123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491 |
- // Copyright 2018 The Abseil Authors.
- //
- // Licensed under the Apache License, Version 2.0 (the "License");
- // you may not use this file except in compliance with the License.
- // You may obtain a copy of the License at
- //
- // https://www.apache.org/licenses/LICENSE-2.0
- //
- // Unless required by applicable law or agreed to in writing, software
- // distributed under the License is distributed on an "AS IS" BASIS,
- // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- // See the License for the specific language governing permissions and
- // limitations under the License.
- #ifndef ABSL_CONTAINER_INTERNAL_CONTAINER_MEMORY_H_
- #define ABSL_CONTAINER_INTERNAL_CONTAINER_MEMORY_H_
- #include <cassert>
- #include <cstddef>
- #include <cstring>
- #include <memory>
- #include <new>
- #include <tuple>
- #include <type_traits>
- #include <utility>
- #include "absl/base/config.h"
- #include "absl/memory/memory.h"
- #include "absl/meta/type_traits.h"
- #include "absl/utility/utility.h"
- #ifdef ABSL_HAVE_ADDRESS_SANITIZER
- #include <sanitizer/asan_interface.h>
- #endif
- #ifdef ABSL_HAVE_MEMORY_SANITIZER
- #include <sanitizer/msan_interface.h>
- #endif
- namespace absl {
- ABSL_NAMESPACE_BEGIN
- namespace container_internal {
- template <size_t Alignment>
- struct alignas(Alignment) AlignedType {};
- // Allocates at least n bytes aligned to the specified alignment.
- // Alignment must be a power of 2. It must be positive.
- //
- // Note that many allocators don't honor alignment requirements above certain
- // threshold (usually either alignof(std::max_align_t) or alignof(void*)).
- // Allocate() doesn't apply alignment corrections. If the underlying allocator
- // returns insufficiently alignment pointer, that's what you are going to get.
- template <size_t Alignment, class Alloc>
- void* Allocate(Alloc* alloc, size_t n) {
- static_assert(Alignment > 0, "");
- assert(n && "n must be positive");
- using M = AlignedType<Alignment>;
- using A = typename absl::allocator_traits<Alloc>::template rebind_alloc<M>;
- using AT = typename absl::allocator_traits<Alloc>::template rebind_traits<M>;
- // On macOS, "mem_alloc" is a #define with one argument defined in
- // rpc/types.h, so we can't name the variable "mem_alloc" and initialize it
- // with the "foo(bar)" syntax.
- A my_mem_alloc(*alloc);
- void* p = AT::allocate(my_mem_alloc, (n + sizeof(M) - 1) / sizeof(M));
- assert(reinterpret_cast<uintptr_t>(p) % Alignment == 0 &&
- "allocator does not respect alignment");
- return p;
- }
- // Returns true if the destruction of the value with given Allocator will be
- // trivial.
- template <class Allocator, class ValueType>
- constexpr auto IsDestructionTrivial() {
- constexpr bool result =
- std::is_trivially_destructible<ValueType>::value &&
- std::is_same<typename absl::allocator_traits<
- Allocator>::template rebind_alloc<char>,
- std::allocator<char>>::value;
- return std::integral_constant<bool, result>();
- }
- // The pointer must have been previously obtained by calling
- // Allocate<Alignment>(alloc, n).
- template <size_t Alignment, class Alloc>
- void Deallocate(Alloc* alloc, void* p, size_t n) {
- static_assert(Alignment > 0, "");
- assert(n && "n must be positive");
- using M = AlignedType<Alignment>;
- using A = typename absl::allocator_traits<Alloc>::template rebind_alloc<M>;
- using AT = typename absl::allocator_traits<Alloc>::template rebind_traits<M>;
- // On macOS, "mem_alloc" is a #define with one argument defined in
- // rpc/types.h, so we can't name the variable "mem_alloc" and initialize it
- // with the "foo(bar)" syntax.
