12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143 |
- //== RangeConstraintManager.cpp - Manage range constraints.------*- C++ -*--==//
- //
- // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
- // See https://llvm.org/LICENSE.txt for license information.
- // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
- //
- //===----------------------------------------------------------------------===//
- //
- // This file defines RangeConstraintManager, a class that tracks simple
- // equality and inequality constraints on symbolic values of ProgramState.
- //
- //===----------------------------------------------------------------------===//
- #include "clang/Basic/JsonSupport.h"
- #include "clang/StaticAnalyzer/Core/PathSensitive/APSIntType.h"
- #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h"
- #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramStateTrait.h"
- #include "clang/StaticAnalyzer/Core/PathSensitive/RangedConstraintManager.h"
- #include "clang/StaticAnalyzer/Core/PathSensitive/SValVisitor.h"
- #include "llvm/ADT/FoldingSet.h"
- #include "llvm/ADT/ImmutableSet.h"
- #include "llvm/ADT/STLExtras.h"
- #include "llvm/ADT/StringExtras.h"
- #include "llvm/ADT/SmallSet.h"
- #include "llvm/Support/Compiler.h"
- #include "llvm/Support/raw_ostream.h"
- #include <algorithm>
- #include <iterator>
- using namespace clang;
- using namespace ento;
- // This class can be extended with other tables which will help to reason
- // about ranges more precisely.
- class OperatorRelationsTable {
- static_assert(BO_LT < BO_GT && BO_GT < BO_LE && BO_LE < BO_GE &&
- BO_GE < BO_EQ && BO_EQ < BO_NE,
- "This class relies on operators order. Rework it otherwise.");
- public:
- enum TriStateKind {
- False = 0,
- True,
- Unknown,
- };
- private:
- // CmpOpTable holds states which represent the corresponding range for
- // branching an exploded graph. We can reason about the branch if there is
- // a previously known fact of the existence of a comparison expression with
- // operands used in the current expression.
- // E.g. assuming (x < y) is true that means (x != y) is surely true.
- // if (x previous_operation y) // < | != | >
- // if (x operation y) // != | > | <
- // tristate // True | Unknown | False
- //
- // CmpOpTable represents next:
- // __|< |> |<=|>=|==|!=|UnknownX2|
- // < |1 |0 |* |0 |0 |* |1 |
- // > |0 |1 |0 |* |0 |* |1 |
- // <=|1 |0 |1 |* |1 |* |0 |
- // >=|0 |1 |* |1 |1 |* |0 |
- // ==|0 |0 |* |* |1 |0 |1 |
- // !=|1 |1 |* |* |0 |1 |0 |
- //
- // Columns stands for a previous operator.
- // Rows stands for a current operator.
- // Each row has exactly two `Unknown` cases.
- // UnknownX2 means that both `Unknown` previous operators are met in code,
- // and there is a special column for that, for example:
- // if (x >= y)
- // if (x != y)
- // if (x <= y)
- // False only
- static constexpr size_t CmpOpCount = BO_NE - BO_LT + 1;
- const TriStateKind CmpOpTable[CmpOpCount][CmpOpCount + 1] = {
- // < > <= >= == != UnknownX2
- {True, False, Unknown, False, False, Unknown, True}, // <
- {False, True, False, Unknown, False, Unknown, True}, // >
- {True, False, True, Unknown, True, Unknown, False}, // <=
- {False, True, Unknown, True, True, Unknown, False}, // >=
- {False, False, Unknown, Unknown, True, False, True}, // ==
- {True, True, Unknown, Unknown, False, True, False}, // !=
- };
- static size_t getIndexFromOp(BinaryOperatorKind OP) {
- return static_cast<size_t>(OP - BO_LT);
- }
- public:
- constexpr size_t getCmpOpCount() const { return CmpOpCount; }
- static BinaryOperatorKind getOpFromIndex(size_t Index) {
- return static_cast<BinaryOperatorKind>(Index + BO_LT);
- }
- TriStateKind getCmpOpState(BinaryOperatorKind CurrentOP,
- BinaryOperatorKind QueriedOP) const {
- return CmpOpTable[getIndexFromOp(CurrentOP)][getIndexFromOp(QueriedOP)];
- }
- TriStateKind getCmpOpStateForUnknownX2(BinaryOperatorKind CurrentOP) const {
- return CmpOpTable[getIndexFromOp(CurrentOP)][CmpOpCount];
- }
- };
- //===----------------------------------------------------------------------===//
- // RangeSet implementation
- //===----------------------------------------------------------------------===//
- RangeSet::ContainerType RangeSet::Factory::EmptySet{};
- RangeSet RangeSet::Factory::add(RangeSet LHS, RangeSet RHS) {
- ContainerType Result;
- Result.reserve(LHS.size() + RHS.size());
- std::merge(LHS.begin(), LHS.end(), RHS.begin(), RHS.end(),
- std::back_inserter(Result));
- return makePersistent(std::move(Result));
- }
- RangeSet RangeSet::Factory::add(RangeSet Original, Range Element) {
- ContainerType Result;
- Result.reserve(Original.size() + 1);
- const_iterator Lower = llvm::lower_bound(Original, Element);
- Result.insert(Result.end(), Original.begin(), Lower);
- Result.push_back(Element);
- Result.insert(Result.end(), Lower, Original.end());
- return makePersistent(std::move(Result));
- }
- RangeSet RangeSet::Factory::add(RangeSet Original, const llvm::APSInt &Point) {
- return add(Original, Range(Point));
- }
- RangeSet RangeSet::Factory::unite(RangeSet LHS, RangeSet RHS) {
- ContainerType Result = unite(*LHS.Impl, *RHS.Impl);
- return makePersistent(std::move(Result));
- }
- RangeSet RangeSet::Factory::unite(RangeSet Original, Range R) {
- ContainerType Result;
- Result.push_back(R);
- Result = unite(*Original.Impl, Result);
- return makePersistent(std::move(Result));
- }
- RangeSet RangeSet::Factory::unite(RangeSet Original, llvm::APSInt Point) {
- return unite(Original, Range(ValueFactory.getValue(Point)));
- }
- RangeSet RangeSet::Factory::unite(RangeSet Original, llvm::APSInt From,
- llvm::APSInt To) {
- return unite(Original,
- Range(ValueFactory.getValue(From), ValueFactory.getValue(To)));
- }
- template <typename T>
- void swapIterators(T &First, T &FirstEnd, T &Second, T &SecondEnd) {
- std::swap(First, Second);
- std::swap(FirstEnd, SecondEnd);
- }
- RangeSet::ContainerType RangeSet::Factory::unite(const ContainerType &LHS,
- const ContainerType &RHS) {
- if (LHS.empty())
- return RHS;
- if (RHS.empty())
- return LHS;
- using llvm::APSInt;
- using iterator = ContainerType::const_iterator;
- iterator First = LHS.begin();
- iterator FirstEnd = LHS.end();
- iterator Second = RHS.begin();
- iterator SecondEnd = RHS.end();
- APSIntType Ty = APSIntType(First->From());
- const APSInt Min = Ty.getMinValue();
- // Handle a corner case first when both range sets start from MIN.
- // This helps to avoid complicated conditions below. Specifically, this
- // particular check for `MIN` is not needed in the loop below every time
- // when we do `Second->From() - One` operation.
- if (Min == First->From() && Min == Second->From()) {
- if (First->To() > Second->To()) {
- // [ First ]--->
- // [ Second ]----->
- // MIN^
- // The Second range is entirely inside the First one.
- // Check if Second is the last in its RangeSet.
- if (++Second == SecondEnd)
- // [ First ]--[ First + 1 ]--->
- // [ Second ]--------------------->
- // MIN^
- // The Union is equal to First's RangeSet.
- return LHS;
- } else {
- // case 1: [ First ]----->
- // case 2: [ First ]--->
- // [ Second ]--->
- // MIN^
- // The First range is entirely inside or equal to the Second one.
- // Check if First is the last in its RangeSet.
- if (++First == FirstEnd)
- // [ First ]----------------------->
- // [ Second ]--[ Second + 1 ]---->
- // MIN^
- // The Union is equal to Second's RangeSet.
- return RHS;
- }
- }
- const APSInt One = Ty.getValue(1);
- ContainerType Result;
- // This is called when there are no ranges left in one of the ranges.
- // Append the rest of the ranges from another range set to the Result
- // and return with that.
- const auto AppendTheRest = [&Result](iterator I, iterator E) {
- Result.append(I, E);
- return Result;
- };
- while (true) {
- // We want to keep the following invariant at all times:
- // ---[ First ------>
- // -----[ Second --->
- if (First->From() > Second->From())
- swapIterators(First, FirstEnd, Second, SecondEnd);
- // The Union definitely starts with First->From().
- // ----------[ First ------>
- // ------------[ Second --->
- // ----------[ Union ------>
- // UnionStart^
- const llvm::APSInt &UnionStart = First->From();
- // Loop where the invariant holds.
- while (true) {
- // Skip all enclosed ranges.
- // ---[ First ]--->
- // -----[ Second ]--[ Second + 1 ]--[ Second + N ]----->
- while (First->To() >= Second->To()) {
- // Check if Second is the last in its RangeSet.
- if (++Second == SecondEnd) {
- // Append the Union.
- // ---[ Union ]--->
- // -----[ Second ]----->
- // --------[ First ]--->
- // UnionEnd^
- Result.emplace_back(UnionStart, First->To());
- // ---[ Union ]----------------->
- // --------------[ First + 1]--->
- // Append all remaining ranges from the First's RangeSet.
- return AppendTheRest(++First, FirstEnd);
- }
- }
- // Check if First and Second are disjoint. It means that we find
- // the end of the Union. Exit the loop and append the Union.
- // ---[ First ]=------------->
- // ------------=[ Second ]--->
- // ----MinusOne^
- if (First->To() < Second->From() - One)
- break;
- // First is entirely inside the Union. Go next.
- // ---[ Union ----------->
- // ---- [ First ]-------->
- // -------[ Second ]----->
- // Check if First is the last in its RangeSet.
- if (++First == FirstEnd) {
- // Append the Union.
- // ---[ Union ]--->
- // -----[ First ]------->
- // --------[ Second ]--->
- // UnionEnd^
- Result.emplace_back(UnionStart, Second->To());
- // ---[ Union ]------------------>
- // --------------[ Second + 1]--->
- // Append all remaining ranges from the Second's RangeSet.
- return AppendTheRest(++Second, SecondEnd);
- }
- // We know that we are at one of the two cases:
- // case 1: --[ First ]--------->
- // case 2: ----[ First ]------->
- // --------[ Second ]---------->
- // In both cases First starts after Second->From().
- // Make sure that the loop invariant holds.
- swapIterators(First, FirstEnd, Second, SecondEnd);
- }
- // Here First and Second are disjoint.
- // Append the Union.
- // ---[ Union ]--------------->
- // -----------------[ Second ]--->
- // ------[ First ]--------------->
- // UnionEnd^
- Result.emplace_back(UnionStart, First->To());
- // Check if First is the last in its RangeSet.
- if (++First == FirstEnd)
- // ---[ Union ]--------------->
- // --------------[ Second ]--->
- // Append all remaining ranges from the Second's RangeSet.
- return AppendTheRest(Second, SecondEnd);
- }
- llvm_unreachable("Normally, we should not reach here");
- }
- RangeSet RangeSet::Factory::getRangeSet(Range From) {
- ContainerType Result;
- Result.push_back(From);
- return makePersistent(std::move(Result));
- }
- RangeSet RangeSet::Factory::makePersistent(ContainerType &&From) {
- llvm::FoldingSetNodeID ID;
- void *InsertPos;
- From.Profile(ID);
- ContainerType *Result = Cache.FindNodeOrInsertPos(ID, InsertPos);
- if (!Result) {
- // It is cheaper to fully construct the resulting range on stack
- // and move it to the freshly allocated buffer if we don't have
- // a set like this already.
- Result = construct(std::move(From));
- Cache.InsertNode(Result, InsertPos);
- }
- return Result;
- }
- RangeSet::ContainerType *RangeSet::Factory::construct(ContainerType &&From) {
- void *Buffer = Arena.Allocate();
- return new (Buffer) ContainerType(std::move(From));
- }
- const llvm::APSInt &RangeSet::getMinValue() const {
- assert(!isEmpty());
- return begin()->From();
- }
- const llvm::APSInt &RangeSet::getMaxValue() const {
- assert(!isEmpty());
- return std::prev(end())->To();
- }
- bool RangeSet::containsImpl(llvm::APSInt &Point) const {
- if (isEmpty() || !pin(Point))
- return false;
- Range Dummy(Point);
- const_iterator It = llvm::upper_bound(*this, Dummy);
- if (It == begin())
- return false;
- return std::prev(It)->Includes(Point);
- }
- bool RangeSet::pin(llvm::APSInt &Point) const {
- APSIntType Type(getMinValue());
- if (Type.testInRange(Point, true) != APSIntType::RTR_Within)
- return false;
- Type.apply(Point);
- return true;
- }
- bool RangeSet::pin(llvm::APSInt &Lower, llvm::APSInt &Upper) const {
- // This function has nine cases, the cartesian product of range-testing
- // both the upper and lower bounds against the symbol's type.
- // Each case requires a different pinning operation.
- // The function returns false if the described range is entirely outside
- // the range of values for the associated symbol.
- APSIntType Type(getMinValue());
- APSIntType::RangeTestResultKind LowerTest = Type.testInRange(Lower, true);
- APSIntType::RangeTestResultKind UpperTest = Type.testInRange(Upper, true);
- switch (LowerTest) {
- case APSIntType::RTR_Below:
- switch (UpperTest) {
- case APSIntType::RTR_Below:
- // The entire range is outside the symbol's set of possible values.
- // If this is a conventionally-ordered range, the state is infeasible.
- if (Lower <= Upper)
- return false;
- // However, if the range wraps around, it spans all possible values.
- Lower = Type.getMinValue();
- Upper = Type.getMaxValue();
- break;
- case APSIntType::RTR_Within:
- // The range starts below what's possible but ends within it. Pin.
- Lower = Type.getMinValue();
- Type.apply(Upper);
- break;
- case APSIntType::RTR_Above:
- // The range spans all possible values for the symbol. Pin.
- Lower = Type.getMinValue();
- Upper = Type.getMaxValue();
- break;
- }
- break;
- case APSIntType::RTR_Within:
- switch (UpperTest) {
- case APSIntType::RTR_Below:
- // The range wraps around, but all lower values are not possible.
- Type.apply(Lower);
- Upper = Type.getMaxValue();
- break;
- case APSIntType::RTR_Within:
- // The range may or may not wrap around, but both limits are valid.
- Type.apply(Lower);
- Type.apply(Upper);
- break;
- case APSIntType::RTR_Above:
- // The range starts within what's possible but ends above it. Pin.
