123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247 |
- // Copyright 2017 The Abseil Authors.
- //
- // Licensed under the Apache License, Version 2.0 (the "License");
- // you may not use this file except in compliance with the License.
- // You may obtain a copy of the License at
- //
- // https://www.apache.org/licenses/LICENSE-2.0
- //
- // Unless required by applicable law or agreed to in writing, software
- // distributed under the License is distributed on an "AS IS" BASIS,
- // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- // See the License for the specific language governing permissions and
- // limitations under the License.
- #ifndef ABSL_RANDOM_DISCRETE_DISTRIBUTION_H_
- #define ABSL_RANDOM_DISCRETE_DISTRIBUTION_H_
- #include <cassert>
- #include <cmath>
- #include <istream>
- #include <limits>
- #include <numeric>
- #include <type_traits>
- #include <utility>
- #include <vector>
- #include "absl/random/bernoulli_distribution.h"
- #include "absl/random/internal/iostream_state_saver.h"
- #include "absl/random/uniform_int_distribution.h"
- namespace absl {
- ABSL_NAMESPACE_BEGIN
- // absl::discrete_distribution
- //
- // A discrete distribution produces random integers i, where 0 <= i < n
- // distributed according to the discrete probability function:
- //
- // P(i|p0,...,pn−1)=pi
- //
- // This class is an implementation of discrete_distribution (see
- // [rand.dist.samp.discrete]).
- //
- // The algorithm used is Walker's Aliasing algorithm, described in Knuth, Vol 2.
- // absl::discrete_distribution takes O(N) time to precompute the probabilities
- // (where N is the number of possible outcomes in the distribution) at
- // construction, and then takes O(1) time for each variate generation. Many
- // other implementations also take O(N) time to construct an ordered sequence of
- // partial sums, plus O(log N) time per variate to binary search.
- //
- template <typename IntType = int>
- class discrete_distribution {
- public:
- using result_type = IntType;
- class param_type {
- public:
- using distribution_type = discrete_distribution;
- param_type() { init(); }
- template <typename InputIterator>
- explicit param_type(InputIterator begin, InputIterator end)
- : p_(begin, end) {
- init();
- }
- explicit param_type(std::initializer_list<double> weights) : p_(weights) {
- init();
- }
- template <class UnaryOperation>
- explicit param_type(size_t nw, double xmin, double xmax,
- UnaryOperation fw) {
- if (nw > 0) {
- p_.reserve(nw);
- double delta = (xmax - xmin) / static_cast<double>(nw);
- assert(delta > 0);
- double t = delta * 0.5;
- for (size_t i = 0; i < nw; ++i) {
- p_.push_back(fw(xmin + i * delta + t));
- }
- }
- init();
- }
- const std::vector<double>& probabilities() const { return p_; }
- size_t n() const { return p_.size() - 1; }
- friend bool operator==(const param_type& a, const param_type& b) {
- return a.probabilities() == b.probabilities();
- }
- friend bool operator!=(const param_type& a, const param_type& b) {
- return !(a == b);
- }
- private:
- friend class discrete_distribution;
- void init();
- std::vector<double> p_; // normalized probabilities
- std::vector<std::pair<double, size_t>> q_; // (acceptance, alternate) pairs
- static_assert(std::is_integral<result_type>::value,
- "Class-template absl::discrete_distribution<> must be "
- "parameterized using an integral type.");
- };
- discrete_distribution() : param_() {}
- explicit discrete_distribution(const param_type& p) : param_(p) {}
- template <typename InputIterator>
- explicit discrete_distribution(InputIterator begin, InputIterator end)
- : param_(begin, end) {}
- explicit discrete_distribution(std::initializer_list<double> weights)
- : param_(weights) {}
- template <class UnaryOperation>
- explicit discrete_distribution(size_t nw, double xmin, double xmax,
- UnaryOperation fw)
- : param_(nw, xmin, xmax, std::move(fw)) {}
- void reset() {}
- // generating functions
- template <typename URBG>
- result_type operator()(URBG& g) { // NOLINT(runtime/references)
- return (*this)(g, param_);
- }
- template <typename URBG>
- result_type operator()(URBG& g, // NOLINT(runtime/references)
- const param_type& p);
- const param_type& param() const { return param_; }
- void param(const param_type& p) { param_ = p; }
- result_type(min)() const { return 0; }
- result_type(max)() const {
- return static_cast<result_type>(param_.n());
- } // inclusive
- // NOTE [rand.dist.sample.discrete] returns a std::vector<double> not a
- // const std::vector<double>&.
