123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622 |
- #pragma once
- #ifdef __GNUC__
- #pragma GCC diagnostic push
- #pragma GCC diagnostic ignored "-Wunused-parameter"
- #endif
- //===- PatternMatch.h - Match on the LLVM IR --------------------*- C++ -*-===//
- //
- // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
- // See https://llvm.org/LICENSE.txt for license information.
- // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
- //
- //===----------------------------------------------------------------------===//
- //
- // This file provides a simple and efficient mechanism for performing general
- // tree-based pattern matches on the LLVM IR. The power of these routines is
- // that it allows you to write concise patterns that are expressive and easy to
- // understand. The other major advantage of this is that it allows you to
- // trivially capture/bind elements in the pattern to variables. For example,
- // you can do something like this:
- //
- // Value *Exp = ...
- // Value *X, *Y; ConstantInt *C1, *C2; // (X & C1) | (Y & C2)
- // if (match(Exp, m_Or(m_And(m_Value(X), m_ConstantInt(C1)),
- // m_And(m_Value(Y), m_ConstantInt(C2))))) {
- // ... Pattern is matched and variables are bound ...
- // }
- //
- // This is primarily useful to things like the instruction combiner, but can
- // also be useful for static analysis tools or code generators.
- //
- //===----------------------------------------------------------------------===//
- #ifndef LLVM_IR_PATTERNMATCH_H
- #define LLVM_IR_PATTERNMATCH_H
- #include "llvm/ADT/APFloat.h"
- #include "llvm/ADT/APInt.h"
- #include "llvm/IR/Constant.h"
- #include "llvm/IR/Constants.h"
- #include "llvm/IR/DataLayout.h"
- #include "llvm/IR/InstrTypes.h"
- #include "llvm/IR/Instruction.h"
- #include "llvm/IR/Instructions.h"
- #include "llvm/IR/IntrinsicInst.h"
- #include "llvm/IR/Intrinsics.h"
- #include "llvm/IR/Operator.h"
- #include "llvm/IR/Value.h"
- #include "llvm/Support/Casting.h"
- #include <cstdint>
- namespace llvm {
- namespace PatternMatch {
- template <typename Val, typename Pattern> bool match(Val *V, const Pattern &P) {
- return const_cast<Pattern &>(P).match(V);
- }
- template <typename Pattern> bool match(ArrayRef<int> Mask, const Pattern &P) {
- return const_cast<Pattern &>(P).match(Mask);
- }
- template <typename SubPattern_t> struct OneUse_match {
- SubPattern_t SubPattern;
- OneUse_match(const SubPattern_t &SP) : SubPattern(SP) {}
- template <typename OpTy> bool match(OpTy *V) {
- return V->hasOneUse() && SubPattern.match(V);
- }
- };
- template <typename T> inline OneUse_match<T> m_OneUse(const T &SubPattern) {
- return SubPattern;
- }
- template <typename Class> struct class_match {
- template <typename ITy> bool match(ITy *V) { return isa<Class>(V); }
- };
- /// Match an arbitrary value and ignore it.
- inline class_match<Value> m_Value() { return class_match<Value>(); }
- /// Match an arbitrary unary operation and ignore it.
- inline class_match<UnaryOperator> m_UnOp() {
- return class_match<UnaryOperator>();
- }
- /// Match an arbitrary binary operation and ignore it.
- inline class_match<BinaryOperator> m_BinOp() {
- return class_match<BinaryOperator>();
- }
- /// Matches any compare instruction and ignore it.
- inline class_match<CmpInst> m_Cmp() { return class_match<CmpInst>(); }
- struct undef_match {
- static bool check(const Value *V) {
- if (isa<UndefValue>(V))
- return true;
- const auto *CA = dyn_cast<ConstantAggregate>(V);
- if (!CA)
- return false;
- SmallPtrSet<const ConstantAggregate *, 8> Seen;
- SmallVector<const ConstantAggregate *, 8> Worklist;
- // Either UndefValue, PoisonValue, or an aggregate that only contains
- // these is accepted by matcher.
- // CheckValue returns false if CA cannot satisfy this constraint.
- auto CheckValue = [&](const ConstantAggregate *CA) {
- for (const Value *Op : CA->operand_values()) {
- if (isa<UndefValue>(Op))
- continue;
- const auto *CA = dyn_cast<ConstantAggregate>(Op);
- if (!CA)
- return false;
- if (Seen.insert(CA).second)
- Worklist.emplace_back(CA);
- }
- return true;
- };
- if (!CheckValue(CA))
- return false;
- while (!Worklist.empty()) {
- if (!CheckValue(Worklist.pop_back_val()))
- return false;
- }
- return true;
- }
- template <typename ITy> bool match(ITy *V) { return check(V); }
- };
- /// Match an arbitrary undef constant. This matches poison as well.