- A my_mem_alloc(*alloc);
- AT::deallocate(my_mem_alloc, static_cast<M*>(p),
- (n + sizeof(M) - 1) / sizeof(M));
- }
- namespace memory_internal {
- // Constructs T into uninitialized storage pointed by `ptr` using the args
- // specified in the tuple.
- template <class Alloc, class T, class Tuple, size_t... I>
- void ConstructFromTupleImpl(Alloc* alloc, T* ptr, Tuple&& t,
- absl::index_sequence<I...>) {
- absl::allocator_traits<Alloc>::construct(
- *alloc, ptr, std::get<I>(std::forward<Tuple>(t))...);
- }
- template <class T, class F>
- struct WithConstructedImplF {
- template <class... Args>
- decltype(std::declval<F>()(std::declval<T>())) operator()(
- Args&&... args) const {
- return std::forward<F>(f)(T(std::forward<Args>(args)...));
- }
- F&& f;
- };
- template <class T, class Tuple, size_t... Is, class F>
- decltype(std::declval<F>()(std::declval<T>())) WithConstructedImpl(
- Tuple&& t, absl::index_sequence<Is...>, F&& f) {
- return WithConstructedImplF<T, F>{std::forward<F>(f)}(
- std::get<Is>(std::forward<Tuple>(t))...);
- }
- template <class T, size_t... Is>
- auto TupleRefImpl(T&& t, absl::index_sequence<Is...>)
- -> decltype(std::forward_as_tuple(std::get<Is>(std::forward<T>(t))...)) {
- return std::forward_as_tuple(std::get<Is>(std::forward<T>(t))...);
- }
- // Returns a tuple of references to the elements of the input tuple. T must be a
- // tuple.
- template <class T>
- auto TupleRef(T&& t) -> decltype(TupleRefImpl(
- std::forward<T>(t),
- absl::make_index_sequence<
- std::tuple_size<typename std::decay<T>::type>::value>())) {
- return TupleRefImpl(
- std::forward<T>(t),
- absl::make_index_sequence<
- std::tuple_size<typename std::decay<T>::type>::value>());
- }
- template <class F, class K, class V>
- decltype(std::declval<F>()(std::declval<const K&>(), std::piecewise_construct,
- std::declval<std::tuple<K>>(), std::declval<V>()))
- DecomposePairImpl(F&& f, std::pair<std::tuple<K>, V> p) {
- const auto& key = std::get<0>(p.first);
- return std::forward<F>(f)(key, std::piecewise_construct, std::move(p.first),
- std::move(p.second));
- }
- } // namespace memory_internal
- // Constructs T into uninitialized storage pointed by `ptr` using the args
- // specified in the tuple.
- template <class Alloc, class T, class Tuple>
- void ConstructFromTuple(Alloc* alloc, T* ptr, Tuple&& t) {
- memory_internal::ConstructFromTupleImpl(
- alloc, ptr, std::forward<Tuple>(t),
- absl::make_index_sequence<
- std::tuple_size<typename std::decay<Tuple>::type>::value>());
- }
- // Constructs T using the args specified in the tuple and calls F with the
- // constructed value.
- template <class T, class Tuple, class F>
- decltype(std::declval<F>()(std::declval<T>())) WithConstructed(Tuple&& t,
- F&& f) {
- return memory_internal::WithConstructedImpl<T>(
- std::forward<Tuple>(t),
- absl::make_index_sequence<
- std::tuple_size<typename std::decay<Tuple>::type>::value>(),
- std::forward<F>(f));
- }
- // Given arguments of an std::pair's constructor, PairArgs() returns a pair of
- // tuples with references to the passed arguments. The tuples contain
- // constructor arguments for the first and the second elements of the pair.
- //
- // The following two snippets are equivalent.