- Type.apply(Lower);
- Upper = Type.getMaxValue();
- break;
- }
- break;
- case APSIntType::RTR_Above:
- switch (UpperTest) {
- case APSIntType::RTR_Below:
- // The range wraps but is outside the symbol's set of possible values.
- return false;
- case APSIntType::RTR_Within:
- // The range starts above what's possible but ends within it (wrap).
- Lower = Type.getMinValue();
- Type.apply(Upper);
- break;
- case APSIntType::RTR_Above:
- // The entire range is outside the symbol's set of possible values.
- // If this is a conventionally-ordered range, the state is infeasible.
- if (Lower <= Upper)
- return false;
- // However, if the range wraps around, it spans all possible values.
- Lower = Type.getMinValue();
- Upper = Type.getMaxValue();
- break;
- }
- break;
- }
- return true;
- }
- RangeSet RangeSet::Factory::intersect(RangeSet What, llvm::APSInt Lower,
- llvm::APSInt Upper) {
- if (What.isEmpty() || !What.pin(Lower, Upper))
- return getEmptySet();
- ContainerType DummyContainer;
- if (Lower <= Upper) {
- // [Lower, Upper] is a regular range.
- //
- // Shortcut: check that there is even a possibility of the intersection
- // by checking the two following situations:
- //
- // <---[ What ]---[------]------>
- // Lower Upper
- // -or-
- // <----[------]----[ What ]---->
- // Lower Upper
- if (What.getMaxValue() < Lower || Upper < What.getMinValue())
- return getEmptySet();
- DummyContainer.push_back(
- Range(ValueFactory.getValue(Lower), ValueFactory.getValue(Upper)));
- } else {
- // [Lower, Upper] is an inverted range, i.e. [MIN, Upper] U [Lower, MAX]
- //
- // Shortcut: check that there is even a possibility of the intersection
- // by checking the following situation:
- //
- // <------]---[ What ]---[------>
- // Upper Lower
- if (What.getMaxValue() < Lower && Upper < What.getMinValue())
- return getEmptySet();
- DummyContainer.push_back(
- Range(ValueFactory.getMinValue(Upper), ValueFactory.getValue(Upper)));
- DummyContainer.push_back(
- Range(ValueFactory.getValue(Lower), ValueFactory.getMaxValue(Lower)));
- }
- return intersect(*What.Impl, DummyContainer);
- }
- RangeSet RangeSet::Factory::intersect(const RangeSet::ContainerType &LHS,
- const RangeSet::ContainerType &RHS) {
- ContainerType Result;
- Result.reserve(std::max(LHS.size(), RHS.size()));
- const_iterator First = LHS.begin(), Second = RHS.begin(),
- FirstEnd = LHS.end(), SecondEnd = RHS.end();
- // If we ran out of ranges in one set, but not in the other,
- // it means that those elements are definitely not in the
- // intersection.
- while (First != FirstEnd && Second != SecondEnd) {
- // We want to keep the following invariant at all times:
- //
- // ----[ First ---------------------->
- // --------[ Second ----------------->
- if (Second->From() < First->From())
- swapIterators(First, FirstEnd, Second, SecondEnd);
- // Loop where the invariant holds:
- do {
- // Check for the following situation:
- //
- // ----[ First ]--------------------->
- // ---------------[ Second ]--------->
- //
- // which means that...
- if (Second->From() > First->To()) {
- // ...First is not in the intersection.
- //
- // We should move on to the next range after First and break out of the
- // loop because the invariant might not be true.
- ++First;
- break;
- }
- // We have a guaranteed intersection at this point!
- // And this is the current situation:
- //
- // ----[ First ]----------------->
- // -------[ Second ------------------>
- //
- // Additionally, it definitely starts with Second->From().
- const llvm::APSInt &IntersectionStart = Second->From();
- // It is important to know which of the two ranges' ends
- // is greater. That "longer" range might have some other
- // intersections, while the "shorter" range might not.
- if (Second->To() > First->To()) {
- // Here we make a decision to keep First as the "longer"
- // range.
- swapIterators(First, FirstEnd, Second, SecondEnd);
- }
- // At this point, we have the following situation:
- //
- // ---- First ]-------------------->
- // ---- Second ]--[ Second+1 ---------->
- //
- // We don't know the relationship between First->From and
- // Second->From and we don't know whether Second+1 intersects
- // with First.
- //
- // However, we know that [IntersectionStart, Second->To] is
- // a part of the intersection...
- Result.push_back(Range(IntersectionStart, Second->To()));
- ++Second;
- // ...and that the invariant will hold for a valid Second+1
- // because First->From <= Second->To < (Second+1)->From.
- } while (Second != SecondEnd);
- }
- if (Result.empty())
- return getEmptySet();
- return makePersistent(std::move(Result));
- }
- RangeSet RangeSet::Factory::intersect(RangeSet LHS, RangeSet RHS) {
- // Shortcut: let's see if the intersection is even possible.
- if (LHS.isEmpty() || RHS.isEmpty() || LHS.getMaxValue() < RHS.getMinValue() ||
- RHS.getMaxValue() < LHS.getMinValue())
- return getEmptySet();
- return intersect(*LHS.Impl, *RHS.Impl);
- }
- RangeSet RangeSet::Factory::intersect(RangeSet LHS, llvm::APSInt Point) {
- if (LHS.containsImpl(Point))
- return getRangeSet(ValueFactory.getValue(Point));
- return getEmptySet();
- }
- RangeSet RangeSet::Factory::negate(RangeSet What) {
- if (What.isEmpty())
- return getEmptySet();
- const llvm::APSInt SampleValue = What.getMinValue();
- const llvm::APSInt &MIN = ValueFactory.getMinValue(SampleValue);
- const llvm::APSInt &MAX = ValueFactory.getMaxValue(SampleValue);
- ContainerType Result;
- Result.reserve(What.size() + (SampleValue == MIN));
- // Handle a special case for MIN value.
- const_iterator It = What.begin();
- const_iterator End = What.end();
- const llvm::APSInt &From = It->From();
- const llvm::APSInt &To = It->To();
- if (From == MIN) {
- // If the range [From, To] is [MIN, MAX], then result is also [MIN, MAX].
- if (To == MAX) {
- return What;
- }
- const_iterator Last = std::prev(End);
- // Try to find and unite the following ranges:
- // [MIN, MIN] & [MIN + 1, N] => [MIN, N].
- if (Last->To() == MAX) {
- // It means that in the original range we have ranges
- // [MIN, A], ... , [B, MAX]
- // And the result should be [MIN, -B], ..., [-A, MAX]
- Result.emplace_back(MIN, ValueFactory.getValue(-Last->From()));
- // We already negated Last, so we can skip it.
- End = Last;
- } else {
- // Add a separate range for the lowest value.
- Result.emplace_back(MIN, MIN);
- }
- // Skip adding the second range in case when [From, To] are [MIN, MIN].
- if (To != MIN) {
- Result.emplace_back(ValueFactory.getValue(-To), MAX);
- }
- // Skip the first range in the loop.
- ++It;
- }
- // Negate all other ranges.
- for (; It != End; ++It) {
- // Negate int values.
- const llvm::APSInt &NewFrom = ValueFactory.getValue(-It->To());
- const llvm::APSInt &NewTo = ValueFactory.getValue(-It->From());
- // Add a negated range.
- Result.emplace_back(NewFrom, NewTo);
- }
- llvm::sort(Result);
- return makePersistent(std::move(Result));
- }
- RangeSet RangeSet::Factory::deletePoint(RangeSet From,
- const llvm::APSInt &Point) {
- if (!From.contains(Point))
- return From;
- llvm::APSInt Upper = Point;
- llvm::APSInt Lower = Point;
- ++Upper;
- --Lower;
- // Notice that the lower bound is greater than the upper bound.
- return intersect(From, Upper, Lower);
- }
- LLVM_DUMP_METHOD void Range::dump(raw_ostream &OS) const {
- OS << '[' << toString(From(), 10) << ", " << toString(To(), 10) << ']';
- }
- LLVM_DUMP_METHOD void Range::dump() const { dump(llvm::errs()); }
- LLVM_DUMP_METHOD void RangeSet::dump(raw_ostream &OS) const {
- OS << "{ ";
- llvm::interleaveComma(*this, OS, [&OS](const Range &R) { R.dump(OS); });
- OS << " }";
- }
- LLVM_DUMP_METHOD void RangeSet::dump() const { dump(llvm::errs()); }
- REGISTER_SET_FACTORY_WITH_PROGRAMSTATE(SymbolSet, SymbolRef)
- namespace {
- class EquivalenceClass;
- } // end anonymous namespace
- REGISTER_MAP_WITH_PROGRAMSTATE(ClassMap, SymbolRef, EquivalenceClass)
- REGISTER_MAP_WITH_PROGRAMSTATE(ClassMembers, EquivalenceClass, SymbolSet)
- REGISTER_MAP_WITH_PROGRAMSTATE(ConstraintRange, EquivalenceClass, RangeSet)
- REGISTER_SET_FACTORY_WITH_PROGRAMSTATE(ClassSet, EquivalenceClass)
- REGISTER_MAP_WITH_PROGRAMSTATE(DisequalityMap, EquivalenceClass, ClassSet)
- namespace {
- /// This class encapsulates a set of symbols equal to each other.
- ///
- /// The main idea of the approach requiring such classes is in narrowing
- /// and sharing constraints between symbols within the class. Also we can
- /// conclude that there is no practical need in storing constraints for
- /// every member of the class separately.
- ///
- /// Main terminology:
- ///
- /// * "Equivalence class" is an object of this class, which can be efficiently
- /// compared to other classes. It represents the whole class without
- /// storing the actual in it. The members of the class however can be
- /// retrieved from the state.
- ///
- /// * "Class members" are the symbols corresponding to the class. This means
- /// that A == B for every member symbols A and B from the class. Members of
- /// each class are stored in the state.
- ///
- /// * "Trivial class" is a class that has and ever had only one same symbol.
- ///
- /// * "Merge operation" merges two classes into one. It is the main operation
- /// to produce non-trivial classes.
- /// If, at some point, we can assume that two symbols from two distinct
- /// classes are equal, we can merge these classes.
- class EquivalenceClass : public llvm::FoldingSetNode {
- public:
- /// Find equivalence class for the given symbol in the given state.
- LLVM_NODISCARD static inline EquivalenceClass find(ProgramStateRef State,
- SymbolRef Sym);
- /// Merge classes for the given symbols and return a new state.
- LLVM_NODISCARD static inline ProgramStateRef merge(RangeSet::Factory &F,
- ProgramStateRef State,
- SymbolRef First,
- SymbolRef Second);
- // Merge this class with the given class and return a new state.
- LLVM_NODISCARD inline ProgramStateRef
- merge(RangeSet::Factory &F, ProgramStateRef State, EquivalenceClass Other);
- /// Return a set of class members for the given state.
- LLVM_NODISCARD inline SymbolSet getClassMembers(ProgramStateRef State) const;
- /// Return true if the current class is trivial in the given state.
- /// A class is trivial if and only if there is not any member relations stored
- /// to it in State/ClassMembers.
- /// An equivalence class with one member might seem as it does not hold any
- /// meaningful information, i.e. that is a tautology. However, during the
- /// removal of dead symbols we do not remove classes with one member for
- /// resource and performance reasons. Consequently, a class with one member is
- /// not necessarily trivial. It could happen that we have a class with two
- /// members and then during the removal of dead symbols we remove one of its
- /// members. In this case, the class is still non-trivial (it still has the
- /// mappings in ClassMembers), even though it has only one member.
- LLVM_NODISCARD inline bool isTrivial(ProgramStateRef State) const;
- /// Return true if the current class is trivial and its only member is dead.
- LLVM_NODISCARD inline bool isTriviallyDead(ProgramStateRef State,
- SymbolReaper &Reaper) const;
- LLVM_NODISCARD static inline ProgramStateRef
- markDisequal(RangeSet::Factory &F, ProgramStateRef State, SymbolRef First,
- SymbolRef Second);
- LLVM_NODISCARD static inline ProgramStateRef
- markDisequal(RangeSet::Factory &F, ProgramStateRef State,
- EquivalenceClass First, EquivalenceClass Second);
- LLVM_NODISCARD inline ProgramStateRef
- markDisequal(RangeSet::Factory &F, ProgramStateRef State,
- EquivalenceClass Other) const;
- LLVM_NODISCARD static inline ClassSet
- getDisequalClasses(ProgramStateRef State, SymbolRef Sym);
- LLVM_NODISCARD inline ClassSet
- getDisequalClasses(ProgramStateRef State) const;
- LLVM_NODISCARD inline ClassSet
- getDisequalClasses(DisequalityMapTy Map, ClassSet::Factory &Factory) const;
- LLVM_NODISCARD static inline Optional<bool> areEqual(ProgramStateRef State,
- EquivalenceClass First,
- EquivalenceClass Second);
- LLVM_NODISCARD static inline Optional<bool>
- areEqual(ProgramStateRef State, SymbolRef First, SymbolRef Second);
- /// Remove one member from the class.
- LLVM_NODISCARD ProgramStateRef removeMember(ProgramStateRef State,
- const SymbolRef Old);
- /// Iterate over all symbols and try to simplify them.
- LLVM_NODISCARD static inline ProgramStateRef simplify(SValBuilder &SVB,
- RangeSet::Factory &F,
- ProgramStateRef State,
- EquivalenceClass Class);
- void dumpToStream(ProgramStateRef State, raw_ostream &os) const;
- LLVM_DUMP_METHOD void dump(ProgramStateRef State) const {
- dumpToStream(State, llvm::errs());
- }
- /// Check equivalence data for consistency.
- LLVM_NODISCARD LLVM_ATTRIBUTE_UNUSED static bool
- isClassDataConsistent(ProgramStateRef State);
- LLVM_NODISCARD QualType getType() const {
- return getRepresentativeSymbol()->getType();
- }
- EquivalenceClass() = delete;
- EquivalenceClass(const EquivalenceClass &) = default;
- EquivalenceClass &operator=(const EquivalenceClass &) = delete;
- EquivalenceClass(EquivalenceClass &&) = default;
- EquivalenceClass &operator=(EquivalenceClass &&) = delete;
- bool operator==(const EquivalenceClass &Other) const {
- return ID == Other.ID;
- }
- bool operator<(const EquivalenceClass &Other) const { return ID < Other.ID; }
- bool operator!=(const EquivalenceClass &Other) const {
- return !operator==(Other);
- }
- static void Profile(llvm::FoldingSetNodeID &ID, uintptr_t CID) {
- ID.AddInteger(CID);
- }
- void Profile(llvm::FoldingSetNodeID &ID) const { Profile(ID, this->ID); }
- private:
- /* implicit */ EquivalenceClass(SymbolRef Sym)
- : ID(reinterpret_cast<uintptr_t>(Sym)) {}
- /// This function is intended to be used ONLY within the class.
- /// The fact that ID is a pointer to a symbol is an implementation detail
- /// and should stay that way.
