1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012 |
- """Imported from the recipes section of the itertools documentation.
- All functions taken from the recipes section of the itertools library docs
- [1]_.
- Some backward-compatible usability improvements have been made.
- .. [1] http://docs.python.org/library/itertools.html#recipes
- """
- import math
- import operator
- from collections import deque
- from collections.abc import Sized
- from functools import partial, reduce
- from itertools import (
- chain,
- combinations,
- compress,
- count,
- cycle,
- groupby,
- islice,
- product,
- repeat,
- starmap,
- tee,
- zip_longest,
- )
- from random import randrange, sample, choice
- from sys import hexversion
- __all__ = [
- 'all_equal',
- 'batched',
- 'before_and_after',
- 'consume',
- 'convolve',
- 'dotproduct',
- 'first_true',
- 'factor',
- 'flatten',
- 'grouper',
- 'iter_except',
- 'iter_index',
- 'matmul',
- 'ncycles',
- 'nth',
- 'nth_combination',
- 'padnone',
- 'pad_none',
- 'pairwise',
- 'partition',
- 'polynomial_eval',
- 'polynomial_from_roots',
- 'polynomial_derivative',
- 'powerset',
- 'prepend',
- 'quantify',
- 'reshape',
- 'random_combination_with_replacement',
- 'random_combination',
- 'random_permutation',
- 'random_product',
- 'repeatfunc',
- 'roundrobin',
- 'sieve',
- 'sliding_window',
- 'subslices',
- 'sum_of_squares',
- 'tabulate',
- 'tail',
- 'take',
- 'totient',
- 'transpose',
- 'triplewise',
- 'unique_everseen',
- 'unique_justseen',
- ]
- _marker = object()
- # zip with strict is available for Python 3.10+
- try:
- zip(strict=True)
- except TypeError:
- _zip_strict = zip
- else:
- _zip_strict = partial(zip, strict=True)
- # math.sumprod is available for Python 3.12+
- _sumprod = getattr(math, 'sumprod', lambda x, y: dotproduct(x, y))
- def take(n, iterable):
- """Return first *n* items of the iterable as a list.
- >>> take(3, range(10))
- [0, 1, 2]
- If there are fewer than *n* items in the iterable, all of them are
- returned.
- >>> take(10, range(3))
- [0, 1, 2]
- """
- return list(islice(iterable, n))
- def tabulate(function, start=0):
- """Return an iterator over the results of ``func(start)``,
- ``func(start + 1)``, ``func(start + 2)``...
- *func* should be a function that accepts one integer argument.
- If *start* is not specified it defaults to 0. It will be incremented each
- time the iterator is advanced.
- >>> square = lambda x: x ** 2
- >>> iterator = tabulate(square, -3)
- >>> take(4, iterator)
- [9, 4, 1, 0]
- """
- return map(function, count(start))
- def tail(n, iterable):
- """Return an iterator over the last *n* items of *iterable*.
- >>> t = tail(3, 'ABCDEFG')
- >>> list(t)
- ['E', 'F', 'G']
- """
- # If the given iterable has a length, then we can use islice to get its
- # final elements. Note that if the iterable is not actually Iterable,
- # either islice or deque will throw a TypeError. This is why we don't
- # check if it is Iterable.
- if isinstance(iterable, Sized):
- yield from islice(iterable, max(0, len(iterable) - n), None)
- else:
- yield from iter(deque(iterable, maxlen=n))
- def consume(iterator, n=None):
- """Advance *iterable* by *n* steps. If *n* is ``None``, consume it
- entirely.
- Efficiently exhausts an iterator without returning values. Defaults to
- consuming the whole iterator, but an optional second argument may be
- provided to limit consumption.
- >>> i = (x for x in range(10))
- >>> next(i)
- 0
- >>> consume(i, 3)
- >>> next(i)
- 4
- >>> consume(i)
- >>> next(i)
- Traceback (most recent call last):
- File "<stdin>", line 1, in <module>
- StopIteration
- If the iterator has fewer items remaining than the provided limit, the
- whole iterator will be consumed.
