123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632 |
- // SPDX-License-Identifier: 0BSD
- ///////////////////////////////////////////////////////////////////////////////
- //
- /// \file lz_encoder.c
- /// \brief LZ in window
- ///
- // Authors: Igor Pavlov
- // Lasse Collin
- //
- ///////////////////////////////////////////////////////////////////////////////
- #include "lz_encoder.h"
- #include "lz_encoder_hash.h"
- // See lz_encoder_hash.h. This is a bit hackish but avoids making
- // endianness a conditional in makefiles.
- #if defined(WORDS_BIGENDIAN) && !defined(HAVE_SMALL)
- # error #include "lz_encoder_hash_table.h"
- #endif
- #include "memcmplen.h"
- typedef struct {
- /// LZ-based encoder e.g. LZMA
- lzma_lz_encoder lz;
- /// History buffer and match finder
- lzma_mf mf;
- /// Next coder in the chain
- lzma_next_coder next;
- } lzma_coder;
- /// \brief Moves the data in the input window to free space for new data
- ///
- /// mf->buffer is a sliding input window, which keeps mf->keep_size_before
- /// bytes of input history available all the time. Now and then we need to
- /// "slide" the buffer to make space for the new data to the end of the
- /// buffer. At the same time, data older than keep_size_before is dropped.
- ///
- static void
- move_window(lzma_mf *mf)
- {
- // Align the move to a multiple of 16 bytes. Some LZ-based encoders
- // like LZMA use the lowest bits of mf->read_pos to know the
- // alignment of the uncompressed data. We also get better speed
- // for memmove() with aligned buffers.
- assert(mf->read_pos > mf->keep_size_before);
- const uint32_t move_offset
- = (mf->read_pos - mf->keep_size_before) & ~UINT32_C(15);
- assert(mf->write_pos > move_offset);
- const size_t move_size = mf->write_pos - move_offset;
- assert(move_offset + move_size <= mf->size);
- memmove(mf->buffer, mf->buffer + move_offset, move_size);
- mf->offset += move_offset;
- mf->read_pos -= move_offset;
- mf->read_limit -= move_offset;
- mf->write_pos -= move_offset;
- return;
- }
- /// \brief Tries to fill the input window (mf->buffer)
- ///
- /// If we are the last encoder in the chain, our input data is in in[].
- /// Otherwise we call the next filter in the chain to process in[] and
- /// write its output to mf->buffer.
- ///
- /// This function must not be called once it has returned LZMA_STREAM_END.
- ///
- static lzma_ret
- fill_window(lzma_coder *coder, const lzma_allocator *allocator,
- const uint8_t *in, size_t *in_pos, size_t in_size,
- lzma_action action)
- {
- assert(coder->mf.read_pos <= coder->mf.write_pos);
- // Move the sliding window if needed.
- if (coder->mf.read_pos >= coder->mf.size - coder->mf.keep_size_after)
- move_window(&coder->mf);
- // Maybe this is ugly, but lzma_mf uses uint32_t for most things
- // (which I find cleanest), but we need size_t here when filling
- // the history window.
- size_t write_pos = coder->mf.write_pos;
- lzma_ret ret;
- if (coder->next.code == NULL) {
- // Not using a filter, simply memcpy() as much as possible.
- lzma_bufcpy(in, in_pos, in_size, coder->mf.buffer,
- &write_pos, coder->mf.size);
- ret = action != LZMA_RUN && *in_pos == in_size
- ? LZMA_STREAM_END : LZMA_OK;
- } else {
- ret = coder->next.code(coder->next.coder, allocator,
- in, in_pos, in_size,
- coder->mf.buffer, &write_pos,
- coder->mf.size, action);
- }
- coder->mf.write_pos = write_pos;
- // Silence Valgrind. lzma_memcmplen() can read extra bytes
- // and Valgrind will give warnings if those bytes are uninitialized
- // because Valgrind cannot see that the values of the uninitialized
- // bytes are eventually ignored.
- memzero(coder->mf.buffer + write_pos, LZMA_MEMCMPLEN_EXTRA);
- // If end of stream has been reached or flushing completed, we allow
- // the encoder to process all the input (that is, read_pos is allowed
- // to reach write_pos). Otherwise we keep keep_size_after bytes
- // available as prebuffer.