- /// In the current implementation, we use it to retrieve the only member
- /// of the trivial class.
- SymbolRef getRepresentativeSymbol() const {
- return reinterpret_cast<SymbolRef>(ID);
- }
- static inline SymbolSet::Factory &getMembersFactory(ProgramStateRef State);
- inline ProgramStateRef mergeImpl(RangeSet::Factory &F, ProgramStateRef State,
- SymbolSet Members, EquivalenceClass Other,
- SymbolSet OtherMembers);
- static inline bool
- addToDisequalityInfo(DisequalityMapTy &Info, ConstraintRangeTy &Constraints,
- RangeSet::Factory &F, ProgramStateRef State,
- EquivalenceClass First, EquivalenceClass Second);
- /// This is a unique identifier of the class.
- uintptr_t ID;
- };
- //===----------------------------------------------------------------------===//
- // Constraint functions
- //===----------------------------------------------------------------------===//
- LLVM_NODISCARD LLVM_ATTRIBUTE_UNUSED bool
- areFeasible(ConstraintRangeTy Constraints) {
- return llvm::none_of(
- Constraints,
- [](const std::pair<EquivalenceClass, RangeSet> &ClassConstraint) {
- return ClassConstraint.second.isEmpty();
- });
- }
- LLVM_NODISCARD inline const RangeSet *getConstraint(ProgramStateRef State,
- EquivalenceClass Class) {
- return State->get<ConstraintRange>(Class);
- }
- LLVM_NODISCARD inline const RangeSet *getConstraint(ProgramStateRef State,
- SymbolRef Sym) {
- return getConstraint(State, EquivalenceClass::find(State, Sym));
- }
- LLVM_NODISCARD ProgramStateRef setConstraint(ProgramStateRef State,
- EquivalenceClass Class,
- RangeSet Constraint) {
- return State->set<ConstraintRange>(Class, Constraint);
- }
- LLVM_NODISCARD ProgramStateRef setConstraints(ProgramStateRef State,
- ConstraintRangeTy Constraints) {
- return State->set<ConstraintRange>(Constraints);
- }
- //===----------------------------------------------------------------------===//
- // Equality/diseqiality abstraction
- //===----------------------------------------------------------------------===//
- /// A small helper function for detecting symbolic (dis)equality.
- ///
- /// Equality check can have different forms (like a == b or a - b) and this
- /// class encapsulates those away if the only thing the user wants to check -
- /// whether it's equality/diseqiality or not.
- ///
- /// \returns true if assuming this Sym to be true means equality of operands
- /// false if it means disequality of operands
- /// None otherwise
- Optional<bool> meansEquality(const SymSymExpr *Sym) {
- switch (Sym->getOpcode()) {
- case BO_Sub:
- // This case is: A - B != 0 -> disequality check.
- return false;
- case BO_EQ:
- // This case is: A == B != 0 -> equality check.
- return true;
- case BO_NE:
- // This case is: A != B != 0 -> diseqiality check.
- return false;
- default:
- return llvm::None;
- }
- }
- //===----------------------------------------------------------------------===//
- // Intersection functions
- //===----------------------------------------------------------------------===//
- template <class SecondTy, class... RestTy>
- LLVM_NODISCARD inline RangeSet intersect(RangeSet::Factory &F, RangeSet Head,
- SecondTy Second, RestTy... Tail);
- template <class... RangeTy> struct IntersectionTraits;
- template <class... TailTy> struct IntersectionTraits<RangeSet, TailTy...> {
- // Found RangeSet, no need to check any further
- using Type = RangeSet;
- };
- template <> struct IntersectionTraits<> {
- // We ran out of types, and we didn't find any RangeSet, so the result should
- // be optional.
- using Type = Optional<RangeSet>;
- };
- template <class OptionalOrPointer, class... TailTy>
- struct IntersectionTraits<OptionalOrPointer, TailTy...> {
- // If current type is Optional or a raw pointer, we should keep looking.
- using Type = typename IntersectionTraits<TailTy...>::Type;
- };
- template <class EndTy>
- LLVM_NODISCARD inline EndTy intersect(RangeSet::Factory &F, EndTy End) {
- // If the list contains only RangeSet or Optional<RangeSet>, simply return
- // that range set.
- return End;
- }
- LLVM_NODISCARD LLVM_ATTRIBUTE_UNUSED inline Optional<RangeSet>
- intersect(RangeSet::Factory &F, const RangeSet *End) {
- // This is an extraneous conversion from a raw pointer into Optional<RangeSet>
- if (End) {
- return *End;
- }
- return llvm::None;
- }
- template <class... RestTy>
- LLVM_NODISCARD inline RangeSet intersect(RangeSet::Factory &F, RangeSet Head,
- RangeSet Second, RestTy... Tail) {
- // Here we call either the <RangeSet,RangeSet,...> or <RangeSet,...> version
- // of the function and can be sure that the result is RangeSet.
- return intersect(F, F.intersect(Head, Second), Tail...);
- }
- template <class SecondTy, class... RestTy>
- LLVM_NODISCARD inline RangeSet intersect(RangeSet::Factory &F, RangeSet Head,
- SecondTy Second, RestTy... Tail) {
- if (Second) {
- // Here we call the <RangeSet,RangeSet,...> version of the function...
- return intersect(F, Head, *Second, Tail...);
- }
- // ...and here it is either <RangeSet,RangeSet,...> or <RangeSet,...>, which
- // means that the result is definitely RangeSet.
- return intersect(F, Head, Tail...);
- }
- /// Main generic intersect function.
- /// It intersects all of the given range sets. If some of the given arguments
- /// don't hold a range set (nullptr or llvm::None), the function will skip them.
- ///
- /// Available representations for the arguments are:
- /// * RangeSet
- /// * Optional<RangeSet>
- /// * RangeSet *
- /// Pointer to a RangeSet is automatically assumed to be nullable and will get
- /// checked as well as the optional version. If this behaviour is undesired,
- /// please dereference the pointer in the call.
- ///
- /// Return type depends on the arguments' types. If we can be sure in compile
- /// time that there will be a range set as a result, the returning type is
- /// simply RangeSet, in other cases we have to back off to Optional<RangeSet>.
- ///
- /// Please, prefer optional range sets to raw pointers. If the last argument is
- /// a raw pointer and all previous arguments are None, it will cost one
- /// additional check to convert RangeSet * into Optional<RangeSet>.
- template <class HeadTy, class SecondTy, class... RestTy>
- LLVM_NODISCARD inline
- typename IntersectionTraits<HeadTy, SecondTy, RestTy...>::Type
- intersect(RangeSet::Factory &F, HeadTy Head, SecondTy Second,
- RestTy... Tail) {
- if (Head) {
- return intersect(F, *Head, Second, Tail...);
- }
- return intersect(F, Second, Tail...);
- }
- //===----------------------------------------------------------------------===//
- // Symbolic reasoning logic
- //===----------------------------------------------------------------------===//
- /// A little component aggregating all of the reasoning we have about
- /// the ranges of symbolic expressions.
- ///
- /// Even when we don't know the exact values of the operands, we still
- /// can get a pretty good estimate of the result's range.
- class SymbolicRangeInferrer
- : public SymExprVisitor<SymbolicRangeInferrer, RangeSet> {
- public:
- template <class SourceType>
- static RangeSet inferRange(RangeSet::Factory &F, ProgramStateRef State,
- SourceType Origin) {
- SymbolicRangeInferrer Inferrer(F, State);
- return Inferrer.infer(Origin);
- }
- RangeSet VisitSymExpr(SymbolRef Sym) {
- // If we got to this function, the actual type of the symbolic
- // expression is not supported for advanced inference.
- // In this case, we simply backoff to the default "let's simply
- // infer the range from the expression's type".
- return infer(Sym->getType());
- }
- RangeSet VisitSymIntExpr(const SymIntExpr *Sym) {
- return VisitBinaryOperator(Sym);
- }
- RangeSet VisitIntSymExpr(const IntSymExpr *Sym) {
- return VisitBinaryOperator(Sym);
- }
- RangeSet VisitSymSymExpr(const SymSymExpr *Sym) {
- return intersect(
- RangeFactory,
- // If Sym is (dis)equality, we might have some information
- // on that in our equality classes data structure.
- getRangeForEqualities(Sym),
- // And we should always check what we can get from the operands.
- VisitBinaryOperator(Sym));
- }
- private:
- SymbolicRangeInferrer(RangeSet::Factory &F, ProgramStateRef S)
- : ValueFactory(F.getValueFactory()), RangeFactory(F), State(S) {}
- /// Infer range information from the given integer constant.
- ///
- /// It's not a real "inference", but is here for operating with
- /// sub-expressions in a more polymorphic manner.
- RangeSet inferAs(const llvm::APSInt &Val, QualType) {
- return {RangeFactory, Val};
- }
- /// Infer range information from symbol in the context of the given type.
- RangeSet inferAs(SymbolRef Sym, QualType DestType) {
- QualType ActualType = Sym->getType();
- // Check that we can reason about the symbol at all.
- if (ActualType->isIntegralOrEnumerationType() ||
- Loc::isLocType(ActualType)) {
- return infer(Sym);
- }
- // Otherwise, let's simply infer from the destination type.
- // We couldn't figure out nothing else about that expression.
- return infer(DestType);
- }
- RangeSet infer(SymbolRef Sym) {
- return intersect(
- RangeFactory,
- // Of course, we should take the constraint directly associated with
- // this symbol into consideration.
- getConstraint(State, Sym),
- // If Sym is a difference of symbols A - B, then maybe we have range
- // set stored for B - A.
- //
- // If we have range set stored for both A - B and B - A then
- // calculate the effective range set by intersecting the range set
- // for A - B and the negated range set of B - A.
- getRangeForNegatedSub(Sym),
- // If Sym is a comparison expression (except <=>),
- // find any other comparisons with the same operands.
- // See function description.
- getRangeForComparisonSymbol(Sym),
- // Apart from the Sym itself, we can infer quite a lot if we look
- // into subexpressions of Sym.
- Visit(Sym));
- }
- RangeSet infer(EquivalenceClass Class) {
- if (const RangeSet *AssociatedConstraint = getConstraint(State, Class))
- return *AssociatedConstraint;
- return infer(Class.getType());
- }
- /// Infer range information solely from the type.
- RangeSet infer(QualType T) {
- // Lazily generate a new RangeSet representing all possible values for the
- // given symbol type.
- RangeSet Result(RangeFactory, ValueFactory.getMinValue(T),
- ValueFactory.getMaxValue(T));
- // References are known to be non-zero.
- if (T->isReferenceType())
- return assumeNonZero(Result, T);
- return Result;
- }
- template <class BinarySymExprTy>
- RangeSet VisitBinaryOperator(const BinarySymExprTy *Sym) {
- // TODO #1: VisitBinaryOperator implementation might not make a good
- // use of the inferred ranges. In this case, we might be calculating
- // everything for nothing. This being said, we should introduce some
- // sort of laziness mechanism here.
- //
- // TODO #2: We didn't go into the nested expressions before, so it
- // might cause us spending much more time doing the inference.
- // This can be a problem for deeply nested expressions that are
- // involved in conditions and get tested continuously. We definitely
- // need to address this issue and introduce some sort of caching
- // in here.
- QualType ResultType = Sym->getType();
- return VisitBinaryOperator(inferAs(Sym->getLHS(), ResultType),
- Sym->getOpcode(),
- inferAs(Sym->getRHS(), ResultType), ResultType);
- }
- RangeSet VisitBinaryOperator(RangeSet LHS, BinaryOperator::Opcode Op,
- RangeSet RHS, QualType T) {
- switch (Op) {
- case BO_Or:
- return VisitBinaryOperator<BO_Or>(LHS, RHS, T);
- case BO_And:
- return VisitBinaryOperator<BO_And>(LHS, RHS, T);
- case BO_Rem:
- return VisitBinaryOperator<BO_Rem>(LHS, RHS, T);
- default:
- return infer(T);
- }
- }
- //===----------------------------------------------------------------------===//
- // Ranges and operators
- //===----------------------------------------------------------------------===//
- /// Return a rough approximation of the given range set.
- ///
- /// For the range set:
- /// { [x_0, y_0], [x_1, y_1], ... , [x_N, y_N] }
- /// it will return the range [x_0, y_N].
- static Range fillGaps(RangeSet Origin) {
- assert(!Origin.isEmpty());
- return {Origin.getMinValue(), Origin.getMaxValue()};
- }
- /// Try to convert given range into the given type.
- ///
- /// It will return llvm::None only when the trivial conversion is possible.
- llvm::Optional<Range> convert(const Range &Origin, APSIntType To) {
- if (To.testInRange(Origin.From(), false) != APSIntType::RTR_Within ||
- To.testInRange(Origin.To(), false) != APSIntType::RTR_Within) {
- return llvm::None;
- }
- return Range(ValueFactory.Convert(To, Origin.From()),
- ValueFactory.Convert(To, Origin.To()));
- }
- template <BinaryOperator::Opcode Op>
- RangeSet VisitBinaryOperator(RangeSet LHS, RangeSet RHS, QualType T) {
- // We should propagate information about unfeasbility of one of the
- // operands to the resulting range.
- if (LHS.isEmpty() || RHS.isEmpty()) {
- return RangeFactory.getEmptySet();
- }
- Range CoarseLHS = fillGaps(LHS);
- Range CoarseRHS = fillGaps(RHS);
- APSIntType ResultType = ValueFactory.getAPSIntType(T);
- // We need to convert ranges to the resulting type, so we can compare values
- // and combine them in a meaningful (in terms of the given operation) way.
- auto ConvertedCoarseLHS = convert(CoarseLHS, ResultType);
- auto ConvertedCoarseRHS = convert(CoarseRHS, ResultType);
- // It is hard to reason about ranges when conversion changes
- // borders of the ranges.
- if (!ConvertedCoarseLHS || !ConvertedCoarseRHS) {
- return infer(T);
- }
- return VisitBinaryOperator<Op>(*ConvertedCoarseLHS, *ConvertedCoarseRHS, T);
- }
- template <BinaryOperator::Opcode Op>
- RangeSet VisitBinaryOperator(Range LHS, Range RHS, QualType T) {
- return infer(T);
- }
- /// Return a symmetrical range for the given range and type.
- ///
- /// If T is signed, return the smallest range [-x..x] that covers the original
- /// range, or [-min(T), max(T)] if the aforementioned symmetric range doesn't
- /// exist due to original range covering min(T)).
- ///
- /// If T is unsigned, return the smallest range [0..x] that covers the
- /// original range.
- Range getSymmetricalRange(Range Origin, QualType T) {
- APSIntType RangeType = ValueFactory.getAPSIntType(T);
- if (RangeType.isUnsigned()) {
- return Range(ValueFactory.getMinValue(RangeType), Origin.To());
- }
- if (Origin.From().isMinSignedValue()) {
- // If mini is a minimal signed value, absolute value of it is greater
- // than the maximal signed value. In order to avoid these
- // complications, we simply return the whole range.