- /// If this is an aggregate and contains a non-aggregate element that is
- /// neither undef nor poison, the aggregate is not matched.
- inline auto m_Undef() { return undef_match(); }
- /// Match an arbitrary poison constant.
- inline class_match<PoisonValue> m_Poison() {
- return class_match<PoisonValue>();
- }
- /// Match an arbitrary Constant and ignore it.
- inline class_match<Constant> m_Constant() { return class_match<Constant>(); }
- /// Match an arbitrary ConstantInt and ignore it.
- inline class_match<ConstantInt> m_ConstantInt() {
- return class_match<ConstantInt>();
- }
- /// Match an arbitrary ConstantFP and ignore it.
- inline class_match<ConstantFP> m_ConstantFP() {
- return class_match<ConstantFP>();
- }
- struct constantexpr_match {
- template <typename ITy> bool match(ITy *V) {
- auto *C = dyn_cast<Constant>(V);
- return C && (isa<ConstantExpr>(C) || C->containsConstantExpression());
- }
- };
- /// Match a constant expression or a constant that contains a constant
- /// expression.
- inline constantexpr_match m_ConstantExpr() { return constantexpr_match(); }
- /// Match an arbitrary basic block value and ignore it.
- inline class_match<BasicBlock> m_BasicBlock() {
- return class_match<BasicBlock>();
- }
- /// Inverting matcher
- template <typename Ty> struct match_unless {
- Ty M;
- match_unless(const Ty &Matcher) : M(Matcher) {}
- template <typename ITy> bool match(ITy *V) { return !M.match(V); }
- };
- /// Match if the inner matcher does *NOT* match.
- template <typename Ty> inline match_unless<Ty> m_Unless(const Ty &M) {
- return match_unless<Ty>(M);
- }
- /// Matching combinators
- template <typename LTy, typename RTy> struct match_combine_or {
- LTy L;
- RTy R;
- match_combine_or(const LTy &Left, const RTy &Right) : L(Left), R(Right) {}
- template <typename ITy> bool match(ITy *V) {
- if (L.match(V))
- return true;
- if (R.match(V))
- return true;
- return false;
- }
- };
- template <typename LTy, typename RTy> struct match_combine_and {
- LTy L;
- RTy R;
- match_combine_and(const LTy &Left, const RTy &Right) : L(Left), R(Right) {}
- template <typename ITy> bool match(ITy *V) {
- if (L.match(V))
- if (R.match(V))
- return true;
- return false;
- }
- };
- /// Combine two pattern matchers matching L || R
- template <typename LTy, typename RTy>
- inline match_combine_or<LTy, RTy> m_CombineOr(const LTy &L, const RTy &R) {
- return match_combine_or<LTy, RTy>(L, R);
- }
- /// Combine two pattern matchers matching L && R
- template <typename LTy, typename RTy>
- inline match_combine_and<LTy, RTy> m_CombineAnd(const LTy &L, const RTy &R) {
- return match_combine_and<LTy, RTy>(L, R);
- }
- struct apint_match {
- const APInt *&Res;
- bool AllowUndef;
- apint_match(const APInt *&Res, bool AllowUndef)
- : Res(Res), AllowUndef(AllowUndef) {}
- template <typename ITy> bool match(ITy *V) {
- if (auto *CI = dyn_cast<ConstantInt>(V)) {
- Res = &CI->getValue();
- return true;
- }
- if (V->getType()->isVectorTy())
- if (const auto *C = dyn_cast<Constant>(V))
- if (auto *CI =
- dyn_cast_or_null<ConstantInt>(C->getSplatValue(AllowUndef))) {
- Res = &CI->getValue();
- return true;
- }
- return false;
- }
- };
- // Either constexpr if or renaming ConstantFP::getValueAPF to
- // ConstantFP::getValue is needed to do it via single template
- // function for both apint/apfloat.
- struct apfloat_match {
- const APFloat *&Res;
- bool AllowUndef;
- apfloat_match(const APFloat *&Res, bool AllowUndef)
- : Res(Res), AllowUndef(AllowUndef) {}
- template <typename ITy> bool match(ITy *V) {
- if (auto *CI = dyn_cast<ConstantFP>(V)) {
- Res = &CI->getValueAPF();
- return true;
- }
- if (V->getType()->isVectorTy())
- if (const auto *C = dyn_cast<Constant>(V))
- if (auto *CI =
- dyn_cast_or_null<ConstantFP>(C->getSplatValue(AllowUndef))) {
- Res = &CI->getValueAPF();
- return true;
- }
- return false;
- }
- };
- /// Match a ConstantInt or splatted ConstantVector, binding the
- /// specified pointer to the contained APInt.
- inline apint_match m_APInt(const APInt *&Res) {
- // Forbid undefs by default to maintain previous behavior.
- return apint_match(Res, /* AllowUndef */ false);
- }
- /// Match APInt while allowing undefs in splat vector constants.
