123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844 |
- // Copyright 2018 The Abseil Authors.
- //
- // Licensed under the Apache License, Version 2.0 (the "License");
- // you may not use this file except in compliance with the License.
- // You may obtain a copy of the License at
- //
- // https://www.apache.org/licenses/LICENSE-2.0
- //
- // Unless required by applicable law or agreed to in writing, software
- // distributed under the License is distributed on an "AS IS" BASIS,
- // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- // See the License for the specific language governing permissions and
- // limitations under the License.
- //
- // MOTIVATION AND TUTORIAL
- //
- // If you want to put in a single heap allocation N doubles followed by M ints,
- // it's easy if N and M are known at compile time.
- //
- // struct S {
- // double a[N];
- // int b[M];
- // };
- //
- // S* p = new S;
- //
- // But what if N and M are known only in run time? Class template Layout to the
- // rescue! It's a portable generalization of the technique known as struct hack.
- //
- // // This object will tell us everything we need to know about the memory
- // // layout of double[N] followed by int[M]. It's structurally identical to
- // // size_t[2] that stores N and M. It's very cheap to create.
- // const Layout<double, int> layout(N, M);
- //
- // // Allocate enough memory for both arrays. `AllocSize()` tells us how much
- // // memory is needed. We are free to use any allocation function we want as
- // // long as it returns aligned memory.
- // std::unique_ptr<unsigned char[]> p(new unsigned char[layout.AllocSize()]);
- //
- // // Obtain the pointer to the array of doubles.
- // // Equivalent to `reinterpret_cast<double*>(p.get())`.
- // //
- // // We could have written layout.Pointer<0>(p) instead. If all the types are
- // // unique you can use either form, but if some types are repeated you must
- // // use the index form.
- // double* a = layout.Pointer<double>(p.get());
- //
- // // Obtain the pointer to the array of ints.
- // // Equivalent to `reinterpret_cast<int*>(p.get() + N * 8)`.
- // int* b = layout.Pointer<int>(p);
- //
- // If we are unable to specify sizes of all fields, we can pass as many sizes as
- // we can to `Partial()`. In return, it'll allow us to access the fields whose
- // locations and sizes can be computed from the provided information.
- // `Partial()` comes in handy when the array sizes are embedded into the
- // allocation.
- //
- // // size_t[0] containing N, size_t[1] containing M, double[N], int[M].
- // using L = Layout<size_t, size_t, double, int>;
- //
- // unsigned char* Allocate(size_t n, size_t m) {
- // const L layout(1, 1, n, m);
- // unsigned char* p = new unsigned char[layout.AllocSize()];
- // *layout.Pointer<0>(p) = n;
- // *layout.Pointer<1>(p) = m;
- // return p;
- // }
- //
- // void Use(unsigned char* p) {
- // // First, extract N and M.
- // // Specify that the first array has only one element. Using `prefix` we
- // // can access the first two arrays but not more.
- // constexpr auto prefix = L::Partial(1);
- // size_t n = *prefix.Pointer<0>(p);
- // size_t m = *prefix.Pointer<1>(p);
- //
- // // Now we can get pointers to the payload.
- // const L layout(1, 1, n, m);
- // double* a = layout.Pointer<double>(p);
- // int* b = layout.Pointer<int>(p);
- // }
- //
- // The layout we used above combines fixed-size with dynamically-sized fields.
- // This is quite common. Layout is optimized for this use case and attempts to
- // generate optimal code. To help the compiler do that in more cases, you can
- // specify the fixed sizes using `WithStaticSizes`. This ensures that all
- // computations that can be performed at compile time are indeed performed at
- // compile time. Note that sometimes the `template` keyword is needed. E.g.:
- //
- // using SL = L::template WithStaticSizes<1, 1>;
- //
- // void Use(unsigned char* p) {
- // // First, extract N and M.
- // // Using `prefix` we can access the first three arrays but not more.
- // //
- // // More details: The first element always has offset 0. `SL`
- // // has offsets for the second and third array based on sizes of
- // // the first and second array, specified via `WithStaticSizes`.
- // constexpr auto prefix = SL::Partial();
- // size_t n = *prefix.Pointer<0>(p);
- // size_t m = *prefix.Pointer<1>(p);
- //
- // // Now we can get a pointer to the final payload.
