12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688 |
- // Copyright 2005 Google Inc. All Rights Reserved.
- //
- // Redistribution and use in source and binary forms, with or without
- // modification, are permitted provided that the following conditions are
- // met:
- //
- // * Redistributions of source code must retain the above copyright
- // notice, this list of conditions and the following disclaimer.
- // * Redistributions in binary form must reproduce the above
- // copyright notice, this list of conditions and the following disclaimer
- // in the documentation and/or other materials provided with the
- // distribution.
- // * Neither the name of Google Inc. nor the names of its
- // contributors may be used to endorse or promote products derived from
- // this software without specific prior written permission.
- //
- // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
- // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
- // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
- // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
- // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
- // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
- // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
- // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
- // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
- // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
- // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
- #include "snappy.h"
- #include "snappy-internal.h"
- #include "snappy-sinksource.h"
- #if !defined(SNAPPY_HAVE_SSSE3)
- // __SSSE3__ is defined by GCC and Clang. Visual Studio doesn't target SIMD
- // support between SSE2 and AVX (so SSSE3 instructions require AVX support), and
- // defines __AVX__ when AVX support is available.
- #if defined(__SSSE3__) || defined(__AVX__)
- #define SNAPPY_HAVE_SSSE3 1
- #else
- #define SNAPPY_HAVE_SSSE3 0
- #endif
- #endif // !defined(SNAPPY_HAVE_SSSE3)
- #if !defined(SNAPPY_HAVE_BMI2)
- // __BMI2__ is defined by GCC and Clang. Visual Studio doesn't target BMI2
- // specifically, but it does define __AVX2__ when AVX2 support is available.
- // Fortunately, AVX2 was introduced in Haswell, just like BMI2.
- //
- // BMI2 is not defined as a subset of AVX2 (unlike SSSE3 and AVX above). So,
- // GCC and Clang can build code with AVX2 enabled but BMI2 disabled, in which
- // case issuing BMI2 instructions results in a compiler error.
- #if defined(__BMI2__) || (defined(_MSC_VER) && defined(__AVX2__))
- #define SNAPPY_HAVE_BMI2 1
- #else
- #define SNAPPY_HAVE_BMI2 0
- #endif
- #endif // !defined(SNAPPY_HAVE_BMI2)
- #if SNAPPY_HAVE_SSSE3
- // Please do not replace with <x86intrin.h>. or with headers that assume more
- // advanced SSE versions without checking with all the OWNERS.
- #include <tmmintrin.h>
- #endif
- #if SNAPPY_HAVE_BMI2
- // Please do not replace with <x86intrin.h>. or with headers that assume more
- // advanced SSE versions without checking with all the OWNERS.
- #include <immintrin.h>
- #endif
- #include <stdio.h>
- #include <algorithm>
- #include <string>
- #include <vector>
- #include <util/generic/string.h>
- namespace snappy {
- using internal::COPY_1_BYTE_OFFSET;
- using internal::COPY_2_BYTE_OFFSET;
- using internal::LITERAL;
- using internal::char_table;
- using internal::kMaximumTagLength;
- // Any hash function will produce a valid compressed bitstream, but a good
- // hash function reduces the number of collisions and thus yields better
- // compression for compressible input, and more speed for incompressible
- // input. Of course, it doesn't hurt if the hash function is reasonably fast
- // either, as it gets called a lot.
- static inline uint32 HashBytes(uint32 bytes, int shift) {
- uint32 kMul = 0x1e35a7bd;
- return (bytes * kMul) >> shift;
- }
- static inline uint32 Hash(const char* p, int shift) {
- return HashBytes(UNALIGNED_LOAD32(p), shift);
- }
- size_t MaxCompressedLength(size_t source_len) {
- // Compressed data can be defined as:
- // compressed := item* literal*
- // item := literal* copy
- //
- // The trailing literal sequence has a space blowup of at most 62/60
- // since a literal of length 60 needs one tag byte + one extra byte
- // for length information.
- //
- // Item blowup is trickier to measure. Suppose the "copy" op copies
- // 4 bytes of data. Because of a special check in the encoding code,
- // we produce a 4-byte copy only if the offset is < 65536. Therefore
- // the copy op takes 3 bytes to encode, and this type of item leads
- // to at most the 62/60 blowup for representing literals.
- //
- // Suppose the "copy" op copies 5 bytes of data. If the offset is big
- // enough, it will take 5 bytes to encode the copy op. Therefore the
- // worst case here is a one-byte literal followed by a five-byte copy.
- // I.e., 6 bytes of input turn into 7 bytes of "compressed" data.
- //
- // This last factor dominates the blowup, so the final estimate is:
- return 32 + source_len + source_len/6;
- }
- namespace {
- void UnalignedCopy64(const void* src, void* dst) {
- char tmp[8];
- memcpy(tmp, src, 8);
- memcpy(dst, tmp, 8);
- }
- void UnalignedCopy128(const void* src, void* dst) {
- // memcpy gets vectorized when the appropriate compiler options are used.
- // For example, x86 compilers targeting SSE2+ will optimize to an SSE2 load
- // and store.
- char tmp[16];
- memcpy(tmp, src, 16);
- memcpy(dst, tmp, 16);
- }
- // Copy [src, src+(op_limit-op)) to [op, (op_limit-op)) a byte at a time. Used
- // for handling COPY operations where the input and output regions may overlap.
- // For example, suppose:
- // src == "ab"
- // op == src + 2
- // op_limit == op + 20
- // After IncrementalCopySlow(src, op, op_limit), the result will have eleven
- // copies of "ab"
- // ababababababababababab
- // Note that this does not match the semantics of either memcpy() or memmove().
- inline char* IncrementalCopySlow(const char* src, char* op,
- char* const op_limit) {
- // TODO: Remove pragma when LLVM is aware this
- // function is only called in cold regions and when cold regions don't get
- // vectorized or unrolled.
- #ifdef __clang__
- #pragma clang loop unroll(disable)
- #endif
- while (op < op_limit) {
- *op++ = *src++;
- }
- return op_limit;
- }
- #if SNAPPY_HAVE_SSSE3
- // This is a table of shuffle control masks that can be used as the source
- // operand for PSHUFB to permute the contents of the destination XMM register
- // into a repeating byte pattern.
- alignas(16) const char pshufb_fill_patterns[7][16] = {
- {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
- {0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1},
- {0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0},
- {0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3},
- {0, 1, 2, 3, 4, 0, 1, 2, 3, 4, 0, 1, 2, 3, 4, 0},
- {0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3},
- {0, 1, 2, 3, 4, 5, 6, 0, 1, 2, 3, 4, 5, 6, 0, 1},
- };
- #endif // SNAPPY_HAVE_SSSE3
- // Copy [src, src+(op_limit-op)) to [op, (op_limit-op)) but faster than
- // IncrementalCopySlow. buf_limit is the address past the end of the writable
- // region of the buffer.
- inline char* IncrementalCopy(const char* src, char* op, char* const op_limit,
- char* const buf_limit) {
- // Terminology:
- //
- // slop = buf_limit - op
- // pat = op - src
- // len = limit - op
- assert(src < op);
- assert(op <= op_limit);
- assert(op_limit <= buf_limit);
- // NOTE: The compressor always emits 4 <= len <= 64. It is ok to assume that
- // to optimize this function but we have to also handle other cases in case
- // the input does not satisfy these conditions.
- size_t pattern_size = op - src;
- // The cases are split into different branches to allow the branch predictor,
- // FDO, and static prediction hints to work better. For each input we list the
- // ratio of invocations that match each condition.