- inline apint_match m_APIntAllowUndef(const APInt *&Res) {
- return apint_match(Res, /* AllowUndef */ true);
- }
- /// Match APInt while forbidding undefs in splat vector constants.
- inline apint_match m_APIntForbidUndef(const APInt *&Res) {
- return apint_match(Res, /* AllowUndef */ false);
- }
- /// Match a ConstantFP or splatted ConstantVector, binding the
- /// specified pointer to the contained APFloat.
- inline apfloat_match m_APFloat(const APFloat *&Res) {
- // Forbid undefs by default to maintain previous behavior.
- return apfloat_match(Res, /* AllowUndef */ false);
- }
- /// Match APFloat while allowing undefs in splat vector constants.
- inline apfloat_match m_APFloatAllowUndef(const APFloat *&Res) {
- return apfloat_match(Res, /* AllowUndef */ true);
- }
- /// Match APFloat while forbidding undefs in splat vector constants.
- inline apfloat_match m_APFloatForbidUndef(const APFloat *&Res) {
- return apfloat_match(Res, /* AllowUndef */ false);
- }
- template <int64_t Val> struct constantint_match {
- template <typename ITy> bool match(ITy *V) {
- if (const auto *CI = dyn_cast<ConstantInt>(V)) {
- const APInt &CIV = CI->getValue();
- if (Val >= 0)
- return CIV == static_cast<uint64_t>(Val);
- // If Val is negative, and CI is shorter than it, truncate to the right
- // number of bits. If it is larger, then we have to sign extend. Just
- // compare their negated values.
- return -CIV == -Val;
- }
- return false;
- }
- };
- /// Match a ConstantInt with a specific value.
- template <int64_t Val> inline constantint_match<Val> m_ConstantInt() {
- return constantint_match<Val>();
- }
- /// This helper class is used to match constant scalars, vector splats,
- /// and fixed width vectors that satisfy a specified predicate.
- /// For fixed width vector constants, undefined elements are ignored.
- template <typename Predicate, typename ConstantVal>
- struct cstval_pred_ty : public Predicate {
- template <typename ITy> bool match(ITy *V) {
- if (const auto *CV = dyn_cast<ConstantVal>(V))
- return this->isValue(CV->getValue());
- if (const auto *VTy = dyn_cast<VectorType>(V->getType())) {
- if (const auto *C = dyn_cast<Constant>(V)) {
- if (const auto *CV = dyn_cast_or_null<ConstantVal>(C->getSplatValue()))
- return this->isValue(CV->getValue());
- // Number of elements of a scalable vector unknown at compile time
- auto *FVTy = dyn_cast<FixedVectorType>(VTy);
- if (!FVTy)
- return false;
- // Non-splat vector constant: check each element for a match.
- unsigned NumElts = FVTy->getNumElements();
- assert(NumElts != 0 && "Constant vector with no elements?");
- bool HasNonUndefElements = false;
- for (unsigned i = 0; i != NumElts; ++i) {
- Constant *Elt = C->getAggregateElement(i);
- if (!Elt)
- return false;
- if (isa<UndefValue>(Elt))
- continue;
- auto *CV = dyn_cast<ConstantVal>(Elt);
- if (!CV || !this->isValue(CV->getValue()))
- return false;
- HasNonUndefElements = true;
- }
- return HasNonUndefElements;
- }
- }
- return false;
- }
- };
- /// specialization of cstval_pred_ty for ConstantInt
- template <typename Predicate>
- using cst_pred_ty = cstval_pred_ty<Predicate, ConstantInt>;
- /// specialization of cstval_pred_ty for ConstantFP
- template <typename Predicate>
- using cstfp_pred_ty = cstval_pred_ty<Predicate, ConstantFP>;
- /// This helper class is used to match scalar and vector constants that
- /// satisfy a specified predicate, and bind them to an APInt.
- template <typename Predicate> struct api_pred_ty : public Predicate {
- const APInt *&Res;
- api_pred_ty(const APInt *&R) : Res(R) {}
- template <typename ITy> bool match(ITy *V) {
- if (const auto *CI = dyn_cast<ConstantInt>(V))
- if (this->isValue(CI->getValue())) {
- Res = &CI->getValue();
- return true;
- }
- if (V->getType()->isVectorTy())
- if (const auto *C = dyn_cast<Constant>(V))
- if (auto *CI = dyn_cast_or_null<ConstantInt>(C->getSplatValue()))
- if (this->isValue(CI->getValue())) {
- Res = &CI->getValue();
- return true;
- }
- return false;
- }
- };
- /// This helper class is used to match scalar and vector constants that
- /// satisfy a specified predicate, and bind them to an APFloat.
- /// Undefs are allowed in splat vector constants.
