123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196 |
- --
- -- AGGREGATES
- --
- -- avoid bit-exact output here because operations may not be bit-exact.
- SET extra_float_digits = 0;
- SELECT avg(four) AS avg_1 FROM onek;
- SELECT avg(a) AS avg_32 FROM aggtest WHERE a < 100;
- -- In 7.1, avg(float4) is computed using float8 arithmetic.
- -- Round the result to 3 digits to avoid platform-specific results.
- SELECT avg(b)::numeric(10,3) AS avg_107_943 FROM aggtest;
- SELECT avg(gpa) AS avg_3_4 FROM ONLY student;
- SELECT sum(four) AS sum_1500 FROM onek;
- SELECT sum(a) AS sum_198 FROM aggtest;
- SELECT sum(gpa) AS avg_6_8 FROM ONLY student;
- SELECT max(four) AS max_3 FROM onek;
- SELECT max(a) AS max_100 FROM aggtest;
- SELECT max(aggtest.b) AS max_324_78 FROM aggtest;
- SELECT max(student.gpa) AS max_3_7 FROM student;
- SELECT stddev_pop(b) FROM aggtest;
- SELECT stddev_samp(b) FROM aggtest;
- SELECT var_pop(b) FROM aggtest;
- SELECT var_samp(b) FROM aggtest;
- SELECT stddev_pop(b::numeric) FROM aggtest;
- SELECT stddev_samp(b::numeric) FROM aggtest;
- SELECT var_pop(b::numeric) FROM aggtest;
- SELECT var_samp(b::numeric) FROM aggtest;
- -- population variance is defined for a single tuple, sample variance
- -- is not
- SELECT var_pop(1.0::float8), var_samp(2.0::float8);
- SELECT stddev_pop(3.0::float8), stddev_samp(4.0::float8);
- SELECT var_pop('inf'::float8), var_samp('inf'::float8);
- SELECT stddev_pop('inf'::float8), stddev_samp('inf'::float8);
- SELECT var_pop('nan'::float8), var_samp('nan'::float8);
- SELECT stddev_pop('nan'::float8), stddev_samp('nan'::float8);
- SELECT var_pop(1.0::float4), var_samp(2.0::float4);
- SELECT stddev_pop(3.0::float4), stddev_samp(4.0::float4);
- SELECT var_pop('inf'::float4), var_samp('inf'::float4);
- SELECT stddev_pop('inf'::float4), stddev_samp('inf'::float4);
- SELECT var_pop('nan'::float4), var_samp('nan'::float4);
- SELECT stddev_pop('nan'::float4), stddev_samp('nan'::float4);
- SELECT var_pop('inf'::numeric), var_samp('inf'::numeric);
- SELECT stddev_pop('inf'::numeric), stddev_samp('inf'::numeric);
- SELECT var_pop('nan'::numeric), var_samp('nan'::numeric);
- SELECT stddev_pop('nan'::numeric), stddev_samp('nan'::numeric);
- -- verify correct results for null and NaN inputs
- select sum(null::int4) from generate_series(1,3);
- select sum(null::int8) from generate_series(1,3);
- select sum(null::numeric) from generate_series(1,3);
- select sum(null::float8) from generate_series(1,3);
- select avg(null::int4) from generate_series(1,3);
- select avg(null::int8) from generate_series(1,3);
- select avg(null::numeric) from generate_series(1,3);
- select avg(null::float8) from generate_series(1,3);
- select sum('NaN'::numeric) from generate_series(1,3);
- select avg('NaN'::numeric) from generate_series(1,3);
- -- verify correct results for infinite inputs
- SELECT sum(x::float8), avg(x::float8), var_pop(x::float8)
- FROM (VALUES ('1'), ('infinity')) v(x);
- SELECT sum(x::float8), avg(x::float8), var_pop(x::float8)
- FROM (VALUES ('infinity'), ('1')) v(x);
- SELECT sum(x::float8), avg(x::float8), var_pop(x::float8)
- FROM (VALUES ('infinity'), ('infinity')) v(x);
- SELECT sum(x::float8), avg(x::float8), var_pop(x::float8)
- FROM (VALUES ('-infinity'), ('infinity')) v(x);
- SELECT sum(x::float8), avg(x::float8), var_pop(x::float8)
- FROM (VALUES ('-infinity'), ('-infinity')) v(x);
- SELECT sum(x::numeric), avg(x::numeric), var_pop(x::numeric)
- FROM (VALUES ('1'), ('infinity')) v(x);
- SELECT sum(x::numeric), avg(x::numeric), var_pop(x::numeric)
- FROM (VALUES ('infinity'), ('1')) v(x);
- SELECT sum(x::numeric), avg(x::numeric), var_pop(x::numeric)
- FROM (VALUES ('infinity'), ('infinity')) v(x);
- SELECT sum(x::numeric), avg(x::numeric), var_pop(x::numeric)
- FROM (VALUES ('-infinity'), ('infinity')) v(x);
- SELECT sum(x::numeric), avg(x::numeric), var_pop(x::numeric)
- FROM (VALUES ('-infinity'), ('-infinity')) v(x);
- -- test accuracy with a large input offset
- SELECT avg(x::float8), var_pop(x::float8)
- FROM (VALUES (100000003), (100000004), (100000006), (100000007)) v(x);
- SELECT avg(x::float8), var_pop(x::float8)
- FROM (VALUES (7000000000005), (7000000000007)) v(x);
- -- SQL2003 binary aggregates
- SELECT regr_count(b, a) FROM aggtest;
- SELECT regr_sxx(b, a) FROM aggtest;
- SELECT regr_syy(b, a) FROM aggtest;
- SELECT regr_sxy(b, a) FROM aggtest;
- SELECT regr_avgx(b, a), regr_avgy(b, a) FROM aggtest;
- SELECT regr_r2(b, a) FROM aggtest;
- SELECT regr_slope(b, a), regr_intercept(b, a) FROM aggtest;
- SELECT covar_pop(b, a), covar_samp(b, a) FROM aggtest;