- //
- // input slop < 16 pat < 8 len > 16
- // ------------------------------------------
- // html|html4|cp 0% 1.01% 27.73%
- // urls 0% 0.88% 14.79%
- // jpg 0% 64.29% 7.14%
- // pdf 0% 2.56% 58.06%
- // txt[1-4] 0% 0.23% 0.97%
- // pb 0% 0.96% 13.88%
- // bin 0.01% 22.27% 41.17%
- //
- // It is very rare that we don't have enough slop for doing block copies. It
- // is also rare that we need to expand a pattern. Small patterns are common
- // for incompressible formats and for those we are plenty fast already.
- // Lengths are normally not greater than 16 but they vary depending on the
- // input. In general if we always predict len <= 16 it would be an ok
- // prediction.
- //
- // In order to be fast we want a pattern >= 8 bytes and an unrolled loop
- // copying 2x 8 bytes at a time.
- // Handle the uncommon case where pattern is less than 8 bytes.
- if (SNAPPY_PREDICT_FALSE(pattern_size < 8)) {
- #if SNAPPY_HAVE_SSSE3
- // Load the first eight bytes into an 128-bit XMM register, then use PSHUFB
- // to permute the register's contents in-place into a repeating sequence of
- // the first "pattern_size" bytes.
- // For example, suppose:
- // src == "abc"
- // op == op + 3
- // After _mm_shuffle_epi8(), "pattern" will have five copies of "abc"
- // followed by one byte of slop: abcabcabcabcabca.
- //
- // The non-SSE fallback implementation suffers from store-forwarding stalls
- // because its loads and stores partly overlap. By expanding the pattern
- // in-place, we avoid the penalty.
- if (SNAPPY_PREDICT_TRUE(op <= buf_limit - 16)) {
- const __m128i shuffle_mask = _mm_load_si128(
- reinterpret_cast<const __m128i*>(pshufb_fill_patterns)
- + pattern_size - 1);
- const __m128i pattern = _mm_shuffle_epi8(
- _mm_loadl_epi64(reinterpret_cast<const __m128i*>(src)), shuffle_mask);
- // Uninitialized bytes are masked out by the shuffle mask.
- // TODO: remove annotation and macro defs once MSan is fixed.
- SNAPPY_ANNOTATE_MEMORY_IS_INITIALIZED(&pattern, sizeof(pattern));
- pattern_size *= 16 / pattern_size;
- char* op_end = std::min(op_limit, buf_limit - 15);
- while (op < op_end) {
- _mm_storeu_si128(reinterpret_cast<__m128i*>(op), pattern);
- op += pattern_size;
- }
- if (SNAPPY_PREDICT_TRUE(op >= op_limit)) return op_limit;
- }
- return IncrementalCopySlow(src, op, op_limit);
- #else // !SNAPPY_HAVE_SSSE3
- // If plenty of buffer space remains, expand the pattern to at least 8
- // bytes. The way the following loop is written, we need 8 bytes of buffer
- // space if pattern_size >= 4, 11 bytes if pattern_size is 1 or 3, and 10
- // bytes if pattern_size is 2. Precisely encoding that is probably not
- // worthwhile; instead, invoke the slow path if we cannot write 11 bytes
- // (because 11 are required in the worst case).
- if (SNAPPY_PREDICT_TRUE(op <= buf_limit - 11)) {
- while (pattern_size < 8) {
- UnalignedCopy64(src, op);
- op += pattern_size;
- pattern_size *= 2;
- }
- if (SNAPPY_PREDICT_TRUE(op >= op_limit)) return op_limit;
- } else {
- return IncrementalCopySlow(src, op, op_limit);
- }
- #endif // SNAPPY_HAVE_SSSE3
- }
- assert(pattern_size >= 8);
- // Copy 2x 8 bytes at a time. Because op - src can be < 16, a single
- // UnalignedCopy128 might overwrite data in op. UnalignedCopy64 is safe
- // because expanding the pattern to at least 8 bytes guarantees that
- // op - src >= 8.
- //
- // Typically, the op_limit is the gating factor so try to simplify the loop
- // based on that.
- if (SNAPPY_PREDICT_TRUE(op_limit <= buf_limit - 16)) {
- // There is at least one, and at most four 16-byte blocks. Writing four
- // conditionals instead of a loop allows FDO to layout the code with respect
- // to the actual probabilities of each length.
- // TODO: Replace with loop with trip count hint.
- UnalignedCopy64(src, op);
- UnalignedCopy64(src + 8, op + 8);
- if (op + 16 < op_limit) {
- UnalignedCopy64(src + 16, op + 16);
- UnalignedCopy64(src + 24, op + 24);
- }
- if (op + 32 < op_limit) {
- UnalignedCopy64(src + 32, op + 32);
- UnalignedCopy64(src + 40, op + 40);
- }
- if (op + 48 < op_limit) {
- UnalignedCopy64(src + 48, op + 48);
- UnalignedCopy64(src + 56, op + 56);
- }
- return op_limit;
- }
- // Fall back to doing as much as we can with the available slop in the
- // buffer. This code path is relatively cold however so we save code size by
- // avoiding unrolling and vectorizing.
- //
- // TODO: Remove pragma when when cold regions don't get vectorized
- // or unrolled.
- #ifdef __clang__
- #pragma clang loop unroll(disable)
- #endif
- for (char *op_end = buf_limit - 16; op < op_end; op += 16, src += 16) {
- UnalignedCopy64(src, op);
- UnalignedCopy64(src + 8, op + 8);
- }
- if (op >= op_limit)
- return op_limit;
- // We only take this branch if we didn't have enough slop and we can do a
- // single 8 byte copy.
- if (SNAPPY_PREDICT_FALSE(op <= buf_limit - 8)) {
- UnalignedCopy64(src, op);
- src += 8;
- op += 8;
- }
- return IncrementalCopySlow(src, op, op_limit);
- }
- } // namespace
- template <bool allow_fast_path>
- static inline char* EmitLiteral(char* op,
- const char* literal,
- int len) {
- // The vast majority of copies are below 16 bytes, for which a
- // call to memcpy is overkill. This fast path can sometimes
- // copy up to 15 bytes too much, but that is okay in the
- // main loop, since we have a bit to go on for both sides:
- //
- // - The input will always have kInputMarginBytes = 15 extra
- // available bytes, as long as we're in the main loop, and
- // if not, allow_fast_path = false.
- // - The output will always have 32 spare bytes (see
- // MaxCompressedLength).
- assert(len > 0); // Zero-length literals are disallowed
- int n = len - 1;
- if (allow_fast_path && len <= 16) {
- // Fits in tag byte
- *op++ = LITERAL | (n << 2);
- UnalignedCopy128(literal, op);
- return op + len;
- }
- if (n < 60) {
- // Fits in tag byte
- *op++ = LITERAL | (n << 2);
- } else {
- int count = (Bits::Log2Floor(n) >> 3) + 1;
- assert(count >= 1);
- assert(count <= 4);
- *op++ = LITERAL | ((59 + count) << 2);
- // Encode in upcoming bytes.
- // Write 4 bytes, though we may care about only 1 of them. The output buffer
- // is guaranteed to have at least 3 more spaces left as 'len >= 61' holds
- // here and there is a memcpy of size 'len' below.
- LittleEndian::Store32(op, n);
- op += count;
- }
- memcpy(op, literal, len);
- return op + len;
- }
- template <bool len_less_than_12>
- static inline char* EmitCopyAtMost64(char* op, size_t offset, size_t len) {
- assert(len <= 64);
- assert(len >= 4);
- assert(offset < 65536);
- assert(len_less_than_12 == (len < 12));
- if (len_less_than_12 && SNAPPY_PREDICT_TRUE(offset < 2048)) {
- // offset fits in 11 bits. The 3 highest go in the top of the first byte,
- // and the rest go in the second byte.