- template <typename Predicate> struct apf_pred_ty : public Predicate {
- const APFloat *&Res;
- apf_pred_ty(const APFloat *&R) : Res(R) {}
- template <typename ITy> bool match(ITy *V) {
- if (const auto *CI = dyn_cast<ConstantFP>(V))
- if (this->isValue(CI->getValue())) {
- Res = &CI->getValue();
- return true;
- }
- if (V->getType()->isVectorTy())
- if (const auto *C = dyn_cast<Constant>(V))
- if (auto *CI = dyn_cast_or_null<ConstantFP>(
- C->getSplatValue(/* AllowUndef */ true)))
- if (this->isValue(CI->getValue())) {
- Res = &CI->getValue();
- return true;
- }
- return false;
- }
- };
- ///////////////////////////////////////////////////////////////////////////////
- //
- // Encapsulate constant value queries for use in templated predicate matchers.
- // This allows checking if constants match using compound predicates and works
- // with vector constants, possibly with relaxed constraints. For example, ignore
- // undef values.
- //
- ///////////////////////////////////////////////////////////////////////////////
- struct is_any_apint {
- bool isValue(const APInt &C) { return true; }
- };
- /// Match an integer or vector with any integral constant.
- /// For vectors, this includes constants with undefined elements.
- inline cst_pred_ty<is_any_apint> m_AnyIntegralConstant() {
- return cst_pred_ty<is_any_apint>();
- }
- struct is_all_ones {
- bool isValue(const APInt &C) { return C.isAllOnes(); }
- };
- /// Match an integer or vector with all bits set.
- /// For vectors, this includes constants with undefined elements.
- inline cst_pred_ty<is_all_ones> m_AllOnes() {
- return cst_pred_ty<is_all_ones>();
- }
- struct is_maxsignedvalue {
- bool isValue(const APInt &C) { return C.isMaxSignedValue(); }
- };
- /// Match an integer or vector with values having all bits except for the high
- /// bit set (0x7f...).
- /// For vectors, this includes constants with undefined elements.
- inline cst_pred_ty<is_maxsignedvalue> m_MaxSignedValue() {
- return cst_pred_ty<is_maxsignedvalue>();
- }
- inline api_pred_ty<is_maxsignedvalue> m_MaxSignedValue(const APInt *&V) {
- return V;
- }
- struct is_negative {
- bool isValue(const APInt &C) { return C.isNegative(); }
- };
- /// Match an integer or vector of negative values.
- /// For vectors, this includes constants with undefined elements.
- inline cst_pred_ty<is_negative> m_Negative() {
- return cst_pred_ty<is_negative>();
- }
- inline api_pred_ty<is_negative> m_Negative(const APInt *&V) { return V; }
- struct is_nonnegative {
- bool isValue(const APInt &C) { return C.isNonNegative(); }
- };
- /// Match an integer or vector of non-negative values.
- /// For vectors, this includes constants with undefined elements.
- inline cst_pred_ty<is_nonnegative> m_NonNegative() {
- return cst_pred_ty<is_nonnegative>();
- }
- inline api_pred_ty<is_nonnegative> m_NonNegative(const APInt *&V) { return V; }
- struct is_strictlypositive {
- bool isValue(const APInt &C) { return C.isStrictlyPositive(); }
- };
- /// Match an integer or vector of strictly positive values.
- /// For vectors, this includes constants with undefined elements.
- inline cst_pred_ty<is_strictlypositive> m_StrictlyPositive() {
- return cst_pred_ty<is_strictlypositive>();
- }
- inline api_pred_ty<is_strictlypositive> m_StrictlyPositive(const APInt *&V) {
- return V;
- }
- struct is_nonpositive {
- bool isValue(const APInt &C) { return C.isNonPositive(); }
- };
- /// Match an integer or vector of non-positive values.
- /// For vectors, this includes constants with undefined elements.
- inline cst_pred_ty<is_nonpositive> m_NonPositive() {
- return cst_pred_ty<is_nonpositive>();
- }
- inline api_pred_ty<is_nonpositive> m_NonPositive(const APInt *&V) { return V; }
- struct is_one {
- bool isValue(const APInt &C) { return C.isOne(); }
- };
- /// Match an integer 1 or a vector with all elements equal to 1.
- /// For vectors, this includes constants with undefined elements.
- inline cst_pred_ty<is_one> m_One() { return cst_pred_ty<is_one>(); }
- struct is_zero_int {
- bool isValue(const APInt &C) { return C.isZero(); }
- };
- /// Match an integer 0 or a vector with all elements equal to 0.
- /// For vectors, this includes constants with undefined elements.
- inline cst_pred_ty<is_zero_int> m_ZeroInt() {
- return cst_pred_ty<is_zero_int>();
- }
- struct is_zero {
- template <typename ITy> bool match(ITy *V) {
- auto *C = dyn_cast<Constant>(V);
- // FIXME: this should be able to do something for scalable vectors
- return C && (C->isNullValue() || cst_pred_ty<is_zero_int>().match(C));
- }
- };
- /// Match any null constant or a vector with all elements equal to 0.
