ib_collective.cpp 48 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315
  1. #include "stdafx.h"
  2. #include "ib_collective.h"
  3. #include "ib_mem.h"
  4. #include "ib_buffers.h"
  5. #include "ib_low.h"
  6. #include "udp_http.h"
  7. #include "udp_address.h"
  8. #include <util/generic/deque.h>
  9. #include <util/system/hp_timer.h>
  10. namespace NNetliba {
  11. const int COL_SERVICE_LEVEL = 2;
  12. const int COL_DATA_SERVICE_LEVEL = 2; // base level
  13. const int COL_DATA_SERVICE_LEVEL_COUNT = 6; // level count
  14. const int MAX_REQS_PER_PEER = 32;
  15. const int MAX_TOTAL_RDMA = 20;
  16. const int SEND_COUNT_TABLE_SIZE = 1 << 12; // must be power of 2
  17. struct TMergeRecord {
  18. struct TTransfer {
  19. int DstRank;
  20. int SL;
  21. int RangeBeg, RangeFin;
  22. int Id;
  23. TTransfer()
  24. : DstRank(-1)
  25. , SL(0)
  26. , RangeBeg(0)
  27. , RangeFin(0)
  28. , Id(0)
  29. {
  30. }
  31. TTransfer(int dstRank, int sl, int rangeBeg, int rangeFin, int id)
  32. : DstRank(dstRank)
  33. , SL(sl)
  34. , RangeBeg(rangeBeg)
  35. , RangeFin(rangeFin)
  36. , Id(id)
  37. {
  38. }
  39. };
  40. struct TInTransfer {
  41. int SrcRank;
  42. int SL;
  43. TInTransfer()
  44. : SrcRank(-1)
  45. , SL(0)
  46. {
  47. }
  48. TInTransfer(int srcRank, int sl)
  49. : SrcRank(srcRank)
  50. , SL(sl)
  51. {
  52. }
  53. };
  54. TVector<TTransfer> OutList;
  55. TVector<TInTransfer> InList;
  56. ui64 RecvMask;
  57. TMergeRecord()
  58. : RecvMask(0)
  59. {
  60. }
  61. };
  62. struct TMergeIteration {
  63. TVector<TMergeRecord> Ops;
  64. void Init(int colSize) {
  65. Ops.resize(colSize);
  66. }
  67. void Transfer(int srcRank, int dstRank, int sl, int rangeBeg, int rangeFin, int id) {
  68. Y_ABORT_UNLESS(id < 64, "recv mask overflow");
  69. Ops[srcRank].OutList.push_back(TMergeRecord::TTransfer(dstRank, sl, rangeBeg, rangeFin, id));
  70. Ops[dstRank].InList.push_back(TMergeRecord::TInTransfer(srcRank, sl));
  71. Ops[dstRank].RecvMask |= ui64(1) << id;
  72. }
  73. };
  74. struct TMergePlan {
  75. TVector<TMergeIteration> Iterations;
  76. TVector<int> RankReceiveCount;
  77. int ColSize;
  78. int MaxRankReceiveCount;
  79. TMergePlan()
  80. : ColSize(0)
  81. , MaxRankReceiveCount(0)
  82. {
  83. }
  84. void Init(int colSize) {
  85. Iterations.resize(0);
  86. RankReceiveCount.resize(0);
  87. RankReceiveCount.resize(colSize, 0);
  88. ColSize = colSize;
  89. }
  90. void Transfer(int iter, int srcRank, int dstRank, int sl, int rangeBeg, int rangeFin) {
  91. while (iter >= Iterations.ysize()) {
  92. TMergeIteration& res = Iterations.emplace_back();
  93. res.Init(ColSize);
  94. }
  95. int id = RankReceiveCount[dstRank]++;
  96. MaxRankReceiveCount = Max(MaxRankReceiveCount, id + 1);
  97. Y_ASSERT(id < 64);
  98. Iterations[iter].Transfer(srcRank, dstRank, sl, rangeBeg, rangeFin, id);
  99. }
  100. };
  101. struct TSRTransfer {
  102. int SrcRank, DstRank;
  103. int RangeBeg, RangeFin;
  104. TSRTransfer() {
  105. Zero(*this);
  106. }
  107. TSRTransfer(int srcRank, int dstRank, int rangeBeg, int rangeFin)
  108. : SrcRank(srcRank)
  109. , DstRank(dstRank)
  110. , RangeBeg(rangeBeg)
  111. , RangeFin(rangeFin)
  112. {
  113. }
  114. };
  115. static int SplitRange(THashMap<int, TVector<TSRTransfer>>* res, int iter, int beg, int fin) {
  116. int mid = (beg + fin + 1) / 2;
  117. if (mid == fin) {
  118. return iter;
  119. }
  120. for (int i = 0; i < fin - mid; ++i) {
  121. (*res)[iter].push_back(TSRTransfer(beg + i, mid + i, beg, mid));
  122. (*res)[iter].push_back(TSRTransfer(mid + i, beg + i, mid, fin));
  123. }
  124. if (fin - mid < mid - beg) {
  125. // [mid - 1] did not receive [mid;fin)
  126. (*res)[iter].push_back(TSRTransfer(mid, mid - 1, mid, fin));
  127. }
  128. int rv1 = SplitRange(res, iter + 1, beg, mid);
  129. int rv2 = SplitRange(res, iter + 1, mid, fin);
  130. return Max(rv1, rv2);
  131. }
  132. static void CreatePow2Merge(TMergePlan* plan, int colSize) {
  133. // finally everybody has full range [0;ColSize)
  134. // construct plan recursively, on each iteration split some range
  135. plan->Init(colSize);
  136. THashMap<int, TVector<TSRTransfer>> allTransfers;
  137. int maxIter = SplitRange(&allTransfers, 0, 0, colSize);
  138. for (int iter = 0; iter < maxIter; ++iter) {
  139. const TVector<TSRTransfer>& arr = allTransfers[maxIter - iter - 1]; // reverse order
  140. for (int i = 0; i < arr.ysize(); ++i) {
  141. const TSRTransfer& sr = arr[i];
  142. plan->Transfer(iter, sr.SrcRank, sr.DstRank, 0, sr.RangeBeg, sr.RangeFin);
  143. }
  144. }
  145. }
  146. struct TCoverInterval {
  147. int Beg, Fin; // [Beg;Fin)
  148. TCoverInterval()
  149. : Beg(0)
  150. , Fin(0)
  151. {
  152. }
  153. TCoverInterval(int b, int f)
  154. : Beg(b)
  155. , Fin(f)
  156. {
  157. }
  158. };
  159. enum EAllToAllMode {
  160. AA_POW2,
  161. AA_CIRCLE,
  162. AA_STAR,
  163. AA_POW2_MERGE,
  164. };
  165. static int AllToAll(TMergePlan* plan, int iter, int sl, EAllToAllMode mode, const TVector<int>& myGroup, TVector<TCoverInterval>* cover) {