- >>> i = (x for x in range(3))
- >>> consume(i, 5)
- >>> next(i)
- Traceback (most recent call last):
- File "<stdin>", line 1, in <module>
- StopIteration
- """
- # Use functions that consume iterators at C speed.
- if n is None:
- # feed the entire iterator into a zero-length deque
- deque(iterator, maxlen=0)
- else:
- # advance to the empty slice starting at position n
- next(islice(iterator, n, n), None)
- def nth(iterable, n, default=None):
- """Returns the nth item or a default value.
- >>> l = range(10)
- >>> nth(l, 3)
- 3
- >>> nth(l, 20, "zebra")
- 'zebra'
- """
- return next(islice(iterable, n, None), default)
- def all_equal(iterable):
- """
- Returns ``True`` if all the elements are equal to each other.
- >>> all_equal('aaaa')
- True
- >>> all_equal('aaab')
- False
- """
- g = groupby(iterable)
- return next(g, True) and not next(g, False)
- def quantify(iterable, pred=bool):
- """Return the how many times the predicate is true.
- >>> quantify([True, False, True])
- 2
- """
- return sum(map(pred, iterable))
- def pad_none(iterable):
- """Returns the sequence of elements and then returns ``None`` indefinitely.
- >>> take(5, pad_none(range(3)))
- [0, 1, 2, None, None]
- Useful for emulating the behavior of the built-in :func:`map` function.
- See also :func:`padded`.
- """
- return chain(iterable, repeat(None))
- padnone = pad_none
- def ncycles(iterable, n):
- """Returns the sequence elements *n* times
- >>> list(ncycles(["a", "b"], 3))
- ['a', 'b', 'a', 'b', 'a', 'b']
- """
- return chain.from_iterable(repeat(tuple(iterable), n))
- def dotproduct(vec1, vec2):
- """Returns the dot product of the two iterables.
- >>> dotproduct([10, 10], [20, 20])
- 400
- """
- return sum(map(operator.mul, vec1, vec2))
- def flatten(listOfLists):
- """Return an iterator flattening one level of nesting in a list of lists.
- >>> list(flatten([[0, 1], [2, 3]]))
- [0, 1, 2, 3]
- See also :func:`collapse`, which can flatten multiple levels of nesting.
- """
- return chain.from_iterable(listOfLists)
- def repeatfunc(func, times=None, *args):
- """Call *func* with *args* repeatedly, returning an iterable over the
- results.
- If *times* is specified, the iterable will terminate after that many
- repetitions:
- >>> from operator import add
- >>> times = 4
- >>> args = 3, 5
- >>> list(repeatfunc(add, times, *args))
- [8, 8, 8, 8]
- If *times* is ``None`` the iterable will not terminate:
- >>> from random import randrange
- >>> times = None
- >>> args = 1, 11
- >>> take(6, repeatfunc(randrange, times, *args)) # doctest:+SKIP
- [2, 4, 8, 1, 8, 4]
- """
- if times is None:
- return starmap(func, repeat(args))
- return starmap(func, repeat(args, times))
- def _pairwise(iterable):
- """Returns an iterator of paired items, overlapping, from the original
- >>> take(4, pairwise(count()))
- [(0, 1), (1, 2), (2, 3), (3, 4)]
- On Python 3.10 and above, this is an alias for :func:`itertools.pairwise`.
- """
- a, b = tee(iterable)
- next(b, None)
- return zip(a, b)
- try:
- from itertools import pairwise as itertools_pairwise
- except ImportError:
- pairwise = _pairwise
- else:
- def pairwise(iterable):
- return itertools_pairwise(iterable)
- pairwise.__doc__ = _pairwise.__doc__
- class UnequalIterablesError(ValueError):
- def __init__(self, details=None):
- msg = 'Iterables have different lengths'
- if details is not None:
- msg += (': index 0 has length {}; index {} has length {}').format(
- *details
- )
- super().__init__(msg)
- def _zip_equal_generator(iterables):
- for combo in zip_longest(*iterables, fillvalue=_marker):
- for val in combo:
- if val is _marker:
- raise UnequalIterablesError()
- yield combo
- def _zip_equal(*iterables):
- # Check whether the iterables are all the same size.