- return {ValueFactory.getMinValue(RangeType),
- ValueFactory.getMaxValue(RangeType)};
- }
- // At this point, we are sure that the type is signed and we can safely
- // use unary - operator.
- //
- // While calculating absolute maximum, we can use the following formula
- // because of these reasons:
- // * If From >= 0 then To >= From and To >= -From.
- // AbsMax == To == max(To, -From)
- // * If To <= 0 then -From >= -To and -From >= From.
- // AbsMax == -From == max(-From, To)
- // * Otherwise, From <= 0, To >= 0, and
- // AbsMax == max(abs(From), abs(To))
- llvm::APSInt AbsMax = std::max(-Origin.From(), Origin.To());
- // Intersection is guaranteed to be non-empty.
- return {ValueFactory.getValue(-AbsMax), ValueFactory.getValue(AbsMax)};
- }
- /// Return a range set subtracting zero from \p Domain.
- RangeSet assumeNonZero(RangeSet Domain, QualType T) {
- APSIntType IntType = ValueFactory.getAPSIntType(T);
- return RangeFactory.deletePoint(Domain, IntType.getZeroValue());
- }
- // FIXME: Once SValBuilder supports unary minus, we should use SValBuilder to
- // obtain the negated symbolic expression instead of constructing the
- // symbol manually. This will allow us to support finding ranges of not
- // only negated SymSymExpr-type expressions, but also of other, simpler
- // expressions which we currently do not know how to negate.
- Optional<RangeSet> getRangeForNegatedSub(SymbolRef Sym) {
- if (const SymSymExpr *SSE = dyn_cast<SymSymExpr>(Sym)) {
- if (SSE->getOpcode() == BO_Sub) {
- QualType T = Sym->getType();
- // Do not negate unsigned ranges
- if (!T->isUnsignedIntegerOrEnumerationType() &&
- !T->isSignedIntegerOrEnumerationType())
- return llvm::None;
- SymbolManager &SymMgr = State->getSymbolManager();
- SymbolRef NegatedSym =
- SymMgr.getSymSymExpr(SSE->getRHS(), BO_Sub, SSE->getLHS(), T);
- if (const RangeSet *NegatedRange = getConstraint(State, NegatedSym)) {
- return RangeFactory.negate(*NegatedRange);
- }
- }
- }
- return llvm::None;
- }
- // Returns ranges only for binary comparison operators (except <=>)
- // when left and right operands are symbolic values.
- // Finds any other comparisons with the same operands.
- // Then do logical calculations and refuse impossible branches.
- // E.g. (x < y) and (x > y) at the same time are impossible.
- // E.g. (x >= y) and (x != y) at the same time makes (x > y) true only.
- // E.g. (x == y) and (y == x) are just reversed but the same.
- // It covers all possible combinations (see CmpOpTable description).
- // Note that `x` and `y` can also stand for subexpressions,
- // not only for actual symbols.
- Optional<RangeSet> getRangeForComparisonSymbol(SymbolRef Sym) {
- const auto *SSE = dyn_cast<SymSymExpr>(Sym);
- if (!SSE)
- return llvm::None;
- const BinaryOperatorKind CurrentOP = SSE->getOpcode();
- // We currently do not support <=> (C++20).
- if (!BinaryOperator::isComparisonOp(CurrentOP) || (CurrentOP == BO_Cmp))
- return llvm::None;
- static const OperatorRelationsTable CmpOpTable{};
- const SymExpr *LHS = SSE->getLHS();
- const SymExpr *RHS = SSE->getRHS();
- QualType T = SSE->getType();
- SymbolManager &SymMgr = State->getSymbolManager();
- // We use this variable to store the last queried operator (`QueriedOP`)
- // for which the `getCmpOpState` returned with `Unknown`. If there are two
- // different OPs that returned `Unknown` then we have to query the special
- // `UnknownX2` column. We assume that `getCmpOpState(CurrentOP, CurrentOP)`
- // never returns `Unknown`, so `CurrentOP` is a good initial value.
- BinaryOperatorKind LastQueriedOpToUnknown = CurrentOP;
- // Loop goes through all of the columns exept the last one ('UnknownX2').
- // We treat `UnknownX2` column separately at the end of the loop body.
- for (size_t i = 0; i < CmpOpTable.getCmpOpCount(); ++i) {
- // Let's find an expression e.g. (x < y).
- BinaryOperatorKind QueriedOP = OperatorRelationsTable::getOpFromIndex(i);
- const SymSymExpr *SymSym = SymMgr.getSymSymExpr(LHS, QueriedOP, RHS, T);
- const RangeSet *QueriedRangeSet = getConstraint(State, SymSym);
- // If ranges were not previously found,
- // try to find a reversed expression (y > x).
- if (!QueriedRangeSet) {
- const BinaryOperatorKind ROP =
- BinaryOperator::reverseComparisonOp(QueriedOP);
- SymSym = SymMgr.getSymSymExpr(RHS, ROP, LHS, T);
- QueriedRangeSet = getConstraint(State, SymSym);
- }
- if (!QueriedRangeSet || QueriedRangeSet->isEmpty())
- continue;
- const llvm::APSInt *ConcreteValue = QueriedRangeSet->getConcreteValue();
- const bool isInFalseBranch =
- ConcreteValue ? (*ConcreteValue == 0) : false;
- // If it is a false branch, we shall be guided by opposite operator,
- // because the table is made assuming we are in the true branch.
- // E.g. when (x <= y) is false, then (x > y) is true.
- if (isInFalseBranch)
- QueriedOP = BinaryOperator::negateComparisonOp(QueriedOP);
- OperatorRelationsTable::TriStateKind BranchState =
- CmpOpTable.getCmpOpState(CurrentOP, QueriedOP);
- if (BranchState == OperatorRelationsTable::Unknown) {
- if (LastQueriedOpToUnknown != CurrentOP &&
- LastQueriedOpToUnknown != QueriedOP) {
- // If we got the Unknown state for both different operators.
- // if (x <= y) // assume true
- // if (x != y) // assume true
- // if (x < y) // would be also true
- // Get a state from `UnknownX2` column.
- BranchState = CmpOpTable.getCmpOpStateForUnknownX2(CurrentOP);
- } else {
- LastQueriedOpToUnknown = QueriedOP;
- continue;
- }
- }
- return (BranchState == OperatorRelationsTable::True) ? getTrueRange(T)
- : getFalseRange(T);
- }
- return llvm::None;
- }
- Optional<RangeSet> getRangeForEqualities(const SymSymExpr *Sym) {
- Optional<bool> Equality = meansEquality(Sym);
- if (!Equality)
- return llvm::None;
- if (Optional<bool> AreEqual =
- EquivalenceClass::areEqual(State, Sym->getLHS(), Sym->getRHS())) {
- // Here we cover two cases at once:
- // * if Sym is equality and its operands are known to be equal -> true
- // * if Sym is disequality and its operands are disequal -> true
- if (*AreEqual == *Equality) {
- return getTrueRange(Sym->getType());
- }
- // Opposite combinations result in false.
- return getFalseRange(Sym->getType());
- }
- return llvm::None;
- }
- RangeSet getTrueRange(QualType T) {
- RangeSet TypeRange = infer(T);
- return assumeNonZero(TypeRange, T);
- }
- RangeSet getFalseRange(QualType T) {
- const llvm::APSInt &Zero = ValueFactory.getValue(0, T);
- return RangeSet(RangeFactory, Zero);
- }
- BasicValueFactory &ValueFactory;
- RangeSet::Factory &RangeFactory;
- ProgramStateRef State;
- };
- //===----------------------------------------------------------------------===//
- // Range-based reasoning about symbolic operations
- //===----------------------------------------------------------------------===//
- template <>
- RangeSet SymbolicRangeInferrer::VisitBinaryOperator<BO_Or>(Range LHS, Range RHS,
- QualType T) {
- APSIntType ResultType = ValueFactory.getAPSIntType(T);
- llvm::APSInt Zero = ResultType.getZeroValue();
- bool IsLHSPositiveOrZero = LHS.From() >= Zero;
- bool IsRHSPositiveOrZero = RHS.From() >= Zero;
- bool IsLHSNegative = LHS.To() < Zero;
- bool IsRHSNegative = RHS.To() < Zero;
- // Check if both ranges have the same sign.
- if ((IsLHSPositiveOrZero && IsRHSPositiveOrZero) ||
- (IsLHSNegative && IsRHSNegative)) {
- // The result is definitely greater or equal than any of the operands.
- const llvm::APSInt &Min = std::max(LHS.From(), RHS.From());
- // We estimate maximal value for positives as the maximal value for the
- // given type. For negatives, we estimate it with -1 (e.g. 0x11111111).
- //
- // TODO: We basically, limit the resulting range from below, but don't do
- // anything with the upper bound.
- //
- // For positive operands, it can be done as follows: for the upper
- // bound of LHS and RHS we calculate the most significant bit set.
- // Let's call it the N-th bit. Then we can estimate the maximal
- // number to be 2^(N+1)-1, i.e. the number with all the bits up to
- // the N-th bit set.
- const llvm::APSInt &Max = IsLHSNegative
- ? ValueFactory.getValue(--Zero)
- : ValueFactory.getMaxValue(ResultType);
- return {RangeFactory, ValueFactory.getValue(Min), Max};
- }
- // Otherwise, let's check if at least one of the operands is negative.
- if (IsLHSNegative || IsRHSNegative) {
- // This means that the result is definitely negative as well.
- return {RangeFactory, ValueFactory.getMinValue(ResultType),
- ValueFactory.getValue(--Zero)};
- }
- RangeSet DefaultRange = infer(T);
- // It is pretty hard to reason about operands with different signs
- // (and especially with possibly different signs). We simply check if it
- // can be zero. In order to conclude that the result could not be zero,
- // at least one of the operands should be definitely not zero itself.
- if (!LHS.Includes(Zero) || !RHS.Includes(Zero)) {
- return assumeNonZero(DefaultRange, T);
- }
- // Nothing much else to do here.
- return DefaultRange;
- }
- template <>
- RangeSet SymbolicRangeInferrer::VisitBinaryOperator<BO_And>(Range LHS,
- Range RHS,
- QualType T) {
- APSIntType ResultType = ValueFactory.getAPSIntType(T);
- llvm::APSInt Zero = ResultType.getZeroValue();
- bool IsLHSPositiveOrZero = LHS.From() >= Zero;
- bool IsRHSPositiveOrZero = RHS.From() >= Zero;
- bool IsLHSNegative = LHS.To() < Zero;
- bool IsRHSNegative = RHS.To() < Zero;
- // Check if both ranges have the same sign.
- if ((IsLHSPositiveOrZero && IsRHSPositiveOrZero) ||
- (IsLHSNegative && IsRHSNegative)) {
- // The result is definitely less or equal than any of the operands.
- const llvm::APSInt &Max = std::min(LHS.To(), RHS.To());
- // We conservatively estimate lower bound to be the smallest positive
- // or negative value corresponding to the sign of the operands.
- const llvm::APSInt &Min = IsLHSNegative
- ? ValueFactory.getMinValue(ResultType)
- : ValueFactory.getValue(Zero);
- return {RangeFactory, Min, Max};
- }
- // Otherwise, let's check if at least one of the operands is positive.
- if (IsLHSPositiveOrZero || IsRHSPositiveOrZero) {
- // This makes result definitely positive.
- //
- // We can also reason about a maximal value by finding the maximal
- // value of the positive operand.
- const llvm::APSInt &Max = IsLHSPositiveOrZero ? LHS.To() : RHS.To();
- // The minimal value on the other hand is much harder to reason about.
- // The only thing we know for sure is that the result is positive.
- return {RangeFactory, ValueFactory.getValue(Zero),
- ValueFactory.getValue(Max)};
- }
- // Nothing much else to do here.
- return infer(T);
- }
- template <>
- RangeSet SymbolicRangeInferrer::VisitBinaryOperator<BO_Rem>(Range LHS,
- Range RHS,
- QualType T) {
- llvm::APSInt Zero = ValueFactory.getAPSIntType(T).getZeroValue();
- Range ConservativeRange = getSymmetricalRange(RHS, T);
- llvm::APSInt Max = ConservativeRange.To();
- llvm::APSInt Min = ConservativeRange.From();
- if (Max == Zero) {
- // It's an undefined behaviour to divide by 0 and it seems like we know
- // for sure that RHS is 0. Let's say that the resulting range is
- // simply infeasible for that matter.
- return RangeFactory.getEmptySet();
- }
- // At this point, our conservative range is closed. The result, however,
- // couldn't be greater than the RHS' maximal absolute value. Because of
- // this reason, we turn the range into open (or half-open in case of
- // unsigned integers).
- //
- // While we operate on integer values, an open interval (a, b) can be easily
- // represented by the closed interval [a + 1, b - 1]. And this is exactly
- // what we do next.
- //
- // If we are dealing with unsigned case, we shouldn't move the lower bound.
- if (Min.isSigned()) {
- ++Min;
- }
- --Max;
- bool IsLHSPositiveOrZero = LHS.From() >= Zero;
- bool IsRHSPositiveOrZero = RHS.From() >= Zero;
- // Remainder operator results with negative operands is implementation
- // defined. Positive cases are much easier to reason about though.
- if (IsLHSPositiveOrZero && IsRHSPositiveOrZero) {
- // If maximal value of LHS is less than maximal value of RHS,
- // the result won't get greater than LHS.To().
- Max = std::min(LHS.To(), Max);
- // We want to check if it is a situation similar to the following:
- //
- // <------------|---[ LHS ]--------[ RHS ]----->
- // -INF 0 +INF
- //
- // In this situation, we can conclude that (LHS / RHS) == 0 and
- // (LHS % RHS) == LHS.
- Min = LHS.To() < RHS.From() ? LHS.From() : Zero;
- }
- // Nevertheless, the symmetrical range for RHS is a conservative estimate
- // for any sign of either LHS, or RHS.
- return {RangeFactory, ValueFactory.getValue(Min), ValueFactory.getValue(Max)};
- }
- //===----------------------------------------------------------------------===//
- // Constraint manager implementation details
- //===----------------------------------------------------------------------===//
- class RangeConstraintManager : public RangedConstraintManager {
- public:
- RangeConstraintManager(ExprEngine *EE, SValBuilder &SVB)
- : RangedConstraintManager(EE, SVB), F(getBasicVals()) {}
- //===------------------------------------------------------------------===//
- // Implementation for interface from ConstraintManager.
- //===------------------------------------------------------------------===//
- bool haveEqualConstraints(ProgramStateRef S1,
- ProgramStateRef S2) const override {
- // NOTE: ClassMembers are as simple as back pointers for ClassMap,
- // so comparing constraint ranges and class maps should be
- // sufficient.