  166. TVector<TCoverInterval>& hostCoverage = *cover;
  167. int groupSize = myGroup.ysize();
  168. for (int k = 1; k < groupSize; ++k) {
  169. int h1 = myGroup[k - 1];
  170. int h2 = myGroup[k];
  171. Y_ABORT_UNLESS(hostCoverage[h1].Fin == hostCoverage[h2].Beg, "Invalid host order in CreateGroupMerge()");
  172. }
  173. switch (mode) {
  174. case AA_POW2: {
  175. for (int delta = 1; delta < groupSize; delta *= 2) {
  176. int sz = Min(delta, groupSize - delta);
  177. for (int offset = 0; offset < groupSize; ++offset) {
  178. int srcRank = myGroup[offset];
  179. int dstRank = myGroup[(offset + delta) % groupSize];
  180. int start = offset + 1 - sz;
  181. int finish = offset + 1;
  182. if (start < 0) {
  183. // [start; myGroup.size())
  184. int dataBeg = hostCoverage[myGroup[start + groupSize]].Beg;
  185. int dataFin = hostCoverage[myGroup.back()].Fin;
  186. plan->Transfer(iter, srcRank, dstRank, sl, dataBeg, dataFin);
  187. // [0; finish)
  188. dataBeg = hostCoverage[myGroup[0]].Beg;
  189. dataFin = hostCoverage[myGroup[finish - 1]].Fin;
  190. plan->Transfer(iter, srcRank, dstRank, sl, dataBeg, dataFin);
  191. } else {
  192. // [start;finish)
  193. int dataBeg = hostCoverage[myGroup[start]].Beg;
  194. int dataFin = hostCoverage[myGroup[finish - 1]].Fin;
  195. plan->Transfer(iter, srcRank, dstRank, sl, dataBeg, dataFin);
  196. }
  197. }
  198. ++iter;
  199. }
  200. } break;
  201. case AA_CIRCLE: {
  202. for (int dataDelta = 1; dataDelta < groupSize; ++dataDelta) {
  203. for (int offset = 0; offset < groupSize; ++offset) {
  204. int srcRank = myGroup[offset];
  205. int dstRank = myGroup[(offset + 1) % groupSize];
  206. int dataRank = myGroup[(offset + 1 - dataDelta + groupSize) % groupSize];
  207. int dataBeg = hostCoverage[dataRank].Beg;
  208. int dataFin = hostCoverage[dataRank].Fin;
  209. plan->Transfer(iter, srcRank, dstRank, sl, dataBeg, dataFin);
  210. }
  211. ++iter;
  212. }
  213. } break;
  214. case AA_STAR: {
  215. for (int offset = 0; offset < groupSize; ++offset) {
  216. for (int delta = 1; delta < groupSize; ++delta) {
  217. int srcRank = myGroup[offset];
  218. int dstRank = myGroup[(offset + delta) % groupSize];
  219. int dataRank = myGroup[offset];
  220. int dataBeg = hostCoverage[dataRank].Beg;
  221. int dataFin = hostCoverage[dataRank].Fin;
  222. plan->Transfer(iter, srcRank, dstRank, sl, dataBeg, dataFin);
  223. }
  224. }
  225. ++iter;
  226. } break;
  227. case AA_POW2_MERGE: {
  228. TMergePlan pp;
  229. CreatePow2Merge(&pp, groupSize);
  230. for (int z = 0; z < pp.Iterations.ysize(); ++z) {
  231. const TMergeIteration& mm = pp.Iterations[z];
  232. for (int src = 0; src < mm.Ops.ysize(); ++src) {
  233. const TMergeRecord& mr = mm.Ops[src];
  234. int srcRank = myGroup[src];
  235. for (int i = 0; i < mr.OutList.ysize(); ++i) {
  236. int dstRank = myGroup[mr.OutList[i].DstRank];
  237. plan->Transfer(iter, srcRank, dstRank, sl, 0, 1);
  238. }
  239. }
  240. ++iter;
  241. }
  242. } break;
  243. default:
  244. Y_ASSERT(0);
  245. break;
  246. }
  247. {
  248. TCoverInterval cc(hostCoverage[myGroup[0]].Beg, hostCoverage[myGroup.back()].Fin);
  249. for (int k = 0; k < groupSize; ++k) {
  250. hostCoverage[myGroup[k]] = cc;
  251. }
  252. }
  253. return iter;
  254. }
  255. // fully populated matrix
  256. static void CreateGroupMerge(TMergePlan* plan, EAllToAllMode mode, const TVector<TVector<int>>& hostGroup) {
  257. int hostCount = hostGroup[0].ysize();
  258. int groupTypeCount = hostGroup.ysize();
  259. plan->Init(hostCount);
  260. TVector<int> gcount;
  261. gcount.resize(groupTypeCount, 0);
  262. for (int hostId = 0; hostId < hostCount; ++hostId) {
  263. for (int groupType = 0; groupType < groupTypeCount; ++groupType) {
  264. int val = hostGroup[groupType][hostId];
  265. gcount[groupType] = Max(gcount[groupType], val + 1);
  266. }
  267. }
  268. for (int hostId = 1; hostId < hostCount; ++hostId) {
  269. bool isIncrement = true;
  270. for (int groupType = 0; groupType < groupTypeCount; ++groupType) {
  271. int prev = hostGroup[groupType][hostId - 1];
  272. int cur = hostGroup[groupType][hostId];
  273. if (isIncrement) {
  274. if (cur == prev + 1) {
  275. isIncrement = false;
  276. } else {
  277. Y_ABORT_UNLESS(cur == 0, "ib_hosts, wrapped to non-zero");
  278. Y_ABORT_UNLESS(prev == gcount[groupType] - 1, "ib_hosts, structure is irregular");
  279. isIncrement = true;
  280. }
  281. } else {
  282. Y_ABORT_UNLESS(prev == cur, "ib_hosts, structure is irregular");
  283. }
  284. }
  285. }
  286. TVector<TCoverInterval> hostCoverage;
  287. for (int i = 0; i < hostCount; ++i) {
  288. hostCoverage.push_back(TCoverInterval(i, i + 1));
  289. }
  290. int baseIter = 0;
  291. for (int groupType = hostGroup.ysize() - 1; groupType >= 0; --groupType) {
  292. Y_ASSERT(hostGroup[groupType].ysize() == hostCount);
  293. TVector<TVector<int>> hh;
  294. hh.resize(gcount[groupType]);
  295. for (int rank = 0; rank < hostGroup[groupType].ysize(); ++rank) {
  296. int groupId = hostGroup[groupType][rank];
  297. hh[groupId].push_back(rank);
  298. }
  299. int newIter = 0;