- try:
- first_size = len(iterables[0])
- for i, it in enumerate(iterables[1:], 1):
- size = len(it)
- if size != first_size:
- raise UnequalIterablesError(details=(first_size, i, size))
- # All sizes are equal, we can use the built-in zip.
- return zip(*iterables)
- # If any one of the iterables didn't have a length, start reading
- # them until one runs out.
- except TypeError:
- return _zip_equal_generator(iterables)
- def grouper(iterable, n, incomplete='fill', fillvalue=None):
- """Group elements from *iterable* into fixed-length groups of length *n*.
- >>> list(grouper('ABCDEF', 3))
- [('A', 'B', 'C'), ('D', 'E', 'F')]
- The keyword arguments *incomplete* and *fillvalue* control what happens for
- iterables whose length is not a multiple of *n*.
- When *incomplete* is `'fill'`, the last group will contain instances of
- *fillvalue*.
- >>> list(grouper('ABCDEFG', 3, incomplete='fill', fillvalue='x'))
- [('A', 'B', 'C'), ('D', 'E', 'F'), ('G', 'x', 'x')]
- When *incomplete* is `'ignore'`, the last group will not be emitted.
- >>> list(grouper('ABCDEFG', 3, incomplete='ignore', fillvalue='x'))
- [('A', 'B', 'C'), ('D', 'E', 'F')]
- When *incomplete* is `'strict'`, a subclass of `ValueError` will be raised.
- >>> it = grouper('ABCDEFG', 3, incomplete='strict')
- >>> list(it) # doctest: +IGNORE_EXCEPTION_DETAIL
- Traceback (most recent call last):
- ...
- UnequalIterablesError
- """
- args = [iter(iterable)] * n
- if incomplete == 'fill':
- return zip_longest(*args, fillvalue=fillvalue)
- if incomplete == 'strict':
- return _zip_equal(*args)
- if incomplete == 'ignore':
- return zip(*args)
- else:
- raise ValueError('Expected fill, strict, or ignore')
- def roundrobin(*iterables):
- """Yields an item from each iterable, alternating between them.
- >>> list(roundrobin('ABC', 'D', 'EF'))
- ['A', 'D', 'E', 'B', 'F', 'C']
- This function produces the same output as :func:`interleave_longest`, but
- may perform better for some inputs (in particular when the number of
- iterables is small).
- """
- # Recipe credited to George Sakkis
- pending = len(iterables)
- nexts = cycle(iter(it).__next__ for it in iterables)
- while pending:
- try:
- for next in nexts:
- yield next()
- except StopIteration:
- pending -= 1
- nexts = cycle(islice(nexts, pending))
- def partition(pred, iterable):
- """
- Returns a 2-tuple of iterables derived from the input iterable.
- The first yields the items that have ``pred(item) == False``.
- The second yields the items that have ``pred(item) == True``.
- >>> is_odd = lambda x: x % 2 != 0
- >>> iterable = range(10)
- >>> even_items, odd_items = partition(is_odd, iterable)
- >>> list(even_items), list(odd_items)
- ([0, 2, 4, 6, 8], [1, 3, 5, 7, 9])
- If *pred* is None, :func:`bool` is used.
- >>> iterable = [0, 1, False, True, '', ' ']
- >>> false_items, true_items = partition(None, iterable)
- >>> list(false_items), list(true_items)
- ([0, False, ''], [1, True, ' '])
- """
- if pred is None:
- pred = bool
- t1, t2, p = tee(iterable, 3)
- p1, p2 = tee(map(pred, p))
- return (compress(t1, map(operator.not_, p1)), compress(t2, p2))
- def powerset(iterable):
- """Yields all possible subsets of the iterable.