- const std::vector<double>& probabilities() const {
- return param_.probabilities();
- }
- friend bool operator==(const discrete_distribution& a,
- const discrete_distribution& b) {
- return a.param_ == b.param_;
- }
- friend bool operator!=(const discrete_distribution& a,
- const discrete_distribution& b) {
- return a.param_ != b.param_;
- }
- private:
- param_type param_;
- };
- // --------------------------------------------------------------------------
- // Implementation details only below
- // --------------------------------------------------------------------------
- namespace random_internal {
- // Using the vector `*probabilities`, whose values are the weights or
- // probabilities of an element being selected, constructs the proportional
- // probabilities used by the discrete distribution. `*probabilities` will be
- // scaled, if necessary, so that its entries sum to a value sufficiently close
- // to 1.0.
- std::vector<std::pair<double, size_t>> InitDiscreteDistribution(
- std::vector<double>* probabilities);
- } // namespace random_internal
- template <typename IntType>
- void discrete_distribution<IntType>::param_type::init() {
- if (p_.empty()) {
- p_.push_back(1.0);
- q_.emplace_back(1.0, 0);
- } else {
- assert(n() <= (std::numeric_limits<IntType>::max)());
- q_ = random_internal::InitDiscreteDistribution(&p_);
- }
- }
- template <typename IntType>
- template <typename URBG>
- typename discrete_distribution<IntType>::result_type
- discrete_distribution<IntType>::operator()(
- URBG& g, // NOLINT(runtime/references)
- const param_type& p) {
- const auto idx = absl::uniform_int_distribution<result_type>(0, p.n())(g);
- const auto& q = p.q_[idx];
- const bool selected = absl::bernoulli_distribution(q.first)(g);
- return selected ? idx : static_cast<result_type>(q.second);
- }
- template <typename CharT, typename Traits, typename IntType>
- std::basic_ostream<CharT, Traits>& operator<<(
- std::basic_ostream<CharT, Traits>& os, // NOLINT(runtime/references)
- const discrete_distribution<IntType>& x) {
- auto saver = random_internal::make_ostream_state_saver(os);
- const auto& probabilities = x.param().probabilities();
- os << probabilities.size();
- os.precision(random_internal::stream_precision_helper<double>::kPrecision);
- for (const auto& p : probabilities) {
- os << os.fill() << p;
- }
- return os;
- }
- template <typename CharT, typename Traits, typename IntType>
- std::basic_istream<CharT, Traits>& operator>>(
- std::basic_istream<CharT, Traits>& is, // NOLINT(runtime/references)
- discrete_distribution<IntType>& x) { // NOLINT(runtime/references)
- using param_type = typename discrete_distribution<IntType>::param_type;
- auto saver = random_internal::make_istream_state_saver(is);
- size_t n;
- std::vector<double> p;
- is >> n;
- if (is.fail()) return is;
- if (n > 0) {
- p.reserve(n);
- for (IntType i = 0; i < n && !is.fail(); ++i) {
- auto tmp = random_internal::read_floating_point<double>(is);
- if (is.fail()) return is;
- p.push_back(tmp);
- }
- }
- x.param(param_type(p.begin(), p.end()));
- return is;
- }
- ABSL_NAMESPACE_END
- } // namespace absl
- #endif // ABSL_RANDOM_DISCRETE_DISTRIBUTION_H_
|