  300. for (int groupId = 0; groupId < hh.ysize(); ++groupId) {
  301. int nn = AllToAll(plan, baseIter, 0, mode, hh[groupId], &hostCoverage); // seems to be fastest
  302. if (newIter == 0) {
  303. newIter = nn;
  304. } else {
  305. Y_ABORT_UNLESS(newIter == nn, "groups should be of same size");
  306. }
  307. }
  308. baseIter = newIter;
  309. }
  310. //printf("%d iterations symmetrical plan\n", baseIter);
  311. }
  312. //////////////////////////////////////////////////////////////////////////
  313. struct TAllDataSync {
  314. static constexpr int WR_COUNT = 64 * 2;
  315. int CurrentBuffer;
  316. TIntrusivePtr<TIBMemBlock> MemBlock[2];
  317. TIntrusivePtr<TComplectionQueue> CQ;
  318. TIntrusivePtr<TSharedReceiveQueue> SRQ;
  319. TIntrusivePtr<TIBMemBlock> FakeRecvMem;
  320. size_t DataSize, BufSize;
  321. size_t CurrentOffset, ReadyOffset;
  322. bool WasFlushed;
  323. int ActiveRDMACount;
  324. ui64 FutureRecvMask;
  325. TIntrusivePtr<IReduceOp> ReduceOp;
  326. struct TBlockInfo {
  327. ui64 Addr;
  328. ui32 Key;
  329. };
  330. struct TSend {
  331. TBlockInfo RemoteBlocks[2];
  332. TIntrusivePtr<TRCQueuePair> QP;
  333. size_t SrcOffset;
  334. size_t DstOffset;
  335. size_t Length;
  336. ui32 ImmData;
  337. int DstRank;
  338. union {
  339. struct {
  340. int RangeBeg, RangeFin;
  341. } Gather;
  342. struct {
  343. int SrcIndex, DstIndex;
  344. } Reduce;
  345. };
  346. };
  347. struct TRecv {
  348. TIntrusivePtr<TRCQueuePair> QP;
  349. int SrcRank;
  350. };
  351. struct TReduce {
  352. size_t DstOffset, SrcOffset;
  353. int DstIndex, SrcIndex;
  354. };
  355. struct TIteration {
  356. TVector<TSend> OutList;
  357. TVector<TRecv> InList;
  358. TVector<TReduce> ReduceList;
  359. ui64 RecvMask;
  360. };
  361. TVector<TIteration> Iterations;
  362. public:
  363. void* GetRawData() {
  364. char* myData = (char*)MemBlock[CurrentBuffer]->GetData();
  365. return myData + CurrentOffset;
  366. }
  367. size_t GetRawDataSize() {
  368. return DataSize;
  369. }
  370. void PostRecv() {
  371. SRQ->PostReceive(FakeRecvMem->GetMemRegion(), 0, FakeRecvMem->GetData(), FakeRecvMem->GetSize());
  372. }
  373. void Sync() {
  374. Y_ASSERT(WasFlushed && "Have to call Flush() before data fill & Sync()");
  375. char* myData = (char*)MemBlock[CurrentBuffer]->GetData();
  376. ui64 recvMask = FutureRecvMask;
  377. FutureRecvMask = 0;
  378. int recvDebt = 0;
  379. for (int z = 0; z < Iterations.ysize(); ++z) {
  380. const TIteration& iter = Iterations[z];
  381. for (int k = 0; k < iter.OutList.ysize(); ++k) {
  382. const TSend& ss = iter.OutList[k];
  383. const TBlockInfo& remoteBlk = ss.RemoteBlocks[CurrentBuffer];
  384. ss.QP->PostRDMAWriteImm(remoteBlk.Addr + ss.DstOffset, remoteBlk.Key, ss.ImmData,
  385. MemBlock[CurrentBuffer]->GetMemRegion(), 0, myData + ss.SrcOffset, ss.Length);
  386. ++ActiveRDMACount;
  387. //printf("-> %d, imm %d (%" PRId64 " bytes)\n", ss.DstRank, ss.ImmData, ss.Length);
  388. //printf("send %d\n", ss.SrcOffset);
  389. }
  390. ibv_wc wc;
  391. while ((recvMask & iter.RecvMask) != iter.RecvMask) {
  392. int rv = CQ->Poll(&wc, 1);
  393. if (rv > 0) {
  394. Y_ABORT_UNLESS(wc.status == IBV_WC_SUCCESS, "AllGather::Sync fail, status %d", (int)wc.status);
  395. if (wc.opcode == IBV_WC_RECV_RDMA_WITH_IMM) {
  396. //printf("Got %d\n", wc.imm_data);
  397. ++recvDebt;
  398. ui64 newBit = ui64(1) << wc.imm_data;
  399. if (recvMask & newBit) {
  400. Y_ABORT_UNLESS((FutureRecvMask & newBit) == 0, "data from 2 Sync() ahead is impossible");
  401. FutureRecvMask |= newBit;
  402. } else {
  403. recvMask |= newBit;
  404. }
  405. } else if (wc.opcode == IBV_WC_RDMA_WRITE) {
  406. --ActiveRDMACount;
  407. } else {
  408. Y_ASSERT(0);
  409. }
  410. } else {
  411. if (recvDebt > 0) {
  412. PostRecv();
  413. --recvDebt;
  414. }
  415. }
  416. }
  417. for (int k = 0; k < iter.ReduceList.ysize(); ++k) {
  418. const TReduce& rr = iter.ReduceList[k];
  419. ReduceOp->Reduce(myData + rr.DstOffset, myData + rr.SrcOffset, DataSize);
  420. //printf("Merge %d -> %d (%d bytes)\n", rr.SrcOffset, rr.DstOffset, DataSize);
  421. }
  422. //printf("Iteration %d done\n", z);
  423. }
  424. while (recvDebt > 0) {
  425. PostRecv();
  426. --recvDebt;
  427. }
  428. CurrentOffset = ReadyOffset;
  429. WasFlushed = false;
  430. //printf("new cur offset %g\n", (double)CurrentOffset);
  431. //printf("Sync complete\n");
  432. }
  433. void Flush() {
  434. Y_ASSERT(!WasFlushed);
  435. CurrentBuffer = 1 - CurrentBuffer;
  436. CurrentOffset = 0;
  437. WasFlushed = true;
  438. }
  439. public:
  440. TAllDataSync(size_t bufSize, TPtrArg<TIBMemPool> memPool, TPtrArg<IReduceOp> reduceOp)
  441. : CurrentBuffer(0)
  442. , DataSize(0)
  443. , BufSize(bufSize)
  444. , CurrentOffset(0)
  445. , ReadyOffset(0)
  446. , WasFlushed(false)
  447. , ActiveRDMACount(0)
  448. , FutureRecvMask(0)
  449. , ReduceOp(reduceOp)
  450. {
  451. if (memPool) {
  452. MemBlock[0] = memPool->Alloc(BufSize);
  453. MemBlock[1] = memPool->Alloc(BufSize);
  454. CQ = new TComplectionQueue(memPool->GetIBContext(), WR_COUNT);