- *op++ = COPY_1_BYTE_OFFSET + ((len - 4) << 2) + ((offset >> 3) & 0xe0);
- *op++ = offset & 0xff;
- } else {
- // Write 4 bytes, though we only care about 3 of them. The output buffer
- // is required to have some slack, so the extra byte won't overrun it.
- uint32 u = COPY_2_BYTE_OFFSET + ((len - 1) << 2) + (offset << 8);
- LittleEndian::Store32(op, u);
- op += 3;
- }
- return op;
- }
- template <bool len_less_than_12>
- static inline char* EmitCopy(char* op, size_t offset, size_t len) {
- assert(len_less_than_12 == (len < 12));
- if (len_less_than_12) {
- return EmitCopyAtMost64</*len_less_than_12=*/true>(op, offset, len);
- } else {
- // A special case for len <= 64 might help, but so far measurements suggest
- // it's in the noise.
- // Emit 64 byte copies but make sure to keep at least four bytes reserved.
- while (SNAPPY_PREDICT_FALSE(len >= 68)) {
- op = EmitCopyAtMost64</*len_less_than_12=*/false>(op, offset, 64);
- len -= 64;
- }
- // One or two copies will now finish the job.
- if (len > 64) {
- op = EmitCopyAtMost64</*len_less_than_12=*/false>(op, offset, 60);
- len -= 60;
- }
- // Emit remainder.
- if (len < 12) {
- op = EmitCopyAtMost64</*len_less_than_12=*/true>(op, offset, len);
- } else {
- op = EmitCopyAtMost64</*len_less_than_12=*/false>(op, offset, len);
- }
- return op;
- }
- }
- bool GetUncompressedLength(const char* start, size_t n, size_t* result) {
- uint32 v = 0;
- const char* limit = start + n;
- if (Varint::Parse32WithLimit(start, limit, &v) != NULL) {
- *result = v;
- return true;
- } else {
- return false;
- }
- }
- namespace {
- uint32 CalculateTableSize(uint32 input_size) {
- static_assert(
- kMaxHashTableSize >= kMinHashTableSize,
- "kMaxHashTableSize should be greater or equal to kMinHashTableSize.");
- if (input_size > kMaxHashTableSize) {
- return kMaxHashTableSize;
- }
- if (input_size < kMinHashTableSize) {
- return kMinHashTableSize;
- }
- // This is equivalent to Log2Ceiling(input_size), assuming input_size > 1.
- // 2 << Log2Floor(x - 1) is equivalent to 1 << (1 + Log2Floor(x - 1)).
- return 2u << Bits::Log2Floor(input_size - 1);
- }
- } // namespace
- namespace internal {
- WorkingMemory::WorkingMemory(size_t input_size) {
- const size_t max_fragment_size = std::min(input_size, kBlockSize);
- const size_t table_size = CalculateTableSize(max_fragment_size);
- size_ = table_size * sizeof(*table_) + max_fragment_size +
- MaxCompressedLength(max_fragment_size);
- mem_ = std::allocator<char>().allocate(size_);
- table_ = reinterpret_cast<uint16*>(mem_);
- input_ = mem_ + table_size * sizeof(*table_);
- output_ = input_ + max_fragment_size;
- }
- WorkingMemory::~WorkingMemory() {
- std::allocator<char>().deallocate(mem_, size_);
- }
- uint16* WorkingMemory::GetHashTable(size_t fragment_size,
- int* table_size) const {
- const size_t htsize = CalculateTableSize(fragment_size);
- memset(table_, 0, htsize * sizeof(*table_));
- *table_size = htsize;
- return table_;
- }
- } // end namespace internal
- // For 0 <= offset <= 4, GetUint32AtOffset(GetEightBytesAt(p), offset) will
- // equal UNALIGNED_LOAD32(p + offset). Motivation: On x86-64 hardware we have
- // empirically found that overlapping loads such as
- // UNALIGNED_LOAD32(p) ... UNALIGNED_LOAD32(p+1) ... UNALIGNED_LOAD32(p+2)
- // are slower than UNALIGNED_LOAD64(p) followed by shifts and casts to uint32.
- //
- // We have different versions for 64- and 32-bit; ideally we would avoid the
- // two functions and just inline the UNALIGNED_LOAD64 call into
- // GetUint32AtOffset, but GCC (at least not as of 4.6) is seemingly not clever
- // enough to avoid loading the value multiple times then. For 64-bit, the load
- // is done when GetEightBytesAt() is called, whereas for 32-bit, the load is
- // done at GetUint32AtOffset() time.
- #ifdef ARCH_K8
- typedef uint64 EightBytesReference;
- static inline EightBytesReference GetEightBytesAt(const char* ptr) {
- return UNALIGNED_LOAD64(ptr);
- }
- static inline uint32 GetUint32AtOffset(uint64 v, int offset) {
- assert(offset >= 0);
- assert(offset <= 4);
- return v >> (LittleEndian::IsLittleEndian() ? 8 * offset : 32 - 8 * offset);
- }
- #else
- typedef const char* EightBytesReference;
- static inline EightBytesReference GetEightBytesAt(const char* ptr) {
- return ptr;
- }
- static inline uint32 GetUint32AtOffset(const char* v, int offset) {
- assert(offset >= 0);
- assert(offset <= 4);
- return UNALIGNED_LOAD32(v + offset);
- }
- #endif
- // Flat array compression that does not emit the "uncompressed length"
- // prefix. Compresses "input" string to the "*op" buffer.
- //
- // REQUIRES: "input" is at most "kBlockSize" bytes long.
- // REQUIRES: "op" points to an array of memory that is at least
- // "MaxCompressedLength(input.size())" in size.
- // REQUIRES: All elements in "table[0..table_size-1]" are initialized to zero.
- // REQUIRES: "table_size" is a power of two
- //
- // Returns an "end" pointer into "op" buffer.
- // "end - op" is the compressed size of "input".
- namespace internal {
- char* CompressFragment(const char* input,
- size_t input_size,
- char* op,
- uint16* table,
- const int table_size) {
- // "ip" is the input pointer, and "op" is the output pointer.
- const char* ip = input;
- assert(input_size <= kBlockSize);
- assert((table_size & (table_size - 1)) == 0); // table must be power of two
- const int shift = 32 - Bits::Log2Floor(table_size);
- assert(static_cast<int>(kuint32max >> shift) == table_size - 1);
- const char* ip_end = input + input_size;
- const char* base_ip = ip;
- // Bytes in [next_emit, ip) will be emitted as literal bytes. Or
- // [next_emit, ip_end) after the main loop.
- const char* next_emit = ip;
- const size_t kInputMarginBytes = 15;
- if (SNAPPY_PREDICT_TRUE(input_size >= kInputMarginBytes)) {
- const char* ip_limit = input + input_size - kInputMarginBytes;
- for (uint32 next_hash = Hash(++ip, shift); ; ) {
- assert(next_emit < ip);
- // The body of this loop calls EmitLiteral once and then EmitCopy one or
- // more times. (The exception is that when we're close to exhausting
- // the input we goto emit_remainder.)
- //
- // In the first iteration of this loop we're just starting, so
- // there's nothing to copy, so calling EmitLiteral once is
- // necessary. And we only start a new iteration when the
- // current iteration has determined that a call to EmitLiteral will
- // precede the next call to EmitCopy (if any).
- //
- // Step 1: Scan forward in the input looking for a 4-byte-long match.
- // If we get close to exhausting the input then goto emit_remainder.
