123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261 |
- // Copyright 2017 The Abseil Authors.
- //
- // Licensed under the Apache License, Version 2.0 (the "License");
- // you may not use this file except in compliance with the License.
- // You may obtain a copy of the License at
- //
- // https://www.apache.org/licenses/LICENSE-2.0
- //
- // Unless required by applicable law or agreed to in writing, software
- // distributed under the License is distributed on an "AS IS" BASIS,
- // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- // See the License for the specific language governing permissions and
- // limitations under the License.
- #ifndef Y_ABSL_RANDOM_POISSON_DISTRIBUTION_H_
- #define Y_ABSL_RANDOM_POISSON_DISTRIBUTION_H_
- #include <cassert>
- #include <cmath>
- #include <istream>
- #include <limits>
- #include <ostream>
- #include <type_traits>
- #include "y_absl/random/internal/fast_uniform_bits.h"
- #include "y_absl/random/internal/fastmath.h"
- #include "y_absl/random/internal/generate_real.h"
- #include "y_absl/random/internal/iostream_state_saver.h"
- #include "y_absl/random/internal/traits.h"
- namespace y_absl {
- Y_ABSL_NAMESPACE_BEGIN
- // y_absl::poisson_distribution:
- // Generates discrete variates conforming to a Poisson distribution.
- // p(n) = (mean^n / n!) exp(-mean)
- //
- // Depending on the parameter, the distribution selects one of the following
- // algorithms:
- // * The standard algorithm, attributed to Knuth, extended using a split method
- // for larger values
- // * The "Ratio of Uniforms as a convenient method for sampling from classical
- // discrete distributions", Stadlober, 1989.
- // http://www.sciencedirect.com/science/article/pii/0377042790903495
- //
- // NOTE: param_type.mean() is a double, which permits values larger than
- // poisson_distribution<IntType>::max(), however this should be avoided and
- // the distribution results are limited to the max() value.
- //
- // The goals of this implementation are to provide good performance while still
- // beig thread-safe: This limits the implementation to not using lgamma provided
- // by <math.h>.
- //
- template <typename IntType = int>
- class poisson_distribution {
- public:
- using result_type = IntType;
- class param_type {
- public:
- using distribution_type = poisson_distribution;
- explicit param_type(double mean = 1.0);
- double mean() const { return mean_; }
- friend bool operator==(const param_type& a, const param_type& b) {
- return a.mean_ == b.mean_;
- }
- friend bool operator!=(const param_type& a, const param_type& b) {
- return !(a == b);
- }
- private:
- friend class poisson_distribution;
- double mean_;
- double emu_; // e ^ -mean_
- double lmu_; // ln(mean_)
- double s_;
- double log_k_;
- int split_;
- static_assert(random_internal::IsIntegral<IntType>::value,
- "Class-template y_absl::poisson_distribution<> must be "
- "parameterized using an integral type.");
- };
- poisson_distribution() : poisson_distribution(1.0) {}
- explicit poisson_distribution(double mean) : param_(mean) {}
- explicit poisson_distribution(const param_type& p) : param_(p) {}
- void reset() {}
- // generating functions
- template <typename URBG>
- result_type operator()(URBG& g) { // NOLINT(runtime/references)
- return (*this)(g, param_);
- }
- template <typename URBG>
- result_type operator()(URBG& g, // NOLINT(runtime/references)
- const param_type& p);
- param_type param() const { return param_; }
- void param(const param_type& p) { param_ = p; }
- result_type(min)() const { return 0; }
- result_type(max)() const { return (std::numeric_limits<result_type>::max)(); }
- double mean() const { return param_.mean(); }
- friend bool operator==(const poisson_distribution& a,
- const poisson_distribution& b) {
- return a.param_ == b.param_;
- }
- friend bool operator!=(const poisson_distribution& a,
- const poisson_distribution& b) {
- return a.param_ != b.param_;
- }
- private:
- param_type param_;
- random_internal::FastUniformBits<uint64_t> fast_u64_;
- };
- // -----------------------------------------------------------------------------
- // Implementation details follow
- // -----------------------------------------------------------------------------
- template <typename IntType>
- poisson_distribution<IntType>::param_type::param_type(double mean)
- : mean_(mean), split_(0) {
- assert(mean >= 0);
- assert(mean <=
- static_cast<double>((std::numeric_limits<result_type>::max)()));
- // As a defensive measure, avoid large values of the mean. The rejection
- // algorithm used does not support very large values well. It my be worth
- // changing algorithms to better deal with these cases.
- assert(mean <= 1e10);
- if (mean_ < 10) {
- // For small lambda, use the knuth method.
- split_ = 1;
- emu_ = std::exp(-mean_);
- } else if (mean_ <= 50) {
- // Use split-knuth method.
