1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495 |
- // Copyright 2010 The Go Authors. All rights reserved.
- // Use of this source code is governed by a BSD-style
- // license that can be found in the LICENSE file.
- package math
- // The original C code and the comment below are from
- // FreeBSD's /usr/src/lib/msun/src/e_remainder.c and came
- // with this notice. The go code is a simplified version of
- // the original C.
- //
- // ====================================================
- // Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
- //
- // Developed at SunPro, a Sun Microsystems, Inc. business.
- // Permission to use, copy, modify, and distribute this
- // software is freely granted, provided that this notice
- // is preserved.
- // ====================================================
- //
- // __ieee754_remainder(x,y)
- // Return :
- // returns x REM y = x - [x/y]*y as if in infinite
- // precision arithmetic, where [x/y] is the (infinite bit)
- // integer nearest x/y (in half way cases, choose the even one).
- // Method :
- // Based on Mod() returning x - [x/y]chopped * y exactly.
- // Remainder returns the IEEE 754 floating-point remainder of x/y.
- //
- // Special cases are:
- //
- // Remainder(±Inf, y) = NaN
- // Remainder(NaN, y) = NaN
- // Remainder(x, 0) = NaN
- // Remainder(x, ±Inf) = x
- // Remainder(x, NaN) = NaN
- func Remainder(x, y float64) float64 {
- if haveArchRemainder {
- return archRemainder(x, y)
- }
- return remainder(x, y)
- }
- func remainder(x, y float64) float64 {
- const (
- Tiny = 4.45014771701440276618e-308 // 0x0020000000000000
- HalfMax = MaxFloat64 / 2
- )
- // special cases
- switch {
- case IsNaN(x) || IsNaN(y) || IsInf(x, 0) || y == 0:
- return NaN()
- case IsInf(y, 0):
- return x
- }
- sign := false
- if x < 0 {
- x = -x
- sign = true
- }
- if y < 0 {
- y = -y
- }
- if x == y {
- if sign {
- zero := 0.0
- return -zero
- }
- return 0
- }
- if y <= HalfMax {
- x = Mod(x, y+y) // now x < 2y
- }
- if y < Tiny {
- if x+x > y {
- x -= y
- if x+x >= y {
- x -= y
- }
- }
- } else {
- yHalf := 0.5 * y
- if x > yHalf {
- x -= y
- if x >= yHalf {
- x -= y
- }
- }
- }
- if sign {
- x = -x
- }
- return x
- }
|