- >>> list(powerset([1, 2, 3]))
- [(), (1,), (2,), (3,), (1, 2), (1, 3), (2, 3), (1, 2, 3)]
- :func:`powerset` will operate on iterables that aren't :class:`set`
- instances, so repeated elements in the input will produce repeated elements
- in the output. Use :func:`unique_everseen` on the input to avoid generating
- duplicates:
- >>> seq = [1, 1, 0]
- >>> list(powerset(seq))
- [(), (1,), (1,), (0,), (1, 1), (1, 0), (1, 0), (1, 1, 0)]
- >>> from more_itertools import unique_everseen
- >>> list(powerset(unique_everseen(seq)))
- [(), (1,), (0,), (1, 0)]
- """
- s = list(iterable)
- return chain.from_iterable(combinations(s, r) for r in range(len(s) + 1))
- def unique_everseen(iterable, key=None):
- """
- Yield unique elements, preserving order.
- >>> list(unique_everseen('AAAABBBCCDAABBB'))
- ['A', 'B', 'C', 'D']
- >>> list(unique_everseen('ABBCcAD', str.lower))
- ['A', 'B', 'C', 'D']
- Sequences with a mix of hashable and unhashable items can be used.
- The function will be slower (i.e., `O(n^2)`) for unhashable items.
- Remember that ``list`` objects are unhashable - you can use the *key*
- parameter to transform the list to a tuple (which is hashable) to
- avoid a slowdown.
- >>> iterable = ([1, 2], [2, 3], [1, 2])
- >>> list(unique_everseen(iterable)) # Slow
- [[1, 2], [2, 3]]
- >>> list(unique_everseen(iterable, key=tuple)) # Faster
- [[1, 2], [2, 3]]
- Similarly, you may want to convert unhashable ``set`` objects with
- ``key=frozenset``. For ``dict`` objects,
- ``key=lambda x: frozenset(x.items())`` can be used.
- """
- seenset = set()
- seenset_add = seenset.add
- seenlist = []
- seenlist_add = seenlist.append
- use_key = key is not None
- for element in iterable:
- k = key(element) if use_key else element
- try:
- if k not in seenset:
- seenset_add(k)
- yield element
- except TypeError:
- if k not in seenlist:
- seenlist_add(k)
- yield element
- def unique_justseen(iterable, key=None):
- """Yields elements in order, ignoring serial duplicates
- >>> list(unique_justseen('AAAABBBCCDAABBB'))
- ['A', 'B', 'C', 'D', 'A', 'B']
- >>> list(unique_justseen('ABBCcAD', str.lower))
- ['A', 'B', 'C', 'A', 'D']
- """
- if key is None:
- return map(operator.itemgetter(0), groupby(iterable))
- return map(next, map(operator.itemgetter(1), groupby(iterable, key)))
- def iter_except(func, exception, first=None):
- """Yields results from a function repeatedly until an exception is raised.
- Converts a call-until-exception interface to an iterator interface.
- Like ``iter(func, sentinel)``, but uses an exception instead of a sentinel
- to end the loop.
- >>> l = [0, 1, 2]
- >>> list(iter_except(l.pop, IndexError))
- [2, 1, 0]
- Multiple exceptions can be specified as a stopping condition:
- >>> l = [1, 2, 3, '...', 4, 5, 6]
- >>> list(iter_except(lambda: 1 + l.pop(), (IndexError, TypeError)))
- [7, 6, 5]
- >>> list(iter_except(lambda: 1 + l.pop(), (IndexError, TypeError)))
- [4, 3, 2]
- >>> list(iter_except(lambda: 1 + l.pop(), (IndexError, TypeError)))
- []
- """
- try:
- if first is not None:
- yield first()
- while 1:
- yield func()
- except exception:
- pass
- def first_true(iterable, default=None, pred=None):
- """
- Returns the first true value in the iterable.
- If no true value is found, returns *default*
- If *pred* is not None, returns the first item for which
- ``pred(item) == True`` .
- >>> first_true(range(10))
- 1
- >>> first_true(range(10), pred=lambda x: x > 5)
- 6
- >>> first_true(range(10), default='missing', pred=lambda x: x > 9)
- 'missing'
- """
- return next(filter(pred, iterable), default)
- def random_product(*args, repeat=1):
- """Draw an item at random from each of the input iterables.
- >>> random_product('abc', range(4), 'XYZ') # doctest:+SKIP
- ('c', 3, 'Z')
- If *repeat* is provided as a keyword argument, that many items will be
- drawn from each iterable.