- /// For vectors, this includes constants with undefined elements.
- inline is_zero m_Zero() { return is_zero(); }
- struct is_power2 {
- bool isValue(const APInt &C) { return C.isPowerOf2(); }
- };
- /// Match an integer or vector power-of-2.
- /// For vectors, this includes constants with undefined elements.
- inline cst_pred_ty<is_power2> m_Power2() { return cst_pred_ty<is_power2>(); }
- inline api_pred_ty<is_power2> m_Power2(const APInt *&V) { return V; }
- struct is_negated_power2 {
- bool isValue(const APInt &C) { return C.isNegatedPowerOf2(); }
- };
- /// Match a integer or vector negated power-of-2.
- /// For vectors, this includes constants with undefined elements.
- inline cst_pred_ty<is_negated_power2> m_NegatedPower2() {
- return cst_pred_ty<is_negated_power2>();
- }
- inline api_pred_ty<is_negated_power2> m_NegatedPower2(const APInt *&V) {
- return V;
- }
- struct is_power2_or_zero {
- bool isValue(const APInt &C) { return !C || C.isPowerOf2(); }
- };
- /// Match an integer or vector of 0 or power-of-2 values.
- /// For vectors, this includes constants with undefined elements.
- inline cst_pred_ty<is_power2_or_zero> m_Power2OrZero() {
- return cst_pred_ty<is_power2_or_zero>();
- }
- inline api_pred_ty<is_power2_or_zero> m_Power2OrZero(const APInt *&V) {
- return V;
- }
- struct is_sign_mask {
- bool isValue(const APInt &C) { return C.isSignMask(); }
- };
- /// Match an integer or vector with only the sign bit(s) set.
- /// For vectors, this includes constants with undefined elements.
- inline cst_pred_ty<is_sign_mask> m_SignMask() {
- return cst_pred_ty<is_sign_mask>();
- }
- struct is_lowbit_mask {
- bool isValue(const APInt &C) { return C.isMask(); }
- };
- /// Match an integer or vector with only the low bit(s) set.
- /// For vectors, this includes constants with undefined elements.
- inline cst_pred_ty<is_lowbit_mask> m_LowBitMask() {
- return cst_pred_ty<is_lowbit_mask>();
- }
- inline api_pred_ty<is_lowbit_mask> m_LowBitMask(const APInt *&V) { return V; }
- struct icmp_pred_with_threshold {
- ICmpInst::Predicate Pred;
- const APInt *Thr;
- bool isValue(const APInt &C) { return ICmpInst::compare(C, *Thr, Pred); }
- };
- /// Match an integer or vector with every element comparing 'pred' (eg/ne/...)
- /// to Threshold. For vectors, this includes constants with undefined elements.
- inline cst_pred_ty<icmp_pred_with_threshold>
- m_SpecificInt_ICMP(ICmpInst::Predicate Predicate, const APInt &Threshold) {
- cst_pred_ty<icmp_pred_with_threshold> P;
- P.Pred = Predicate;
- P.Thr = &Threshold;
- return P;
- }
- struct is_nan {
- bool isValue(const APFloat &C) { return C.isNaN(); }
- };
- /// Match an arbitrary NaN constant. This includes quiet and signalling nans.
- /// For vectors, this includes constants with undefined elements.
- inline cstfp_pred_ty<is_nan> m_NaN() { return cstfp_pred_ty<is_nan>(); }
- struct is_nonnan {
- bool isValue(const APFloat &C) { return !C.isNaN(); }
- };
- /// Match a non-NaN FP constant.
- /// For vectors, this includes constants with undefined elements.
- inline cstfp_pred_ty<is_nonnan> m_NonNaN() {
- return cstfp_pred_ty<is_nonnan>();
- }
- struct is_inf {
- bool isValue(const APFloat &C) { return C.isInfinity(); }
- };
- /// Match a positive or negative infinity FP constant.
- /// For vectors, this includes constants with undefined elements.
- inline cstfp_pred_ty<is_inf> m_Inf() { return cstfp_pred_ty<is_inf>(); }
- struct is_noninf {
- bool isValue(const APFloat &C) { return !C.isInfinity(); }
- };
- /// Match a non-infinity FP constant, i.e. finite or NaN.
- /// For vectors, this includes constants with undefined elements.
- inline cstfp_pred_ty<is_noninf> m_NonInf() {
- return cstfp_pred_ty<is_noninf>();
- }
- struct is_finite {
- bool isValue(const APFloat &C) { return C.isFinite(); }
- };
- /// Match a finite FP constant, i.e. not infinity or NaN.
- /// For vectors, this includes constants with undefined elements.