- // const SL layout(n, m);
- // double* a = layout.Pointer<double>(p);
- // int* b = layout.Pointer<int>(p);
- // }
- //
- // Efficiency tip: The order of fields matters. In `Layout<T1, ..., TN>` try to
- // ensure that `alignof(T1) >= ... >= alignof(TN)`. This way you'll have no
- // padding in between arrays.
- //
- // You can manually override the alignment of an array by wrapping the type in
- // `Aligned<T, N>`. `Layout<..., Aligned<T, N>, ...>` has exactly the same API
- // and behavior as `Layout<..., T, ...>` except that the first element of the
- // array of `T` is aligned to `N` (the rest of the elements follow without
- // padding). `N` cannot be less than `alignof(T)`.
- //
- // `AllocSize()` and `Pointer()` are the most basic methods for dealing with
- // memory layouts. Check out the reference or code below to discover more.
- //
- // EXAMPLE
- //
- // // Immutable move-only string with sizeof equal to sizeof(void*). The
- // // string size and the characters are kept in the same heap allocation.
- // class CompactString {
- // public:
- // CompactString(const char* s = "") {
- // const size_t size = strlen(s);
- // // size_t[1] followed by char[size + 1].
- // const L layout(size + 1);
- // p_.reset(new unsigned char[layout.AllocSize()]);
- // // If running under ASAN, mark the padding bytes, if any, to catch
- // // memory errors.
- // layout.PoisonPadding(p_.get());
- // // Store the size in the allocation.
- // *layout.Pointer<size_t>(p_.get()) = size;
- // // Store the characters in the allocation.
- // memcpy(layout.Pointer<char>(p_.get()), s, size + 1);
- // }
- //
- // size_t size() const {
- // // Equivalent to reinterpret_cast<size_t&>(*p).
- // return *L::Partial().Pointer<size_t>(p_.get());
- // }
- //
- // const char* c_str() const {
- // // Equivalent to reinterpret_cast<char*>(p.get() + sizeof(size_t)).
- // return L::Partial().Pointer<char>(p_.get());
- // }
- //
- // private:
- // // Our heap allocation contains a single size_t followed by an array of
- // // chars.
- // using L = Layout<size_t, char>::WithStaticSizes<1>;
- // std::unique_ptr<unsigned char[]> p_;
- // };
- //
- // int main() {
- // CompactString s = "hello";
- // assert(s.size() == 5);
- // assert(strcmp(s.c_str(), "hello") == 0);
- // }
- //
- // DOCUMENTATION
- //
- // The interface exported by this file consists of:
- // - class `Layout<>` and its public members.
- // - The public members of classes `internal_layout::LayoutWithStaticSizes<>`
- // and `internal_layout::LayoutImpl<>`. Those classes aren't intended to be
- // used directly, and their name and template parameter list are internal
- // implementation details, but the classes themselves provide most of the
- // functionality in this file. See comments on their members for detailed
- // documentation.
- //
- // `Layout<T1,... Tn>::Partial(count1,..., countm)` (where `m` <= `n`) returns a
- // `LayoutImpl<>` object. `Layout<T1,..., Tn> layout(count1,..., countn)`
- // creates a `Layout` object, which exposes the same functionality by inheriting
- // from `LayoutImpl<>`.
- #ifndef ABSL_CONTAINER_INTERNAL_LAYOUT_H_
- #define ABSL_CONTAINER_INTERNAL_LAYOUT_H_
- #include <assert.h>
- #include <stddef.h>
- #include <stdint.h>
- #include <array>
- #include <string>
- #include <tuple>
- #include <type_traits>
- #include <typeinfo>
- #include <utility>
- #include "absl/base/attributes.h"
- #include "absl/base/config.h"
- #include "absl/debugging/internal/demangle.h"
- #include "absl/meta/type_traits.h"
- #include "absl/strings/str_cat.h"
- #include "absl/types/span.h"
- #include "absl/utility/utility.h"
- #ifdef ABSL_HAVE_ADDRESS_SANITIZER
- #include <sanitizer/asan_interface.h>
- #endif
- namespace absl {
- ABSL_NAMESPACE_BEGIN
- namespace container_internal {
- // A type wrapper that instructs `Layout` to use the specific alignment for the
- // array. `Layout<..., Aligned<T, N>, ...>` has exactly the same API
- // and behavior as `Layout<..., T, ...>` except that the first element of the
- // array of `T` is aligned to `N` (the rest of the elements follow without
- // padding).