- //
- // Heuristic match skipping: If 32 bytes are scanned with no matches
- // found, start looking only at every other byte. If 32 more bytes are
- // scanned (or skipped), look at every third byte, etc.. When a match is
- // found, immediately go back to looking at every byte. This is a small
- // loss (~5% performance, ~0.1% density) for compressible data due to more
- // bookkeeping, but for non-compressible data (such as JPEG) it's a huge
- // win since the compressor quickly "realizes" the data is incompressible
- // and doesn't bother looking for matches everywhere.
- //
- // The "skip" variable keeps track of how many bytes there are since the
- // last match; dividing it by 32 (ie. right-shifting by five) gives the
- // number of bytes to move ahead for each iteration.
- uint32 skip = 32;
- const char* next_ip = ip;
- const char* candidate;
- do {
- ip = next_ip;
- uint32 hash = next_hash;
- assert(hash == Hash(ip, shift));
- uint32 bytes_between_hash_lookups = skip >> 5;
- skip += bytes_between_hash_lookups;
- next_ip = ip + bytes_between_hash_lookups;
- if (SNAPPY_PREDICT_FALSE(next_ip > ip_limit)) {
- goto emit_remainder;
- }
- next_hash = Hash(next_ip, shift);
- candidate = base_ip + table[hash];
- assert(candidate >= base_ip);
- assert(candidate < ip);
- table[hash] = ip - base_ip;
- } while (SNAPPY_PREDICT_TRUE(UNALIGNED_LOAD32(ip) !=
- UNALIGNED_LOAD32(candidate)));
- // Step 2: A 4-byte match has been found. We'll later see if more
- // than 4 bytes match. But, prior to the match, input
- // bytes [next_emit, ip) are unmatched. Emit them as "literal bytes."
- assert(next_emit + 16 <= ip_end);
- op = EmitLiteral</*allow_fast_path=*/true>(op, next_emit, ip - next_emit);
- // Step 3: Call EmitCopy, and then see if another EmitCopy could
- // be our next move. Repeat until we find no match for the
- // input immediately after what was consumed by the last EmitCopy call.
- //
- // If we exit this loop normally then we need to call EmitLiteral next,
- // though we don't yet know how big the literal will be. We handle that
- // by proceeding to the next iteration of the main loop. We also can exit
- // this loop via goto if we get close to exhausting the input.
- EightBytesReference input_bytes;
- uint32 candidate_bytes = 0;
- do {
- // We have a 4-byte match at ip, and no need to emit any
- // "literal bytes" prior to ip.
- const char* base = ip;
- std::pair<size_t, bool> p =
- FindMatchLength(candidate + 4, ip + 4, ip_end);
- size_t matched = 4 + p.first;
- ip += matched;
- size_t offset = base - candidate;
- assert(0 == memcmp(base, candidate, matched));
- if (p.second) {
- op = EmitCopy</*len_less_than_12=*/true>(op, offset, matched);
- } else {
- op = EmitCopy</*len_less_than_12=*/false>(op, offset, matched);
- }
- next_emit = ip;
- if (SNAPPY_PREDICT_FALSE(ip >= ip_limit)) {
- goto emit_remainder;
- }
- // We are now looking for a 4-byte match again. We read
- // table[Hash(ip, shift)] for that. To improve compression,
- // we also update table[Hash(ip - 1, shift)] and table[Hash(ip, shift)].
- input_bytes = GetEightBytesAt(ip - 1);
- uint32 prev_hash = HashBytes(GetUint32AtOffset(input_bytes, 0), shift);
- table[prev_hash] = ip - base_ip - 1;
- uint32 cur_hash = HashBytes(GetUint32AtOffset(input_bytes, 1), shift);
- candidate = base_ip + table[cur_hash];
- candidate_bytes = UNALIGNED_LOAD32(candidate);
- table[cur_hash] = ip - base_ip;
- } while (GetUint32AtOffset(input_bytes, 1) == candidate_bytes);
- next_hash = HashBytes(GetUint32AtOffset(input_bytes, 2), shift);
- ++ip;
- }
- }
- emit_remainder:
- // Emit the remaining bytes as a literal
- if (next_emit < ip_end) {
- op = EmitLiteral</*allow_fast_path=*/false>(op, next_emit,
- ip_end - next_emit);
- }
- return op;
- }
- } // end namespace internal
- // Called back at avery compression call to trace parameters and sizes.
- static inline void Report(const char *algorithm, size_t compressed_size,
- size_t uncompressed_size) {}
- // Signature of output types needed by decompression code.
- // The decompression code is templatized on a type that obeys this
- // signature so that we do not pay virtual function call overhead in
- // the middle of a tight decompression loop.
- //
- // class DecompressionWriter {
- // public:
- // // Called before decompression
- // void SetExpectedLength(size_t length);
- //
- // // Called after decompression
- // bool CheckLength() const;
- //
- // // Called repeatedly during decompression
- // bool Append(const char* ip, size_t length);
- // bool AppendFromSelf(uint32 offset, size_t length);
- //
- // // The rules for how TryFastAppend differs from Append are somewhat
- // // convoluted:
- // //
- // // - TryFastAppend is allowed to decline (return false) at any
- // // time, for any reason -- just "return false" would be
- // // a perfectly legal implementation of TryFastAppend.
- // // The intention is for TryFastAppend to allow a fast path
- // // in the common case of a small append.
- // // - TryFastAppend is allowed to read up to <available> bytes
- // // from the input buffer, whereas Append is allowed to read
- // // <length>. However, if it returns true, it must leave
- // // at least five (kMaximumTagLength) bytes in the input buffer
- // // afterwards, so that there is always enough space to read the
- // // next tag without checking for a refill.
- // // - TryFastAppend must always return decline (return false)
- // // if <length> is 61 or more, as in this case the literal length is not
- // // decoded fully. In practice, this should not be a big problem,
- // // as it is unlikely that one would implement a fast path accepting
- // // this much data.
- // //
- // bool TryFastAppend(const char* ip, size_t available, size_t length);
- // };
- static inline uint32 ExtractLowBytes(uint32 v, int n) {
- assert(n >= 0);
- assert(n <= 4);
- #if SNAPPY_HAVE_BMI2
- return _bzhi_u32(v, 8 * n);
- #else
- // This needs to be wider than uint32 otherwise `mask << 32` will be
- // undefined.
- uint64 mask = 0xffffffff;
- return v & ~(mask << (8 * n));
- #endif
- }
- static inline bool LeftShiftOverflows(uint8 value, uint32 shift) {
- assert(shift < 32);
- static const uint8 masks[] = {
- 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, //
- 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, //
- 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, //
- 0x00, 0x80, 0xc0, 0xe0, 0xf0, 0xf8, 0xfc, 0xfe};
- return (value & masks[shift]) != 0;
- }
- // Helper class for decompression
- class SnappyDecompressor {
- private:
- Source* reader_; // Underlying source of bytes to decompress
- const char* ip_; // Points to next buffered byte
- const char* ip_limit_; // Points just past buffered bytes
- uint32 peeked_; // Bytes peeked from reader (need to skip)
- bool eof_; // Hit end of input without an error?
- char scratch_[kMaximumTagLength]; // See RefillTag().
- // Ensure that all of the tag metadata for the next tag is available
- // in [ip_..ip_limit_-1]. Also ensures that [ip,ip+4] is readable even
- // if (ip_limit_ - ip_ < 5).
- //
- // Returns true on success, false on error or end of input.