- >>> random_product('abcd', range(4), repeat=2) # doctest:+SKIP
- ('a', 2, 'd', 3)
- This equivalent to taking a random selection from
- ``itertools.product(*args, **kwarg)``.
- """
- pools = [tuple(pool) for pool in args] * repeat
- return tuple(choice(pool) for pool in pools)
- def random_permutation(iterable, r=None):
- """Return a random *r* length permutation of the elements in *iterable*.
- If *r* is not specified or is ``None``, then *r* defaults to the length of
- *iterable*.
- >>> random_permutation(range(5)) # doctest:+SKIP
- (3, 4, 0, 1, 2)
- This equivalent to taking a random selection from
- ``itertools.permutations(iterable, r)``.
- """
- pool = tuple(iterable)
- r = len(pool) if r is None else r
- return tuple(sample(pool, r))
- def random_combination(iterable, r):
- """Return a random *r* length subsequence of the elements in *iterable*.
- >>> random_combination(range(5), 3) # doctest:+SKIP
- (2, 3, 4)
- This equivalent to taking a random selection from
- ``itertools.combinations(iterable, r)``.
- """
- pool = tuple(iterable)
- n = len(pool)
- indices = sorted(sample(range(n), r))
- return tuple(pool[i] for i in indices)
- def random_combination_with_replacement(iterable, r):
- """Return a random *r* length subsequence of elements in *iterable*,
- allowing individual elements to be repeated.
- >>> random_combination_with_replacement(range(3), 5) # doctest:+SKIP
- (0, 0, 1, 2, 2)
- This equivalent to taking a random selection from
- ``itertools.combinations_with_replacement(iterable, r)``.
- """
- pool = tuple(iterable)
- n = len(pool)
- indices = sorted(randrange(n) for i in range(r))
- return tuple(pool[i] for i in indices)
- def nth_combination(iterable, r, index):
- """Equivalent to ``list(combinations(iterable, r))[index]``.
- The subsequences of *iterable* that are of length *r* can be ordered
- lexicographically. :func:`nth_combination` computes the subsequence at
- sort position *index* directly, without computing the previous
- subsequences.
- >>> nth_combination(range(5), 3, 5)
- (0, 3, 4)
- ``ValueError`` will be raised If *r* is negative or greater than the length
- of *iterable*.
- ``IndexError`` will be raised if the given *index* is invalid.
- """
- pool = tuple(iterable)
- n = len(pool)
- if (r < 0) or (r > n):
- raise ValueError
- c = 1
- k = min(r, n - r)
- for i in range(1, k + 1):
- c = c * (n - k + i) // i
- if index < 0:
- index += c
- if (index < 0) or (index >= c):
- raise IndexError
- result = []
- while r:
- c, n, r = c * r // n, n - 1, r - 1
- while index >= c:
- index -= c
- c, n = c * (n - r) // n, n - 1
- result.append(pool[-1 - n])
- return tuple(result)
- def prepend(value, iterator):
- """Yield *value*, followed by the elements in *iterator*.
- >>> value = '0'
- >>> iterator = ['1', '2', '3']
- >>> list(prepend(value, iterator))
- ['0', '1', '2', '3']
- To prepend multiple values, see :func:`itertools.chain`
- or :func:`value_chain`.
- """
- return chain([value], iterator)
- def convolve(signal, kernel):
- """Convolve the iterable *signal* with the iterable *kernel*.
- >>> signal = (1, 2, 3, 4, 5)
- >>> kernel = [3, 2, 1]
- >>> list(convolve(signal, kernel))
- [3, 8, 14, 20, 26, 14, 5]
- Note: the input arguments are not interchangeable, as the *kernel*
- is immediately consumed and stored.
- """
- # This implementation intentionally doesn't match the one in the itertools
- # documentation.
- kernel = tuple(kernel)[::-1]
- n = len(kernel)
- window = deque([0], maxlen=n) * n
- for x in chain(signal, repeat(0, n - 1)):
- window.append(x)
- yield _sumprod(kernel, window)
- def before_and_after(predicate, it):
- """A variant of :func:`takewhile` that allows complete access to the
- remainder of the iterator.