- if (ret == LZMA_STREAM_END) {
- assert(*in_pos == in_size);
- ret = LZMA_OK;
- coder->mf.action = action;
- coder->mf.read_limit = coder->mf.write_pos;
- } else if (coder->mf.write_pos > coder->mf.keep_size_after) {
- // This needs to be done conditionally, because if we got
- // only little new input, there may be too little input
- // to do any encoding yet.
- coder->mf.read_limit = coder->mf.write_pos
- - coder->mf.keep_size_after;
- }
- // Restart the match finder after finished LZMA_SYNC_FLUSH.
- if (coder->mf.pending > 0
- && coder->mf.read_pos < coder->mf.read_limit) {
- // Match finder may update coder->pending and expects it to
- // start from zero, so use a temporary variable.
- const uint32_t pending = coder->mf.pending;
- coder->mf.pending = 0;
- // Rewind read_pos so that the match finder can hash
- // the pending bytes.
- assert(coder->mf.read_pos >= pending);
- coder->mf.read_pos -= pending;
- // Call the skip function directly instead of using
- // mf_skip(), since we don't want to touch mf->read_ahead.
- coder->mf.skip(&coder->mf, pending);
- }
- return ret;
- }
- static lzma_ret
- lz_encode(void *coder_ptr, const lzma_allocator *allocator,
- const uint8_t *restrict in, size_t *restrict in_pos,
- size_t in_size,
- uint8_t *restrict out, size_t *restrict out_pos,
- size_t out_size, lzma_action action)
- {
- lzma_coder *coder = coder_ptr;
- while (*out_pos < out_size
- && (*in_pos < in_size || action != LZMA_RUN)) {
- // Read more data to coder->mf.buffer if needed.
- if (coder->mf.action == LZMA_RUN && coder->mf.read_pos
- >= coder->mf.read_limit)
- return_if_error(fill_window(coder, allocator,
- in, in_pos, in_size, action));
- // Encode
- const lzma_ret ret = coder->lz.code(coder->lz.coder,
- &coder->mf, out, out_pos, out_size);
- if (ret != LZMA_OK) {
- // Setting this to LZMA_RUN for cases when we are
- // flushing. It doesn't matter when finishing or if
- // an error occurred.
- coder->mf.action = LZMA_RUN;
- return ret;
- }
- }
- return LZMA_OK;
- }
- static bool
- lz_encoder_prepare(lzma_mf *mf, const lzma_allocator *allocator,
- const lzma_lz_options *lz_options)
- {
- // For now, the dictionary size is limited to 1.5 GiB. This may grow
- // in the future if needed, but it needs a little more work than just
- // changing this check.
- if (!IS_ENC_DICT_SIZE_VALID(lz_options->dict_size)
- || lz_options->nice_len > lz_options->match_len_max)
- return true;
- mf->keep_size_before = lz_options->before_size + lz_options->dict_size;
- mf->keep_size_after = lz_options->after_size
- + lz_options->match_len_max;
- // To avoid constant memmove()s, allocate some extra space. Since
- // memmove()s become more expensive when the size of the buffer
- // increases, we reserve more space when a large dictionary is
- // used to make the memmove() calls rarer.
- //
- // This works with dictionaries up to about 3 GiB. If bigger
- // dictionary is wanted, some extra work is needed:
- // - Several variables in lzma_mf have to be changed from uint32_t
- // to size_t.
- // - Memory usage calculation needs something too, e.g. use uint64_t
- // for mf->size.
- uint32_t reserve = lz_options->dict_size / 2;
- if (reserve > (UINT32_C(1) << 30))
- reserve /= 2;
- reserve += (lz_options->before_size + lz_options->match_len_max
- + lz_options->after_size) / 2 + (UINT32_C(1) << 19);
- const uint32_t old_size = mf->size;
- mf->size = mf->keep_size_before + reserve + mf->keep_size_after;
- // Deallocate the old history buffer if it exists but has different
- // size than what is needed now.
- if (mf->buffer != NULL && old_size != mf->size) {
- lzma_free(mf->buffer, allocator);
- mf->buffer = NULL;
- }
- // Match finder options
- mf->match_len_max = lz_options->match_len_max;
- mf->nice_len = lz_options->nice_len;
- // cyclic_size has to stay smaller than 2 Gi. Note that this doesn't
- // mean limiting dictionary size to less than 2 GiB. With a match
- // finder that uses multibyte resolution (hashes start at e.g. every
- // fourth byte), cyclic_size would stay below 2 Gi even when
- // dictionary size is greater than 2 GiB.