- inline cstfp_pred_ty<is_finite> m_Finite() {
- return cstfp_pred_ty<is_finite>();
- }
- inline apf_pred_ty<is_finite> m_Finite(const APFloat *&V) { return V; }
- struct is_finitenonzero {
- bool isValue(const APFloat &C) { return C.isFiniteNonZero(); }
- };
- /// Match a finite non-zero FP constant.
- /// For vectors, this includes constants with undefined elements.
- inline cstfp_pred_ty<is_finitenonzero> m_FiniteNonZero() {
- return cstfp_pred_ty<is_finitenonzero>();
- }
- inline apf_pred_ty<is_finitenonzero> m_FiniteNonZero(const APFloat *&V) {
- return V;
- }
- struct is_any_zero_fp {
- bool isValue(const APFloat &C) { return C.isZero(); }
- };
- /// Match a floating-point negative zero or positive zero.
- /// For vectors, this includes constants with undefined elements.
- inline cstfp_pred_ty<is_any_zero_fp> m_AnyZeroFP() {
- return cstfp_pred_ty<is_any_zero_fp>();
- }
- struct is_pos_zero_fp {
- bool isValue(const APFloat &C) { return C.isPosZero(); }
- };
- /// Match a floating-point positive zero.
- /// For vectors, this includes constants with undefined elements.
- inline cstfp_pred_ty<is_pos_zero_fp> m_PosZeroFP() {
- return cstfp_pred_ty<is_pos_zero_fp>();
- }
- struct is_neg_zero_fp {
- bool isValue(const APFloat &C) { return C.isNegZero(); }
- };
- /// Match a floating-point negative zero.
- /// For vectors, this includes constants with undefined elements.
- inline cstfp_pred_ty<is_neg_zero_fp> m_NegZeroFP() {
- return cstfp_pred_ty<is_neg_zero_fp>();
- }
- struct is_non_zero_fp {
- bool isValue(const APFloat &C) { return C.isNonZero(); }
- };
- /// Match a floating-point non-zero.
- /// For vectors, this includes constants with undefined elements.
- inline cstfp_pred_ty<is_non_zero_fp> m_NonZeroFP() {
- return cstfp_pred_ty<is_non_zero_fp>();
- }
- ///////////////////////////////////////////////////////////////////////////////
- template <typename Class> struct bind_ty {
- Class *&VR;
- bind_ty(Class *&V) : VR(V) {}
- template <typename ITy> bool match(ITy *V) {
- if (auto *CV = dyn_cast<Class>(V)) {
- VR = CV;
- return true;
- }
- return false;
- }
- };
- /// Match a value, capturing it if we match.
- inline bind_ty<Value> m_Value(Value *&V) { return V; }
- inline bind_ty<const Value> m_Value(const Value *&V) { return V; }
- /// Match an instruction, capturing it if we match.
- inline bind_ty<Instruction> m_Instruction(Instruction *&I) { return I; }
- /// Match a unary operator, capturing it if we match.
- inline bind_ty<UnaryOperator> m_UnOp(UnaryOperator *&I) { return I; }
- /// Match a binary operator, capturing it if we match.
- inline bind_ty<BinaryOperator> m_BinOp(BinaryOperator *&I) { return I; }
- /// Match a with overflow intrinsic, capturing it if we match.
- inline bind_ty<WithOverflowInst> m_WithOverflowInst(WithOverflowInst *&I) {
- return I;
- }
- inline bind_ty<const WithOverflowInst>
- m_WithOverflowInst(const WithOverflowInst *&I) {
- return I;
- }
- /// Match a Constant, capturing the value if we match.
- inline bind_ty<Constant> m_Constant(Constant *&C) { return C; }
- /// Match a ConstantInt, capturing the value if we match.
- inline bind_ty<ConstantInt> m_ConstantInt(ConstantInt *&CI) { return CI; }
- /// Match a ConstantFP, capturing the value if we match.
- inline bind_ty<ConstantFP> m_ConstantFP(ConstantFP *&C) { return C; }
- /// Match a ConstantExpr, capturing the value if we match.
- inline bind_ty<ConstantExpr> m_ConstantExpr(ConstantExpr *&C) { return C; }
- /// Match a basic block value, capturing it if we match.
- inline bind_ty<BasicBlock> m_BasicBlock(BasicBlock *&V) { return V; }
- inline bind_ty<const BasicBlock> m_BasicBlock(const BasicBlock *&V) {
- return V;
- }
- /// Match an arbitrary immediate Constant and ignore it.
- inline match_combine_and<class_match<Constant>,
- match_unless<constantexpr_match>>
- m_ImmConstant() {
- return m_CombineAnd(m_Constant(), m_Unless(m_ConstantExpr()));
- }
- /// Match an immediate Constant, capturing the value if we match.