- bool RefillTag();
- public:
- explicit SnappyDecompressor(Source* reader)
- : reader_(reader),
- ip_(NULL),
- ip_limit_(NULL),
- peeked_(0),
- eof_(false) {
- }
- ~SnappyDecompressor() {
- // Advance past any bytes we peeked at from the reader
- reader_->Skip(peeked_);
- }
- // Returns true iff we have hit the end of the input without an error.
- bool eof() const {
- return eof_;
- }
- // Read the uncompressed length stored at the start of the compressed data.
- // On success, stores the length in *result and returns true.
- // On failure, returns false.
- bool ReadUncompressedLength(uint32* result) {
- assert(ip_ == NULL); // Must not have read anything yet
- // Length is encoded in 1..5 bytes
- *result = 0;
- uint32 shift = 0;
- while (true) {
- if (shift >= 32) return false;
- size_t n;
- const char* ip = reader_->Peek(&n);
- if (n == 0) return false;
- const unsigned char c = *(reinterpret_cast<const unsigned char*>(ip));
- reader_->Skip(1);
- uint32 val = c & 0x7f;
- if (LeftShiftOverflows(static_cast<uint8>(val), shift)) return false;
- *result |= val << shift;
- if (c < 128) {
- break;
- }
- shift += 7;
- }
- return true;
- }
- // Process the next item found in the input.
- // Returns true if successful, false on error or end of input.
- template <class Writer>
- #if defined(__GNUC__) && defined(__x86_64__)
- __attribute__((aligned(32)))
- #endif
- void DecompressAllTags(Writer* writer) {
- // In x86, pad the function body to start 16 bytes later. This function has
- // a couple of hotspots that are highly sensitive to alignment: we have
- // observed regressions by more than 20% in some metrics just by moving the
- // exact same code to a different position in the benchmark binary.
- //
- // Putting this code on a 32-byte-aligned boundary + 16 bytes makes us hit
- // the "lucky" case consistently. Unfortunately, this is a very brittle
- // workaround, and future differences in code generation may reintroduce
- // this regression. If you experience a big, difficult to explain, benchmark
- // performance regression here, first try removing this hack.
- #if defined(__GNUC__) && defined(__x86_64__)
- // Two 8-byte "NOP DWORD ptr [EAX + EAX*1 + 00000000H]" instructions.
- asm(".byte 0x0f, 0x1f, 0x84, 0x00, 0x00, 0x00, 0x00, 0x00");
- asm(".byte 0x0f, 0x1f, 0x84, 0x00, 0x00, 0x00, 0x00, 0x00");
- #endif
- const char* ip = ip_;
- // We could have put this refill fragment only at the beginning of the loop.
- // However, duplicating it at the end of each branch gives the compiler more
- // scope to optimize the <ip_limit_ - ip> expression based on the local
- // context, which overall increases speed.
- #define MAYBE_REFILL() \
- if (ip_limit_ - ip < kMaximumTagLength) { \
- ip_ = ip; \
- if (!RefillTag()) return; \
- ip = ip_; \
- }
- MAYBE_REFILL();
- for ( ;; ) {
- const unsigned char c = *(reinterpret_cast<const unsigned char*>(ip++));
- // Ratio of iterations that have LITERAL vs non-LITERAL for different
- // inputs.
- //
- // input LITERAL NON_LITERAL
- // -----------------------------------
- // html|html4|cp 23% 77%
- // urls 36% 64%
- // jpg 47% 53%
- // pdf 19% 81%
- // txt[1-4] 25% 75%
- // pb 24% 76%
- // bin 24% 76%
- if (SNAPPY_PREDICT_FALSE((c & 0x3) == LITERAL)) {
- size_t literal_length = (c >> 2) + 1u;
- if (writer->TryFastAppend(ip, ip_limit_ - ip, literal_length)) {
- assert(literal_length < 61);
- ip += literal_length;
- // NOTE: There is no MAYBE_REFILL() here, as TryFastAppend()
- // will not return true unless there's already at least five spare
- // bytes in addition to the literal.
- continue;
- }
- if (SNAPPY_PREDICT_FALSE(literal_length >= 61)) {
- // Long literal.
- const size_t literal_length_length = literal_length - 60;
- literal_length =
- ExtractLowBytes(LittleEndian::Load32(ip), literal_length_length) +
- 1;
- ip += literal_length_length;
- }
- size_t avail = ip_limit_ - ip;
- while (avail < literal_length) {
- if (!writer->Append(ip, avail)) return;
- literal_length -= avail;
- reader_->Skip(peeked_);
- size_t n;
- ip = reader_->Peek(&n);
- avail = n;
- peeked_ = avail;
- if (avail == 0) return; // Premature end of input
- ip_limit_ = ip + avail;
- }
- if (!writer->Append(ip, literal_length)) {
- return;
- }
- ip += literal_length;
- MAYBE_REFILL();
- } else {
- const size_t entry = char_table[c];
- const size_t trailer =
- ExtractLowBytes(LittleEndian::Load32(ip), entry >> 11);
- const size_t length = entry & 0xff;
- ip += entry >> 11;
- // copy_offset/256 is encoded in bits 8..10. By just fetching
- // those bits, we get copy_offset (since the bit-field starts at
- // bit 8).
- const size_t copy_offset = entry & 0x700;
- if (!writer->AppendFromSelf(copy_offset + trailer, length)) {
- return;
- }
- MAYBE_REFILL();
- }
- }
- #undef MAYBE_REFILL
- }
- };
- bool SnappyDecompressor::RefillTag() {
- const char* ip = ip_;
- if (ip == ip_limit_) {
- // Fetch a new fragment from the reader
- reader_->Skip(peeked_); // All peeked bytes are used up
- size_t n;
- ip = reader_->Peek(&n);
- peeked_ = n;
- eof_ = (n == 0);
- if (eof_) return false;
- ip_limit_ = ip + n;
- }
- // Read the tag character
- assert(ip < ip_limit_);
- const unsigned char c = *(reinterpret_cast<const unsigned char*>(ip));
- const uint32 entry = char_table[c];
- const uint32 needed = (entry >> 11) + 1; // +1 byte for 'c'
- assert(needed <= sizeof(scratch_));
- // Read more bytes from reader if needed
- uint32 nbuf = ip_limit_ - ip;
- if (nbuf < needed) {
- // Stitch together bytes from ip and reader to form the word
- // contents. We store the needed bytes in "scratch_". They
- // will be consumed immediately by the caller since we do not
- // read more than we need.
- memmove(scratch_, ip, nbuf);
- reader_->Skip(peeked_); // All peeked bytes are used up
- peeked_ = 0;
- while (nbuf < needed) {
- size_t length;
- const char* src = reader_->Peek(&length);
- if (length == 0) return false;
- uint32 to_add = std::min<uint32>(needed - nbuf, length);
- memcpy(scratch_ + nbuf, src, to_add);
- nbuf += to_add;
- reader_->Skip(to_add);
- }
- assert(nbuf == needed);
- ip_ = scratch_;
- ip_limit_ = scratch_ + needed;
- } else if (nbuf < kMaximumTagLength) {
- // Have enough bytes, but move into scratch_ so that we do not
- // read past end of input
- memmove(scratch_, ip, nbuf);
- reader_->Skip(peeked_); // All peeked bytes are used up
- peeked_ = 0;
- ip_ = scratch_;
- ip_limit_ = scratch_ + nbuf;
- } else {
- // Pass pointer to buffer returned by reader_.
