123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135 |
- //= lib/fp_trunc_impl.inc - high precision -> low precision conversion *-*-===//
- //
- // The LLVM Compiler Infrastructure
- //
- // This file is dual licensed under the MIT and the University of Illinois Open
- // Source Licenses. See LICENSE.TXT for details.
- //
- //===----------------------------------------------------------------------===//
- //
- // This file implements a fairly generic conversion from a wider to a narrower
- // IEEE-754 floating-point type in the default (round to nearest, ties to even)
- // rounding mode. The constants and types defined following the includes below
- // parameterize the conversion.
- //
- // This routine can be trivially adapted to support conversions to
- // half-precision or from quad-precision. It does not support types that don't
- // use the usual IEEE-754 interchange formats; specifically, some work would be
- // needed to adapt it to (for example) the Intel 80-bit format or PowerPC
- // double-double format.
- //
- // Note please, however, that this implementation is only intended to support
- // *narrowing* operations; if you need to convert to a *wider* floating-point
- // type (e.g. float -> double), then this routine will not do what you want it
- // to.
- //
- // It also requires that integer types at least as large as both formats
- // are available on the target platform; this may pose a problem when trying
- // to add support for quad on some 32-bit systems, for example.
- //
- // Finally, the following assumptions are made:
- //
- // 1. floating-point types and integer types have the same endianness on the
- // target platform
- //
- // 2. quiet NaNs, if supported, are indicated by the leading bit of the
- // significand field being set
- //
- //===----------------------------------------------------------------------===//
- #include "fp_trunc.h"
- static __inline dst_t __truncXfYf2__(src_t a) {
- // Various constants whose values follow from the type parameters.
- // Any reasonable optimizer will fold and propagate all of these.
- const int srcBits = sizeof(src_t)*CHAR_BIT;
- const int srcExpBits = srcBits - srcSigBits - 1;
- const int srcInfExp = (1 << srcExpBits) - 1;
- const int srcExpBias = srcInfExp >> 1;
- const src_rep_t srcMinNormal = SRC_REP_C(1) << srcSigBits;
- const src_rep_t srcSignificandMask = srcMinNormal - 1;
- const src_rep_t srcInfinity = (src_rep_t)srcInfExp << srcSigBits;
- const src_rep_t srcSignMask = SRC_REP_C(1) << (srcSigBits + srcExpBits);
- const src_rep_t srcAbsMask = srcSignMask - 1;
- const src_rep_t roundMask = (SRC_REP_C(1) << (srcSigBits - dstSigBits)) - 1;
- const src_rep_t halfway = SRC_REP_C(1) << (srcSigBits - dstSigBits - 1);
- const src_rep_t srcQNaN = SRC_REP_C(1) << (srcSigBits - 1);
- const src_rep_t srcNaNCode = srcQNaN - 1;
- const int dstBits = sizeof(dst_t)*CHAR_BIT;
- const int dstExpBits = dstBits - dstSigBits - 1;
- const int dstInfExp = (1 << dstExpBits) - 1;
- const int dstExpBias = dstInfExp >> 1;
- const int underflowExponent = srcExpBias + 1 - dstExpBias;
- const int overflowExponent = srcExpBias + dstInfExp - dstExpBias;
- const src_rep_t underflow = (src_rep_t)underflowExponent << srcSigBits;
- const src_rep_t overflow = (src_rep_t)overflowExponent << srcSigBits;
- const dst_rep_t dstQNaN = DST_REP_C(1) << (dstSigBits - 1);
- const dst_rep_t dstNaNCode = dstQNaN - 1;
- // Break a into a sign and representation of the absolute value
- const src_rep_t aRep = srcToRep(a);
- const src_rep_t aAbs = aRep & srcAbsMask;
- const src_rep_t sign = aRep & srcSignMask;
- dst_rep_t absResult;
- if (aAbs - underflow < aAbs - overflow) {
- // The exponent of a is within the range of normal numbers in the
- // destination format. We can convert by simply right-shifting with
- // rounding and adjusting the exponent.
- absResult = aAbs >> (srcSigBits - dstSigBits);
- absResult -= (dst_rep_t)(srcExpBias - dstExpBias) << dstSigBits;
- const src_rep_t roundBits = aAbs & roundMask;
- // Round to nearest
- if (roundBits > halfway)
- absResult++;
- // Ties to even
- else if (roundBits == halfway)
- absResult += absResult & 1;
- }
- else if (aAbs > srcInfinity) {
- // a is NaN.
- // Conjure the result by beginning with infinity, setting the qNaN
- // bit and inserting the (truncated) trailing NaN field.
- absResult = (dst_rep_t)dstInfExp << dstSigBits;
- absResult |= dstQNaN;
- absResult |= ((aAbs & srcNaNCode) >> (srcSigBits - dstSigBits)) & dstNaNCode;
- }
- else if (aAbs >= overflow) {
- // a overflows to infinity.
- absResult = (dst_rep_t)dstInfExp << dstSigBits;
- }
- else {
- // a underflows on conversion to the destination type or is an exact
- // zero. The result may be a denormal or zero. Extract the exponent
- // to get the shift amount for the denormalization.
- const int aExp = aAbs >> srcSigBits;
- const int shift = srcExpBias - dstExpBias - aExp + 1;
- const src_rep_t significand = (aRep & srcSignificandMask) | srcMinNormal;
- // Right shift by the denormalization amount with sticky.
- if (shift > srcSigBits) {
- absResult = 0;
- } else {
- const bool sticky = significand << (srcBits - shift);
- src_rep_t denormalizedSignificand = significand >> shift | sticky;
- absResult = denormalizedSignificand >> (srcSigBits - dstSigBits);
- const src_rep_t roundBits = denormalizedSignificand & roundMask;
- // Round to nearest
- if (roundBits > halfway)
- absResult++;
- // Ties to even
- else if (roundBits == halfway)
- absResult += absResult & 1;
- }
- }
- // Apply the signbit to (dst_t)abs(a).
- const dst_rep_t result = absResult | sign >> (srcBits - dstBits);
- return dstFromRep(result);
- }
|