123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657 |
- // Copyright 2010 the V8 project authors. All rights reserved.
- // Redistribution and use in source and binary forms, with or without
- // modification, are permitted provided that the following conditions are
- // met:
- //
- // * Redistributions of source code must retain the above copyright
- // notice, this list of conditions and the following disclaimer.
- // * Redistributions in binary form must reproduce the above
- // copyright notice, this list of conditions and the following
- // disclaimer in the documentation and/or other materials provided
- // with the distribution.
- // * Neither the name of Google Inc. nor the names of its
- // contributors may be used to endorse or promote products derived
- // from this software without specific prior written permission.
- //
- // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
- // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
- // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
- // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
- // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
- // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
- // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
- // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
- // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
- // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
- // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
- #include "diy-fp.h"
- #include "utils.h"
- namespace double_conversion {
- void DiyFp::Multiply(const DiyFp& other) {
- // Simply "emulates" a 128 bit multiplication.
- // However: the resulting number only contains 64 bits. The least
- // significant 64 bits are only used for rounding the most significant 64
- // bits.
- const uint64_t kM32 = 0xFFFFFFFFU;
- uint64_t a = f_ >> 32;
- uint64_t b = f_ & kM32;
- uint64_t c = other.f_ >> 32;
- uint64_t d = other.f_ & kM32;
- uint64_t ac = a * c;
- uint64_t bc = b * c;
- uint64_t ad = a * d;
- uint64_t bd = b * d;
- uint64_t tmp = (bd >> 32) + (ad & kM32) + (bc & kM32);
- // By adding 1U << 31 to tmp we round the final result.
- // Halfway cases will be round up.
- tmp += 1U << 31;
- uint64_t result_f = ac + (ad >> 32) + (bc >> 32) + (tmp >> 32);
- e_ += other.e_ + 64;
- f_ = result_f;
- }
- } // namespace double_conversion
|