  455. SRQ = new TSharedReceiveQueue(memPool->GetIBContext(), WR_COUNT);
  456. FakeRecvMem = memPool->Alloc(4096);
  457. } else {
  458. MemBlock[0] = new TIBMemBlock(BufSize);
  459. MemBlock[1] = new TIBMemBlock(BufSize);
  460. CQ = new TComplectionQueue(nullptr, WR_COUNT);
  461. SRQ = new TSharedReceiveQueue(nullptr, WR_COUNT);
  462. FakeRecvMem = new TIBMemBlock(4096);
  463. }
  464. for (int i = 0; i < WR_COUNT; ++i) {
  465. PostRecv();
  466. }
  467. }
  468. ~TAllDataSync() {
  469. while (ActiveRDMACount > 0) {
  470. ibv_wc wc;
  471. int rv = CQ->Poll(&wc, 1);
  472. if (rv > 0) {
  473. if (wc.opcode == IBV_WC_RDMA_WRITE) {
  474. --ActiveRDMACount;
  475. } else {
  476. Y_ASSERT(0);
  477. }
  478. }
  479. }
  480. }
  481. };
  482. class TAllReduce: public IAllReduce {
  483. TAllDataSync DataSync;
  484. size_t BufSizeMult;
  485. size_t ReadyOffsetMult;
  486. public:
  487. TAllReduce(size_t bufSize, TPtrArg<TIBMemPool> memPool, TPtrArg<IReduceOp> reduceOp)
  488. : DataSync(bufSize, memPool, reduceOp)
  489. , BufSizeMult(0)
  490. , ReadyOffsetMult(0)
  491. {
  492. }
  493. TAllDataSync& GetDataSync() {
  494. return DataSync;
  495. }
  496. void* GetRawData() override {
  497. return DataSync.GetRawData();
  498. }
  499. size_t GetRawDataSize() override {
  500. return DataSync.GetRawDataSize();
  501. }
  502. void Sync() override {
  503. DataSync.Sync();
  504. }
  505. void Flush() override {
  506. DataSync.Flush();
  507. }
  508. bool Resize(size_t dataSize) override {
  509. size_t repSize = (dataSize + 63) & (~63ull);
  510. size_t bufSize = repSize * BufSizeMult;
  511. if (bufSize > DataSync.BufSize) {
  512. return false;
  513. }
  514. for (int z = 0; z < DataSync.Iterations.ysize(); ++z) {
  515. TAllDataSync::TIteration& iter = DataSync.Iterations[z];
  516. for (int i = 0; i < iter.OutList.ysize(); ++i) {
  517. TAllDataSync::TSend& snd = iter.OutList[i];
  518. snd.Length = dataSize;
  519. snd.SrcOffset = snd.Reduce.SrcIndex * repSize;
  520. snd.DstOffset = snd.Reduce.DstIndex * repSize;
  521. }
  522. for (int i = 0; i < iter.ReduceList.ysize(); ++i) {
  523. TAllDataSync::TReduce& red = iter.ReduceList[i];
  524. red.SrcOffset = red.SrcIndex * repSize;
  525. red.DstOffset = red.DstIndex * repSize;
  526. }
  527. }
  528. DataSync.ReadyOffset = ReadyOffsetMult * repSize;
  529. DataSync.DataSize = dataSize;
  530. return true;
  531. }
  532. friend class TIBCollective;
  533. };
  534. class TAllGather: public IAllGather {
  535. TAllDataSync DataSync;
  536. int ColSize;
  537. public:
  538. TAllGather(int colSize, size_t bufSize, TPtrArg<TIBMemPool> memPool)
  539. : DataSync(bufSize, memPool, nullptr)
  540. , ColSize(colSize)
  541. {
  542. }
  543. TAllDataSync& GetDataSync() {
  544. return DataSync;
  545. }
  546. void* GetRawData() override {
  547. return DataSync.GetRawData();
  548. }
  549. size_t GetRawDataSize() override {
  550. return DataSync.GetRawDataSize();
  551. }
  552. void Sync() override {
  553. DataSync.Sync();
  554. }
  555. void Flush() override {
  556. DataSync.Flush();
  557. }
  558. bool Resize(const TVector<size_t>& szPerRank) override {
  559. Y_ABORT_UNLESS(szPerRank.ysize() == ColSize, "Invalid size array");
  560. TVector<size_t> offsets;
  561. offsets.push_back(0);
  562. for (int rank = 0; rank < ColSize; ++rank) {
  563. offsets.push_back(offsets.back() + szPerRank[rank]);
  564. }
  565. size_t dataSize = offsets.back();
  566. if (dataSize > DataSync.BufSize) {
  567. return false;
  568. }
  569. for (int z = 0; z < DataSync.Iterations.ysize(); ++z) {
  570. TAllDataSync::TIteration& iter = DataSync.Iterations[z];
  571. for (int i = 0; i < iter.OutList.ysize(); ++i) {
  572. TAllDataSync::TSend& snd = iter.OutList[i];
  573. int rangeBeg = snd.Gather.RangeBeg;
  574. int rangeFin = snd.Gather.RangeFin;
  575. snd.Length = offsets[rangeFin] - offsets[rangeBeg];
  576. snd.SrcOffset = offsets[rangeBeg];
  577. snd.DstOffset = snd.SrcOffset;
  578. }
  579. }
  580. DataSync.DataSize = dataSize;
  581. return true;
  582. }
  583. };
  584. struct TIBAddr {
  585. int LID, SL;
  586. TIBAddr()
  587. : LID(0)
  588. , SL(0)
  589. {
  590. }
  591. TIBAddr(int lid, int sl)
  592. : LID(lid)
  593. , SL(sl)
  594. {
  595. }
  596. };
  597. inline bool operator==(const TIBAddr& a, const TIBAddr& b) {
  598. return a.LID == b.LID && a.SL == b.SL;
  599. }
  600. inline bool operator<(const TIBAddr& a, const TIBAddr& b) {
  601. if (a.LID == b.LID) {
  602. return a.SL < b.SL;
  603. }
  604. return a.LID < b.LID;
  605. }
  606. struct TIBAddrHash {
  607. int operator()(const TIBAddr& a) const {
  608. return a.LID + a.SL * 4254515;
  609. }
  610. };
  611. class TIBCollective: public IIBCollective {
  612. struct TPendingMessage {
  613. int QPN;
  614. ui64 WorkId;
  615. TPendingMessage() {
  616. Zero(*this);
  617. }
  618. TPendingMessage(int qpn, ui64 wid)
  619. : QPN(qpn)
  620. , WorkId(wid)
  621. {
  622. }
  623. };
  624. struct TBlockInform {
  625. TAllDataSync::TBlockInfo RemoteBlocks[2];
  626. int PSN, QPN;
  627. };