- //
- // Requires: `N >= alignof(T)` and `N` is a power of 2.
- template <class T, size_t N>
- struct Aligned;
- namespace internal_layout {
- template <class T>
- struct NotAligned {};
- template <class T, size_t N>
- struct NotAligned<const Aligned<T, N>> {
- static_assert(sizeof(T) == 0, "Aligned<T, N> cannot be const-qualified");
- };
- template <size_t>
- using IntToSize = size_t;
- template <class T>
- struct Type : NotAligned<T> {
- using type = T;
- };
- template <class T, size_t N>
- struct Type<Aligned<T, N>> {
- using type = T;
- };
- template <class T>
- struct SizeOf : NotAligned<T>, std::integral_constant<size_t, sizeof(T)> {};
- template <class T, size_t N>
- struct SizeOf<Aligned<T, N>> : std::integral_constant<size_t, sizeof(T)> {};
- // Note: workaround for https://gcc.gnu.org/PR88115
- template <class T>
- struct AlignOf : NotAligned<T> {
- static constexpr size_t value = alignof(T);
- };
- template <class T, size_t N>
- struct AlignOf<Aligned<T, N>> {
- static_assert(N % alignof(T) == 0,
- "Custom alignment can't be lower than the type's alignment");
- static constexpr size_t value = N;
- };
- // Does `Ts...` contain `T`?
- template <class T, class... Ts>
- using Contains = absl::disjunction<std::is_same<T, Ts>...>;
- template <class From, class To>
- using CopyConst =
- typename std::conditional<std::is_const<From>::value, const To, To>::type;
- // Note: We're not qualifying this with absl:: because it doesn't compile under
- // MSVC.
- template <class T>
- using SliceType = Span<T>;
- // This namespace contains no types. It prevents functions defined in it from
- // being found by ADL.
- namespace adl_barrier {
- template <class Needle, class... Ts>
- constexpr size_t Find(Needle, Needle, Ts...) {
- static_assert(!Contains<Needle, Ts...>(), "Duplicate element type");
- return 0;
- }
- template <class Needle, class T, class... Ts>
- constexpr size_t Find(Needle, T, Ts...) {
- return adl_barrier::Find(Needle(), Ts()...) + 1;
- }
- constexpr bool IsPow2(size_t n) { return !(n & (n - 1)); }
- // Returns `q * m` for the smallest `q` such that `q * m >= n`.
- // Requires: `m` is a power of two. It's enforced by IsLegalElementType below.
- constexpr size_t Align(size_t n, size_t m) { return (n + m - 1) & ~(m - 1); }
- constexpr size_t Min(size_t a, size_t b) { return b < a ? b : a; }
- constexpr size_t Max(size_t a) { return a; }
- template <class... Ts>
- constexpr size_t Max(size_t a, size_t b, Ts... rest) {
- return adl_barrier::Max(b < a ? a : b, rest...);
- }
- template <class T>
- std::string TypeName() {
- std::string out;
- #if ABSL_INTERNAL_HAS_RTTI
- absl::StrAppend(&out, "<",
- absl::debugging_internal::DemangleString(typeid(T).name()),
- ">");
- #endif
- return out;
- }
- } // namespace adl_barrier
- template <bool C>
- using EnableIf = typename std::enable_if<C, int>::type;
- // Can `T` be a template argument of `Layout`?
- template <class T>
- using IsLegalElementType = std::integral_constant<
- bool, !std::is_reference<T>::value && !std::is_volatile<T>::value &&
- !std::is_reference<typename Type<T>::type>::value &&
- !std::is_volatile<typename Type<T>::type>::value &&
- adl_barrier::IsPow2(AlignOf<T>::value)>;
- template <class Elements, class StaticSizeSeq, class RuntimeSizeSeq,
- class SizeSeq, class OffsetSeq>
- class LayoutImpl;
- // Public base class of `Layout` and the result type of `Layout::Partial()`.
- //
- // `Elements...` contains all template arguments of `Layout` that created this
- // instance.
- //
- // `StaticSizeSeq...` is an index_sequence containing the sizes specified at
- // compile-time.
- //
- // `RuntimeSizeSeq...` is `[0, NumRuntimeSizes)`, where `NumRuntimeSizes` is the
- // number of arguments passed to `Layout::Partial()` or `Layout::Layout()`.
- //
- // `SizeSeq...` is `[0, NumSizes)` where `NumSizes` is `NumRuntimeSizes` plus
- // the number of sizes in `StaticSizeSeq`.