- //
- // It would be possible to allow cyclic_size >= 2 Gi, but then we
- // would need to be careful to use 64-bit types in various places
- // (size_t could do since we would need bigger than 32-bit address
- // space anyway). It would also require either zeroing a multigigabyte
- // buffer at initialization (waste of time and RAM) or allow
- // normalization in lz_encoder_mf.c to access uninitialized
- // memory to keep the code simpler. The current way is simple and
- // still allows pretty big dictionaries, so I don't expect these
- // limits to change.
- mf->cyclic_size = lz_options->dict_size + 1;
- // Validate the match finder ID and setup the function pointers.
- switch (lz_options->match_finder) {
- #ifdef HAVE_MF_HC3
- case LZMA_MF_HC3:
- mf->find = &lzma_mf_hc3_find;
- mf->skip = &lzma_mf_hc3_skip;
- break;
- #endif
- #ifdef HAVE_MF_HC4
- case LZMA_MF_HC4:
- mf->find = &lzma_mf_hc4_find;
- mf->skip = &lzma_mf_hc4_skip;
- break;
- #endif
- #ifdef HAVE_MF_BT2
- case LZMA_MF_BT2:
- mf->find = &lzma_mf_bt2_find;
- mf->skip = &lzma_mf_bt2_skip;
- break;
- #endif
- #ifdef HAVE_MF_BT3
- case LZMA_MF_BT3:
- mf->find = &lzma_mf_bt3_find;
- mf->skip = &lzma_mf_bt3_skip;
- break;
- #endif
- #ifdef HAVE_MF_BT4
- case LZMA_MF_BT4:
- mf->find = &lzma_mf_bt4_find;
- mf->skip = &lzma_mf_bt4_skip;
- break;
- #endif
- default:
- return true;
- }
- // Calculate the sizes of mf->hash and mf->son.
- //
- // NOTE: Since 5.3.5beta the LZMA encoder ensures that nice_len
- // is big enough for the selected match finder. This makes it
- // easier for applications as nice_len = 2 will always be accepted
- // even though the effective value can be slightly bigger.
- const uint32_t hash_bytes
- = mf_get_hash_bytes(lz_options->match_finder);
- assert(hash_bytes <= mf->nice_len);
- const bool is_bt = (lz_options->match_finder & 0x10) != 0;
- uint32_t hs;
- if (hash_bytes == 2) {
- hs = 0xFFFF;
- } else {
- // Round dictionary size up to the next 2^n - 1 so it can
- // be used as a hash mask.
- hs = lz_options->dict_size - 1;
- hs |= hs >> 1;
- hs |= hs >> 2;
- hs |= hs >> 4;
- hs |= hs >> 8;
- hs >>= 1;
- hs |= 0xFFFF;
- if (hs > (UINT32_C(1) << 24)) {
- if (hash_bytes == 3)
- hs = (UINT32_C(1) << 24) - 1;
- else
- hs >>= 1;
- }
- }
- mf->hash_mask = hs;
- ++hs;
- if (hash_bytes > 2)
- hs += HASH_2_SIZE;
- if (hash_bytes > 3)
- hs += HASH_3_SIZE;
- /*
- No match finder uses this at the moment.
- if (mf->hash_bytes > 4)
- hs += HASH_4_SIZE;
- */
- const uint32_t old_hash_count = mf->hash_count;
- const uint32_t old_sons_count = mf->sons_count;
- mf->hash_count = hs;
- mf->sons_count = mf->cyclic_size;
- if (is_bt)
- mf->sons_count *= 2;
- // Deallocate the old hash array if it exists and has different size
- // than what is needed now.
- if (old_hash_count != mf->hash_count
- || old_sons_count != mf->sons_count) {
- lzma_free(mf->hash, allocator);
- mf->hash = NULL;
- lzma_free(mf->son, allocator);
- mf->son = NULL;
- }
- // Maximum number of match finder cycles
- mf->depth = lz_options->depth;
- if (mf->depth == 0) {
- if (is_bt)
- mf->depth = 16 + mf->nice_len / 2;
- else
- mf->depth = 4 + mf->nice_len / 4;
- }
- return false;
- }
- static bool
- lz_encoder_init(lzma_mf *mf, const lzma_allocator *allocator,
- const lzma_lz_options *lz_options)
- {
- // Allocate the history buffer.