  628. struct TPeerConnection {
  629. TAllDataSync::TBlockInfo RemoteBlocks[2];
  630. TIntrusivePtr<TRCQueuePair> QP;
  631. };
  632. struct TBWTest {
  633. ui64 Addr;
  634. ui32 RKey;
  635. };
  636. TIntrusivePtr<TIBPort> Port;
  637. TIntrusivePtr<TIBMemPool> MemPool;
  638. int ColSize, ColRank;
  639. TVector<int> Hosts; // host LIDs
  640. TVector<TVector<int>> HostGroup;
  641. TVector<TIntrusivePtr<TRCQueuePair>> Peers;
  642. TIntrusivePtr<TComplectionQueue> CQ;
  643. TIntrusivePtr<TIBBufferPool> BP;
  644. ui8 SendCountTable[SEND_COUNT_TABLE_SIZE];
  645. ui8 RDMACountTable[SEND_COUNT_TABLE_SIZE];
  646. TDeque<TPendingMessage> Pending;
  647. TMergePlan MergePlan, ReducePlan;
  648. int QPNTableSizeLog;
  649. void WriteCompleted(const ibv_wc& wc) {
  650. --SendCountTable[wc.qp_num & (SEND_COUNT_TABLE_SIZE - 1)];
  651. if (wc.opcode == IBV_WC_RDMA_WRITE) {
  652. --RDMACountTable[wc.qp_num & (SEND_COUNT_TABLE_SIZE - 1)];
  653. }
  654. BP->FreeBuf(wc.wr_id);
  655. }
  656. bool GetMsg(ui64* resWorkId, int* resQPN, TIBMicroPeerTable* tbl) {
  657. if (tbl->NeedParsePending()) {
  658. for (TDeque<TPendingMessage>::iterator z = Pending.begin(); z != Pending.end(); ++z) {
  659. if (!tbl->NeedQPN(z->QPN)) {
  660. continue;
  661. }
  662. *resWorkId = z->WorkId;
  663. *resQPN = z->QPN;
  664. Pending.erase(z);
  665. return true;
  666. }
  667. //printf("Stop parse pending\n");
  668. tbl->StopParsePending();
  669. }
  670. for (;;) {
  671. ibv_wc wc;
  672. int rv = CQ->Poll(&wc, 1);
  673. if (rv > 0) {
  674. Y_ABORT_UNLESS(wc.status == IBV_WC_SUCCESS, "WaitForMsg() fail, status %d", (int)wc.status);
  675. if (wc.opcode & IBV_WC_RECV) {
  676. BP->RequestPostRecv();
  677. if (tbl->NeedQPN(wc.qp_num)) {
  678. *resWorkId = wc.wr_id;
  679. *resQPN = wc.qp_num;
  680. return true;
  681. } else {
  682. Pending.push_back(TPendingMessage(wc.qp_num, wc.wr_id));
  683. BP->PostRecv();
  684. }
  685. } else {
  686. WriteCompleted(wc);
  687. }
  688. } else {
  689. return false;
  690. }
  691. }
  692. }
  693. bool ProcessSendCompletion(const ibv_wc& wc) {
  694. Y_ABORT_UNLESS(wc.status == IBV_WC_SUCCESS, "WaitForMsg() fail, status %d", (int)wc.status);
  695. if (wc.opcode & IBV_WC_RECV) {
  696. BP->RequestPostRecv();
  697. Pending.push_back(TPendingMessage(wc.qp_num, wc.wr_id));
  698. BP->PostRecv();
  699. } else {
  700. WriteCompleted(wc);
  701. return true;
  702. }
  703. return false;
  704. }
  705. void WaitCompletion(ibv_wc* res) {
  706. ibv_wc& wc = *res;
  707. for (;;) {
  708. int rv = CQ->Poll(&wc, 1);
  709. if (rv > 0 && ProcessSendCompletion(wc)) {
  710. break;
  711. }
  712. }
  713. }
  714. bool TryWaitCompletion() override {
  715. ibv_wc wc;
  716. for (;;) {
  717. int rv = CQ->Poll(&wc, 1);
  718. if (rv > 0) {
  719. if (ProcessSendCompletion(wc)) {
  720. return true;
  721. }
  722. } else {
  723. return false;
  724. }
  725. }
  726. }
  727. void WaitCompletion() override {
  728. ibv_wc wc;
  729. WaitCompletion(&wc);
  730. }
  731. ui64 WaitForMsg(int qpn) {
  732. for (TDeque<TPendingMessage>::iterator z = Pending.begin(); z != Pending.end(); ++z) {
  733. if (z->QPN == qpn) {
  734. ui64 workId = z->WorkId;
  735. Pending.erase(z);
  736. return workId;
  737. }
  738. }
  739. ibv_wc wc;
  740. for (;;) {
  741. int rv = CQ->Poll(&wc, 1);
  742. if (rv > 0) {
  743. Y_ABORT_UNLESS(wc.status == IBV_WC_SUCCESS, "WaitForMsg() fail, status %d", (int)wc.status);
  744. if (wc.opcode & IBV_WC_RECV) {
  745. BP->RequestPostRecv();
  746. if ((int)wc.qp_num == qpn) {
  747. return wc.wr_id;
  748. } else {
  749. Pending.push_back(TPendingMessage(wc.qp_num, wc.wr_id));
  750. BP->PostRecv();
  751. }
  752. } else {
  753. WriteCompleted(wc);
  754. }
  755. }
  756. }
  757. }
  758. bool AllocOperationSlot(TPtrArg<TRCQueuePair> qp) {
  759. int way = qp->GetQPN() & (SEND_COUNT_TABLE_SIZE - 1);
  760. if (SendCountTable[way] >= MAX_REQS_PER_PEER) {
  761. return false;
  762. }
  763. ++SendCountTable[way];
  764. return true;
  765. }
  766. bool AllocRDMAWriteSlot(TPtrArg<TRCQueuePair> qp) {
  767. int way = qp->GetQPN() & (SEND_COUNT_TABLE_SIZE - 1);
  768. if (SendCountTable[way] >= MAX_REQS_PER_PEER) {
  769. return false;
  770. }
  771. if (RDMACountTable[way] >= MAX_OUTSTANDING_RDMA) {
  772. return false;
  773. }
  774. ++SendCountTable[way];
  775. ++RDMACountTable[way];
  776. return true;
  777. }
  778. bool TryPostSend(TPtrArg<TRCQueuePair> qp, const void* data, size_t len) {
  779. if (AllocOperationSlot(qp)) {
  780. BP->PostSend(qp, data, len);
  781. return true;
  782. }
  783. return false;
  784. }
  785. void PostSend(TPtrArg<TRCQueuePair> qp, const void* data, size_t len) {
  786. while (!TryPostSend(qp, data, len)) {
  787. WaitCompletion();
  788. }
  789. }
  790. int GetRank() override {
  791. return ColRank;
  792. }
  793. int GetSize() override {
  794. return ColSize;
  795. }
  796. int GetGroupTypeCount() override {
  797. return HostGroup.ysize();
  798. }
  799. int GetQPN(int rank) override {
  800. if (rank == ColRank) {
  801. Y_ASSERT(0 && "there is no qpn connected to localhost");