- SELECT corr(b, a) FROM aggtest;
- -- check single-tuple behavior
- SELECT covar_pop(1::float8,2::float8), covar_samp(3::float8,4::float8);
- SELECT covar_pop(1::float8,'inf'::float8), covar_samp(3::float8,'inf'::float8);
- SELECT covar_pop(1::float8,'nan'::float8), covar_samp(3::float8,'nan'::float8);
- -- test accum and combine functions directly
- CREATE TABLE regr_test (x float8, y float8);
- INSERT INTO regr_test VALUES (10,150),(20,250),(30,350),(80,540),(100,200);
- SELECT float8_accum('{4,140,2900}'::float8[], 100);
- SELECT float8_regr_accum('{4,140,2900,1290,83075,15050}'::float8[], 200, 100);
- SELECT float8_combine('{3,60,200}'::float8[], '{0,0,0}'::float8[]);
- SELECT float8_combine('{0,0,0}'::float8[], '{2,180,200}'::float8[]);
- SELECT float8_combine('{3,60,200}'::float8[], '{2,180,200}'::float8[]);
- SELECT float8_regr_combine('{3,60,200,750,20000,2000}'::float8[],
- '{0,0,0,0,0,0}'::float8[]);
- SELECT float8_regr_combine('{0,0,0,0,0,0}'::float8[],
- '{2,180,200,740,57800,-3400}'::float8[]);
- SELECT float8_regr_combine('{3,60,200,750,20000,2000}'::float8[],
- '{2,180,200,740,57800,-3400}'::float8[]);
- DROP TABLE regr_test;
- -- test count, distinct
- SELECT count(four) AS cnt_1000 FROM onek;
- SELECT count(DISTINCT four) AS cnt_4 FROM onek;
- select ten, count(*), sum(four) from onek
- group by ten order by ten;
- select ten, count(four), sum(DISTINCT four) from onek
- group by ten order by ten;
- --
- -- test for bitwise integer aggregates
- --
- CREATE TEMPORARY TABLE bitwise_test(
- i2 INT2,
- i4 INT4,
- i8 INT8,
- i INTEGER,
- x INT2,
- y BIT(4)
- );
- CREATE TEMPORARY TABLE bool_test(
- b1 BOOL,
- b2 BOOL,
- b3 BOOL,
- b4 BOOL);
- select min(unique1) from tenk1;
- select max(unique1) from tenk1;
- select max(unique1) from tenk1 where unique1 < 42;
- select max(unique1) from tenk1 where unique1 > 42;
- -- the planner may choose a generic aggregate here if parallel query is
- -- enabled, since that plan will be parallel safe and the "optimized"
- -- plan, which has almost identical cost, will not be. we want to test
- -- the optimized plan, so temporarily disable parallel query.
- begin;
- select max(unique1) from tenk1 where unique1 > 42000;
- rollback;
- select max(tenthous) from tenk1 where thousand = 33;
- select min(tenthous) from tenk1 where thousand = 33;
- select distinct max(unique2) from tenk1;
- select max(unique2) from tenk1 order by 1;
- select max(unique2) from tenk1 order by max(unique2);
- select max(unique2) from tenk1 order by max(unique2)+1;
- select max(100) from tenk1;
- -- try it on an inheritance tree
- create table minmaxtest(f1 int);
- create index minmaxtesti on minmaxtest(f1);
- create index minmaxtest1i on minmaxtest1(f1);
- create index minmaxtest2i on minmaxtest2(f1 desc);
- insert into minmaxtest values(11), (12);
- --
- -- Test removal of redundant GROUP BY columns
- --
- create temp table t1 (a int, b int, c int, d int, primary key (a, b));
- create temp table t2 (x int, y int, z int, primary key (x, y));
- drop table t2;
- --
- -- Test GROUP BY matching of join columns that are type-coerced due to USING
- --
- create temp table t1(f1 int, f2 bigint);
- create temp table t2(f1 bigint, f22 bigint);
- drop table t1, t2;
- select array_agg(distinct a)
- from (values (1),(2),(1),(3),(null),(2)) v(a);
- -- string_agg tests
- select string_agg(a,',') from (values('aaaa'),('bbbb'),('cccc')) g(a);
- select string_agg(a,',') from (values('aaaa'),(null),('bbbb'),('cccc')) g(a);
- select string_agg(a,'AB') from (values(null),(null),('bbbb'),('cccc')) g(a);
- select string_agg(a,',') from (values(null),(null)) g(a);
- -- string_agg bytea tests
- create table bytea_test_table(v bytea);
- select string_agg(v, '') from bytea_test_table;
- insert into bytea_test_table values(decode('ff','hex'));
- select string_agg(v, '') from bytea_test_table;
- insert into bytea_test_table values(decode('aa','hex'));
- select string_agg(v, '') from bytea_test_table;
- select string_agg(v, NULL) from bytea_test_table;
- select string_agg(v, decode('ee', 'hex')) from bytea_test_table;
- drop table bytea_test_table;
- -- outer reference in FILTER (PostgreSQL extension)
- select (select count(*)
- from (values (1)) t0(inner_c))
- from (values (2),(3)) t1(outer_c); -- inner query is aggregation query
- select p, percentile_cont(p order by p) within group (order by x) -- error
- from generate_series(1,5) x,
- (values (0::float8),(0.1),(0.25),(0.4),(0.5),(0.6),(0.75),(0.9),(1)) v(p)
- group by p order by p;
- -- test aggregates with common transition functions share the same states
- begin work;
|