- return S1->get<ConstraintRange>() == S2->get<ConstraintRange>() &&
- S1->get<ClassMap>() == S2->get<ClassMap>();
- }
- bool canReasonAbout(SVal X) const override;
- ConditionTruthVal checkNull(ProgramStateRef State, SymbolRef Sym) override;
- const llvm::APSInt *getSymVal(ProgramStateRef State,
- SymbolRef Sym) const override;
- ProgramStateRef removeDeadBindings(ProgramStateRef State,
- SymbolReaper &SymReaper) override;
- void printJson(raw_ostream &Out, ProgramStateRef State, const char *NL = "\n",
- unsigned int Space = 0, bool IsDot = false) const override;
- void printConstraints(raw_ostream &Out, ProgramStateRef State,
- const char *NL = "\n", unsigned int Space = 0,
- bool IsDot = false) const;
- void printEquivalenceClasses(raw_ostream &Out, ProgramStateRef State,
- const char *NL = "\n", unsigned int Space = 0,
- bool IsDot = false) const;
- void printDisequalities(raw_ostream &Out, ProgramStateRef State,
- const char *NL = "\n", unsigned int Space = 0,
- bool IsDot = false) const;
- //===------------------------------------------------------------------===//
- // Implementation for interface from RangedConstraintManager.
- //===------------------------------------------------------------------===//
- ProgramStateRef assumeSymNE(ProgramStateRef State, SymbolRef Sym,
- const llvm::APSInt &V,
- const llvm::APSInt &Adjustment) override;
- ProgramStateRef assumeSymEQ(ProgramStateRef State, SymbolRef Sym,
- const llvm::APSInt &V,
- const llvm::APSInt &Adjustment) override;
- ProgramStateRef assumeSymLT(ProgramStateRef State, SymbolRef Sym,
- const llvm::APSInt &V,
- const llvm::APSInt &Adjustment) override;
- ProgramStateRef assumeSymGT(ProgramStateRef State, SymbolRef Sym,
- const llvm::APSInt &V,
- const llvm::APSInt &Adjustment) override;
- ProgramStateRef assumeSymLE(ProgramStateRef State, SymbolRef Sym,
- const llvm::APSInt &V,
- const llvm::APSInt &Adjustment) override;
- ProgramStateRef assumeSymGE(ProgramStateRef State, SymbolRef Sym,
- const llvm::APSInt &V,
- const llvm::APSInt &Adjustment) override;
- ProgramStateRef assumeSymWithinInclusiveRange(
- ProgramStateRef State, SymbolRef Sym, const llvm::APSInt &From,
- const llvm::APSInt &To, const llvm::APSInt &Adjustment) override;
- ProgramStateRef assumeSymOutsideInclusiveRange(
- ProgramStateRef State, SymbolRef Sym, const llvm::APSInt &From,
- const llvm::APSInt &To, const llvm::APSInt &Adjustment) override;
- private:
- RangeSet::Factory F;
- RangeSet getRange(ProgramStateRef State, SymbolRef Sym);
- RangeSet getRange(ProgramStateRef State, EquivalenceClass Class);
- ProgramStateRef setRange(ProgramStateRef State, SymbolRef Sym,
- RangeSet Range);
- ProgramStateRef setRange(ProgramStateRef State, EquivalenceClass Class,
- RangeSet Range);
- RangeSet getSymLTRange(ProgramStateRef St, SymbolRef Sym,
- const llvm::APSInt &Int,
- const llvm::APSInt &Adjustment);
- RangeSet getSymGTRange(ProgramStateRef St, SymbolRef Sym,
- const llvm::APSInt &Int,
- const llvm::APSInt &Adjustment);
- RangeSet getSymLERange(ProgramStateRef St, SymbolRef Sym,
- const llvm::APSInt &Int,
- const llvm::APSInt &Adjustment);
- RangeSet getSymLERange(llvm::function_ref<RangeSet()> RS,
- const llvm::APSInt &Int,
- const llvm::APSInt &Adjustment);
- RangeSet getSymGERange(ProgramStateRef St, SymbolRef Sym,
- const llvm::APSInt &Int,
- const llvm::APSInt &Adjustment);
- };
- //===----------------------------------------------------------------------===//
- // Constraint assignment logic
- //===----------------------------------------------------------------------===//
- /// ConstraintAssignorBase is a small utility class that unifies visitor
- /// for ranges with a visitor for constraints (rangeset/range/constant).
- ///
- /// It is designed to have one derived class, but generally it can have more.
- /// Derived class can control which types we handle by defining methods of the
- /// following form:
- ///
- /// bool handle${SYMBOL}To${CONSTRAINT}(const SYMBOL *Sym,
- /// CONSTRAINT Constraint);
- ///
- /// where SYMBOL is the type of the symbol (e.g. SymSymExpr, SymbolCast, etc.)
- /// CONSTRAINT is the type of constraint (RangeSet/Range/Const)
- /// return value signifies whether we should try other handle methods
- /// (i.e. false would mean to stop right after calling this method)
- template <class Derived> class ConstraintAssignorBase {
- public:
- using Const = const llvm::APSInt &;
- #define DISPATCH(CLASS) return assign##CLASS##Impl(cast<CLASS>(Sym), Constraint)
- #define ASSIGN(CLASS, TO, SYM, CONSTRAINT) \
- if (!static_cast<Derived *>(this)->assign##CLASS##To##TO(SYM, CONSTRAINT)) \
- return false
- void assign(SymbolRef Sym, RangeSet Constraint) {
- assignImpl(Sym, Constraint);
- }
- bool assignImpl(SymbolRef Sym, RangeSet Constraint) {
- switch (Sym->getKind()) {
- #define SYMBOL(Id, Parent) \
- case SymExpr::Id##Kind: \
- DISPATCH(Id);
- #include "clang/StaticAnalyzer/Core/PathSensitive/Symbols.def"
- }
- llvm_unreachable("Unknown SymExpr kind!");
- }
- #define DEFAULT_ASSIGN(Id) \
- bool assign##Id##To##RangeSet(const Id *Sym, RangeSet Constraint) { \
- return true; \
- } \
- bool assign##Id##To##Range(const Id *Sym, Range Constraint) { return true; } \
- bool assign##Id##To##Const(const Id *Sym, Const Constraint) { return true; }
- // When we dispatch for constraint types, we first try to check
- // if the new constraint is the constant and try the corresponding
- // assignor methods. If it didn't interrupt, we can proceed to the
- // range, and finally to the range set.
- #define CONSTRAINT_DISPATCH(Id) \
- if (const llvm::APSInt *Const = Constraint.getConcreteValue()) { \
- ASSIGN(Id, Const, Sym, *Const); \
- } \
- if (Constraint.size() == 1) { \
- ASSIGN(Id, Range, Sym, *Constraint.begin()); \
- } \
- ASSIGN(Id, RangeSet, Sym, Constraint)
- // Our internal assign method first tries to call assignor methods for all
- // constraint types that apply. And if not interrupted, continues with its
- // parent class.
- #define SYMBOL(Id, Parent) \
- bool assign##Id##Impl(const Id *Sym, RangeSet Constraint) { \
- CONSTRAINT_DISPATCH(Id); \
- DISPATCH(Parent); \
- } \
- DEFAULT_ASSIGN(Id)
- #define ABSTRACT_SYMBOL(Id, Parent) SYMBOL(Id, Parent)
- #include "clang/StaticAnalyzer/Core/PathSensitive/Symbols.def"
- // Default implementations for the top class that doesn't have parents.
- bool assignSymExprImpl(const SymExpr *Sym, RangeSet Constraint) {
- CONSTRAINT_DISPATCH(SymExpr);
- return true;
- }
- DEFAULT_ASSIGN(SymExpr);
- #undef DISPATCH
- #undef CONSTRAINT_DISPATCH
- #undef DEFAULT_ASSIGN
- #undef ASSIGN
- };
- /// A little component aggregating all of the reasoning we have about
- /// assigning new constraints to symbols.
- ///
- /// The main purpose of this class is to associate constraints to symbols,
- /// and impose additional constraints on other symbols, when we can imply
- /// them.
- ///
- /// It has a nice symmetry with SymbolicRangeInferrer. When the latter
- /// can provide more precise ranges by looking into the operands of the
- /// expression in question, ConstraintAssignor looks into the operands
- /// to see if we can imply more from the new constraint.
- class ConstraintAssignor : public ConstraintAssignorBase<ConstraintAssignor> {
- public:
- template <class ClassOrSymbol>
- LLVM_NODISCARD static ProgramStateRef
- assign(ProgramStateRef State, SValBuilder &Builder, RangeSet::Factory &F,
- ClassOrSymbol CoS, RangeSet NewConstraint) {
- if (!State || NewConstraint.isEmpty())
- return nullptr;
- ConstraintAssignor Assignor{State, Builder, F};
- return Assignor.assign(CoS, NewConstraint);
- }
- /// Handle expressions like: a % b != 0.
- template <typename SymT>
- bool handleRemainderOp(const SymT *Sym, RangeSet Constraint) {
- if (Sym->getOpcode() != BO_Rem)
- return true;
- // a % b != 0 implies that a != 0.
- if (!Constraint.containsZero()) {
- SVal SymSVal = Builder.makeSymbolVal(Sym->getLHS());
- if (auto NonLocSymSVal = SymSVal.getAs<nonloc::SymbolVal>()) {
- State = State->assume(*NonLocSymSVal, true);
- if (!State)
- return false;
- }
- }
- return true;
- }
- inline bool assignSymExprToConst(const SymExpr *Sym, Const Constraint);
- inline bool assignSymIntExprToRangeSet(const SymIntExpr *Sym,
- RangeSet Constraint) {
- return handleRemainderOp(Sym, Constraint);
- }
- inline bool assignSymSymExprToRangeSet(const SymSymExpr *Sym,
- RangeSet Constraint);
- private:
- ConstraintAssignor(ProgramStateRef State, SValBuilder &Builder,
- RangeSet::Factory &F)
- : State(State), Builder(Builder), RangeFactory(F) {}
- using Base = ConstraintAssignorBase<ConstraintAssignor>;
- /// Base method for handling new constraints for symbols.
- LLVM_NODISCARD ProgramStateRef assign(SymbolRef Sym, RangeSet NewConstraint) {
- // All constraints are actually associated with equivalence classes, and
- // that's what we are going to do first.
- State = assign(EquivalenceClass::find(State, Sym), NewConstraint);
- if (!State)
- return nullptr;
- // And after that we can check what other things we can get from this
- // constraint.
- Base::assign(Sym, NewConstraint);
- return State;
- }
- /// Base method for handling new constraints for classes.
- LLVM_NODISCARD ProgramStateRef assign(EquivalenceClass Class,
- RangeSet NewConstraint) {
- // There is a chance that we might need to update constraints for the
- // classes that are known to be disequal to Class.
- //
- // In order for this to be even possible, the new constraint should
- // be simply a constant because we can't reason about range disequalities.
- if (const llvm::APSInt *Point = NewConstraint.getConcreteValue()) {
- ConstraintRangeTy Constraints = State->get<ConstraintRange>();
- ConstraintRangeTy::Factory &CF = State->get_context<ConstraintRange>();
- // Add new constraint.
- Constraints = CF.add(Constraints, Class, NewConstraint);
- for (EquivalenceClass DisequalClass : Class.getDisequalClasses(State)) {
- RangeSet UpdatedConstraint = SymbolicRangeInferrer::inferRange(
- RangeFactory, State, DisequalClass);
- UpdatedConstraint = RangeFactory.deletePoint(UpdatedConstraint, *Point);
- // If we end up with at least one of the disequal classes to be
- // constrained with an empty range-set, the state is infeasible.
- if (UpdatedConstraint.isEmpty())
- return nullptr;
- Constraints = CF.add(Constraints, DisequalClass, UpdatedConstraint);
- }
- assert(areFeasible(Constraints) && "Constraint manager shouldn't produce "
- "a state with infeasible constraints");
- return setConstraints(State, Constraints);
- }
- return setConstraint(State, Class, NewConstraint);
- }
- ProgramStateRef trackDisequality(ProgramStateRef State, SymbolRef LHS,
- SymbolRef RHS) {
- return EquivalenceClass::markDisequal(RangeFactory, State, LHS, RHS);
- }
- ProgramStateRef trackEquality(ProgramStateRef State, SymbolRef LHS,
- SymbolRef RHS) {
- return EquivalenceClass::merge(RangeFactory, State, LHS, RHS);
- }
- LLVM_NODISCARD Optional<bool> interpreteAsBool(RangeSet Constraint) {
- assert(!Constraint.isEmpty() && "Empty ranges shouldn't get here");
- if (Constraint.getConcreteValue())
- return !Constraint.getConcreteValue()->isZero();
- if (!Constraint.containsZero())
- return true;
- return llvm::None;
- }
- ProgramStateRef State;
- SValBuilder &Builder;
- RangeSet::Factory &RangeFactory;
- };
- bool ConstraintAssignor::assignSymExprToConst(const SymExpr *Sym,
- const llvm::APSInt &Constraint) {
- llvm::SmallSet<EquivalenceClass, 4> SimplifiedClasses;
- // Iterate over all equivalence classes and try to simplify them.
- ClassMembersTy Members = State->get<ClassMembers>();
- for (std::pair<EquivalenceClass, SymbolSet> ClassToSymbolSet : Members) {
- EquivalenceClass Class = ClassToSymbolSet.first;
- State = EquivalenceClass::simplify(Builder, RangeFactory, State, Class);
- if (!State)
- return false;
- SimplifiedClasses.insert(Class);
- }
- // Trivial equivalence classes (those that have only one symbol member) are
- // not stored in the State. Thus, we must skim through the constraints as
- // well. And we try to simplify symbols in the constraints.
- ConstraintRangeTy Constraints = State->get<ConstraintRange>();
- for (std::pair<EquivalenceClass, RangeSet> ClassConstraint : Constraints) {
- EquivalenceClass Class = ClassConstraint.first;
- if (SimplifiedClasses.count(Class)) // Already simplified.
- continue;
- State = EquivalenceClass::simplify(Builder, RangeFactory, State, Class);
- if (!State)
- return false;
- }
- // We may have trivial equivalence classes in the disequality info as
- // well, and we need to simplify them.
- DisequalityMapTy DisequalityInfo = State->get<DisequalityMap>();
- for (std::pair<EquivalenceClass, ClassSet> DisequalityEntry :
- DisequalityInfo) {
- EquivalenceClass Class = DisequalityEntry.first;
- ClassSet DisequalClasses = DisequalityEntry.second;
- State = EquivalenceClass::simplify(Builder, RangeFactory, State, Class);
- if (!State)
- return false;
- }
- return true;
- }
- bool ConstraintAssignor::assignSymSymExprToRangeSet(const SymSymExpr *Sym,
- RangeSet Constraint) {
- if (!handleRemainderOp(Sym, Constraint))
- return false;
- Optional<bool> ConstraintAsBool = interpreteAsBool(Constraint);
- if (!ConstraintAsBool)
- return true;
- if (Optional<bool> Equality = meansEquality(Sym)) {
- // Here we cover two cases:
- // * if Sym is equality and the new constraint is true -> Sym's operands
- // should be marked as equal
- // * if Sym is disequality and the new constraint is false -> Sym's
- // operands should be also marked as equal
- if (*Equality == *ConstraintAsBool) {
- State = trackEquality(State, Sym->getLHS(), Sym->getRHS());
- } else {
- // Other combinations leave as with disequal operands.