  802. return 0;
  803. }
  804. return Peers[rank]->GetQPN();
  805. }
  806. void Start(const TCollectiveLinkSet& links) override {
  807. Hosts = links.Hosts;
  808. HostGroup = links.HostGroup;
  809. for (int k = 0; k < ColSize; ++k) {
  810. if (k == ColRank) {
  811. continue;
  812. }
  813. const TCollectiveLinkSet::TLinkInfo& lnk = links.Links[k];
  814. ibv_ah_attr peerAddr;
  815. MakeAH(&peerAddr, Port, Hosts[k], COL_SERVICE_LEVEL);
  816. Peers[k]->Init(peerAddr, lnk.QPN, lnk.PSN);
  817. }
  818. //CreatePow2Merge(&MergePlan, ColSize);
  819. //CreatePow2Merge(&ReducePlan, ColSize);
  820. CreateGroupMerge(&MergePlan, AA_STAR, HostGroup);
  821. CreateGroupMerge(&ReducePlan, AA_POW2_MERGE, HostGroup);
  822. }
  823. void CreateDataSyncQPs(
  824. TPtrArg<TComplectionQueue> cq,
  825. TPtrArg<TSharedReceiveQueue> srq,
  826. TPtrArg<TIBMemBlock> memBlock0,
  827. TPtrArg<TIBMemBlock> memBlock1,
  828. const TMergePlan& plan,
  829. THashMap<TIBAddr, TPeerConnection, TIBAddrHash>* res) {
  830. THashMap<TIBAddr, TPeerConnection, TIBAddrHash>& connections = *res;
  831. TIBMemBlock* memBlock[2] = {memBlock0, memBlock1};
  832. // make full peer list
  833. TVector<TIBAddr> peerList;
  834. for (int z = 0; z < plan.Iterations.ysize(); ++z) {
  835. const TMergeRecord& rr = plan.Iterations[z].Ops[ColRank];
  836. for (int i = 0; i < rr.OutList.ysize(); ++i) {
  837. const TMergeRecord::TTransfer& tr = rr.OutList[i];
  838. peerList.push_back(TIBAddr(tr.DstRank, tr.SL));
  839. }
  840. for (int i = 0; i < rr.InList.ysize(); ++i) {
  841. const TMergeRecord::TInTransfer& tr = rr.InList[i];
  842. peerList.push_back(TIBAddr(tr.SrcRank, tr.SL));
  843. }
  844. }
  845. Sort(peerList.begin(), peerList.end());
  846. peerList.erase(Unique(peerList.begin(), peerList.end()), peerList.end());
  847. // establish QPs and exchange mem block handlers
  848. for (int z = 0; z < peerList.ysize(); ++z) {
  849. const TIBAddr& ibAddr = peerList[z];
  850. int dstRank = ibAddr.LID;
  851. TPeerConnection& dst = connections[ibAddr];
  852. dst.QP = new TRCQueuePair(Port->GetCtx(), cq, srq, TAllDataSync::WR_COUNT);
  853. TBlockInform myBlock;
  854. for (int k = 0; k < 2; ++k) {
  855. myBlock.RemoteBlocks[k].Addr = memBlock[k]->GetAddr();
  856. myBlock.RemoteBlocks[k].Key = memBlock[k]->GetMemRegion()->GetRKey();
  857. }
  858. myBlock.PSN = dst.QP->GetPSN();
  859. myBlock.QPN = dst.QP->GetQPN();
  860. PostSend(Peers[dstRank], &myBlock, sizeof(myBlock));
  861. }
  862. for (int z = 0; z < peerList.ysize(); ++z) {
  863. const TIBAddr& ibAddr = peerList[z];
  864. int dstRank = ibAddr.LID;
  865. int sl = COL_DATA_SERVICE_LEVEL + ClampVal(ibAddr.SL, 0, COL_DATA_SERVICE_LEVEL_COUNT);
  866. TPeerConnection& dst = connections[ibAddr];
  867. ui64 wr_id = WaitForMsg(Peers[dstRank]->GetQPN());
  868. TIBRecvPacketProcess pkt(*BP, wr_id);
  869. const TBlockInform& info = *(TBlockInform*)pkt.GetData();
  870. ibv_ah_attr peerAddr;
  871. MakeAH(&peerAddr, Port, Hosts[dstRank], COL_DATA_SERVICE_LEVEL + sl);
  872. dst.QP->Init(peerAddr, info.QPN, info.PSN);
  873. dst.RemoteBlocks[0] = info.RemoteBlocks[0];
  874. dst.RemoteBlocks[1] = info.RemoteBlocks[1];
  875. }
  876. Fence();
  877. }
  878. IAllGather* CreateAllGather(const TVector<size_t>& szPerRank) override {
  879. const TMergePlan& plan = MergePlan;
  880. Y_ABORT_UNLESS(szPerRank.ysize() == ColSize, "Invalid size array");
  881. size_t totalSize = 0;
  882. for (int i = 0; i < szPerRank.ysize(); ++i) {
  883. totalSize += szPerRank[i];
  884. }
  885. size_t bufSize = 4096;
  886. while (totalSize >= bufSize) {
  887. bufSize *= 2;
  888. }
  889. TAllGather* res = new TAllGather(ColSize, bufSize, MemPool);
  890. TAllDataSync& ds = res->GetDataSync();
  891. THashMap<TIBAddr, TPeerConnection, TIBAddrHash> connections;
  892. CreateDataSyncQPs(ds.CQ, ds.SRQ, ds.MemBlock[0], ds.MemBlock[1], plan, &connections);
  893. // build plan
  894. for (int z = 0; z < plan.Iterations.ysize(); ++z) {
  895. const TMergeRecord& rr = plan.Iterations[z].Ops[ColRank];
  896. if (rr.OutList.empty() && rr.InList.empty()) {
  897. continue;
  898. }
  899. TAllDataSync::TIteration& iter = ds.Iterations.emplace_back();
  900. for (int i = 0; i < rr.OutList.ysize(); ++i) {
  901. const TMergeRecord::TTransfer& tr = rr.OutList[i];
  902. TAllDataSync::TSend& snd = iter.OutList.emplace_back();
  903. TPeerConnection& pc = connections[TIBAddr(tr.DstRank, tr.SL)];
  904. snd.ImmData = tr.Id;
  905. snd.Gather.RangeBeg = tr.RangeBeg;
  906. snd.Gather.RangeFin = tr.RangeFin;
  907. snd.QP = pc.QP;
  908. snd.RemoteBlocks[0] = pc.RemoteBlocks[0];
  909. snd.RemoteBlocks[1] = pc.RemoteBlocks[1];
  910. snd.DstRank = tr.DstRank;
  911. }
  912. for (int i = 0; i < rr.InList.ysize(); ++i) {
  913. const TMergeRecord::TInTransfer& tr = rr.InList[i];
  914. TAllDataSync::TRecv& rcv = iter.InList.emplace_back();
  915. TPeerConnection& pc = connections[TIBAddr(tr.SrcRank, tr.SL)];
  916. rcv.QP = pc.QP;
  917. rcv.SrcRank = tr.SrcRank;
  918. }
  919. iter.RecvMask = rr.RecvMask;
  920. }