- split_ = 1 + static_cast<int>(mean_ / 10.0);
- emu_ = std::exp(-mean_ / static_cast<double>(split_));
- } else {
- // Use ratio of uniforms method.
- constexpr double k2E = 0.7357588823428846;
- constexpr double kSA = 0.4494580810294493;
- lmu_ = std::log(mean_);
- double a = mean_ + 0.5;
- s_ = kSA + std::sqrt(k2E * a);
- const double mode = std::ceil(mean_) - 1;
- log_k_ = lmu_ * mode - y_absl::random_internal::StirlingLogFactorial(mode);
- }
- }
- template <typename IntType>
- template <typename URBG>
- typename poisson_distribution<IntType>::result_type
- poisson_distribution<IntType>::operator()(
- URBG& g, // NOLINT(runtime/references)
- const param_type& p) {
- using random_internal::GeneratePositiveTag;
- using random_internal::GenerateRealFromBits;
- using random_internal::GenerateSignedTag;
- if (p.split_ != 0) {
- // Use Knuth's algorithm with range splitting to avoid floating-point
- // errors. Knuth's algorithm is: Ui is a sequence of uniform variates on
- // (0,1); return the number of variates required for product(Ui) <
- // exp(-lambda).
- //
- // The expected number of variates required for Knuth's method can be
- // computed as follows:
- // The expected value of U is 0.5, so solving for 0.5^n < exp(-lambda) gives
- // the expected number of uniform variates
- // required for a given lambda, which is:
- // lambda = [2, 5, 9, 10, 11, 12, 13, 14, 15, 16, 17]
- // n = [3, 8, 13, 15, 16, 18, 19, 21, 22, 24, 25]
- //
- result_type n = 0;
- for (int split = p.split_; split > 0; --split) {
- double r = 1.0;
- do {
- r *= GenerateRealFromBits<double, GeneratePositiveTag, true>(
- fast_u64_(g)); // U(-1, 0)
- ++n;
- } while (r > p.emu_);
- --n;
- }
- return n;
- }
- // Use ratio of uniforms method.
- //
- // Let u ~ Uniform(0, 1), v ~ Uniform(-1, 1),
- // a = lambda + 1/2,
- // s = 1.5 - sqrt(3/e) + sqrt(2(lambda + 1/2)/e),
- // x = s * v/u + a.
- // P(floor(x) = k | u^2 < f(floor(x))/k), where
- // f(m) = lambda^m exp(-lambda)/ m!, for 0 <= m, and f(m) = 0 otherwise,
- // and k = max(f).
- const double a = p.mean_ + 0.5;
- for (;;) {
- const double u = GenerateRealFromBits<double, GeneratePositiveTag, false>(
- fast_u64_(g)); // U(0, 1)
- const double v = GenerateRealFromBits<double, GenerateSignedTag, false>(
- fast_u64_(g)); // U(-1, 1)
- const double x = std::floor(p.s_ * v / u + a);
- if (x < 0) continue; // f(negative) = 0
- const double rhs = x * p.lmu_;
- // clang-format off
- double s = (x <= 1.0) ? 0.0
- : (x == 2.0) ? 0.693147180559945
- : y_absl::random_internal::StirlingLogFactorial(x);
- // clang-format on
- const double lhs = 2.0 * std::log(u) + p.log_k_ + s;
- if (lhs < rhs) {
- return x > static_cast<double>((max)())
- ? (max)()
- : static_cast<result_type>(x); // f(x)/k >= u^2
- }
- }
- }
- template <typename CharT, typename Traits, typename IntType>
- std::basic_ostream<CharT, Traits>& operator<<(
- std::basic_ostream<CharT, Traits>& os, // NOLINT(runtime/references)
- const poisson_distribution<IntType>& x) {
- auto saver = random_internal::make_ostream_state_saver(os);
- os.precision(random_internal::stream_precision_helper<double>::kPrecision);
- os << x.mean();
- return os;
- }
- template <typename CharT, typename Traits, typename IntType>
- std::basic_istream<CharT, Traits>& operator>>(
- std::basic_istream<CharT, Traits>& is, // NOLINT(runtime/references)
- poisson_distribution<IntType>& x) { // NOLINT(runtime/references)
- using param_type = typename poisson_distribution<IntType>::param_type;
- auto saver = random_internal::make_istream_state_saver(is);
- double mean = random_internal::read_floating_point<double>(is);
- if (!is.fail()) {
- x.param(param_type(mean));
- }
- return is;
- }
- Y_ABSL_NAMESPACE_END
- } // namespace y_absl
- #endif // Y_ABSL_RANDOM_POISSON_DISTRIBUTION_H_
|