- //
- // 1. std::pair<F, S> p(args...);
- //
- // 2. auto a = PairArgs(args...);
- // std::pair<F, S> p(std::piecewise_construct,
- // std::move(a.first), std::move(a.second));
- inline std::pair<std::tuple<>, std::tuple<>> PairArgs() { return {}; }
- template <class F, class S>
- std::pair<std::tuple<F&&>, std::tuple<S&&>> PairArgs(F&& f, S&& s) {
- return {std::piecewise_construct, std::forward_as_tuple(std::forward<F>(f)),
- std::forward_as_tuple(std::forward<S>(s))};
- }
- template <class F, class S>
- std::pair<std::tuple<const F&>, std::tuple<const S&>> PairArgs(
- const std::pair<F, S>& p) {
- return PairArgs(p.first, p.second);
- }
- template <class F, class S>
- std::pair<std::tuple<F&&>, std::tuple<S&&>> PairArgs(std::pair<F, S>&& p) {
- return PairArgs(std::forward<F>(p.first), std::forward<S>(p.second));
- }
- template <class F, class S>
- auto PairArgs(std::piecewise_construct_t, F&& f, S&& s)
- -> decltype(std::make_pair(memory_internal::TupleRef(std::forward<F>(f)),
- memory_internal::TupleRef(std::forward<S>(s)))) {
- return std::make_pair(memory_internal::TupleRef(std::forward<F>(f)),
- memory_internal::TupleRef(std::forward<S>(s)));
- }
- // A helper function for implementing apply() in map policies.
- template <class F, class... Args>
- auto DecomposePair(F&& f, Args&&... args)
- -> decltype(memory_internal::DecomposePairImpl(
- std::forward<F>(f), PairArgs(std::forward<Args>(args)...))) {
- return memory_internal::DecomposePairImpl(
- std::forward<F>(f), PairArgs(std::forward<Args>(args)...));
- }
- // A helper function for implementing apply() in set policies.
- template <class F, class Arg>
- decltype(std::declval<F>()(std::declval<const Arg&>(), std::declval<Arg>()))
- DecomposeValue(F&& f, Arg&& arg) {
- const auto& key = arg;
- return std::forward<F>(f)(key, std::forward<Arg>(arg));
- }
- // Helper functions for asan and msan.
- inline void SanitizerPoisonMemoryRegion(const void* m, size_t s) {
- #ifdef ABSL_HAVE_ADDRESS_SANITIZER
- ASAN_POISON_MEMORY_REGION(m, s);
- #endif
- #ifdef ABSL_HAVE_MEMORY_SANITIZER
- __msan_poison(m, s);
- #endif
- (void)m;
- (void)s;
- }
- inline void SanitizerUnpoisonMemoryRegion(const void* m, size_t s) {
- #ifdef ABSL_HAVE_ADDRESS_SANITIZER
- ASAN_UNPOISON_MEMORY_REGION(m, s);
- #endif
- #ifdef ABSL_HAVE_MEMORY_SANITIZER
- __msan_unpoison(m, s);
- #endif
- (void)m;
- (void)s;
- }
- template <typename T>
- inline void SanitizerPoisonObject(const T* object) {
- SanitizerPoisonMemoryRegion(object, sizeof(T));
- }
- template <typename T>
- inline void SanitizerUnpoisonObject(const T* object) {
- SanitizerUnpoisonMemoryRegion(object, sizeof(T));
- }
- namespace memory_internal {
- // If Pair is a standard-layout type, OffsetOf<Pair>::kFirst and
- // OffsetOf<Pair>::kSecond are equivalent to offsetof(Pair, first) and
- // offsetof(Pair, second) respectively. Otherwise they are -1.
- //
- // The purpose of OffsetOf is to avoid calling offsetof() on non-standard-layout
- // type, which is non-portable.
- template <class Pair, class = std::true_type>
- struct OffsetOf {
- static constexpr size_t kFirst = static_cast<size_t>(-1);
- static constexpr size_t kSecond = static_cast<size_t>(-1);
- };
- template <class Pair>
- struct OffsetOf<Pair, typename std::is_standard_layout<Pair>::type> {
- static constexpr size_t kFirst = offsetof(Pair, first);
- static constexpr size_t kSecond = offsetof(Pair, second);
- };
- template <class K, class V>
- struct IsLayoutCompatible {
- private:
- struct Pair {
- K first;
- V second;
- };
- // Is P layout-compatible with Pair?