  921. bool rv = res->Resize(szPerRank);
  922. Y_ABORT_UNLESS(rv, "oops");
  923. return res;
  924. }
  925. IAllGather* CreateAllGather(size_t szPerRank) override {
  926. TVector<size_t> arr;
  927. arr.resize(ColSize, szPerRank);
  928. return CreateAllGather(arr);
  929. }
  930. IAllReduce* CreateAllReduce(size_t dataSize, TPtrArg<IReduceOp> reduceOp) override {
  931. const TMergePlan& plan = ReducePlan;
  932. size_t bufSizeMult = plan.MaxRankReceiveCount + 1;
  933. size_t bufSize = 4096;
  934. {
  935. size_t sz = (dataSize + 64) * bufSizeMult;
  936. while (sz > bufSize) {
  937. bufSize *= 2;
  938. }
  939. }
  940. TAllReduce* res = new TAllReduce(bufSize, MemPool, reduceOp);
  941. TAllDataSync& ds = res->GetDataSync();
  942. THashMap<TIBAddr, TPeerConnection, TIBAddrHash> connections;
  943. CreateDataSyncQPs(ds.CQ, ds.SRQ, ds.MemBlock[0], ds.MemBlock[1], plan, &connections);
  944. // build plan
  945. int currentDataOffset = 0;
  946. for (int z = 0; z < plan.Iterations.ysize(); ++z) {
  947. const TMergeRecord& rr = plan.Iterations[z].Ops[ColRank];
  948. if (rr.OutList.empty() && rr.InList.empty()) {
  949. continue;
  950. }
  951. TAllDataSync::TIteration& iter = ds.Iterations.emplace_back();
  952. for (int i = 0; i < rr.OutList.ysize(); ++i) {
  953. const TMergeRecord::TTransfer& tr = rr.OutList[i];
  954. TAllDataSync::TSend& snd = iter.OutList.emplace_back();
  955. TPeerConnection& pc = connections[TIBAddr(tr.DstRank, tr.SL)];
  956. snd.ImmData = tr.Id;
  957. snd.Reduce.SrcIndex = currentDataOffset;
  958. snd.Reduce.DstIndex = tr.Id + 1;
  959. snd.QP = pc.QP;
  960. snd.RemoteBlocks[0] = pc.RemoteBlocks[0];
  961. snd.RemoteBlocks[1] = pc.RemoteBlocks[1];
  962. snd.DstRank = tr.DstRank;
  963. }
  964. for (int i = 0; i < rr.InList.ysize(); ++i) {
  965. const TMergeRecord::TInTransfer& tr = rr.InList[i];
  966. TAllDataSync::TRecv& rcv = iter.InList.emplace_back();
  967. TPeerConnection& pc = connections[TIBAddr(tr.SrcRank, tr.SL)];
  968. rcv.QP = pc.QP;
  969. rcv.SrcRank = tr.SrcRank;
  970. }
  971. iter.RecvMask = rr.RecvMask;
  972. TVector<int> inputOffset;
  973. inputOffset.push_back(currentDataOffset);
  974. int newDataOffset = currentDataOffset;
  975. for (int i = 0; i < 64; ++i) {
  976. if (rr.RecvMask & (1ull << i)) {
  977. int offset = i + 1;
  978. inputOffset.push_back(offset);
  979. newDataOffset = Max(offset, newDataOffset);
  980. }
  981. }
  982. for (int i = 0; i < inputOffset.ysize(); ++i) {
  983. if (inputOffset[i] == newDataOffset) {
  984. continue;
  985. }
  986. TAllDataSync::TReduce& red = iter.ReduceList.emplace_back();
  987. red.SrcIndex = inputOffset[i];
  988. red.DstIndex = newDataOffset;
  989. }
  990. currentDataOffset = newDataOffset;
  991. }
  992. res->BufSizeMult = bufSizeMult;
  993. res->ReadyOffsetMult = currentDataOffset;
  994. bool rv = res->Resize(dataSize);
  995. Y_ABORT_UNLESS(rv, "oops");
  996. return res;
  997. }
  998. void Fence() override {
  999. const TMergePlan& plan = ReducePlan;
  1000. for (int z = 0; z < plan.Iterations.ysize(); ++z) {
  1001. const TMergeRecord& rr = plan.Iterations[z].Ops[ColRank];
  1002. for (int i = 0; i < rr.OutList.ysize(); ++i) {
  1003. const TMergeRecord::TTransfer& tr = rr.OutList[i];
  1004. char c;
  1005. PostSend(Peers[tr.DstRank], &c, sizeof(c));
  1006. }
  1007. for (int i = 0; i < rr.InList.ysize(); ++i) {
  1008. const TMergeRecord::TInTransfer& tr = rr.InList[i];
  1009. ui64 wr_id = WaitForMsg(Peers[tr.SrcRank]->GetQPN());
  1010. TIBRecvPacketProcess pkt(*BP, wr_id);
  1011. }
  1012. }
  1013. }
  1014. void RunBWTest(int groupType, int delta, int* targetRank, float* res) override {
  1015. const int BUF_SIZE = 8 * 1024 * 1024;
  1016. TIntrusivePtr<TIBMemBlock> sendMem, recvMem;
  1017. sendMem = MemPool->Alloc(BUF_SIZE);
  1018. recvMem = MemPool->Alloc(BUF_SIZE);
  1019. int myGroup = HostGroup[groupType][ColRank];
  1020. int myGroupPos = 0;
  1021. TVector<int> gg;
  1022. Y_ASSERT(HostGroup[groupType].ysize() == ColSize);
  1023. for (int rank = 0; rank < ColSize; ++rank) {
  1024. if (HostGroup[groupType][rank] == myGroup) {
  1025. if (rank == ColRank) {
  1026. myGroupPos = gg.ysize();
  1027. }
  1028. gg.push_back(rank);
  1029. }
  1030. }
  1031. if (delta >= gg.ysize()) {
  1032. *targetRank = -1;
  1033. *res = 0;
  1034. return;
  1035. }
  1036. int sendRank = gg[(myGroupPos + delta) % gg.ysize()];
  1037. int recvRank = gg[(myGroupPos + gg.ysize() - delta) % gg.ysize()];
  1038. *targetRank = sendRank;
  1039. TIntrusivePtr<TRCQueuePair> sendRC = Peers[sendRank];
  1040. TIntrusivePtr<TRCQueuePair> recvRC = Peers[recvRank];
  1041. {
  1042. TBWTest bw;
  1043. bw.Addr = recvMem->GetAddr();
  1044. bw.RKey = recvMem->GetMemRegion()->GetRKey();
  1045. PostSend(recvRC, &bw, sizeof(bw));
  1046. }
  1047. TBWTest dstMem;
  1048. {
  1049. ui64 wr_id = WaitForMsg(sendRC->GetQPN());
  1050. TIBRecvPacketProcess pkt(*BP, wr_id);
  1051. dstMem = *(TBWTest*)pkt.GetData();
  1052. }
  1053. // run
  1054. TVector<double> score;
  1055. for (int iter = 0; iter < 5; ++iter) {
  1056. while (!AllocRDMAWriteSlot(sendRC)) {