- ip_ = ip;
- }
- return true;
- }
- template <typename Writer>
- static bool InternalUncompress(Source* r, Writer* writer) {
- // Read the uncompressed length from the front of the compressed input
- SnappyDecompressor decompressor(r);
- uint32 uncompressed_len = 0;
- if (!decompressor.ReadUncompressedLength(&uncompressed_len)) return false;
- return InternalUncompressAllTags(&decompressor, writer, r->Available(),
- uncompressed_len);
- }
- template <typename Writer>
- static bool InternalUncompressAllTags(SnappyDecompressor* decompressor,
- Writer* writer,
- uint32 compressed_len,
- uint32 uncompressed_len) {
- Report("snappy_uncompress", compressed_len, uncompressed_len);
- writer->SetExpectedLength(uncompressed_len);
- // Process the entire input
- decompressor->DecompressAllTags(writer);
- writer->Flush();
- return (decompressor->eof() && writer->CheckLength());
- }
- bool GetUncompressedLength(Source* source, uint32* result) {
- SnappyDecompressor decompressor(source);
- return decompressor.ReadUncompressedLength(result);
- }
- size_t Compress(Source* reader, Sink* writer) {
- size_t written = 0;
- size_t N = reader->Available();
- const size_t uncompressed_size = N;
- char ulength[Varint::kMax32];
- char* p = Varint::Encode32(ulength, N);
- writer->Append(ulength, p-ulength);
- written += (p - ulength);
- internal::WorkingMemory wmem(N);
- while (N > 0) {
- // Get next block to compress (without copying if possible)
- size_t fragment_size;
- const char* fragment = reader->Peek(&fragment_size);
- assert(fragment_size != 0); // premature end of input
- const size_t num_to_read = std::min(N, kBlockSize);
- size_t bytes_read = fragment_size;
- size_t pending_advance = 0;
- if (bytes_read >= num_to_read) {
- // Buffer returned by reader is large enough
- pending_advance = num_to_read;
- fragment_size = num_to_read;
- } else {
- char* scratch = wmem.GetScratchInput();
- memcpy(scratch, fragment, bytes_read);
- reader->Skip(bytes_read);
- while (bytes_read < num_to_read) {
- fragment = reader->Peek(&fragment_size);
- size_t n = std::min<size_t>(fragment_size, num_to_read - bytes_read);
- memcpy(scratch + bytes_read, fragment, n);
- bytes_read += n;
- reader->Skip(n);
- }
- assert(bytes_read == num_to_read);
- fragment = scratch;
- fragment_size = num_to_read;
- }
- assert(fragment_size == num_to_read);
- // Get encoding table for compression
- int table_size;
- uint16* table = wmem.GetHashTable(num_to_read, &table_size);
- // Compress input_fragment and append to dest
- const int max_output = MaxCompressedLength(num_to_read);
- // Need a scratch buffer for the output, in case the byte sink doesn't
- // have room for us directly.
- // Since we encode kBlockSize regions followed by a region
- // which is <= kBlockSize in length, a previously allocated
- // scratch_output[] region is big enough for this iteration.
- char* dest = writer->GetAppendBuffer(max_output, wmem.GetScratchOutput());
- char* end = internal::CompressFragment(fragment, fragment_size, dest, table,
- table_size);
- writer->Append(dest, end - dest);
- written += (end - dest);
- N -= num_to_read;
- reader->Skip(pending_advance);
- }
- Report("snappy_compress", written, uncompressed_size);
- return written;
- }
- // -----------------------------------------------------------------------
- // IOVec interfaces
- // -----------------------------------------------------------------------
- // A type that writes to an iovec.
- // Note that this is not a "ByteSink", but a type that matches the
- // Writer template argument to SnappyDecompressor::DecompressAllTags().
- class SnappyIOVecWriter {
- private:
- // output_iov_end_ is set to iov + count and used to determine when
- // the end of the iovs is reached.
- const struct iovec* output_iov_end_;
- #if !defined(NDEBUG)
- const struct iovec* output_iov_;
- #endif // !defined(NDEBUG)
- // Current iov that is being written into.
- const struct iovec* curr_iov_;
- // Pointer to current iov's write location.
- char* curr_iov_output_;
- // Remaining bytes to write into curr_iov_output.
- size_t curr_iov_remaining_;
- // Total bytes decompressed into output_iov_ so far.
- size_t total_written_;
- // Maximum number of bytes that will be decompressed into output_iov_.
- size_t output_limit_;
- static inline char* GetIOVecPointer(const struct iovec* iov, size_t offset) {
- return reinterpret_cast<char*>(iov->iov_base) + offset;
- }
- public:
- // Does not take ownership of iov. iov must be valid during the
- // entire lifetime of the SnappyIOVecWriter.
- inline SnappyIOVecWriter(const struct iovec* iov, size_t iov_count)
- : output_iov_end_(iov + iov_count),
- #if !defined(NDEBUG)
- output_iov_(iov),
- #endif // !defined(NDEBUG)
- curr_iov_(iov),
- curr_iov_output_(iov_count ? reinterpret_cast<char*>(iov->iov_base)
- : nullptr),
- curr_iov_remaining_(iov_count ? iov->iov_len : 0),
- total_written_(0),
- output_limit_(-1) {}
- inline void SetExpectedLength(size_t len) {
- output_limit_ = len;
- }
- inline bool CheckLength() const {
- return total_written_ == output_limit_;
- }
- inline bool Append(const char* ip, size_t len) {
- if (total_written_ + len > output_limit_) {
- return false;
- }
- return AppendNoCheck(ip, len);
- }
- inline bool AppendNoCheck(const char* ip, size_t len) {
- while (len > 0) {
- if (curr_iov_remaining_ == 0) {
- // This iovec is full. Go to the next one.
- if (curr_iov_ + 1 >= output_iov_end_) {
- return false;
- }
- ++curr_iov_;
- curr_iov_output_ = reinterpret_cast<char*>(curr_iov_->iov_base);
- curr_iov_remaining_ = curr_iov_->iov_len;
- }
- const size_t to_write = std::min(len, curr_iov_remaining_);
- memcpy(curr_iov_output_, ip, to_write);
- curr_iov_output_ += to_write;
- curr_iov_remaining_ -= to_write;
- total_written_ += to_write;
- ip += to_write;
- len -= to_write;
- }
- return true;
- }
- inline bool TryFastAppend(const char* ip, size_t available, size_t len) {
- const size_t space_left = output_limit_ - total_written_;
- if (len <= 16 && available >= 16 + kMaximumTagLength && space_left >= 16 &&
- curr_iov_remaining_ >= 16) {
- // Fast path, used for the majority (about 95%) of invocations.
- UnalignedCopy128(ip, curr_iov_output_);
- curr_iov_output_ += len;
- curr_iov_remaining_ -= len;
- total_written_ += len;
- return true;
- }
- return false;
- }
- inline bool AppendFromSelf(size_t offset, size_t len) {
- // See SnappyArrayWriter::AppendFromSelf for an explanation of
- // the "offset - 1u" trick.
- if (offset - 1u >= total_written_) {
- return false;
- }
- const size_t space_left = output_limit_ - total_written_;
- if (len > space_left) {
- return false;
- }
- // Locate the iovec from which we need to start the copy.
- const iovec* from_iov = curr_iov_;
- size_t from_iov_offset = curr_iov_->iov_len - curr_iov_remaining_;
- while (offset > 0) {
- if (from_iov_offset >= offset) {
- from_iov_offset -= offset;
- break;
- }
- offset -= from_iov_offset;
- --from_iov;
- #if !defined(NDEBUG)
- assert(from_iov >= output_iov_);
- #endif // !defined(NDEBUG)
- from_iov_offset = from_iov->iov_len;
- }
- // Copy <len> bytes starting from the iovec pointed to by from_iov_index to
- // the current iovec.