- template <class P>
- static constexpr bool LayoutCompatible() {
- return std::is_standard_layout<P>() && sizeof(P) == sizeof(Pair) &&
- alignof(P) == alignof(Pair) &&
- memory_internal::OffsetOf<P>::kFirst ==
- memory_internal::OffsetOf<Pair>::kFirst &&
- memory_internal::OffsetOf<P>::kSecond ==
- memory_internal::OffsetOf<Pair>::kSecond;
- }
- public:
- // Whether pair<const K, V> and pair<K, V> are layout-compatible. If they are,
- // then it is safe to store them in a union and read from either.
- static constexpr bool value = std::is_standard_layout<K>() &&
- std::is_standard_layout<Pair>() &&
- memory_internal::OffsetOf<Pair>::kFirst == 0 &&
- LayoutCompatible<std::pair<K, V>>() &&
- LayoutCompatible<std::pair<const K, V>>();
- };
- } // namespace memory_internal
- // The internal storage type for key-value containers like flat_hash_map.
- //
- // It is convenient for the value_type of a flat_hash_map<K, V> to be
- // pair<const K, V>; the "const K" prevents accidental modification of the key
- // when dealing with the reference returned from find() and similar methods.
- // However, this creates other problems; we want to be able to emplace(K, V)
- // efficiently with move operations, and similarly be able to move a
- // pair<K, V> in insert().
- //
- // The solution is this union, which aliases the const and non-const versions
- // of the pair. This also allows flat_hash_map<const K, V> to work, even though
- // that has the same efficiency issues with move in emplace() and insert() -
- // but people do it anyway.
- //
- // If kMutableKeys is false, only the value member can be accessed.
- //
- // If kMutableKeys is true, key can be accessed through all slots while value
- // and mutable_value must be accessed only via INITIALIZED slots. Slots are
- // created and destroyed via mutable_value so that the key can be moved later.
- //
- // Accessing one of the union fields while the other is active is safe as
- // long as they are layout-compatible, which is guaranteed by the definition of
- // kMutableKeys. For C++11, the relevant section of the standard is
- // https://timsong-cpp.github.io/cppwp/n3337/class.mem#19 (9.2.19)
- template <class K, class V>
- union map_slot_type {
- map_slot_type() {}
- ~map_slot_type() = delete;
- using value_type = std::pair<const K, V>;
- using mutable_value_type =
- std::pair<absl::remove_const_t<K>, absl::remove_const_t<V>>;
- value_type value;
- mutable_value_type mutable_value;
- absl::remove_const_t<K> key;
- };
- template <class K, class V>
- struct map_slot_policy {
- using slot_type = map_slot_type<K, V>;
- using value_type = std::pair<const K, V>;
- using mutable_value_type =
- std::pair<absl::remove_const_t<K>, absl::remove_const_t<V>>;
- private:
- static void emplace(slot_type* slot) {
- // The construction of union doesn't do anything at runtime but it allows us
- // to access its members without violating aliasing rules.
- new (slot) slot_type;
- }
- // If pair<const K, V> and pair<K, V> are layout-compatible, we can accept one
- // or the other via slot_type. We are also free to access the key via
- // slot_type::key in this case.
- using kMutableKeys = memory_internal::IsLayoutCompatible<K, V>;
- public:
- static value_type& element(slot_type* slot) { return slot->value; }
- static const value_type& element(const slot_type* slot) {
- return slot->value;
- }
- // When C++17 is available, we can use std::launder to provide mutable
- // access to the key for use in node handle.
- #if defined(__cpp_lib_launder) && __cpp_lib_launder >= 201606
- static K& mutable_key(slot_type* slot) {
- // Still check for kMutableKeys so that we can avoid calling std::launder
- // unless necessary because it can interfere with optimizations.