- State = trackDisequality(State, Sym->getLHS(), Sym->getRHS());
- }
- if (!State)
- return false;
- }
- return true;
- }
- } // end anonymous namespace
- std::unique_ptr<ConstraintManager>
- ento::CreateRangeConstraintManager(ProgramStateManager &StMgr,
- ExprEngine *Eng) {
- return std::make_unique<RangeConstraintManager>(Eng, StMgr.getSValBuilder());
- }
- ConstraintMap ento::getConstraintMap(ProgramStateRef State) {
- ConstraintMap::Factory &F = State->get_context<ConstraintMap>();
- ConstraintMap Result = F.getEmptyMap();
- ConstraintRangeTy Constraints = State->get<ConstraintRange>();
- for (std::pair<EquivalenceClass, RangeSet> ClassConstraint : Constraints) {
- EquivalenceClass Class = ClassConstraint.first;
- SymbolSet ClassMembers = Class.getClassMembers(State);
- assert(!ClassMembers.isEmpty() &&
- "Class must always have at least one member!");
- SymbolRef Representative = *ClassMembers.begin();
- Result = F.add(Result, Representative, ClassConstraint.second);
- }
- return Result;
- }
- //===----------------------------------------------------------------------===//
- // EqualityClass implementation details
- //===----------------------------------------------------------------------===//
- LLVM_DUMP_METHOD void EquivalenceClass::dumpToStream(ProgramStateRef State,
- raw_ostream &os) const {
- SymbolSet ClassMembers = getClassMembers(State);
- for (const SymbolRef &MemberSym : ClassMembers) {
- MemberSym->dump();
- os << "\n";
- }
- }
- inline EquivalenceClass EquivalenceClass::find(ProgramStateRef State,
- SymbolRef Sym) {
- assert(State && "State should not be null");
- assert(Sym && "Symbol should not be null");
- // We store far from all Symbol -> Class mappings
- if (const EquivalenceClass *NontrivialClass = State->get<ClassMap>(Sym))
- return *NontrivialClass;
- // This is a trivial class of Sym.
- return Sym;
- }
- inline ProgramStateRef EquivalenceClass::merge(RangeSet::Factory &F,
- ProgramStateRef State,
- SymbolRef First,
- SymbolRef Second) {
- EquivalenceClass FirstClass = find(State, First);
- EquivalenceClass SecondClass = find(State, Second);
- return FirstClass.merge(F, State, SecondClass);
- }
- inline ProgramStateRef EquivalenceClass::merge(RangeSet::Factory &F,
- ProgramStateRef State,
- EquivalenceClass Other) {
- // It is already the same class.
- if (*this == Other)
- return State;
- // FIXME: As of now, we support only equivalence classes of the same type.
- // This limitation is connected to the lack of explicit casts in
- // our symbolic expression model.
- //
- // That means that for `int x` and `char y` we don't distinguish
- // between these two very different cases:
- // * `x == y`
- // * `(char)x == y`
- //
- // The moment we introduce symbolic casts, this restriction can be
- // lifted.
- if (getType() != Other.getType())
- return State;
- SymbolSet Members = getClassMembers(State);
- SymbolSet OtherMembers = Other.getClassMembers(State);
- // We estimate the size of the class by the height of tree containing
- // its members. Merging is not a trivial operation, so it's easier to
- // merge the smaller class into the bigger one.
- if (Members.getHeight() >= OtherMembers.getHeight()) {
- return mergeImpl(F, State, Members, Other, OtherMembers);
- } else {
- return Other.mergeImpl(F, State, OtherMembers, *this, Members);
- }
- }
- inline ProgramStateRef
- EquivalenceClass::mergeImpl(RangeSet::Factory &RangeFactory,
- ProgramStateRef State, SymbolSet MyMembers,
- EquivalenceClass Other, SymbolSet OtherMembers) {
- // Essentially what we try to recreate here is some kind of union-find
- // data structure. It does have certain limitations due to persistence
- // and the need to remove elements from classes.
- //
- // In this setting, EquialityClass object is the representative of the class
- // or the parent element. ClassMap is a mapping of class members to their
- // parent. Unlike the union-find structure, they all point directly to the
- // class representative because we don't have an opportunity to actually do
- // path compression when dealing with immutability. This means that we
- // compress paths every time we do merges. It also means that we lose
- // the main amortized complexity benefit from the original data structure.
- ConstraintRangeTy Constraints = State->get<ConstraintRange>();
- ConstraintRangeTy::Factory &CRF = State->get_context<ConstraintRange>();
- // 1. If the merged classes have any constraints associated with them, we
- // need to transfer them to the class we have left.
- //
- // Intersection here makes perfect sense because both of these constraints
- // must hold for the whole new class.
- if (Optional<RangeSet> NewClassConstraint =
- intersect(RangeFactory, getConstraint(State, *this),
- getConstraint(State, Other))) {
- // NOTE: Essentially, NewClassConstraint should NEVER be infeasible because
- // range inferrer shouldn't generate ranges incompatible with
- // equivalence classes. However, at the moment, due to imperfections
- // in the solver, it is possible and the merge function can also
- // return infeasible states aka null states.
- if (NewClassConstraint->isEmpty())
- // Infeasible state
- return nullptr;
- // No need in tracking constraints of a now-dissolved class.
- Constraints = CRF.remove(Constraints, Other);
- // Assign new constraints for this class.
- Constraints = CRF.add(Constraints, *this, *NewClassConstraint);
- assert(areFeasible(Constraints) && "Constraint manager shouldn't produce "
- "a state with infeasible constraints");
- State = State->set<ConstraintRange>(Constraints);
- }
- // 2. Get ALL equivalence-related maps
- ClassMapTy Classes = State->get<ClassMap>();
- ClassMapTy::Factory &CMF = State->get_context<ClassMap>();
- ClassMembersTy Members = State->get<ClassMembers>();
- ClassMembersTy::Factory &MF = State->get_context<ClassMembers>();
- DisequalityMapTy DisequalityInfo = State->get<DisequalityMap>();
- DisequalityMapTy::Factory &DF = State->get_context<DisequalityMap>();
- ClassSet::Factory &CF = State->get_context<ClassSet>();
- SymbolSet::Factory &F = getMembersFactory(State);
- // 2. Merge members of the Other class into the current class.
- SymbolSet NewClassMembers = MyMembers;
- for (SymbolRef Sym : OtherMembers) {
- NewClassMembers = F.add(NewClassMembers, Sym);
- // *this is now the class for all these new symbols.
- Classes = CMF.add(Classes, Sym, *this);
- }
- // 3. Adjust member mapping.
- //
- // No need in tracking members of a now-dissolved class.
- Members = MF.remove(Members, Other);
- // Now only the current class is mapped to all the symbols.
- Members = MF.add(Members, *this, NewClassMembers);
- // 4. Update disequality relations
- ClassSet DisequalToOther = Other.getDisequalClasses(DisequalityInfo, CF);
- // We are about to merge two classes but they are already known to be
- // non-equal. This is a contradiction.
- if (DisequalToOther.contains(*this))
- return nullptr;
- if (!DisequalToOther.isEmpty()) {
- ClassSet DisequalToThis = getDisequalClasses(DisequalityInfo, CF);
- DisequalityInfo = DF.remove(DisequalityInfo, Other);
- for (EquivalenceClass DisequalClass : DisequalToOther) {
- DisequalToThis = CF.add(DisequalToThis, DisequalClass);
- // Disequality is a symmetric relation meaning that if
- // DisequalToOther not null then the set for DisequalClass is not
- // empty and has at least Other.
- ClassSet OriginalSetLinkedToOther =
- *DisequalityInfo.lookup(DisequalClass);
- // Other will be eliminated and we should replace it with the bigger
- // united class.
- ClassSet NewSet = CF.remove(OriginalSetLinkedToOther, Other);
- NewSet = CF.add(NewSet, *this);
- DisequalityInfo = DF.add(DisequalityInfo, DisequalClass, NewSet);
- }
- DisequalityInfo = DF.add(DisequalityInfo, *this, DisequalToThis);
- State = State->set<DisequalityMap>(DisequalityInfo);
- }
- // 5. Update the state
- State = State->set<ClassMap>(Classes);
- State = State->set<ClassMembers>(Members);
- return State;
- }
- inline SymbolSet::Factory &
- EquivalenceClass::getMembersFactory(ProgramStateRef State) {
- return State->get_context<SymbolSet>();
- }
- SymbolSet EquivalenceClass::getClassMembers(ProgramStateRef State) const {
- if (const SymbolSet *Members = State->get<ClassMembers>(*this))
- return *Members;
- // This class is trivial, so we need to construct a set
- // with just that one symbol from the class.
- SymbolSet::Factory &F = getMembersFactory(State);
- return F.add(F.getEmptySet(), getRepresentativeSymbol());
- }
- bool EquivalenceClass::isTrivial(ProgramStateRef State) const {
- return State->get<ClassMembers>(*this) == nullptr;
- }
- bool EquivalenceClass::isTriviallyDead(ProgramStateRef State,
- SymbolReaper &Reaper) const {
- return isTrivial(State) && Reaper.isDead(getRepresentativeSymbol());
- }
- inline ProgramStateRef EquivalenceClass::markDisequal(RangeSet::Factory &RF,
- ProgramStateRef State,
- SymbolRef First,
- SymbolRef Second) {
- return markDisequal(RF, State, find(State, First), find(State, Second));
- }
- inline ProgramStateRef EquivalenceClass::markDisequal(RangeSet::Factory &RF,
- ProgramStateRef State,
- EquivalenceClass First,
- EquivalenceClass Second) {
- return First.markDisequal(RF, State, Second);
- }
- inline ProgramStateRef
- EquivalenceClass::markDisequal(RangeSet::Factory &RF, ProgramStateRef State,
- EquivalenceClass Other) const {
- // If we know that two classes are equal, we can only produce an infeasible
- // state.
- if (*this == Other) {
- return nullptr;
- }
- DisequalityMapTy DisequalityInfo = State->get<DisequalityMap>();
- ConstraintRangeTy Constraints = State->get<ConstraintRange>();
- // Disequality is a symmetric relation, so if we mark A as disequal to B,
- // we should also mark B as disequalt to A.
- if (!addToDisequalityInfo(DisequalityInfo, Constraints, RF, State, *this,
- Other) ||
- !addToDisequalityInfo(DisequalityInfo, Constraints, RF, State, Other,
- *this))
- return nullptr;
- assert(areFeasible(Constraints) && "Constraint manager shouldn't produce "
- "a state with infeasible constraints");
- State = State->set<DisequalityMap>(DisequalityInfo);
- State = State->set<ConstraintRange>(Constraints);
- return State;
- }
- inline bool EquivalenceClass::addToDisequalityInfo(
- DisequalityMapTy &Info, ConstraintRangeTy &Constraints,
- RangeSet::Factory &RF, ProgramStateRef State, EquivalenceClass First,
- EquivalenceClass Second) {
- // 1. Get all of the required factories.
- DisequalityMapTy::Factory &F = State->get_context<DisequalityMap>();
- ClassSet::Factory &CF = State->get_context<ClassSet>();
- ConstraintRangeTy::Factory &CRF = State->get_context<ConstraintRange>();
- // 2. Add Second to the set of classes disequal to First.
- const ClassSet *CurrentSet = Info.lookup(First);
- ClassSet NewSet = CurrentSet ? *CurrentSet : CF.getEmptySet();
- NewSet = CF.add(NewSet, Second);
- Info = F.add(Info, First, NewSet);
- // 3. If Second is known to be a constant, we can delete this point
- // from the constraint asociated with First.
- //
- // So, if Second == 10, it means that First != 10.
- // At the same time, the same logic does not apply to ranges.
- if (const RangeSet *SecondConstraint = Constraints.lookup(Second))
- if (const llvm::APSInt *Point = SecondConstraint->getConcreteValue()) {
- RangeSet FirstConstraint = SymbolicRangeInferrer::inferRange(
- RF, State, First.getRepresentativeSymbol());
- FirstConstraint = RF.deletePoint(FirstConstraint, *Point);
- // If the First class is about to be constrained with an empty
- // range-set, the state is infeasible.
- if (FirstConstraint.isEmpty())
- return false;
- Constraints = CRF.add(Constraints, First, FirstConstraint);
- }
- return true;
- }
- inline Optional<bool> EquivalenceClass::areEqual(ProgramStateRef State,
- SymbolRef FirstSym,
- SymbolRef SecondSym) {
- return EquivalenceClass::areEqual(State, find(State, FirstSym),
- find(State, SecondSym));
- }
- inline Optional<bool> EquivalenceClass::areEqual(ProgramStateRef State,
- EquivalenceClass First,
- EquivalenceClass Second) {
- // The same equivalence class => symbols are equal.
- if (First == Second)
- return true;
- // Let's check if we know anything about these two classes being not equal to
- // each other.
- ClassSet DisequalToFirst = First.getDisequalClasses(State);
- if (DisequalToFirst.contains(Second))
- return false;
- // It is not clear.
- return llvm::None;
- }
- LLVM_NODISCARD ProgramStateRef
- EquivalenceClass::removeMember(ProgramStateRef State, const SymbolRef Old) {
- SymbolSet ClsMembers = getClassMembers(State);
- assert(ClsMembers.contains(Old));
- // We don't remove `Old`'s Sym->Class relation for two reasons:
- // 1) This way constraints for the old symbol can still be found via it's
- // equivalence class that it used to be the member of.
- // 2) Performance and resource reasons. We can spare one removal and thus one
- // additional tree in the forest of `ClassMap`.
- // Remove `Old`'s Class->Sym relation.
- SymbolSet::Factory &F = getMembersFactory(State);
- ClassMembersTy::Factory &EMFactory = State->get_context<ClassMembers>();
- ClsMembers = F.remove(ClsMembers, Old);
- // Ensure another precondition of the removeMember function (we can check
- // this only with isEmpty, thus we have to do the remove first).
- assert(!ClsMembers.isEmpty() &&
- "Class should have had at least two members before member removal");
- // Overwrite the existing members assigned to this class.
- ClassMembersTy ClassMembersMap = State->get<ClassMembers>();
- ClassMembersMap = EMFactory.add(ClassMembersMap, *this, ClsMembers);
- State = State->set<ClassMembers>(ClassMembersMap);
- return State;
- }
- // Re-evaluate an SVal with top-level `State->assume` logic.