- //
- // `OffsetSeq...` is `[0, NumOffsets)` where `NumOffsets` is
- // `Min(sizeof...(Elements), NumSizes + 1)` (the number of arrays for which we
- // can compute offsets).
- template <class... Elements, size_t... StaticSizeSeq, size_t... RuntimeSizeSeq,
- size_t... SizeSeq, size_t... OffsetSeq>
- class LayoutImpl<
- std::tuple<Elements...>, absl::index_sequence<StaticSizeSeq...>,
- absl::index_sequence<RuntimeSizeSeq...>, absl::index_sequence<SizeSeq...>,
- absl::index_sequence<OffsetSeq...>> {
- private:
- static_assert(sizeof...(Elements) > 0, "At least one field is required");
- static_assert(absl::conjunction<IsLegalElementType<Elements>...>::value,
- "Invalid element type (see IsLegalElementType)");
- static_assert(sizeof...(StaticSizeSeq) <= sizeof...(Elements),
- "Too many static sizes specified");
- enum {
- NumTypes = sizeof...(Elements),
- NumStaticSizes = sizeof...(StaticSizeSeq),
- NumRuntimeSizes = sizeof...(RuntimeSizeSeq),
- NumSizes = sizeof...(SizeSeq),
- NumOffsets = sizeof...(OffsetSeq),
- };
- // These are guaranteed by `Layout`.
- static_assert(NumStaticSizes + NumRuntimeSizes == NumSizes, "Internal error");
- static_assert(NumSizes <= NumTypes, "Internal error");
- static_assert(NumOffsets == adl_barrier::Min(NumTypes, NumSizes + 1),
- "Internal error");
- static_assert(NumTypes > 0, "Internal error");
- static constexpr std::array<size_t, sizeof...(StaticSizeSeq)> kStaticSizes = {
- StaticSizeSeq...};
- // Returns the index of `T` in `Elements...`. Results in a compilation error
- // if `Elements...` doesn't contain exactly one instance of `T`.
- template <class T>
- static constexpr size_t ElementIndex() {
- static_assert(Contains<Type<T>, Type<typename Type<Elements>::type>...>(),
- "Type not found");
- return adl_barrier::Find(Type<T>(),
- Type<typename Type<Elements>::type>()...);
- }
- template <size_t N>
- using ElementAlignment =
- AlignOf<typename std::tuple_element<N, std::tuple<Elements...>>::type>;
- public:
- // Element types of all arrays packed in a tuple.
- using ElementTypes = std::tuple<typename Type<Elements>::type...>;
- // Element type of the Nth array.
- template <size_t N>
- using ElementType = typename std::tuple_element<N, ElementTypes>::type;
- constexpr explicit LayoutImpl(IntToSize<RuntimeSizeSeq>... sizes)
- : size_{sizes...} {}
- // Alignment of the layout, equal to the strictest alignment of all elements.
- // All pointers passed to the methods of layout must be aligned to this value.
- static constexpr size_t Alignment() {
- return adl_barrier::Max(AlignOf<Elements>::value...);
- }
- // Offset in bytes of the Nth array.
- //
- // // int[3], 4 bytes of padding, double[4].
- // Layout<int, double> x(3, 4);
- // assert(x.Offset<0>() == 0); // The ints starts from 0.
- // assert(x.Offset<1>() == 16); // The doubles starts from 16.
- //
- // Requires: `N <= NumSizes && N < sizeof...(Ts)`.
- template <size_t N, EnableIf<N == 0> = 0>
- constexpr size_t Offset() const {
- return 0;
- }
- template <size_t N, EnableIf<N != 0> = 0>
- constexpr size_t Offset() const {
- static_assert(N < NumOffsets, "Index out of bounds");
- return adl_barrier::Align(
- Offset<N - 1>() + SizeOf<ElementType<N - 1>>::value * Size<N - 1>(),
- ElementAlignment<N>::value);
- }
- // Offset in bytes of the array with the specified element type. There must
- // be exactly one such array and its zero-based index must be at most
- // `NumSizes`.
- //
- // // int[3], 4 bytes of padding, double[4].
- // Layout<int, double> x(3, 4);
- // assert(x.Offset<int>() == 0); // The ints starts from 0.
- // assert(x.Offset<double>() == 16); // The doubles starts from 16.
