123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130 |
- // Copyright 2019 The Abseil Authors.
- //
- // Licensed under the Apache License, Version 2.0 (the "License");
- // you may not use this file except in compliance with the License.
- // You may obtain a copy of the License at
- //
- // https://www.apache.org/licenses/LICENSE-2.0
- //
- // Unless required by applicable law or agreed to in writing, software
- // distributed under the License is distributed on an "AS IS" BASIS,
- // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- // See the License for the specific language governing permissions and
- // limitations under the License.
- #ifndef ABSL_PROFILING_INTERNAL_EXPONENTIAL_BIASED_H_
- #define ABSL_PROFILING_INTERNAL_EXPONENTIAL_BIASED_H_
- #include <stdint.h>
- #include "absl/base/config.h"
- #include "absl/base/macros.h"
- namespace absl {
- ABSL_NAMESPACE_BEGIN
- namespace profiling_internal {
- // ExponentialBiased provides a small and fast random number generator for a
- // rounded exponential distribution. This generator manages very little state,
- // and imposes no synchronization overhead. This makes it useful in specialized
- // scenarios requiring minimum overhead, such as stride based periodic sampling.
- //
- // ExponentialBiased provides two closely related functions, GetSkipCount() and
- // GetStride(), both returning a rounded integer defining a number of events
- // required before some event with a given mean probability occurs.
- //
- // The distribution is useful to generate a random wait time or some periodic
- // event with a given mean probability. For example, if an action is supposed to
- // happen on average once every 'N' events, then we can get a random 'stride'
- // counting down how long before the event to happen. For example, if we'd want
- // to sample one in every 1000 'Frobber' calls, our code could look like this:
- //
- // Frobber::Frobber() {
- // stride_ = exponential_biased_.GetStride(1000);
- // }
- //
- // void Frobber::Frob(int arg) {
- // if (--stride == 0) {
- // SampleFrob(arg);
- // stride_ = exponential_biased_.GetStride(1000);
- // }
- // ...
- // }
- //
- // The rounding of the return value creates a bias, especially for smaller means
- // where the distribution of the fraction is not evenly distributed. We correct
- // this bias by tracking the fraction we rounded up or down on each iteration,
- // effectively tracking the distance between the cumulative value, and the
- // rounded cumulative value. For example, given a mean of 2:
- //
- // raw = 1.63076, cumulative = 1.63076, rounded = 2, bias = -0.36923
- // raw = 0.14624, cumulative = 1.77701, rounded = 2, bias = 0.14624
- // raw = 4.93194, cumulative = 6.70895, rounded = 7, bias = -0.06805
- // raw = 0.24206, cumulative = 6.95101, rounded = 7, bias = 0.24206
- // etc...
- //
- // Adjusting with rounding bias is relatively trivial:
- //
- // double value = bias_ + exponential_distribution(mean)();
- // double rounded_value = std::rint(value);
- // bias_ = value - rounded_value;
- // return rounded_value;
- //
- // This class is thread-compatible.
- class ExponentialBiased {
- public:
- // The number of bits set by NextRandom.
- static constexpr int kPrngNumBits = 48;
- // `GetSkipCount()` returns the number of events to skip before some chosen
- // event happens. For example, randomly tossing a coin, we will on average
- // throw heads once before we get tails. We can simulate random coin tosses
- // using GetSkipCount() as:
- //
- // ExponentialBiased eb;
- // for (...) {
- // int number_of_heads_before_tail = eb.GetSkipCount(1);
- // for (int flips = 0; flips < number_of_heads_before_tail; ++flips) {
- // printf("head...");
- // }
- // printf("tail\n");
- // }
- //
- int64_t GetSkipCount(int64_t mean);
- // GetStride() returns the number of events required for a specific event to
- // happen. See the class comments for a usage example. `GetStride()` is
- // equivalent to `GetSkipCount(mean - 1) + 1`. When to use `GetStride()` or
- // `GetSkipCount()` depends mostly on what best fits the use case.
- int64_t GetStride(int64_t mean);
- // Computes a random number in the range [0, 1<<(kPrngNumBits+1) - 1]
- //
- // This is public to enable testing.
- static uint64_t NextRandom(uint64_t rnd);
- private:
- void Initialize();
- uint64_t rng_{0};
- double bias_{0};
- bool initialized_{false};
- };
- // Returns the next prng value.
- // pRNG is: aX+b mod c with a = 0x5DEECE66D, b = 0xB, c = 1<<48
- // This is the lrand64 generator.
- inline uint64_t ExponentialBiased::NextRandom(uint64_t rnd) {
- const uint64_t prng_mult = uint64_t{0x5DEECE66D};
- const uint64_t prng_add = 0xB;
- const uint64_t prng_mod_power = 48;
- const uint64_t prng_mod_mask =
- ~((~static_cast<uint64_t>(0)) << prng_mod_power);
- return (prng_mult * rnd + prng_add) & prng_mod_mask;
- }
- } // namespace profiling_internal
- ABSL_NAMESPACE_END
- } // namespace absl
- #endif // ABSL_PROFILING_INTERNAL_EXPONENTIAL_BIASED_H_
|