- if (mf->buffer == NULL) {
- // lzma_memcmplen() is used for the dictionary buffer
- // so we need to allocate a few extra bytes to prevent
- // it from reading past the end of the buffer.
- mf->buffer = lzma_alloc(mf->size + LZMA_MEMCMPLEN_EXTRA,
- allocator);
- if (mf->buffer == NULL)
- return true;
- // Keep Valgrind happy with lzma_memcmplen() and initialize
- // the extra bytes whose value may get read but which will
- // effectively get ignored.
- memzero(mf->buffer + mf->size, LZMA_MEMCMPLEN_EXTRA);
- }
- // Use cyclic_size as initial mf->offset. This allows
- // avoiding a few branches in the match finders. The downside is
- // that match finder needs to be normalized more often, which may
- // hurt performance with huge dictionaries.
- mf->offset = mf->cyclic_size;
- mf->read_pos = 0;
- mf->read_ahead = 0;
- mf->read_limit = 0;
- mf->write_pos = 0;
- mf->pending = 0;
- #if UINT32_MAX >= SIZE_MAX / 4
- // Check for integer overflow. (Huge dictionaries are not
- // possible on 32-bit CPU.)
- if (mf->hash_count > SIZE_MAX / sizeof(uint32_t)
- || mf->sons_count > SIZE_MAX / sizeof(uint32_t))
- return true;
- #endif
- // Allocate and initialize the hash table. Since EMPTY_HASH_VALUE
- // is zero, we can use lzma_alloc_zero() or memzero() for mf->hash.
- //
- // We don't need to initialize mf->son, but not doing that may
- // make Valgrind complain in normalization (see normalize() in
- // lz_encoder_mf.c). Skipping the initialization is *very* good
- // when big dictionary is used but only small amount of data gets
- // actually compressed: most of the mf->son won't get actually
- // allocated by the kernel, so we avoid wasting RAM and improve
- // initialization speed a lot.
- if (mf->hash == NULL) {
- mf->hash = lzma_alloc_zero(mf->hash_count * sizeof(uint32_t),
- allocator);
- mf->son = lzma_alloc(mf->sons_count * sizeof(uint32_t),
- allocator);
- if (mf->hash == NULL || mf->son == NULL) {
- lzma_free(mf->hash, allocator);
- mf->hash = NULL;
- lzma_free(mf->son, allocator);
- mf->son = NULL;
- return true;
- }
- } else {
- /*
- for (uint32_t i = 0; i < mf->hash_count; ++i)
- mf->hash[i] = EMPTY_HASH_VALUE;
- */
- memzero(mf->hash, mf->hash_count * sizeof(uint32_t));
- }
- mf->cyclic_pos = 0;
- // Handle preset dictionary.
- if (lz_options->preset_dict != NULL
- && lz_options->preset_dict_size > 0) {
- // If the preset dictionary is bigger than the actual
- // dictionary, use only the tail.
- mf->write_pos = my_min(lz_options->preset_dict_size, mf->size);
- memcpy(mf->buffer, lz_options->preset_dict
- + lz_options->preset_dict_size - mf->write_pos,
- mf->write_pos);
- mf->action = LZMA_SYNC_FLUSH;
- mf->skip(mf, mf->write_pos);
- }
- mf->action = LZMA_RUN;
- return false;
- }
- extern uint64_t
- lzma_lz_encoder_memusage(const lzma_lz_options *lz_options)
- {
- // Old buffers must not exist when calling lz_encoder_prepare().
- lzma_mf mf = {
- .buffer = NULL,
- .hash = NULL,
- .son = NULL,
- .hash_count = 0,
- .sons_count = 0,
- };
- // Setup the size information into mf.
- if (lz_encoder_prepare(&mf, NULL, lz_options))
- return UINT64_MAX;
- // Calculate the memory usage.
