123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278 |
- // Copyright 2017 The Abseil Authors.
- //
- // Licensed under the Apache License, Version 2.0 (the "License");
- // you may not use this file except in compliance with the License.
- // You may obtain a copy of the License at
- //
- // https://www.apache.org/licenses/LICENSE-2.0
- //
- // Unless required by applicable law or agreed to in writing, software
- // distributed under the License is distributed on an "AS IS" BASIS,
- // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- // See the License for the specific language governing permissions and
- // limitations under the License.
- //
- // -----------------------------------------------------------------------------
- // File: memory.h
- // -----------------------------------------------------------------------------
- //
- // This header file contains utility functions for managing the creation and
- // conversion of smart pointers. This file is an extension to the C++
- // standard <memory> library header file.
- #ifndef Y_ABSL_MEMORY_MEMORY_H_
- #define Y_ABSL_MEMORY_MEMORY_H_
- #include <cstddef>
- #include <limits>
- #include <memory>
- #include <new>
- #include <type_traits>
- #include <utility>
- #include "y_absl/base/macros.h"
- #include "y_absl/meta/type_traits.h"
- namespace y_absl {
- Y_ABSL_NAMESPACE_BEGIN
- // -----------------------------------------------------------------------------
- // Function Template: WrapUnique()
- // -----------------------------------------------------------------------------
- //
- // Adopts ownership from a raw pointer and transfers it to the returned
- // `std::unique_ptr`, whose type is deduced. Because of this deduction, *do not*
- // specify the template type `T` when calling `WrapUnique`.
- //
- // Example:
- // X* NewX(int, int);
- // auto x = WrapUnique(NewX(1, 2)); // 'x' is std::unique_ptr<X>.
- //
- // Do not call WrapUnique with an explicit type, as in
- // `WrapUnique<X>(NewX(1, 2))`. The purpose of WrapUnique is to automatically
- // deduce the pointer type. If you wish to make the type explicit, just use
- // `std::unique_ptr` directly.
- //
- // auto x = std::unique_ptr<X>(NewX(1, 2));
- // - or -
- // std::unique_ptr<X> x(NewX(1, 2));
- //
- // While `y_absl::WrapUnique` is useful for capturing the output of a raw
- // pointer factory, prefer 'y_absl::make_unique<T>(args...)' over
- // 'y_absl::WrapUnique(new T(args...))'.
- //
- // auto x = WrapUnique(new X(1, 2)); // works, but nonideal.
- // auto x = make_unique<X>(1, 2); // safer, standard, avoids raw 'new'.
- //
- // Note that `y_absl::WrapUnique(p)` is valid only if `delete p` is a valid
- // expression. In particular, `y_absl::WrapUnique()` cannot wrap pointers to
- // arrays, functions or void, and it must not be used to capture pointers
- // obtained from array-new expressions (even though that would compile!).
- template <typename T>
- std::unique_ptr<T> WrapUnique(T* ptr) {
- static_assert(!std::is_array<T>::value, "array types are unsupported");
- static_assert(std::is_object<T>::value, "non-object types are unsupported");
- return std::unique_ptr<T>(ptr);
- }
- // -----------------------------------------------------------------------------
- // Function Template: make_unique<T>()
- // -----------------------------------------------------------------------------
- //
- // Creates a `std::unique_ptr<>`, while avoiding issues creating temporaries
- // during the construction process. `y_absl::make_unique<>` also avoids redundant
- // type declarations, by avoiding the need to explicitly use the `new` operator.
- //
- // https://en.cppreference.com/w/cpp/memory/unique_ptr/make_unique
- //
- // For more background on why `std::unique_ptr<T>(new T(a,b))` is problematic,
- // see Herb Sutter's explanation on
- // (Exception-Safe Function Calls)[https://herbsutter.com/gotw/_102/].
- // (In general, reviewers should treat `new T(a,b)` with scrutiny.)