- LLVM_NODISCARD ProgramStateRef reAssume(ProgramStateRef State,
- const RangeSet *Constraint,
- SVal TheValue) {
- if (!Constraint)
- return State;
- const auto DefinedVal = TheValue.castAs<DefinedSVal>();
- // If the SVal is 0, we can simply interpret that as `false`.
- if (Constraint->encodesFalseRange())
- return State->assume(DefinedVal, false);
- // If the constraint does not encode 0 then we can interpret that as `true`
- // AND as a Range(Set).
- if (Constraint->encodesTrueRange()) {
- State = State->assume(DefinedVal, true);
- if (!State)
- return nullptr;
- // Fall through, re-assume based on the range values as well.
- }
- // Overestimate the individual Ranges with the RangeSet' lowest and
- // highest values.
- return State->assumeInclusiveRange(DefinedVal, Constraint->getMinValue(),
- Constraint->getMaxValue(), true);
- }
- // Iterate over all symbols and try to simplify them. Once a symbol is
- // simplified then we check if we can merge the simplified symbol's equivalence
- // class to this class. This way, we simplify not just the symbols but the
- // classes as well: we strive to keep the number of the classes to be the
- // absolute minimum.
- LLVM_NODISCARD ProgramStateRef
- EquivalenceClass::simplify(SValBuilder &SVB, RangeSet::Factory &F,
- ProgramStateRef State, EquivalenceClass Class) {
- SymbolSet ClassMembers = Class.getClassMembers(State);
- for (const SymbolRef &MemberSym : ClassMembers) {
- const SVal SimplifiedMemberVal = simplifyToSVal(State, MemberSym);
- const SymbolRef SimplifiedMemberSym = SimplifiedMemberVal.getAsSymbol();
- // The symbol is collapsed to a constant, check if the current State is
- // still feasible.
- if (const auto CI = SimplifiedMemberVal.getAs<nonloc::ConcreteInt>()) {
- const llvm::APSInt &SV = CI->getValue();
- const RangeSet *ClassConstraint = getConstraint(State, Class);
- // We have found a contradiction.
- if (ClassConstraint && !ClassConstraint->contains(SV))
- return nullptr;
- }
- if (SimplifiedMemberSym && MemberSym != SimplifiedMemberSym) {
- // The simplified symbol should be the member of the original Class,
- // however, it might be in another existing class at the moment. We
- // have to merge these classes.
- ProgramStateRef OldState = State;
- State = merge(F, State, MemberSym, SimplifiedMemberSym);
- if (!State)
- return nullptr;
- // No state change, no merge happened actually.
- if (OldState == State)
- continue;
- assert(find(State, MemberSym) == find(State, SimplifiedMemberSym));
- // Remove the old and more complex symbol.
- State = find(State, MemberSym).removeMember(State, MemberSym);
- // Query the class constraint again b/c that may have changed during the
- // merge above.
- const RangeSet *ClassConstraint = getConstraint(State, Class);
- // Re-evaluate an SVal with top-level `State->assume`, this ignites
- // a RECURSIVE algorithm that will reach a FIXPOINT.
- //
- // About performance and complexity: Let us assume that in a State we
- // have N non-trivial equivalence classes and that all constraints and
- // disequality info is related to non-trivial classes. In the worst case,
- // we can simplify only one symbol of one class in each iteration. The
- // number of symbols in one class cannot grow b/c we replace the old
- // symbol with the simplified one. Also, the number of the equivalence
- // classes can decrease only, b/c the algorithm does a merge operation
- // optionally. We need N iterations in this case to reach the fixpoint.
- // Thus, the steps needed to be done in the worst case is proportional to
- // N*N.
- //
- // This worst case scenario can be extended to that case when we have
- // trivial classes in the constraints and in the disequality map. This
- // case can be reduced to the case with a State where there are only
- // non-trivial classes. This is because a merge operation on two trivial
- // classes results in one non-trivial class.
- State = reAssume(State, ClassConstraint, SimplifiedMemberVal);
- if (!State)
- return nullptr;
- }
- }
- return State;
- }
- inline ClassSet EquivalenceClass::getDisequalClasses(ProgramStateRef State,
- SymbolRef Sym) {
- return find(State, Sym).getDisequalClasses(State);
- }
- inline ClassSet
- EquivalenceClass::getDisequalClasses(ProgramStateRef State) const {
- return getDisequalClasses(State->get<DisequalityMap>(),
- State->get_context<ClassSet>());
- }
- inline ClassSet
- EquivalenceClass::getDisequalClasses(DisequalityMapTy Map,
- ClassSet::Factory &Factory) const {
- if (const ClassSet *DisequalClasses = Map.lookup(*this))
- return *DisequalClasses;
- return Factory.getEmptySet();
- }
- bool EquivalenceClass::isClassDataConsistent(ProgramStateRef State) {
- ClassMembersTy Members = State->get<ClassMembers>();
- for (std::pair<EquivalenceClass, SymbolSet> ClassMembersPair : Members) {
- for (SymbolRef Member : ClassMembersPair.second) {
- // Every member of the class should have a mapping back to the class.
- if (find(State, Member) == ClassMembersPair.first) {
- continue;
- }
- return false;
- }
- }
- DisequalityMapTy Disequalities = State->get<DisequalityMap>();
- for (std::pair<EquivalenceClass, ClassSet> DisequalityInfo : Disequalities) {
- EquivalenceClass Class = DisequalityInfo.first;
- ClassSet DisequalClasses = DisequalityInfo.second;
- // There is no use in keeping empty sets in the map.
- if (DisequalClasses.isEmpty())
- return false;
- // Disequality is symmetrical, i.e. for every Class A and B that A != B,
- // B != A should also be true.
- for (EquivalenceClass DisequalClass : DisequalClasses) {
- const ClassSet *DisequalToDisequalClasses =
- Disequalities.lookup(DisequalClass);
- // It should be a set of at least one element: Class
- if (!DisequalToDisequalClasses ||
- !DisequalToDisequalClasses->contains(Class))
- return false;
- }
- }
- return true;
- }
- //===----------------------------------------------------------------------===//
- // RangeConstraintManager implementation
- //===----------------------------------------------------------------------===//
- bool RangeConstraintManager::canReasonAbout(SVal X) const {
- Optional<nonloc::SymbolVal> SymVal = X.getAs<nonloc::SymbolVal>();
- if (SymVal && SymVal->isExpression()) {
- const SymExpr *SE = SymVal->getSymbol();
- if (const SymIntExpr *SIE = dyn_cast<SymIntExpr>(SE)) {
- switch (SIE->getOpcode()) {
- // We don't reason yet about bitwise-constraints on symbolic values.
- case BO_And:
- case BO_Or:
- case BO_Xor:
- return false;
- // We don't reason yet about these arithmetic constraints on
- // symbolic values.
- case BO_Mul:
- case BO_Div:
- case BO_Rem:
- case BO_Shl:
- case BO_Shr:
- return false;
- // All other cases.
- default:
- return true;
- }
- }
- if (const SymSymExpr *SSE = dyn_cast<SymSymExpr>(SE)) {
- // FIXME: Handle <=> here.
- if (BinaryOperator::isEqualityOp(SSE->getOpcode()) ||
- BinaryOperator::isRelationalOp(SSE->getOpcode())) {
- // We handle Loc <> Loc comparisons, but not (yet) NonLoc <> NonLoc.
- // We've recently started producing Loc <> NonLoc comparisons (that
- // result from casts of one of the operands between eg. intptr_t and
- // void *), but we can't reason about them yet.
- if (Loc::isLocType(SSE->getLHS()->getType())) {
- return Loc::isLocType(SSE->getRHS()->getType());
- }
- }
- }
- return false;
- }
- return true;
- }
- ConditionTruthVal RangeConstraintManager::checkNull(ProgramStateRef State,
- SymbolRef Sym) {
- const RangeSet *Ranges = getConstraint(State, Sym);
- // If we don't have any information about this symbol, it's underconstrained.
- if (!Ranges)
- return ConditionTruthVal();
- // If we have a concrete value, see if it's zero.
- if (const llvm::APSInt *Value = Ranges->getConcreteValue())
- return *Value == 0;
- BasicValueFactory &BV = getBasicVals();
- APSIntType IntType = BV.getAPSIntType(Sym->getType());
- llvm::APSInt Zero = IntType.getZeroValue();
- // Check if zero is in the set of possible values.
- if (!Ranges->contains(Zero))
- return false;
- // Zero is a possible value, but it is not the /only/ possible value.
- return ConditionTruthVal();
- }
- const llvm::APSInt *RangeConstraintManager::getSymVal(ProgramStateRef St,
- SymbolRef Sym) const {
- const RangeSet *T = getConstraint(St, Sym);
- return T ? T->getConcreteValue() : nullptr;
- }
- //===----------------------------------------------------------------------===//
- // Remove dead symbols from existing constraints
- //===----------------------------------------------------------------------===//
- /// Scan all symbols referenced by the constraints. If the symbol is not alive
- /// as marked in LSymbols, mark it as dead in DSymbols.
- ProgramStateRef
- RangeConstraintManager::removeDeadBindings(ProgramStateRef State,
- SymbolReaper &SymReaper) {
- ClassMembersTy ClassMembersMap = State->get<ClassMembers>();
- ClassMembersTy NewClassMembersMap = ClassMembersMap;
- ClassMembersTy::Factory &EMFactory = State->get_context<ClassMembers>();
- SymbolSet::Factory &SetFactory = State->get_context<SymbolSet>();
- ConstraintRangeTy Constraints = State->get<ConstraintRange>();
- ConstraintRangeTy NewConstraints = Constraints;
- ConstraintRangeTy::Factory &ConstraintFactory =
- State->get_context<ConstraintRange>();
- ClassMapTy Map = State->get<ClassMap>();
- ClassMapTy NewMap = Map;
- ClassMapTy::Factory &ClassFactory = State->get_context<ClassMap>();
- DisequalityMapTy Disequalities = State->get<DisequalityMap>();
- DisequalityMapTy::Factory &DisequalityFactory =
- State->get_context<DisequalityMap>();
- ClassSet::Factory &ClassSetFactory = State->get_context<ClassSet>();
- bool ClassMapChanged = false;
- bool MembersMapChanged = false;
- bool ConstraintMapChanged = false;
- bool DisequalitiesChanged = false;
- auto removeDeadClass = [&](EquivalenceClass Class) {
- // Remove associated constraint ranges.
- Constraints = ConstraintFactory.remove(Constraints, Class);
- ConstraintMapChanged = true;
- // Update disequality information to not hold any information on the
- // removed class.
- ClassSet DisequalClasses =
- Class.getDisequalClasses(Disequalities, ClassSetFactory);
- if (!DisequalClasses.isEmpty()) {
- for (EquivalenceClass DisequalClass : DisequalClasses) {
- ClassSet DisequalToDisequalSet =
- DisequalClass.getDisequalClasses(Disequalities, ClassSetFactory);
- // DisequalToDisequalSet is guaranteed to be non-empty for consistent
- // disequality info.
- assert(!DisequalToDisequalSet.isEmpty());
- ClassSet NewSet = ClassSetFactory.remove(DisequalToDisequalSet, Class);
- // No need in keeping an empty set.
- if (NewSet.isEmpty()) {
- Disequalities =
- DisequalityFactory.remove(Disequalities, DisequalClass);
- } else {
- Disequalities =
- DisequalityFactory.add(Disequalities, DisequalClass, NewSet);
- }
- }
- // Remove the data for the class
- Disequalities = DisequalityFactory.remove(Disequalities, Class);
- DisequalitiesChanged = true;
- }
- };
- // 1. Let's see if dead symbols are trivial and have associated constraints.
- for (std::pair<EquivalenceClass, RangeSet> ClassConstraintPair :
- Constraints) {
- EquivalenceClass Class = ClassConstraintPair.first;
- if (Class.isTriviallyDead(State, SymReaper)) {
- // If this class is trivial, we can remove its constraints right away.
- removeDeadClass(Class);
- }
- }
- // 2. We don't need to track classes for dead symbols.
- for (std::pair<SymbolRef, EquivalenceClass> SymbolClassPair : Map) {
- SymbolRef Sym = SymbolClassPair.first;
- if (SymReaper.isDead(Sym)) {
- ClassMapChanged = true;
- NewMap = ClassFactory.remove(NewMap, Sym);
- }
- }
- // 3. Remove dead members from classes and remove dead non-trivial classes
- // and their constraints.
- for (std::pair<EquivalenceClass, SymbolSet> ClassMembersPair :
- ClassMembersMap) {
- EquivalenceClass Class = ClassMembersPair.first;
- SymbolSet LiveMembers = ClassMembersPair.second;
- bool MembersChanged = false;
- for (SymbolRef Member : ClassMembersPair.second) {
- if (SymReaper.isDead(Member)) {
- MembersChanged = true;
- LiveMembers = SetFactory.remove(LiveMembers, Member);
- }
- }
- // Check if the class changed.
- if (!MembersChanged)
- continue;
- MembersMapChanged = true;
- if (LiveMembers.isEmpty()) {
- // The class is dead now, we need to wipe it out of the members map...
- NewClassMembersMap = EMFactory.remove(NewClassMembersMap, Class);
- // ...and remove all of its constraints.
- removeDeadClass(Class);
- } else {
- // We need to change the members associated with the class.
- NewClassMembersMap =
- EMFactory.add(NewClassMembersMap, Class, LiveMembers);
- }
- }
- // 4. Update the state with new maps.
- //
- // Here we try to be humble and update a map only if it really changed.
- if (ClassMapChanged)
- State = State->set<ClassMap>(NewMap);
- if (MembersMapChanged)
- State = State->set<ClassMembers>(NewClassMembersMap);
- if (ConstraintMapChanged)
- State = State->set<ConstraintRange>(Constraints);
- if (DisequalitiesChanged)
- State = State->set<DisequalityMap>(Disequalities);
- assert(EquivalenceClass::isClassDataConsistent(State));
- return State;
- }
- RangeSet RangeConstraintManager::getRange(ProgramStateRef State,
- SymbolRef Sym) {
- return SymbolicRangeInferrer::inferRange(F, State, Sym);
- }
- ProgramStateRef RangeConstraintManager::setRange(ProgramStateRef State,
- SymbolRef Sym,
- RangeSet Range) {
- return ConstraintAssignor::assign(State, getSValBuilder(), F, Sym, Range);
- }
- //===------------------------------------------------------------------------===
- // assumeSymX methods: protected interface for RangeConstraintManager.
- //===------------------------------------------------------------------------===/
- // The syntax for ranges below is mathematical, using [x, y] for closed ranges
- // and (x, y) for open ranges. These ranges are modular, corresponding with
- // a common treatment of C integer overflow. This means that these methods
- // do not have to worry about overflow; RangeSet::Intersect can handle such a
- // "wraparound" range.