- template <class T>
- constexpr size_t Offset() const {
- return Offset<ElementIndex<T>()>();
- }
- // Offsets in bytes of all arrays for which the offsets are known.
- constexpr std::array<size_t, NumOffsets> Offsets() const {
- return {{Offset<OffsetSeq>()...}};
- }
- // The number of elements in the Nth array (zero-based).
- //
- // // int[3], 4 bytes of padding, double[4].
- // Layout<int, double> x(3, 4);
- // assert(x.Size<0>() == 3);
- // assert(x.Size<1>() == 4);
- //
- // Requires: `N < NumSizes`.
- template <size_t N, EnableIf<(N < NumStaticSizes)> = 0>
- constexpr size_t Size() const {
- return kStaticSizes[N];
- }
- template <size_t N, EnableIf<(N >= NumStaticSizes)> = 0>
- constexpr size_t Size() const {
- static_assert(N < NumSizes, "Index out of bounds");
- return size_[N - NumStaticSizes];
- }
- // The number of elements in the array with the specified element type.
- // There must be exactly one such array and its zero-based index must be
- // at most `NumSizes`.
- //
- // // int[3], 4 bytes of padding, double[4].
- // Layout<int, double> x(3, 4);
- // assert(x.Size<int>() == 3);
- // assert(x.Size<double>() == 4);
- template <class T>
- constexpr size_t Size() const {
- return Size<ElementIndex<T>()>();
- }
- // The number of elements of all arrays for which they are known.
- constexpr std::array<size_t, NumSizes> Sizes() const {
- return {{Size<SizeSeq>()...}};
- }
- // Pointer to the beginning of the Nth array.
- //
- // `Char` must be `[const] [signed|unsigned] char`.
- //
- // // int[3], 4 bytes of padding, double[4].
- // Layout<int, double> x(3, 4);
- // unsigned char* p = new unsigned char[x.AllocSize()];
- // int* ints = x.Pointer<0>(p);
- // double* doubles = x.Pointer<1>(p);
- //
- // Requires: `N <= NumSizes && N < sizeof...(Ts)`.
- // Requires: `p` is aligned to `Alignment()`.
- template <size_t N, class Char>
- CopyConst<Char, ElementType<N>>* Pointer(Char* p) const {
- using C = typename std::remove_const<Char>::type;
- static_assert(
- std::is_same<C, char>() || std::is_same<C, unsigned char>() ||
- std::is_same<C, signed char>(),
- "The argument must be a pointer to [const] [signed|unsigned] char");
- constexpr size_t alignment = Alignment();
- (void)alignment;
- assert(reinterpret_cast<uintptr_t>(p) % alignment == 0);
- return reinterpret_cast<CopyConst<Char, ElementType<N>>*>(p + Offset<N>());
- }
- // Pointer to the beginning of the array with the specified element type.
- // There must be exactly one such array and its zero-based index must be at
- // most `NumSizes`.
- //
- // `Char` must be `[const] [signed|unsigned] char`.
- //
- // // int[3], 4 bytes of padding, double[4].
- // Layout<int, double> x(3, 4);
- // unsigned char* p = new unsigned char[x.AllocSize()];
- // int* ints = x.Pointer<int>(p);
- // double* doubles = x.Pointer<double>(p);
- //
- // Requires: `p` is aligned to `Alignment()`.
- template <class T, class Char>
- CopyConst<Char, T>* Pointer(Char* p) const {
- return Pointer<ElementIndex<T>()>(p);
- }
- // Pointers to all arrays for which pointers are known.
- //
- // `Char` must be `[const] [signed|unsigned] char`.
- //
- // // int[3], 4 bytes of padding, double[4].
- // Layout<int, double> x(3, 4);
- // unsigned char* p = new unsigned char[x.AllocSize()];
- //
- // int* ints;
- // double* doubles;
- // std::tie(ints, doubles) = x.Pointers(p);
- //
- // Requires: `p` is aligned to `Alignment()`.
- template <class Char>
- auto Pointers(Char* p) const {
- return std::tuple<CopyConst<Char, ElementType<OffsetSeq>>*...>(
- Pointer<OffsetSeq>(p)...);
- }
- // The Nth array.
- //
- // `Char` must be `[const] [signed|unsigned] char`.
- //
- // // int[3], 4 bytes of padding, double[4].