- while (len > 0) {
- assert(from_iov <= curr_iov_);
- if (from_iov != curr_iov_) {
- const size_t to_copy =
- std::min(from_iov->iov_len - from_iov_offset, len);
- AppendNoCheck(GetIOVecPointer(from_iov, from_iov_offset), to_copy);
- len -= to_copy;
- if (len > 0) {
- ++from_iov;
- from_iov_offset = 0;
- }
- } else {
- size_t to_copy = curr_iov_remaining_;
- if (to_copy == 0) {
- // This iovec is full. Go to the next one.
- if (curr_iov_ + 1 >= output_iov_end_) {
- return false;
- }
- ++curr_iov_;
- curr_iov_output_ = reinterpret_cast<char*>(curr_iov_->iov_base);
- curr_iov_remaining_ = curr_iov_->iov_len;
- continue;
- }
- if (to_copy > len) {
- to_copy = len;
- }
- IncrementalCopy(GetIOVecPointer(from_iov, from_iov_offset),
- curr_iov_output_, curr_iov_output_ + to_copy,
- curr_iov_output_ + curr_iov_remaining_);
- curr_iov_output_ += to_copy;
- curr_iov_remaining_ -= to_copy;
- from_iov_offset += to_copy;
- total_written_ += to_copy;
- len -= to_copy;
- }
- }
- return true;
- }
- inline void Flush() {}
- };
- bool RawUncompressToIOVec(const char* compressed, size_t compressed_length,
- const struct iovec* iov, size_t iov_cnt) {
- ByteArraySource reader(compressed, compressed_length);
- return RawUncompressToIOVec(&reader, iov, iov_cnt);
- }
- bool RawUncompressToIOVec(Source* compressed, const struct iovec* iov,
- size_t iov_cnt) {
- SnappyIOVecWriter output(iov, iov_cnt);
- return InternalUncompress(compressed, &output);
- }
- // -----------------------------------------------------------------------
- // Flat array interfaces
- // -----------------------------------------------------------------------
- // A type that writes to a flat array.
- // Note that this is not a "ByteSink", but a type that matches the
- // Writer template argument to SnappyDecompressor::DecompressAllTags().
- class SnappyArrayWriter {
- private:
- char* base_;
- char* op_;
- char* op_limit_;
- public:
- inline explicit SnappyArrayWriter(char* dst)
- : base_(dst),
- op_(dst),
- op_limit_(dst) {
- }
- inline void SetExpectedLength(size_t len) {
- op_limit_ = op_ + len;
- }
- inline bool CheckLength() const {
- return op_ == op_limit_;
- }
- inline bool Append(const char* ip, size_t len) {
- char* op = op_;
- const size_t space_left = op_limit_ - op;
- if (space_left < len) {
- return false;
- }
- memcpy(op, ip, len);
- op_ = op + len;
- return true;
- }
- inline bool TryFastAppend(const char* ip, size_t available, size_t len) {
- char* op = op_;
- const size_t space_left = op_limit_ - op;
- if (len <= 16 && available >= 16 + kMaximumTagLength && space_left >= 16) {
- // Fast path, used for the majority (about 95%) of invocations.
- UnalignedCopy128(ip, op);
- op_ = op + len;
- return true;
- } else {
- return false;
- }
- }
- inline bool AppendFromSelf(size_t offset, size_t len) {
- char* const op_end = op_ + len;
- // Check if we try to append from before the start of the buffer.
- // Normally this would just be a check for "produced < offset",
- // but "produced <= offset - 1u" is equivalent for every case
- // except the one where offset==0, where the right side will wrap around
- // to a very big number. This is convenient, as offset==0 is another
- // invalid case that we also want to catch, so that we do not go
- // into an infinite loop.
- if (Produced() <= offset - 1u || op_end > op_limit_) return false;
- op_ = IncrementalCopy(op_ - offset, op_, op_end, op_limit_);
- return true;
- }
- inline size_t Produced() const {
- assert(op_ >= base_);
- return op_ - base_;
- }
- inline void Flush() {}
- };
- bool RawUncompress(const char* compressed, size_t n, char* uncompressed) {
- ByteArraySource reader(compressed, n);
- return RawUncompress(&reader, uncompressed);
- }
- bool RawUncompress(Source* compressed, char* uncompressed) {
- SnappyArrayWriter output(uncompressed);
- return InternalUncompress(compressed, &output);
- }
- bool Uncompress(const char* compressed, size_t n, std::string* uncompressed) {
- size_t ulength;
- if (!GetUncompressedLength(compressed, n, &ulength)) {
- return false;
- }
- // On 32-bit builds: max_size() < kuint32max. Check for that instead
- // of crashing (e.g., consider externally specified compressed data).
- if (ulength > uncompressed->max_size()) {
- return false;
- }
- STLStringResizeUninitialized(uncompressed, ulength);
- return RawUncompress(compressed, n, string_as_array(uncompressed));
- }
- bool Uncompress(const char* compressed, size_t n, TString* uncompressed) {
- size_t ulength;
- if (!GetUncompressedLength(compressed, n, &ulength)) {
- return false;
- }
- // On 32-bit builds: max_size() < kuint32max. Check for that instead
- // of crashing (e.g., consider externally specified compressed data).
- if (ulength > uncompressed->max_size()) {
- return false;
- }
- uncompressed->ReserveAndResize(ulength);
- return RawUncompress(compressed, n, uncompressed->begin());
- }
- // A Writer that drops everything on the floor and just does validation
- class SnappyDecompressionValidator {
- private:
- size_t expected_;
- size_t produced_;
- public:
- inline SnappyDecompressionValidator() : expected_(0), produced_(0) { }
- inline void SetExpectedLength(size_t len) {
- expected_ = len;
- }
- inline bool CheckLength() const {
- return expected_ == produced_;
- }
- inline bool Append(const char* ip, size_t len) {
- produced_ += len;
- return produced_ <= expected_;
- }
- inline bool TryFastAppend(const char* ip, size_t available, size_t length) {
- return false;
- }
- inline bool AppendFromSelf(size_t offset, size_t len) {
- // See SnappyArrayWriter::AppendFromSelf for an explanation of
- // the "offset - 1u" trick.
- if (produced_ <= offset - 1u) return false;
- produced_ += len;
- return produced_ <= expected_;
- }
- inline void Flush() {}
- };
- bool IsValidCompressedBuffer(const char* compressed, size_t n) {
- ByteArraySource reader(compressed, n);
- SnappyDecompressionValidator writer;
- return InternalUncompress(&reader, &writer);
- }
- bool IsValidCompressed(Source* compressed) {
- SnappyDecompressionValidator writer;
- return InternalUncompress(compressed, &writer);
- }
- void RawCompress(const char* input,
- size_t input_length,
- char* compressed,
- size_t* compressed_length) {
- ByteArraySource reader(input, input_length);
- UncheckedByteArraySink writer(compressed);
- Compress(&reader, &writer);
- // Compute how many bytes were added
- *compressed_length = (writer.CurrentDestination() - compressed);
- }
- size_t Compress(const char* input, size_t input_length,
- std::string* compressed) {
- // Pre-grow the buffer to the max length of the compressed output
- STLStringResizeUninitialized(compressed, MaxCompressedLength(input_length));
- size_t compressed_length;
- RawCompress(input, input_length, string_as_array(compressed),
- &compressed_length);
- compressed->resize(compressed_length);
- return compressed_length;
- }
- size_t Compress(const char* input, size_t input_length,
- TString* compressed) {
- // Pre-grow the buffer to the max length of the compressed output
- compressed->ReserveAndResize(MaxCompressedLength(input_length));
- size_t compressed_length;
- RawCompress(input, input_length, compressed->begin(),
- &compressed_length);
- compressed->resize(compressed_length);
- return compressed_length;
- }
- // -----------------------------------------------------------------------
- // Sink interface
- // -----------------------------------------------------------------------
- // A type that decompresses into a Sink. The template parameter
- // Allocator must export one method "char* Allocate(int size);", which
- // allocates a buffer of "size" and appends that to the destination.
