, INCX specifies the increment for the elements of */
- /* X. INCX must not be zero. */
- /* Unchanged on exit. */
- /* AP - COMPLEX array of DIMENSION at least */
- /* ( ( n*( n + 1 ) )/2 ). */
- /* Before entry with UPLO = 'U' or 'u', the array AP must */
- /* contain the upper triangular part of the hermitian matrix */
- /* packed sequentially, column by column, so that AP( 1 ) */
- /* contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 1, 2 ) */
- /* and a( 2, 2 ) respectively, and so on. On exit, the array */
- /* AP is overwritten by the upper triangular part of the */
- /* updated matrix. */
- /* Before entry with UPLO = 'L' or 'l', the array AP must */
- /* contain the lower triangular part of the hermitian matrix */
- /* packed sequentially, column by column, so that AP( 1 ) */
- /* contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 2, 1 ) */
- /* and a( 3, 1 ) respectively, and so on. On exit, the array */
- /* AP is overwritten by the lower triangular part of the */
- /* updated matrix. */
- /* Note that the imaginary parts of the diagonal elements need */
- /* not be set, they are assumed to be zero, and on exit they */
- /* are set to zero. */
- /* Level 2 Blas routine. */
- /* -- Written on 22-October-1986. */
- /* Jack Dongarra, Argonne National Lab. */
- /* Jeremy Du Croz, Nag Central Office. */
- /* Sven Hammarling, Nag Central Office. */
- /* Richard Hanson, Sandia National Labs. */
- /* .. Parameters .. */
- /* .. */
- /* .. Local Scalars .. */
- /* .. */
- /* .. External Functions .. */
- /* .. */
- /* .. External Subroutines .. */
- /* .. */
- /* .. Intrinsic Functions .. */
- /* .. */
- /* Test the input parameters. */
- /* Parameter adjustments */
- --ap;
- --x;
- /* Function Body */
- info = 0;
- if (! lsame_(uplo, "U") && ! lsame_(uplo, "L")) {
- info = 1;
- } else if (*n < 0) {
- info = 2;
- } else if (*incx == 0) {
- info = 5;
- }
- if (info != 0) {
- xerbla_("CHPR ", &info);
- return 0;
- }
- /* Quick return if possible. */
- if (*n == 0 || *alpha == 0.f) {
- return 0;
- }
- /* Set the start point in X if the increment is not unity. */
- if (*incx <= 0) {
- kx = 1 - (*n - 1) * *incx;
- } else if (*incx != 1) {
- kx = 1;
- }
- /* Start the operations. In this version the elements of the array AP */
- /* are accessed sequentially with one pass through AP. */
- kk = 1;
- if (lsame_(uplo, "U")) {
- /* Form A when upper triangle is stored in AP. */
- if (*incx == 1) {
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- i__2 = j;
- if (x[i__2].r != 0.f || x[i__2].i != 0.f) {
- r_cnjg(&q__2, &x[j]);
- q__1.r = *alpha * q__2.r, q__1.i = *alpha * q__2.i;
- temp.r = q__1.r, temp.i = q__1.i;
- k = kk;
- i__2 = j - 1;
- for (i__ = 1; i__ <= i__2; ++i__) {
- i__3 = k;
- i__4 = k;
- i__5 = i__;
- q__2.r = x[i__5].r * temp.r - x[i__5].i * temp.i,
- q__2.i = x[i__5].r * temp.i + x[i__5].i *
- temp.r;
- q__1.r = ap[i__4].r + q__2.r, q__1.i = ap[i__4].i +
- q__2.i;
- ap[i__3].r = q__1.r, ap[i__3].i = q__1.i;
- ++k;
- /* L10: */
- }
- i__2 = kk + j - 1;
- i__3 = kk + j - 1;
- i__4 = j;
- q__1.r = x[i__4].r * temp.r - x[i__4].i * temp.i, q__1.i =
- x[i__4].r * temp.i + x[i__4].i * temp.r;
- r__1 = ap[i__3].r + q__1.r;