- // Layout<int, double> x(3, 4);
- // unsigned char* p = new unsigned char[x.AllocSize()];
- // Span<int> ints = x.Slice<0>(p);
- // Span<double> doubles = x.Slice<1>(p);
- //
- // Requires: `N < NumSizes`.
- // Requires: `p` is aligned to `Alignment()`.
- template <size_t N, class Char>
- SliceType<CopyConst<Char, ElementType<N>>> Slice(Char* p) const {
- return SliceType<CopyConst<Char, ElementType<N>>>(Pointer<N>(p), Size<N>());
- }
- // The array with the specified element type. There must be exactly one
- // such array and its zero-based index must be less than `NumSizes`.
- //
- // `Char` must be `[const] [signed|unsigned] char`.
- //
- // // int[3], 4 bytes of padding, double[4].
- // Layout<int, double> x(3, 4);
- // unsigned char* p = new unsigned char[x.AllocSize()];
- // Span<int> ints = x.Slice<int>(p);
- // Span<double> doubles = x.Slice<double>(p);
- //
- // Requires: `p` is aligned to `Alignment()`.
- template <class T, class Char>
- SliceType<CopyConst<Char, T>> Slice(Char* p) const {
- return Slice<ElementIndex<T>()>(p);
- }
- // All arrays with known sizes.
- //
- // `Char` must be `[const] [signed|unsigned] char`.
- //
- // // int[3], 4 bytes of padding, double[4].
- // Layout<int, double> x(3, 4);
- // unsigned char* p = new unsigned char[x.AllocSize()];
- //
- // Span<int> ints;
- // Span<double> doubles;
- // std::tie(ints, doubles) = x.Slices(p);
- //
- // Requires: `p` is aligned to `Alignment()`.
- //
- // Note: We mark the parameter as unused because GCC detects it is not used
- // when `SizeSeq` is empty [-Werror=unused-but-set-parameter].
- template <class Char>
- auto Slices(ABSL_ATTRIBUTE_UNUSED Char* p) const {
- return std::tuple<SliceType<CopyConst<Char, ElementType<SizeSeq>>>...>(
- Slice<SizeSeq>(p)...);
- }
- // The size of the allocation that fits all arrays.
- //
- // // int[3], 4 bytes of padding, double[4].
- // Layout<int, double> x(3, 4);
- // unsigned char* p = new unsigned char[x.AllocSize()]; // 48 bytes
- //
- // Requires: `NumSizes == sizeof...(Ts)`.
- constexpr size_t AllocSize() const {
- static_assert(NumTypes == NumSizes, "You must specify sizes of all fields");
- return Offset<NumTypes - 1>() +
- SizeOf<ElementType<NumTypes - 1>>::value * Size<NumTypes - 1>();
- }
- // If built with --config=asan, poisons padding bytes (if any) in the
- // allocation. The pointer must point to a memory block at least
- // `AllocSize()` bytes in length.
- //
- // `Char` must be `[const] [signed|unsigned] char`.
- //
- // Requires: `p` is aligned to `Alignment()`.
- template <class Char, size_t N = NumOffsets - 1, EnableIf<N == 0> = 0>
- void PoisonPadding(const Char* p) const {
- Pointer<0>(p); // verify the requirements on `Char` and `p`
- }
- template <class Char, size_t N = NumOffsets - 1, EnableIf<N != 0> = 0>
- void PoisonPadding(const Char* p) const {
- static_assert(N < NumOffsets, "Index out of bounds");
- (void)p;
- #ifdef ABSL_HAVE_ADDRESS_SANITIZER
- PoisonPadding<Char, N - 1>(p);
- // The `if` is an optimization. It doesn't affect the observable behaviour.
- if (ElementAlignment<N - 1>::value % ElementAlignment<N>::value) {
- size_t start =
- Offset<N - 1>() + SizeOf<ElementType<N - 1>>::value * Size<N - 1>();
- ASAN_POISON_MEMORY_REGION(p + start, Offset<N>() - start);
- }
- #endif
- }
- // Human-readable description of the memory layout. Useful for debugging.
- // Slow.
- //
- // // char[5], 3 bytes of padding, int[3], 4 bytes of padding, followed
- // // by an unknown number of doubles.