- template <typename Allocator>
- class SnappyScatteredWriter {
- Allocator allocator_;
- // We need random access into the data generated so far. Therefore
- // we keep track of all of the generated data as an array of blocks.
- // All of the blocks except the last have length kBlockSize.
- std::vector<char*> blocks_;
- size_t expected_;
- // Total size of all fully generated blocks so far
- size_t full_size_;
- // Pointer into current output block
- char* op_base_; // Base of output block
- char* op_ptr_; // Pointer to next unfilled byte in block
- char* op_limit_; // Pointer just past block
- inline size_t Size() const {
- return full_size_ + (op_ptr_ - op_base_);
- }
- bool SlowAppend(const char* ip, size_t len);
- bool SlowAppendFromSelf(size_t offset, size_t len);
- public:
- inline explicit SnappyScatteredWriter(const Allocator& allocator)
- : allocator_(allocator),
- full_size_(0),
- op_base_(NULL),
- op_ptr_(NULL),
- op_limit_(NULL) {
- }
- inline void SetExpectedLength(size_t len) {
- assert(blocks_.empty());
- expected_ = len;
- }
- inline bool CheckLength() const {
- return Size() == expected_;
- }
- // Return the number of bytes actually uncompressed so far
- inline size_t Produced() const {
- return Size();
- }
- inline bool Append(const char* ip, size_t len) {
- size_t avail = op_limit_ - op_ptr_;
- if (len <= avail) {
- // Fast path
- memcpy(op_ptr_, ip, len);
- op_ptr_ += len;
- return true;
- } else {
- return SlowAppend(ip, len);
- }
- }
- inline bool TryFastAppend(const char* ip, size_t available, size_t length) {
- char* op = op_ptr_;
- const int space_left = op_limit_ - op;
- if (length <= 16 && available >= 16 + kMaximumTagLength &&
- space_left >= 16) {
- // Fast path, used for the majority (about 95%) of invocations.
- UnalignedCopy128(ip, op);
- op_ptr_ = op + length;
- return true;
- } else {
- return false;
- }
- }
- inline bool AppendFromSelf(size_t offset, size_t len) {
- char* const op_end = op_ptr_ + len;
- // See SnappyArrayWriter::AppendFromSelf for an explanation of
- // the "offset - 1u" trick.
- if (SNAPPY_PREDICT_TRUE(offset - 1u < op_ptr_ - op_base_ &&
- op_end <= op_limit_)) {
- // Fast path: src and dst in current block.
- op_ptr_ = IncrementalCopy(op_ptr_ - offset, op_ptr_, op_end, op_limit_);
- return true;
- }
- return SlowAppendFromSelf(offset, len);
- }
- // Called at the end of the decompress. We ask the allocator
- // write all blocks to the sink.
- inline void Flush() { allocator_.Flush(Produced()); }
- };
- template<typename Allocator>
- bool SnappyScatteredWriter<Allocator>::SlowAppend(const char* ip, size_t len) {
- size_t avail = op_limit_ - op_ptr_;
- while (len > avail) {
- // Completely fill this block
- memcpy(op_ptr_, ip, avail);
- op_ptr_ += avail;
- assert(op_limit_ - op_ptr_ == 0);
- full_size_ += (op_ptr_ - op_base_);
- len -= avail;
- ip += avail;
- // Bounds check
- if (full_size_ + len > expected_) {
- return false;
- }
- // Make new block
- size_t bsize = std::min<size_t>(kBlockSize, expected_ - full_size_);
- op_base_ = allocator_.Allocate(bsize);
- op_ptr_ = op_base_;
- op_limit_ = op_base_ + bsize;
- blocks_.push_back(op_base_);
- avail = bsize;
- }
- memcpy(op_ptr_, ip, len);
- op_ptr_ += len;
- return true;
- }
- template<typename Allocator>
- bool SnappyScatteredWriter<Allocator>::SlowAppendFromSelf(size_t offset,
- size_t len) {
- // Overflow check
- // See SnappyArrayWriter::AppendFromSelf for an explanation of
- // the "offset - 1u" trick.
- const size_t cur = Size();
- if (offset - 1u >= cur) return false;
- if (expected_ - cur < len) return false;
- // Currently we shouldn't ever hit this path because Compress() chops the
- // input into blocks and does not create cross-block copies. However, it is
- // nice if we do not rely on that, since we can get better compression if we
- // allow cross-block copies and thus might want to change the compressor in
- // the future.
- size_t src = cur - offset;
- while (len-- > 0) {
- char c = blocks_[src >> kBlockLog][src & (kBlockSize-1)];
- Append(&c, 1);
- src++;
- }
- return true;
- }
- class SnappySinkAllocator {
- public:
- explicit SnappySinkAllocator(Sink* dest): dest_(dest) {}
- ~SnappySinkAllocator() {}
- char* Allocate(int size) {
- Datablock block(new char[size], size);
- blocks_.push_back(block);
- return block.data;
- }
- // We flush only at the end, because the writer wants
- // random access to the blocks and once we hand the
- // block over to the sink, we can't access it anymore.
- // Also we don't write more than has been actually written
- // to the blocks.
- void Flush(size_t size) {
- size_t size_written = 0;
- size_t block_size;
- for (int i = 0; i < blocks_.size(); ++i) {
- block_size = std::min<size_t>(blocks_[i].size, size - size_written);
- dest_->AppendAndTakeOwnership(blocks_[i].data, block_size,
- &SnappySinkAllocator::Deleter, NULL);
- size_written += block_size;
- }
- blocks_.clear();
- }
- private:
- struct Datablock {
- char* data;
- size_t size;
- Datablock(char* p, size_t s) : data(p), size(s) {}
- };
- static void Deleter(void* arg, const char* bytes, size_t size) {
- delete[] bytes;
- }
- Sink* dest_;
- std::vector<Datablock> blocks_;
- // Note: copying this object is allowed
- };
- size_t UncompressAsMuchAsPossible(Source* compressed, Sink* uncompressed) {
- SnappySinkAllocator allocator(uncompressed);
- SnappyScatteredWriter<SnappySinkAllocator> writer(allocator);
- InternalUncompress(compressed, &writer);
- return writer.Produced();
- }
- bool Uncompress(Source* compressed, Sink* uncompressed) {
- // Read the uncompressed length from the front of the compressed input
- SnappyDecompressor decompressor(compressed);
- uint32 uncompressed_len = 0;
- if (!decompressor.ReadUncompressedLength(&uncompressed_len)) {
- return false;
- }
- char c;
- size_t allocated_size;
- char* buf = uncompressed->GetAppendBufferVariable(
- 1, uncompressed_len, &c, 1, &allocated_size);
- const size_t compressed_len = compressed->Available();
- // If we can get a flat buffer, then use it, otherwise do block by block
- // uncompression
- if (allocated_size >= uncompressed_len) {
- SnappyArrayWriter writer(buf);
- bool result = InternalUncompressAllTags(&decompressor, &writer,
- compressed_len, uncompressed_len);
- uncompressed->Append(buf, writer.Produced());
- return result;
- } else {
- SnappySinkAllocator allocator(uncompressed);
- SnappyScatteredWriter<SnappySinkAllocator> writer(allocator);
- return InternalUncompressAllTags(&decompressor, &writer, compressed_len,
- uncompressed_len);
- }
- }
- } // namespace snappy
|