- return ((uint64_t)(mf.hash_count) + mf.sons_count) * sizeof(uint32_t)
- + mf.size + sizeof(lzma_coder);
- }
- static void
- lz_encoder_end(void *coder_ptr, const lzma_allocator *allocator)
- {
- lzma_coder *coder = coder_ptr;
- lzma_next_end(&coder->next, allocator);
- lzma_free(coder->mf.son, allocator);
- lzma_free(coder->mf.hash, allocator);
- lzma_free(coder->mf.buffer, allocator);
- if (coder->lz.end != NULL)
- coder->lz.end(coder->lz.coder, allocator);
- else
- lzma_free(coder->lz.coder, allocator);
- lzma_free(coder, allocator);
- return;
- }
- static lzma_ret
- lz_encoder_update(void *coder_ptr, const lzma_allocator *allocator,
- const lzma_filter *filters_null lzma_attribute((__unused__)),
- const lzma_filter *reversed_filters)
- {
- lzma_coder *coder = coder_ptr;
- if (coder->lz.options_update == NULL)
- return LZMA_PROG_ERROR;
- return_if_error(coder->lz.options_update(
- coder->lz.coder, reversed_filters));
- return lzma_next_filter_update(
- &coder->next, allocator, reversed_filters + 1);
- }
- static lzma_ret
- lz_encoder_set_out_limit(void *coder_ptr, uint64_t *uncomp_size,
- uint64_t out_limit)
- {
- lzma_coder *coder = coder_ptr;
- // This is supported only if there are no other filters chained.
- if (coder->next.code == NULL && coder->lz.set_out_limit != NULL)
- return coder->lz.set_out_limit(
- coder->lz.coder, uncomp_size, out_limit);
- return LZMA_OPTIONS_ERROR;
- }
- extern lzma_ret
- lzma_lz_encoder_init(lzma_next_coder *next, const lzma_allocator *allocator,
- const lzma_filter_info *filters,
- lzma_ret (*lz_init)(lzma_lz_encoder *lz,
- const lzma_allocator *allocator,
- lzma_vli id, const void *options,
- lzma_lz_options *lz_options))
- {
- #if defined(HAVE_SMALL) && !defined(HAVE_FUNC_ATTRIBUTE_CONSTRUCTOR)
- // The CRC32 table must be initialized.
- lzma_crc32_init();
- #endif
- // Allocate and initialize the base data structure.
- lzma_coder *coder = next->coder;
- if (coder == NULL) {
- coder = lzma_alloc(sizeof(lzma_coder), allocator);
- if (coder == NULL)
- return LZMA_MEM_ERROR;
- next->coder = coder;
- next->code = &lz_encode;
- next->end = &lz_encoder_end;
- next->update = &lz_encoder_update;
- next->set_out_limit = &lz_encoder_set_out_limit;
- coder->lz.coder = NULL;
- coder->lz.code = NULL;
- coder->lz.end = NULL;
- coder->lz.options_update = NULL;
- coder->lz.set_out_limit = NULL;
- // mf.size is initialized to silence Valgrind
- // when used on optimized binaries (GCC may reorder
- // code in a way that Valgrind gets unhappy).
- coder->mf.buffer = NULL;
- coder->mf.size = 0;
- coder->mf.hash = NULL;
- coder->mf.son = NULL;
- coder->mf.hash_count = 0;
- coder->mf.sons_count = 0;
- coder->next = LZMA_NEXT_CODER_INIT;
- }
- // Initialize the LZ-based encoder.
- lzma_lz_options lz_options;
- return_if_error(lz_init(&coder->lz, allocator,
- filters[0].id, filters[0].options, &lz_options));
- // Setup the size information into coder->mf and deallocate
- // old buffers if they have wrong size.
- if (lz_encoder_prepare(&coder->mf, allocator, &lz_options))
- return LZMA_OPTIONS_ERROR;
- // Allocate new buffers if needed, and do the rest of
- // the initialization.
- if (lz_encoder_init(&coder->mf, allocator, &lz_options))
- return LZMA_MEM_ERROR;
- // Initialize the next filter in the chain, if any.
- return lzma_next_filter_init(&coder->next, allocator, filters + 1);
- }
- extern LZMA_API(lzma_bool)
- lzma_mf_is_supported(lzma_match_finder mf)
- {
- switch (mf) {
- #ifdef HAVE_MF_HC3
- case LZMA_MF_HC3:
- return true;
- #endif
- #ifdef HAVE_MF_HC4
- case LZMA_MF_HC4:
- return true;
- #endif
- #ifdef HAVE_MF_BT2
- case LZMA_MF_BT2:
- return true;
- #endif
- #ifdef HAVE_MF_BT3
- case LZMA_MF_BT3:
- return true;
- #endif
- #ifdef HAVE_MF_BT4
- case LZMA_MF_BT4:
- return true;
- #endif
- default:
- return false;
- }
- }
|