  1057. WaitCompletion();
  1058. Y_ASSERT(0 && "measurements are imprecise");
  1059. }
  1060. NHPTimer::STime t;
  1061. NHPTimer::GetTime(&t);
  1062. sendRC->PostRDMAWrite(dstMem.Addr, dstMem.RKey, sendMem->GetMemRegion(), 0, sendMem->GetData(), BUF_SIZE);
  1063. for (;;) {
  1064. ibv_wc wc;
  1065. WaitCompletion(&wc);
  1066. if (wc.opcode == IBV_WC_RDMA_WRITE) {
  1067. if (wc.qp_num != (ui32)sendRC->GetQPN()) {
  1068. abort();
  1069. }
  1070. break;
  1071. }
  1072. }
  1073. double tPassed = NHPTimer::GetTimePassed(&t);
  1074. double speed = BUF_SIZE / tPassed / 1000000000.0; // G/sec
  1075. score.push_back(speed);
  1076. }
  1077. Sort(score.begin(), score.end());
  1078. // signal completion & wait for signal
  1079. *res = score[score.size() / 2];
  1080. {
  1081. char bb;
  1082. PostSend(sendRC, &bb, sizeof(bb));
  1083. ui64 wr_id = WaitForMsg(recvRC->GetQPN());
  1084. TIBRecvPacketProcess pkt(*BP, wr_id);
  1085. }
  1086. }
  1087. bool TrySendMicro(int dstRank, const void* data, int dataSize) override {
  1088. return TryPostSend(Peers[dstRank], data, dataSize);
  1089. }
  1090. void InitPeerTable(TIBMicroPeerTable* res) override {
  1091. res->Init(QPNTableSizeLog);
  1092. }
  1093. void RdmaWrite(const TVector<TRdmaRequest>& reqs) override {
  1094. TVector<TVector<int>> reqPerRank;
  1095. reqPerRank.resize(ColSize);
  1096. int reqCount = reqs.ysize();
  1097. for (int i = 0; i < reqCount; ++i) {
  1098. reqPerRank[reqs[i].DstRank].push_back(i);
  1099. }
  1100. int inFlight = 0; // IB congestion control sucks :/ so we limit number of simultaneous rdmas
  1101. int startRank = ColRank;
  1102. while (reqCount > 0) {
  1103. if (inFlight < MAX_TOTAL_RDMA) {
  1104. for (int z = 0; z < ColSize; ++z) {
  1105. int dstRank = (startRank + 1 + z) % ColSize;
  1106. if (reqPerRank[dstRank].empty()) {
  1107. continue;
  1108. }
  1109. Y_ASSERT(dstRank != ColRank && "sending self is meaningless");
  1110. TRCQueuePair* qp = Peers[dstRank].Get();
  1111. if (AllocRDMAWriteSlot(qp)) {
  1112. const TRdmaRequest& rr = reqs[reqPerRank[dstRank].back()];
  1113. qp->PostRDMAWrite(rr.RemoteAddr, rr.RemoteKey, rr.LocalAddr, rr.LocalKey, 0, rr.Size);
  1114. reqPerRank[dstRank].pop_back();
  1115. if (++inFlight >= MAX_TOTAL_RDMA) {
  1116. startRank = dstRank;
  1117. break;
  1118. }
  1119. }
  1120. }
  1121. }
  1122. {
  1123. ibv_wc wc;
  1124. WaitCompletion(&wc);
  1125. if (wc.opcode == IBV_WC_RDMA_WRITE) {
  1126. --inFlight;
  1127. --reqCount;
  1128. }
  1129. }
  1130. }
  1131. }
  1132. public:
  1133. TIBCollective(TPtrArg<TIBPort> port, TPtrArg<TIBMemPool> memPool,
  1134. const TCollectiveInit& params,
  1135. TCollectiveLinkSet* resLinks)
  1136. : Port(port)
  1137. , MemPool(memPool)
  1138. , QPNTableSizeLog(0)
  1139. {
  1140. ColSize = params.Size;
  1141. ColRank = params.Rank;
  1142. int maxOutstandingQueries = MAX_REQS_PER_PEER * ColSize + 10;
  1143. CQ = new TComplectionQueue(Port->GetCtx(), maxOutstandingQueries * 2);
  1144. BP = new TIBBufferPool(Port->GetCtx(), maxOutstandingQueries);
  1145. Peers.resize(ColSize);
  1146. resLinks->Links.resize(ColSize);
  1147. TVector<int> qpnArr;
  1148. for (int k = 0; k < ColSize; ++k) {
  1149. if (k == ColRank) {
  1150. continue;
  1151. }
  1152. TRCQueuePair* rc = new TRCQueuePair(Port->GetCtx(), CQ, BP->GetSRQ(), MAX_REQS_PER_PEER);
  1153. Peers[k] = rc;
  1154. TCollectiveLinkSet::TLinkInfo& lnk = resLinks->Links[k];
  1155. lnk.PSN = rc->GetPSN();
  1156. lnk.QPN = rc->GetQPN();
  1157. qpnArr.push_back(lnk.QPN);
  1158. }
  1159. resLinks->Hosts.resize(ColSize);
  1160. resLinks->Hosts[ColRank] = Port->GetLID();
  1161. static_assert(MAX_REQS_PER_PEER < 256, "expect MAX_REQS_PER_PEER < 256"); // sent count will fit into SendCountTable[]
  1162. Zero(SendCountTable);
  1163. Zero(RDMACountTable);
  1164. if (!qpnArr.empty()) {
  1165. for (;;) {
  1166. TVector<ui8> qpnTable;
  1167. int qpnTableSize = 1 << QPNTableSizeLog;
  1168. qpnTable.resize(qpnTableSize, 0);
  1169. bool ok = true;
  1170. for (int i = 0; i < qpnArr.ysize(); ++i) {
  1171. int idx = qpnArr[i] & (qpnTableSize - 1);
  1172. if (++qpnTable[idx] == 2) {
  1173. ok = false;
  1174. break;
  1175. }
  1176. }
  1177. if (ok) {
  1178. break;
  1179. }
  1180. ++QPNTableSizeLog;
  1181. }
  1182. //printf("QPN table, size_log %d\n", QPNTableSizeLog);
  1183. }
  1184. }
  1185. friend class TIBRecvMicro;
  1186. };
  1187. TIBRecvMicro::TIBRecvMicro(IIBCollective* col, TIBMicroPeerTable* peerTable)
  1188. : IB(*(TIBCollective*)col)
  1189. {
  1190. Y_ASSERT(typeid(IB) == typeid(TIBCollective));
  1191. if (IB.GetMsg(&Id, &QPN, peerTable)) {
  1192. Data = IB.BP->GetBufData(Id);
  1193. } else {
  1194. Data = nullptr;
  1195. }
  1196. }
  1197. TIBRecvMicro::~TIBRecvMicro() {
  1198. if (Data) {
  1199. IB.BP->FreeBuf(Id);
  1200. IB.BP->PostRecv();
  1201. }
  1202. }
  1203. IIBCollective* CreateCollective(const TCollectiveInit& params, TCollectiveLinkSet* resLinks) {
  1204. return new TIBCollective(GetIBDevice(), GetIBMemPool(), params, resLinks);
  1205. }
  1206. }