- //
- // Historical note: Abseil once provided a C++11 compatible implementation of
- // the C++14's `std::make_unique`. Now that C++11 support has been sunsetted,
- // `y_absl::make_unique` simply uses the STL-provided implementation. New code
- // should use `std::make_unique`.
- using std::make_unique;
- // -----------------------------------------------------------------------------
- // Function Template: RawPtr()
- // -----------------------------------------------------------------------------
- //
- // Extracts the raw pointer from a pointer-like value `ptr`. `y_absl::RawPtr` is
- // useful within templates that need to handle a complement of raw pointers,
- // `std::nullptr_t`, and smart pointers.
- template <typename T>
- auto RawPtr(T&& ptr) -> decltype(std::addressof(*ptr)) {
- // ptr is a forwarding reference to support Ts with non-const operators.
- return (ptr != nullptr) ? std::addressof(*ptr) : nullptr;
- }
- inline std::nullptr_t RawPtr(std::nullptr_t) { return nullptr; }
- // -----------------------------------------------------------------------------
- // Function Template: ShareUniquePtr()
- // -----------------------------------------------------------------------------
- //
- // Adopts a `std::unique_ptr` rvalue and returns a `std::shared_ptr` of deduced
- // type. Ownership (if any) of the held value is transferred to the returned
- // shared pointer.
- //
- // Example:
- //
- // auto up = y_absl::make_unique<int>(10);
- // auto sp = y_absl::ShareUniquePtr(std::move(up)); // shared_ptr<int>
- // CHECK_EQ(*sp, 10);
- // CHECK(up == nullptr);
- //
- // Note that this conversion is correct even when T is an array type, and more
- // generally it works for *any* deleter of the `unique_ptr` (single-object
- // deleter, array deleter, or any custom deleter), since the deleter is adopted
- // by the shared pointer as well. The deleter is copied (unless it is a
- // reference).
- //
- // Implements the resolution of [LWG 2415](http://wg21.link/lwg2415), by which a
- // null shared pointer does not attempt to call the deleter.
- template <typename T, typename D>
- std::shared_ptr<T> ShareUniquePtr(std::unique_ptr<T, D>&& ptr) {
- return ptr ? std::shared_ptr<T>(std::move(ptr)) : std::shared_ptr<T>();
- }
- // -----------------------------------------------------------------------------
- // Function Template: WeakenPtr()
- // -----------------------------------------------------------------------------
- //
- // Creates a weak pointer associated with a given shared pointer. The returned
- // value is a `std::weak_ptr` of deduced type.
- //
- // Example:
- //
- // auto sp = std::make_shared<int>(10);
- // auto wp = y_absl::WeakenPtr(sp);
- // CHECK_EQ(sp.get(), wp.lock().get());
- // sp.reset();
- // CHECK(wp.lock() == nullptr);
- //
- template <typename T>
- std::weak_ptr<T> WeakenPtr(const std::shared_ptr<T>& ptr) {
- return std::weak_ptr<T>(ptr);
- }
- // -----------------------------------------------------------------------------
- // Class Template: pointer_traits
- // -----------------------------------------------------------------------------
- //
- // Historical note: Abseil once provided an implementation of
- // `std::pointer_traits` for platforms that had not yet provided it. Those
- // platforms are no longer supported. New code should simply use
- // `std::pointer_traits`.
- using std::pointer_traits;
- // -----------------------------------------------------------------------------
- // Class Template: allocator_traits
- // -----------------------------------------------------------------------------
- //
- // Historical note: Abseil once provided an implementation of
- // `std::allocator_traits` for platforms that had not yet provided it. Those
- // platforms are no longer supported. New code should simply use
- // `std::allocator_traits`.
- using std::allocator_traits;
- namespace memory_internal {
- // ExtractOr<E, O, D>::type evaluates to E<O> if possible. Otherwise, D.