- ap[i__2].r = r__1, ap[i__2].i = 0.f;
- } else {
- i__2 = kk + j - 1;
- i__3 = kk + j - 1;
- r__1 = ap[i__3].r;
- ap[i__2].r = r__1, ap[i__2].i = 0.f;
- }
- kk += j;
- /* L20: */
- }
- } else {
- jx = kx;
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- i__2 = jx;
- if (x[i__2].r != 0.f || x[i__2].i != 0.f) {
- r_cnjg(&q__2, &x[jx]);
- q__1.r = *alpha * q__2.r, q__1.i = *alpha * q__2.i;
- temp.r = q__1.r, temp.i = q__1.i;
- ix = kx;
- i__2 = kk + j - 2;
- for (k = kk; k <= i__2; ++k) {
- i__3 = k;
- i__4 = k;
- i__5 = ix;
- q__2.r = x[i__5].r * temp.r - x[i__5].i * temp.i,
- q__2.i = x[i__5].r * temp.i + x[i__5].i *
- temp.r;
- q__1.r = ap[i__4].r + q__2.r, q__1.i = ap[i__4].i +
- q__2.i;
- ap[i__3].r = q__1.r, ap[i__3].i = q__1.i;
- ix += *incx;
- /* L30: */
- }
- i__2 = kk + j - 1;
- i__3 = kk + j - 1;
- i__4 = jx;
- q__1.r = x[i__4].r * temp.r - x[i__4].i * temp.i, q__1.i =
- x[i__4].r * temp.i + x[i__4].i * temp.r;
- r__1 = ap[i__3].r + q__1.r;
- ap[i__2].r = r__1, ap[i__2].i = 0.f;
- } else {
- i__2 = kk + j - 1;
- i__3 = kk + j - 1;
- r__1 = ap[i__3].r;
- ap[i__2].r = r__1, ap[i__2].i = 0.f;
- }
- jx += *incx;
- kk += j;
- /* L40: */
- }
- }
- } else {
- /* Form A when lower triangle is stored in AP. */
- if (*incx == 1) {
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- i__2 = j;
- if (x[i__2].r != 0.f || x[i__2].i != 0.f) {
- r_cnjg(&q__2, &x[j]);
- q__1.r = *alpha * q__2.r, q__1.i = *alpha * q__2.i;
- temp.r = q__1.r, temp.i = q__1.i;
- i__2 = kk;
- i__3 = kk;
- i__4 = j;
- q__1.r = temp.r * x[i__4].r - temp.i * x[i__4].i, q__1.i =
- temp.r * x[i__4].i + temp.i * x[i__4].r;
- r__1 = ap[i__3].r + q__1.r;
- ap[i__2].r = r__1, ap[i__2].i = 0.f;
- k = kk + 1;
- i__2 = *n;
- for (i__ = j + 1; i__ <= i__2; ++i__) {
- i__3 = k;
- i__4 = k;
- i__5 = i__;
- q__2.r = x[i__5].r * temp.r - x[i__5].i * temp.i,
- q__2.i = x[i__5].r * temp.i + x[i__5].i *
- temp.r;
- q__1.r = ap[i__4].r + q__2.r, q__1.i = ap[i__4].i +
- q__2.i;
- ap[i__3].r = q__1.r, ap[i__3].i = q__1.i;
- ++k;
- /* L50: */
- }
- } else {
- i__2 = kk;
- i__3 = kk;
- r__1 = ap[i__3].r;
- ap[i__2].r = r__1, ap[i__2].i = 0.f;
- }
- kk = kk + *n - j + 1;
- /* L60: */
- }
- } else {
- jx = kx;
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- i__2 = jx;
- if (x[i__2].r != 0.f || x[i__2].i != 0.f) {
- r_cnjg(&q__2, &x[jx]);
- q__1.r = *alpha * q__2.r, q__1.i = *alpha * q__2.i;
- temp.r = q__1.r, temp.i = q__1.i;
- i__2 = kk;
- i__3 = kk;
- i__4 = jx;
- q__1.r = temp.r * x[i__4].r - temp.i * x[i__4].i, q__1.i =
- temp.r * x[i__4].i + temp.i * x[i__4].r;
- r__1 = ap[i__3].r + q__1.r;
- ap[i__2].r = r__1, ap[i__2].i = 0.f;
- ix = jx;
- i__2 = kk + *n - j;
- for (k = kk + 1; k <= i__2; ++k) {
- ix += *incx;
- i__3 = k;
- i__4 = k;
- i__5 = ix;
- q__2.r = x[i__5].r * temp.r - x[i__5].i * temp.i,
- q__2.i = x[i__5].r * temp.i + x[i__5].i *
- temp.r;
- q__1.r = ap[i__4].r + q__2.r, q__1.i = ap[i__4].i +
- q__2.i;
- ap[i__3].r = q__1.r, ap[i__3].i = q__1.i;
- /* L70: */
- }
- } else {
- i__2 = kk;
- i__3 = kk;
- r__1 = ap[i__3].r;
- ap[i__2].r = r__1, ap[i__2].i = 0.f;
- }
- jx += *incx;
- kk = kk + *n - j + 1;
- /* L80: */
- }
- }
- }
- return 0;
- /* End of CHPR . */
- } /* chpr_ */
|