- >>> it = iter('ABCdEfGhI')
- >>> all_upper, remainder = before_and_after(str.isupper, it)
- >>> ''.join(all_upper)
- 'ABC'
- >>> ''.join(remainder) # takewhile() would lose the 'd'
- 'dEfGhI'
- Note that the first iterator must be fully consumed before the second
- iterator can generate valid results.
- """
- it = iter(it)
- transition = []
- def true_iterator():
- for elem in it:
- if predicate(elem):
- yield elem
- else:
- transition.append(elem)
- return
- # Note: this is different from itertools recipes to allow nesting
- # before_and_after remainders into before_and_after again. See tests
- # for an example.
- remainder_iterator = chain(transition, it)
- return true_iterator(), remainder_iterator
- def triplewise(iterable):
- """Return overlapping triplets from *iterable*.
- >>> list(triplewise('ABCDE'))
- [('A', 'B', 'C'), ('B', 'C', 'D'), ('C', 'D', 'E')]
- """
- for (a, _), (b, c) in pairwise(pairwise(iterable)):
- yield a, b, c
- def sliding_window(iterable, n):
- """Return a sliding window of width *n* over *iterable*.
- >>> list(sliding_window(range(6), 4))
- [(0, 1, 2, 3), (1, 2, 3, 4), (2, 3, 4, 5)]
- If *iterable* has fewer than *n* items, then nothing is yielded:
- >>> list(sliding_window(range(3), 4))
- []
- For a variant with more features, see :func:`windowed`.
- """
- it = iter(iterable)
- window = deque(islice(it, n - 1), maxlen=n)
- for x in it:
- window.append(x)
- yield tuple(window)
- def subslices(iterable):
- """Return all contiguous non-empty subslices of *iterable*.
- >>> list(subslices('ABC'))
- [['A'], ['A', 'B'], ['A', 'B', 'C'], ['B'], ['B', 'C'], ['C']]
- This is similar to :func:`substrings`, but emits items in a different
- order.
- """
- seq = list(iterable)
- slices = starmap(slice, combinations(range(len(seq) + 1), 2))
- return map(operator.getitem, repeat(seq), slices)
- def polynomial_from_roots(roots):
- """Compute a polynomial's coefficients from its roots.
- >>> roots = [5, -4, 3] # (x - 5) * (x + 4) * (x - 3)
- >>> polynomial_from_roots(roots) # x^3 - 4 * x^2 - 17 * x + 60
- [1, -4, -17, 60]
- """
- factors = zip(repeat(1), map(operator.neg, roots))
- return list(reduce(convolve, factors, [1]))
- def iter_index(iterable, value, start=0, stop=None):
- """Yield the index of each place in *iterable* that *value* occurs,
- beginning with index *start* and ending before index *stop*.
- See :func:`locate` for a more general means of finding the indexes
- associated with particular values.
- >>> list(iter_index('AABCADEAF', 'A'))
- [0, 1, 4, 7]
- >>> list(iter_index('AABCADEAF', 'A', 1)) # start index is inclusive
- [1, 4, 7]
- >>> list(iter_index('AABCADEAF', 'A', 1, 7)) # stop index is not inclusive
- [1, 4]
- """
- seq_index = getattr(iterable, 'index', None)
- if seq_index is None:
- # Slow path for general iterables
- it = islice(iterable, start, stop)
- for i, element in enumerate(it, start):
- if element is value or element == value:
- yield i
- else:
- # Fast path for sequences
- stop = len(iterable) if stop is None else stop
- i = start - 1
- try:
- while True:
- yield (i := seq_index(value, i + 1, stop))
- except ValueError:
- pass
- def sieve(n):
- """Yield the primes less than n.