- // auto x = Layout<char, int, double>::Partial(5, 3);
- // assert(x.DebugString() ==
- // "@0<char>(1)[5]; @8<int>(4)[3]; @24<double>(8)");
- //
- // Each field is in the following format: @offset<type>(sizeof)[size] (<type>
- // may be missing depending on the target platform). For example,
- // @8<int>(4)[3] means that at offset 8 we have an array of ints, where each
- // int is 4 bytes, and we have 3 of those ints. The size of the last field may
- // be missing (as in the example above). Only fields with known offsets are
- // described. Type names may differ across platforms: one compiler might
- // produce "unsigned*" where another produces "unsigned int *".
- std::string DebugString() const {
- const auto offsets = Offsets();
- const size_t sizes[] = {SizeOf<ElementType<OffsetSeq>>::value...};
- const std::string types[] = {
- adl_barrier::TypeName<ElementType<OffsetSeq>>()...};
- std::string res = absl::StrCat("@0", types[0], "(", sizes[0], ")");
- for (size_t i = 0; i != NumOffsets - 1; ++i) {
- absl::StrAppend(&res, "[", DebugSize(i), "]; @", offsets[i + 1],
- types[i + 1], "(", sizes[i + 1], ")");
- }
- // NumSizes is a constant that may be zero. Some compilers cannot see that
- // inside the if statement "size_[NumSizes - 1]" must be valid.
- int last = static_cast<int>(NumSizes) - 1;
- if (NumTypes == NumSizes && last >= 0) {
- absl::StrAppend(&res, "[", DebugSize(static_cast<size_t>(last)), "]");
- }
- return res;
- }
- private:
- size_t DebugSize(size_t n) const {
- if (n < NumStaticSizes) {
- return kStaticSizes[n];
- } else {
- return size_[n - NumStaticSizes];
- }
- }
- // Arguments of `Layout::Partial()` or `Layout::Layout()`.
- size_t size_[NumRuntimeSizes > 0 ? NumRuntimeSizes : 1];
- };
- // Defining a constexpr static class member variable is redundant and deprecated
- // in C++17, but required in C++14.
- template <class... Elements, size_t... StaticSizeSeq, size_t... RuntimeSizeSeq,
- size_t... SizeSeq, size_t... OffsetSeq>
- constexpr std::array<size_t, sizeof...(StaticSizeSeq)> LayoutImpl<
- std::tuple<Elements...>, absl::index_sequence<StaticSizeSeq...>,
- absl::index_sequence<RuntimeSizeSeq...>, absl::index_sequence<SizeSeq...>,
- absl::index_sequence<OffsetSeq...>>::kStaticSizes;
- template <class StaticSizeSeq, size_t NumRuntimeSizes, class... Ts>
- using LayoutType = LayoutImpl<
- std::tuple<Ts...>, StaticSizeSeq,
- absl::make_index_sequence<NumRuntimeSizes>,
- absl::make_index_sequence<NumRuntimeSizes + StaticSizeSeq::size()>,
- absl::make_index_sequence<adl_barrier::Min(
- sizeof...(Ts), NumRuntimeSizes + StaticSizeSeq::size() + 1)>>;
- template <class StaticSizeSeq, class... Ts>
- class LayoutWithStaticSizes
- : public LayoutType<StaticSizeSeq,
- sizeof...(Ts) - adl_barrier::Min(sizeof...(Ts),
- StaticSizeSeq::size()),
- Ts...> {
- private:
- using Super =
- LayoutType<StaticSizeSeq,
- sizeof...(Ts) -
- adl_barrier::Min(sizeof...(Ts), StaticSizeSeq::size()),
- Ts...>;
- public:
- // The result type of `Partial()` with `NumSizes` arguments.
- template <size_t NumSizes>
- using PartialType =
- internal_layout::LayoutType<StaticSizeSeq, NumSizes, Ts...>;
- // `Layout` knows the element types of the arrays we want to lay out in
- // memory but not the number of elements in each array.
- // `Partial(size1, ..., sizeN)` allows us to specify the latter. The
- // resulting immutable object can be used to obtain pointers to the
- // individual arrays.
- //
- // It's allowed to pass fewer array sizes than the number of arrays. E.g.,
- // if all you need is to the offset of the second array, you only need to
- // pass one argument -- the number of elements in the first array.
- //
- // // int[3] followed by 4 bytes of padding and an unknown number of
- // // doubles.
- // auto x = Layout<int, double>::Partial(3);
- // // doubles start at byte 16.
- // assert(x.Offset<1>() == 16);
- //
- // If you know the number of elements in all arrays, you can still call
- // `Partial()` but it's more convenient to use the constructor of `Layout`.