- inline match_combine_and<bind_ty<Constant>,
- match_unless<constantexpr_match>>
- m_ImmConstant(Constant *&C) {
- return m_CombineAnd(m_Constant(C), m_Unless(m_ConstantExpr()));
- }
- /// Match a specified Value*.
- struct specificval_ty {
- const Value *Val;
- specificval_ty(const Value *V) : Val(V) {}
- template <typename ITy> bool match(ITy *V) { return V == Val; }
- };
- /// Match if we have a specific specified value.
- inline specificval_ty m_Specific(const Value *V) { return V; }
- /// Stores a reference to the Value *, not the Value * itself,
- /// thus can be used in commutative matchers.
- template <typename Class> struct deferredval_ty {
- Class *const &Val;
- deferredval_ty(Class *const &V) : Val(V) {}
- template <typename ITy> bool match(ITy *const V) { return V == Val; }
- };
- /// Like m_Specific(), but works if the specific value to match is determined
- /// as part of the same match() expression. For example:
- /// m_Add(m_Value(X), m_Specific(X)) is incorrect, because m_Specific() will
- /// bind X before the pattern match starts.
- /// m_Add(m_Value(X), m_Deferred(X)) is correct, and will check against
- /// whichever value m_Value(X) populated.
- inline deferredval_ty<Value> m_Deferred(Value *const &V) { return V; }
- inline deferredval_ty<const Value> m_Deferred(const Value *const &V) {
- return V;
- }
- /// Match a specified floating point value or vector of all elements of
- /// that value.
- struct specific_fpval {
- double Val;
- specific_fpval(double V) : Val(V) {}
- template <typename ITy> bool match(ITy *V) {
- if (const auto *CFP = dyn_cast<ConstantFP>(V))
- return CFP->isExactlyValue(Val);
- if (V->getType()->isVectorTy())
- if (const auto *C = dyn_cast<Constant>(V))
- if (auto *CFP = dyn_cast_or_null<ConstantFP>(C->getSplatValue()))
- return CFP->isExactlyValue(Val);
- return false;
- }
- };
- /// Match a specific floating point value or vector with all elements
- /// equal to the value.
- inline specific_fpval m_SpecificFP(double V) { return specific_fpval(V); }
- /// Match a float 1.0 or vector with all elements equal to 1.0.
- inline specific_fpval m_FPOne() { return m_SpecificFP(1.0); }
- struct bind_const_intval_ty {
- uint64_t &VR;
- bind_const_intval_ty(uint64_t &V) : VR(V) {}
- template <typename ITy> bool match(ITy *V) {
- if (const auto *CV = dyn_cast<ConstantInt>(V))
- if (CV->getValue().ule(UINT64_MAX)) {
- VR = CV->getZExtValue();
- return true;
- }
- return false;
- }
- };
- /// Match a specified integer value or vector of all elements of that
- /// value.
- template <bool AllowUndefs> struct specific_intval {
- APInt Val;
- specific_intval(APInt V) : Val(std::move(V)) {}
- template <typename ITy> bool match(ITy *V) {
- const auto *CI = dyn_cast<ConstantInt>(V);
- if (!CI && V->getType()->isVectorTy())
- if (const auto *C = dyn_cast<Constant>(V))
- CI = dyn_cast_or_null<ConstantInt>(C->getSplatValue(AllowUndefs));
- return CI && APInt::isSameValue(CI->getValue(), Val);
- }
- };
- /// Match a specific integer value or vector with all elements equal to
- /// the value.
- inline specific_intval<false> m_SpecificInt(APInt V) {
- return specific_intval<false>(std::move(V));
- }
- inline specific_intval<false> m_SpecificInt(uint64_t V) {
- return m_SpecificInt(APInt(64, V));
- }
- inline specific_intval<true> m_SpecificIntAllowUndef(APInt V) {
- return specific_intval<true>(std::move(V));
- }
- inline specific_intval<true> m_SpecificIntAllowUndef(uint64_t V) {
- return m_SpecificIntAllowUndef(APInt(64, V));
- }
- /// Match a ConstantInt and bind to its value. This does not match
- /// ConstantInts wider than 64-bits.
- inline bind_const_intval_ty m_ConstantInt(uint64_t &V) { return V; }
- /// Match a specified basic block value.
- struct specific_bbval {
- BasicBlock *Val;
- specific_bbval(BasicBlock *Val) : Val(Val) {}
- template <typename ITy> bool match(ITy *V) {
- const auto *BB = dyn_cast<BasicBlock>(V);
- return BB && BB == Val;
- }
- };
- /// Match a specific basic block value.
- inline specific_bbval m_SpecificBB(BasicBlock *BB) {
- return specific_bbval(BB);
- }
- /// A commutative-friendly version of m_Specific().
- inline deferredval_ty<BasicBlock> m_Deferred(BasicBlock *const &BB) {
- return BB;
- }
- inline deferredval_ty<const BasicBlock>
- m_Deferred(const BasicBlock *const &BB) {
- return BB;
- }
- //===----------------------------------------------------------------------===//
- // Matcher for any binary operator.