- template <template <typename> class Extract, typename Obj, typename Default,
- typename>
- struct ExtractOr {
- using type = Default;
- };
- template <template <typename> class Extract, typename Obj, typename Default>
- struct ExtractOr<Extract, Obj, Default, void_t<Extract<Obj>>> {
- using type = Extract<Obj>;
- };
- template <template <typename> class Extract, typename Obj, typename Default>
- using ExtractOrT = typename ExtractOr<Extract, Obj, Default, void>::type;
- // This template alias transforms Alloc::is_nothrow into a metafunction with
- // Alloc as a parameter so it can be used with ExtractOrT<>.
- template <typename Alloc>
- using GetIsNothrow = typename Alloc::is_nothrow;
- } // namespace memory_internal
- // Y_ABSL_ALLOCATOR_NOTHROW is a build time configuration macro for user to
- // specify whether the default allocation function can throw or never throws.
- // If the allocation function never throws, user should define it to a non-zero
- // value (e.g. via `-DABSL_ALLOCATOR_NOTHROW`).
- // If the allocation function can throw, user should leave it undefined or
- // define it to zero.
- //
- // allocator_is_nothrow<Alloc> is a traits class that derives from
- // Alloc::is_nothrow if present, otherwise std::false_type. It's specialized
- // for Alloc = std::allocator<T> for any type T according to the state of
- // Y_ABSL_ALLOCATOR_NOTHROW.
- //
- // default_allocator_is_nothrow is a class that derives from std::true_type
- // when the default allocator (global operator new) never throws, and
- // std::false_type when it can throw. It is a convenience shorthand for writing
- // allocator_is_nothrow<std::allocator<T>> (T can be any type).
- // NOTE: allocator_is_nothrow<std::allocator<T>> is guaranteed to derive from
- // the same type for all T, because users should specialize neither
- // allocator_is_nothrow nor std::allocator.
- template <typename Alloc>
- struct allocator_is_nothrow
- : memory_internal::ExtractOrT<memory_internal::GetIsNothrow, Alloc,
- std::false_type> {};
- #if defined(Y_ABSL_ALLOCATOR_NOTHROW) && Y_ABSL_ALLOCATOR_NOTHROW
- template <typename T>
- struct allocator_is_nothrow<std::allocator<T>> : std::true_type {};
- struct default_allocator_is_nothrow : std::true_type {};
- #else
- struct default_allocator_is_nothrow : std::false_type {};
- #endif
- namespace memory_internal {
- template <typename Allocator, typename Iterator, typename... Args>
- void ConstructRange(Allocator& alloc, Iterator first, Iterator last,
- const Args&... args) {
- for (Iterator cur = first; cur != last; ++cur) {
- Y_ABSL_INTERNAL_TRY {
- std::allocator_traits<Allocator>::construct(alloc, std::addressof(*cur),
- args...);
- }
- Y_ABSL_INTERNAL_CATCH_ANY {
- while (cur != first) {
- --cur;
- std::allocator_traits<Allocator>::destroy(alloc, std::addressof(*cur));
- }
- Y_ABSL_INTERNAL_RETHROW;
- }
- }
- }
- template <typename Allocator, typename Iterator, typename InputIterator>
- void CopyRange(Allocator& alloc, Iterator destination, InputIterator first,
- InputIterator last) {
- for (Iterator cur = destination; first != last;
- static_cast<void>(++cur), static_cast<void>(++first)) {
- Y_ABSL_INTERNAL_TRY {
- std::allocator_traits<Allocator>::construct(alloc, std::addressof(*cur),
- *first);
- }
- Y_ABSL_INTERNAL_CATCH_ANY {
- while (cur != destination) {
- --cur;
- std::allocator_traits<Allocator>::destroy(alloc, std::addressof(*cur));
- }
- Y_ABSL_INTERNAL_RETHROW;
- }
- }
- }
- } // namespace memory_internal
- Y_ABSL_NAMESPACE_END
- } // namespace y_absl
- #endif // Y_ABSL_MEMORY_MEMORY_H_
|