- //
- // Layout<int, double> x(3, 5);
- //
- // Note: The sizes of the arrays must be specified in number of elements,
- // not in bytes.
- //
- // Requires: `sizeof...(Sizes) + NumStaticSizes <= sizeof...(Ts)`.
- // Requires: all arguments are convertible to `size_t`.
- template <class... Sizes>
- static constexpr PartialType<sizeof...(Sizes)> Partial(Sizes&&... sizes) {
- static_assert(sizeof...(Sizes) + StaticSizeSeq::size() <= sizeof...(Ts),
- "");
- return PartialType<sizeof...(Sizes)>(
- static_cast<size_t>(std::forward<Sizes>(sizes))...);
- }
- // Inherit LayoutType's constructor.
- //
- // Creates a layout with the sizes of all arrays specified. If you know
- // only the sizes of the first N arrays (where N can be zero), you can use
- // `Partial()` defined above. The constructor is essentially equivalent to
- // calling `Partial()` and passing in all array sizes; the constructor is
- // provided as a convenient abbreviation.
- //
- // Note: The sizes of the arrays must be specified in number of elements,
- // not in bytes.
- //
- // Implementation note: we do this via a `using` declaration instead of
- // defining our own explicit constructor because the signature of LayoutType's
- // constructor depends on RuntimeSizeSeq, which we don't have access to here.
- // If we defined our own constructor here, it would have to use a parameter
- // pack and then cast the arguments to size_t when calling the superclass
- // constructor, similar to what Partial() does. But that would suffer from the
- // same problem that Partial() has, which is that the parameter types are
- // inferred from the arguments, which may be signed types, which must then be
- // cast to size_t. This can lead to negative values being silently (i.e. with
- // no compiler warnings) cast to an unsigned type. Having a constructor with
- // size_t parameters helps the compiler generate better warnings about
- // potential bad casts, while avoiding false warnings when positive literal
- // arguments are used. If an argument is a positive literal integer (e.g.
- // `1`), the compiler will understand that it can be safely converted to
- // size_t, and hence not generate a warning. But if a negative literal (e.g.
- // `-1`) or a variable with signed type is used, then it can generate a
- // warning about a potentially unsafe implicit cast. It would be great if we
- // could do this for Partial() too, but unfortunately as of C++23 there seems
- // to be no way to define a function with a variable number of parameters of a
- // certain type, a.k.a. homogeneous function parameter packs. So we're forced
- // to choose between explicitly casting the arguments to size_t, which
- // suppresses all warnings, even potentially valid ones, or implicitly casting
- // them to size_t, which generates bogus warnings whenever literal arguments
- // are used, even if they're positive.
- using Super::Super;
- };
- } // namespace internal_layout
- // Descriptor of arrays of various types and sizes laid out in memory one after
- // another. See the top of the file for documentation.
- //
- // Check out the public API of internal_layout::LayoutWithStaticSizes and
- // internal_layout::LayoutImpl above. Those types are internal to the library
- // but their methods are public, and they are inherited by `Layout`.
- template <class... Ts>
- class Layout : public internal_layout::LayoutWithStaticSizes<
- absl::make_index_sequence<0>, Ts...> {
- private:
- using Super =
- internal_layout::LayoutWithStaticSizes<absl::make_index_sequence<0>,
- Ts...>;
- public:
- // If you know the sizes of some or all of the arrays at compile time, you can
- // use `WithStaticSizes` or `WithStaticSizeSequence` to create a `Layout` type
- // with those sizes baked in. This can help the compiler generate optimal code
- // for calculating array offsets and AllocSize().
- //
- // Like `Partial()`, the N sizes you specify are for the first N arrays, and
- // they specify the number of elements in each array, not the number of bytes.
- template <class StaticSizeSeq>
- using WithStaticSizeSequence =
- internal_layout::LayoutWithStaticSizes<StaticSizeSeq, Ts...>;
- template <size_t... StaticSizes>
- using WithStaticSizes =
- WithStaticSizeSequence<std::index_sequence<StaticSizes...>>;
- // Inherit LayoutWithStaticSizes's constructor, which requires you to specify
- // all the array sizes.
- using Super::Super;
- };
- } // namespace container_internal
- ABSL_NAMESPACE_END
- } // namespace absl
- #endif // ABSL_CONTAINER_INTERNAL_LAYOUT_H_
|