- // As an example, the range [UINT_MAX-1, 3) contains five values: UINT_MAX-1,
- // UINT_MAX, 0, 1, and 2.
- ProgramStateRef
- RangeConstraintManager::assumeSymNE(ProgramStateRef St, SymbolRef Sym,
- const llvm::APSInt &Int,
- const llvm::APSInt &Adjustment) {
- // Before we do any real work, see if the value can even show up.
- APSIntType AdjustmentType(Adjustment);
- if (AdjustmentType.testInRange(Int, true) != APSIntType::RTR_Within)
- return St;
- llvm::APSInt Point = AdjustmentType.convert(Int) - Adjustment;
- RangeSet New = getRange(St, Sym);
- New = F.deletePoint(New, Point);
- return setRange(St, Sym, New);
- }
- ProgramStateRef
- RangeConstraintManager::assumeSymEQ(ProgramStateRef St, SymbolRef Sym,
- const llvm::APSInt &Int,
- const llvm::APSInt &Adjustment) {
- // Before we do any real work, see if the value can even show up.
- APSIntType AdjustmentType(Adjustment);
- if (AdjustmentType.testInRange(Int, true) != APSIntType::RTR_Within)
- return nullptr;
- // [Int-Adjustment, Int-Adjustment]
- llvm::APSInt AdjInt = AdjustmentType.convert(Int) - Adjustment;
- RangeSet New = getRange(St, Sym);
- New = F.intersect(New, AdjInt);
- return setRange(St, Sym, New);
- }
- RangeSet RangeConstraintManager::getSymLTRange(ProgramStateRef St,
- SymbolRef Sym,
- const llvm::APSInt &Int,
- const llvm::APSInt &Adjustment) {
- // Before we do any real work, see if the value can even show up.
- APSIntType AdjustmentType(Adjustment);
- switch (AdjustmentType.testInRange(Int, true)) {
- case APSIntType::RTR_Below:
- return F.getEmptySet();
- case APSIntType::RTR_Within:
- break;
- case APSIntType::RTR_Above:
- return getRange(St, Sym);
- }
- // Special case for Int == Min. This is always false.
- llvm::APSInt ComparisonVal = AdjustmentType.convert(Int);
- llvm::APSInt Min = AdjustmentType.getMinValue();
- if (ComparisonVal == Min)
- return F.getEmptySet();
- llvm::APSInt Lower = Min - Adjustment;
- llvm::APSInt Upper = ComparisonVal - Adjustment;
- --Upper;
- RangeSet Result = getRange(St, Sym);
- return F.intersect(Result, Lower, Upper);
- }
- ProgramStateRef
- RangeConstraintManager::assumeSymLT(ProgramStateRef St, SymbolRef Sym,
- const llvm::APSInt &Int,
- const llvm::APSInt &Adjustment) {
- RangeSet New = getSymLTRange(St, Sym, Int, Adjustment);
- return setRange(St, Sym, New);
- }
- RangeSet RangeConstraintManager::getSymGTRange(ProgramStateRef St,
- SymbolRef Sym,
- const llvm::APSInt &Int,
- const llvm::APSInt &Adjustment) {
- // Before we do any real work, see if the value can even show up.
- APSIntType AdjustmentType(Adjustment);
- switch (AdjustmentType.testInRange(Int, true)) {
- case APSIntType::RTR_Below:
- return getRange(St, Sym);
- case APSIntType::RTR_Within:
- break;
- case APSIntType::RTR_Above:
- return F.getEmptySet();
- }
- // Special case for Int == Max. This is always false.
- llvm::APSInt ComparisonVal = AdjustmentType.convert(Int);
- llvm::APSInt Max = AdjustmentType.getMaxValue();
- if (ComparisonVal == Max)
- return F.getEmptySet();
- llvm::APSInt Lower = ComparisonVal - Adjustment;
- llvm::APSInt Upper = Max - Adjustment;
- ++Lower;
- RangeSet SymRange = getRange(St, Sym);
- return F.intersect(SymRange, Lower, Upper);
- }
- ProgramStateRef
- RangeConstraintManager::assumeSymGT(ProgramStateRef St, SymbolRef Sym,
- const llvm::APSInt &Int,
- const llvm::APSInt &Adjustment) {
- RangeSet New = getSymGTRange(St, Sym, Int, Adjustment);
- return setRange(St, Sym, New);
- }
- RangeSet RangeConstraintManager::getSymGERange(ProgramStateRef St,
- SymbolRef Sym,
- const llvm::APSInt &Int,
- const llvm::APSInt &Adjustment) {
- // Before we do any real work, see if the value can even show up.
- APSIntType AdjustmentType(Adjustment);
- switch (AdjustmentType.testInRange(Int, true)) {
- case APSIntType::RTR_Below:
- return getRange(St, Sym);
- case APSIntType::RTR_Within:
- break;
- case APSIntType::RTR_Above:
- return F.getEmptySet();
- }
- // Special case for Int == Min. This is always feasible.
- llvm::APSInt ComparisonVal = AdjustmentType.convert(Int);
- llvm::APSInt Min = AdjustmentType.getMinValue();
- if (ComparisonVal == Min)
- return getRange(St, Sym);
- llvm::APSInt Max = AdjustmentType.getMaxValue();
- llvm::APSInt Lower = ComparisonVal - Adjustment;
- llvm::APSInt Upper = Max - Adjustment;
- RangeSet SymRange = getRange(St, Sym);
- return F.intersect(SymRange, Lower, Upper);
- }
- ProgramStateRef
- RangeConstraintManager::assumeSymGE(ProgramStateRef St, SymbolRef Sym,
- const llvm::APSInt &Int,
- const llvm::APSInt &Adjustment) {
- RangeSet New = getSymGERange(St, Sym, Int, Adjustment);
- return setRange(St, Sym, New);
- }
- RangeSet
- RangeConstraintManager::getSymLERange(llvm::function_ref<RangeSet()> RS,
- const llvm::APSInt &Int,
- const llvm::APSInt &Adjustment) {
- // Before we do any real work, see if the value can even show up.
- APSIntType AdjustmentType(Adjustment);
- switch (AdjustmentType.testInRange(Int, true)) {
- case APSIntType::RTR_Below:
- return F.getEmptySet();
- case APSIntType::RTR_Within:
- break;
- case APSIntType::RTR_Above:
- return RS();
- }
- // Special case for Int == Max. This is always feasible.
- llvm::APSInt ComparisonVal = AdjustmentType.convert(Int);
- llvm::APSInt Max = AdjustmentType.getMaxValue();
- if (ComparisonVal == Max)
- return RS();
- llvm::APSInt Min = AdjustmentType.getMinValue();
- llvm::APSInt Lower = Min - Adjustment;
- llvm::APSInt Upper = ComparisonVal - Adjustment;
- RangeSet Default = RS();
- return F.intersect(Default, Lower, Upper);
- }
- RangeSet RangeConstraintManager::getSymLERange(ProgramStateRef St,
- SymbolRef Sym,
- const llvm::APSInt &Int,
- const llvm::APSInt &Adjustment) {
- return getSymLERange([&] { return getRange(St, Sym); }, Int, Adjustment);
- }
- ProgramStateRef
- RangeConstraintManager::assumeSymLE(ProgramStateRef St, SymbolRef Sym,
- const llvm::APSInt &Int,
- const llvm::APSInt &Adjustment) {
- RangeSet New = getSymLERange(St, Sym, Int, Adjustment);
- return setRange(St, Sym, New);
- }
- ProgramStateRef RangeConstraintManager::assumeSymWithinInclusiveRange(
- ProgramStateRef State, SymbolRef Sym, const llvm::APSInt &From,
- const llvm::APSInt &To, const llvm::APSInt &Adjustment) {
- RangeSet New = getSymGERange(State, Sym, From, Adjustment);
- if (New.isEmpty())
- return nullptr;
- RangeSet Out = getSymLERange([&] { return New; }, To, Adjustment);
- return setRange(State, Sym, Out);
- }
- ProgramStateRef RangeConstraintManager::assumeSymOutsideInclusiveRange(
- ProgramStateRef State, SymbolRef Sym, const llvm::APSInt &From,
- const llvm::APSInt &To, const llvm::APSInt &Adjustment) {
- RangeSet RangeLT = getSymLTRange(State, Sym, From, Adjustment);
- RangeSet RangeGT = getSymGTRange(State, Sym, To, Adjustment);
- RangeSet New(F.add(RangeLT, RangeGT));
- return setRange(State, Sym, New);
- }
- //===----------------------------------------------------------------------===//
- // Pretty-printing.
- //===----------------------------------------------------------------------===//
- void RangeConstraintManager::printJson(raw_ostream &Out, ProgramStateRef State,
- const char *NL, unsigned int Space,
- bool IsDot) const {
- printConstraints(Out, State, NL, Space, IsDot);
- printEquivalenceClasses(Out, State, NL, Space, IsDot);
- printDisequalities(Out, State, NL, Space, IsDot);
- }
- static std::string toString(const SymbolRef &Sym) {
- std::string S;
- llvm::raw_string_ostream O(S);
- Sym->dumpToStream(O);
- return O.str();
- }
- void RangeConstraintManager::printConstraints(raw_ostream &Out,
- ProgramStateRef State,
- const char *NL,
- unsigned int Space,
- bool IsDot) const {
- ConstraintRangeTy Constraints = State->get<ConstraintRange>();
- Indent(Out, Space, IsDot) << "\"constraints\": ";
- if (Constraints.isEmpty()) {
- Out << "null," << NL;
- return;
- }
- std::map<std::string, RangeSet> OrderedConstraints;
- for (std::pair<EquivalenceClass, RangeSet> P : Constraints) {
- SymbolSet ClassMembers = P.first.getClassMembers(State);
- for (const SymbolRef &ClassMember : ClassMembers) {
- bool insertion_took_place;
- std::tie(std::ignore, insertion_took_place) =
- OrderedConstraints.insert({toString(ClassMember), P.second});
- assert(insertion_took_place &&
- "two symbols should not have the same dump");
- }
- }
- ++Space;
- Out << '[' << NL;
- bool First = true;
- for (std::pair<std::string, RangeSet> P : OrderedConstraints) {
- if (First) {
- First = false;
- } else {
- Out << ',';
- Out << NL;
- }
- Indent(Out, Space, IsDot)
- << "{ \"symbol\": \"" << P.first << "\", \"range\": \"";
- P.second.dump(Out);
- Out << "\" }";
- }
- Out << NL;
- --Space;
- Indent(Out, Space, IsDot) << "]," << NL;
- }
- static std::string toString(ProgramStateRef State, EquivalenceClass Class) {
- SymbolSet ClassMembers = Class.getClassMembers(State);
- llvm::SmallVector<SymbolRef, 8> ClassMembersSorted(ClassMembers.begin(),
- ClassMembers.end());
- llvm::sort(ClassMembersSorted,
- [](const SymbolRef &LHS, const SymbolRef &RHS) {
- return toString(LHS) < toString(RHS);
- });
- bool FirstMember = true;
- std::string Str;
- llvm::raw_string_ostream Out(Str);
- Out << "[ ";
- for (SymbolRef ClassMember : ClassMembersSorted) {
- if (FirstMember)
- FirstMember = false;
- else
- Out << ", ";
- Out << "\"" << ClassMember << "\"";
- }
- Out << " ]";
- return Out.str();
- }
- void RangeConstraintManager::printEquivalenceClasses(raw_ostream &Out,
- ProgramStateRef State,
- const char *NL,
- unsigned int Space,
- bool IsDot) const {
- ClassMembersTy Members = State->get<ClassMembers>();
- Indent(Out, Space, IsDot) << "\"equivalence_classes\": ";
- if (Members.isEmpty()) {
- Out << "null," << NL;
- return;
- }
- std::set<std::string> MembersStr;
- for (std::pair<EquivalenceClass, SymbolSet> ClassToSymbolSet : Members)
- MembersStr.insert(toString(State, ClassToSymbolSet.first));
- ++Space;
- Out << '[' << NL;
- bool FirstClass = true;
- for (const std::string &Str : MembersStr) {
- if (FirstClass) {
- FirstClass = false;
- } else {
- Out << ',';
- Out << NL;
- }
- Indent(Out, Space, IsDot);
- Out << Str;
- }
- Out << NL;
- --Space;
- Indent(Out, Space, IsDot) << "]," << NL;
- }
- void RangeConstraintManager::printDisequalities(raw_ostream &Out,
- ProgramStateRef State,
- const char *NL,
- unsigned int Space,
- bool IsDot) const {
- DisequalityMapTy Disequalities = State->get<DisequalityMap>();
- Indent(Out, Space, IsDot) << "\"disequality_info\": ";
- if (Disequalities.isEmpty()) {
- Out << "null," << NL;
- return;
- }
- // Transform the disequality info to an ordered map of
- // [string -> (ordered set of strings)]
- using EqClassesStrTy = std::set<std::string>;
- using DisequalityInfoStrTy = std::map<std::string, EqClassesStrTy>;
- DisequalityInfoStrTy DisequalityInfoStr;
- for (std::pair<EquivalenceClass, ClassSet> ClassToDisEqSet : Disequalities) {
- EquivalenceClass Class = ClassToDisEqSet.first;
- ClassSet DisequalClasses = ClassToDisEqSet.second;
- EqClassesStrTy MembersStr;
- for (EquivalenceClass DisEqClass : DisequalClasses)
- MembersStr.insert(toString(State, DisEqClass));
- DisequalityInfoStr.insert({toString(State, Class), MembersStr});
- }
- ++Space;
- Out << '[' << NL;
- bool FirstClass = true;
- for (std::pair<std::string, EqClassesStrTy> ClassToDisEqSet :
- DisequalityInfoStr) {
- const std::string &Class = ClassToDisEqSet.first;
- if (FirstClass) {
- FirstClass = false;
- } else {
- Out << ',';
- Out << NL;
- }
- Indent(Out, Space, IsDot) << "{" << NL;
- unsigned int DisEqSpace = Space + 1;
- Indent(Out, DisEqSpace, IsDot) << "\"class\": ";
- Out << Class;
- const EqClassesStrTy &DisequalClasses = ClassToDisEqSet.second;
- if (!DisequalClasses.empty()) {
- Out << "," << NL;
- Indent(Out, DisEqSpace, IsDot) << "\"disequal_to\": [" << NL;
- unsigned int DisEqClassSpace = DisEqSpace + 1;
- Indent(Out, DisEqClassSpace, IsDot);
- bool FirstDisEqClass = true;
- for (const std::string &DisEqClass : DisequalClasses) {
- if (FirstDisEqClass) {
- FirstDisEqClass = false;
- } else {
- Out << ',' << NL;
- Indent(Out, DisEqClassSpace, IsDot);
- }
- Out << DisEqClass;
- }
- Out << "]" << NL;
- }
- Indent(Out, Space, IsDot) << "}";
- }
- Out << NL;
- --Space;
- Indent(Out, Space, IsDot) << "]," << NL;
- }
|