- return kMutableKeys::value ? slot->key
- : *std::launder(const_cast<K*>(
- std::addressof(slot->value.first)));
- }
- #else // !(defined(__cpp_lib_launder) && __cpp_lib_launder >= 201606)
- static const K& mutable_key(slot_type* slot) { return key(slot); }
- #endif
- static const K& key(const slot_type* slot) {
- return kMutableKeys::value ? slot->key : slot->value.first;
- }
- template <class Allocator, class... Args>
- static void construct(Allocator* alloc, slot_type* slot, Args&&... args) {
- emplace(slot);
- if (kMutableKeys::value) {
- absl::allocator_traits<Allocator>::construct(*alloc, &slot->mutable_value,
- std::forward<Args>(args)...);
- } else {
- absl::allocator_traits<Allocator>::construct(*alloc, &slot->value,
- std::forward<Args>(args)...);
- }
- }
- // Construct this slot by moving from another slot.
- template <class Allocator>
- static void construct(Allocator* alloc, slot_type* slot, slot_type* other) {
- emplace(slot);
- if (kMutableKeys::value) {
- absl::allocator_traits<Allocator>::construct(
- *alloc, &slot->mutable_value, std::move(other->mutable_value));
- } else {
- absl::allocator_traits<Allocator>::construct(*alloc, &slot->value,
- std::move(other->value));
- }
- }
- // Construct this slot by copying from another slot.
- template <class Allocator>
- static void construct(Allocator* alloc, slot_type* slot,
- const slot_type* other) {
- emplace(slot);
- absl::allocator_traits<Allocator>::construct(*alloc, &slot->value,
- other->value);
- }
- template <class Allocator>
- static auto destroy(Allocator* alloc, slot_type* slot) {
- if (kMutableKeys::value) {
- absl::allocator_traits<Allocator>::destroy(*alloc, &slot->mutable_value);
- } else {
- absl::allocator_traits<Allocator>::destroy(*alloc, &slot->value);
- }
- return IsDestructionTrivial<Allocator, value_type>();
- }
- template <class Allocator>
- static auto transfer(Allocator* alloc, slot_type* new_slot,
- slot_type* old_slot) {
- auto is_relocatable =
- typename absl::is_trivially_relocatable<value_type>::type();
- emplace(new_slot);
- #if defined(__cpp_lib_launder) && __cpp_lib_launder >= 201606
- if (is_relocatable) {
- // TODO(b/247130232,b/251814870): remove casts after fixing warnings.
- std::memcpy(static_cast<void*>(std::launder(&new_slot->value)),
- static_cast<const void*>(&old_slot->value),
- sizeof(value_type));
- return is_relocatable;
- }
- #endif
- if (kMutableKeys::value) {
- absl::allocator_traits<Allocator>::construct(
- *alloc, &new_slot->mutable_value, std::move(old_slot->mutable_value));
- } else {
- absl::allocator_traits<Allocator>::construct(*alloc, &new_slot->value,
- std::move(old_slot->value));
- }
- destroy(alloc, old_slot);
- return is_relocatable;
- }
- };
- // Type erased function for computing hash of the slot.
- using HashSlotFn = size_t (*)(const void* hash_fn, void* slot);
- // Type erased function to apply `Fn` to data inside of the `slot`.
- // The data is expected to have type `T`.
- template <class Fn, class T>
- size_t TypeErasedApplyToSlotFn(const void* fn, void* slot) {
- const auto* f = static_cast<const Fn*>(fn);
- return (*f)(*static_cast<const T*>(slot));
- }
- // Type erased function to apply `Fn` to data inside of the `*slot_ptr`.
- // The data is expected to have type `T`.
- template <class Fn, class T>
- size_t TypeErasedDerefAndApplyToSlotFn(const void* fn, void* slot_ptr) {
- const auto* f = static_cast<const Fn*>(fn);
- const T* slot = *static_cast<const T**>(slot_ptr);
- return (*f)(*slot);
- }
- } // namespace container_internal
- ABSL_NAMESPACE_END
- } // namespace absl
- #endif // ABSL_CONTAINER_INTERNAL_CONTAINER_MEMORY_H_
|