- >>> list(sieve(30))
- [2, 3, 5, 7, 11, 13, 17, 19, 23, 29]
- """
- if n > 2:
- yield 2
- start = 3
- data = bytearray((0, 1)) * (n // 2)
- limit = math.isqrt(n) + 1
- for p in iter_index(data, 1, start, limit):
- yield from iter_index(data, 1, start, p * p)
- data[p * p : n : p + p] = bytes(len(range(p * p, n, p + p)))
- start = p * p
- yield from iter_index(data, 1, start)
- def _batched(iterable, n, *, strict=False):
- """Batch data into tuples of length *n*. If the number of items in
- *iterable* is not divisible by *n*:
- * The last batch will be shorter if *strict* is ``False``.
- * :exc:`ValueError` will be raised if *strict* is ``True``.
- >>> list(batched('ABCDEFG', 3))
- [('A', 'B', 'C'), ('D', 'E', 'F'), ('G',)]
- On Python 3.13 and above, this is an alias for :func:`itertools.batched`.
- """
- if n < 1:
- raise ValueError('n must be at least one')
- it = iter(iterable)
- while batch := tuple(islice(it, n)):
- if strict and len(batch) != n:
- raise ValueError('batched(): incomplete batch')
- yield batch
- if hexversion >= 0x30D00A2:
- from itertools import batched as itertools_batched
- def batched(iterable, n, *, strict=False):
- return itertools_batched(iterable, n, strict=strict)
- else:
- batched = _batched
- batched.__doc__ = _batched.__doc__
- def transpose(it):
- """Swap the rows and columns of the input matrix.
- >>> list(transpose([(1, 2, 3), (11, 22, 33)]))
- [(1, 11), (2, 22), (3, 33)]
- The caller should ensure that the dimensions of the input are compatible.
- If the input is empty, no output will be produced.
- """
- return _zip_strict(*it)
- def reshape(matrix, cols):
- """Reshape the 2-D input *matrix* to have a column count given by *cols*.
- >>> matrix = [(0, 1), (2, 3), (4, 5)]
- >>> cols = 3
- >>> list(reshape(matrix, cols))
- [(0, 1, 2), (3, 4, 5)]
- """
- return batched(chain.from_iterable(matrix), cols)
- def matmul(m1, m2):
- """Multiply two matrices.
- >>> list(matmul([(7, 5), (3, 5)], [(2, 5), (7, 9)]))
- [(49, 80), (41, 60)]
- The caller should ensure that the dimensions of the input matrices are
- compatible with each other.
- """
- n = len(m2[0])
- return batched(starmap(_sumprod, product(m1, transpose(m2))), n)
- def factor(n):
- """Yield the prime factors of n.
- >>> list(factor(360))
- [2, 2, 2, 3, 3, 5]
- """
- for prime in sieve(math.isqrt(n) + 1):
- while not n % prime:
- yield prime
- n //= prime
- if n == 1:
- return
- if n > 1:
- yield n
- def polynomial_eval(coefficients, x):
- """Evaluate a polynomial at a specific value.
- Example: evaluating x^3 - 4 * x^2 - 17 * x + 60 at x = 2.5:
- >>> coefficients = [1, -4, -17, 60]
- >>> x = 2.5
- >>> polynomial_eval(coefficients, x)
- 8.125
- """
- n = len(coefficients)
- if n == 0:
- return x * 0 # coerce zero to the type of x
- powers = map(pow, repeat(x), reversed(range(n)))
- return _sumprod(coefficients, powers)
- def sum_of_squares(it):
- """Return the sum of the squares of the input values.
- >>> sum_of_squares([10, 20, 30])
- 1400
- """
- return _sumprod(*tee(it))
- def polynomial_derivative(coefficients):
- """Compute the first derivative of a polynomial.
- Example: evaluating the derivative of x^3 - 4 * x^2 - 17 * x + 60
- >>> coefficients = [1, -4, -17, 60]
- >>> derivative_coefficients = polynomial_derivative(coefficients)
- >>> derivative_coefficients
- [3, -8, -17]
- """
- n = len(coefficients)
- powers = reversed(range(1, n))
- return list(map(operator.mul, coefficients, powers))
- def totient(n):
- """Return the count of natural numbers up to *n* that are coprime with *n*.
- >>> totient(9)
- 6
- >>> totient(12)
- 4
- """
- for p in unique_justseen(factor(n)):
- n = n // p * (p - 1)
- return n
|