- //
- template <typename LHS_t, typename RHS_t, bool Commutable = false>
- struct AnyBinaryOp_match {
- LHS_t L;
- RHS_t R;
- // The evaluation order is always stable, regardless of Commutability.
- // The LHS is always matched first.
- AnyBinaryOp_match(const LHS_t &LHS, const RHS_t &RHS) : L(LHS), R(RHS) {}
- template <typename OpTy> bool match(OpTy *V) {
- if (auto *I = dyn_cast<BinaryOperator>(V))
- return (L.match(I->getOperand(0)) && R.match(I->getOperand(1))) ||
- (Commutable && L.match(I->getOperand(1)) &&
- R.match(I->getOperand(0)));
- return false;
- }
- };
- template <typename LHS, typename RHS>
- inline AnyBinaryOp_match<LHS, RHS> m_BinOp(const LHS &L, const RHS &R) {
- return AnyBinaryOp_match<LHS, RHS>(L, R);
- }
- //===----------------------------------------------------------------------===//
- // Matcher for any unary operator.
- // TODO fuse unary, binary matcher into n-ary matcher
- //
- template <typename OP_t> struct AnyUnaryOp_match {
- OP_t X;
- AnyUnaryOp_match(const OP_t &X) : X(X) {}
- template <typename OpTy> bool match(OpTy *V) {
- if (auto *I = dyn_cast<UnaryOperator>(V))
- return X.match(I->getOperand(0));
- return false;
- }
- };
- template <typename OP_t> inline AnyUnaryOp_match<OP_t> m_UnOp(const OP_t &X) {
- return AnyUnaryOp_match<OP_t>(X);
- }
- //===----------------------------------------------------------------------===//
- // Matchers for specific binary operators.
- //
- template <typename LHS_t, typename RHS_t, unsigned Opcode,
- bool Commutable = false>
- struct BinaryOp_match {
- LHS_t L;
- RHS_t R;
- // The evaluation order is always stable, regardless of Commutability.
- // The LHS is always matched first.
- BinaryOp_match(const LHS_t &LHS, const RHS_t &RHS) : L(LHS), R(RHS) {}
- template <typename OpTy> inline bool match(unsigned Opc, OpTy *V) {
- if (V->getValueID() == Value::InstructionVal + Opc) {
- auto *I = cast<BinaryOperator>(V);
- return (L.match(I->getOperand(0)) && R.match(I->getOperand(1))) ||
- (Commutable && L.match(I->getOperand(1)) &&
- R.match(I->getOperand(0)));
- }
- if (auto *CE = dyn_cast<ConstantExpr>(V))
- return CE->getOpcode() == Opc &&
- ((L.match(CE->getOperand(0)) && R.match(CE->getOperand(1))) ||
- (Commutable && L.match(CE->getOperand(1)) &&
- R.match(CE->getOperand(0))));
- return false;
- }
- template <typename OpTy> bool match(OpTy *V) { return match(Opcode, V); }
- };
- template <typename LHS, typename RHS>
- inline BinaryOp_match<LHS, RHS, Instruction::Add> m_Add(const LHS &L,
- const RHS &R) {
- return BinaryOp_match<LHS, RHS, Instruction::Add>(L, R);
- }
- template <typename LHS, typename RHS>
- inline BinaryOp_match<LHS, RHS, Instruction::FAdd> m_FAdd(const LHS &L,
- const RHS &R) {
- return BinaryOp_match<LHS, RHS, Instruction::FAdd>(L, R);
- }
- template <typename LHS, typename RHS>
- inline BinaryOp_match<LHS, RHS, Instruction::Sub> m_Sub(const LHS &L,
- const RHS &R) {
- return BinaryOp_match<LHS, RHS, Instruction::Sub>(L, R);
- }
- template <typename LHS, typename RHS>
- inline BinaryOp_match<LHS, RHS, Instruction::FSub> m_FSub(const LHS &L,
- const RHS &R) {
- return BinaryOp_match<LHS, RHS, Instruction::FSub>(L, R);
- }
- template <typename Op_t> struct FNeg_match {
- Op_t X;
- FNeg_match(const Op_t &Op) : X(Op) {}
- template <typename OpTy> bool match(OpTy *V) {
- auto *FPMO = dyn_cast<FPMathOperator>(V);
- if (!FPMO)
- return false;
- if (FPMO->getOpcode() == Instruction::FNeg)
- return X.match(FPMO->getOperand(0));
- if (FPMO->getOpcode() == Instruction::FSub) {
- if (FPMO->hasNoSignedZeros()) {
- // With 'nsz', any zero goes.
- if (!cstfp_pred_ty<is_any_zero_fp>().match(FPMO->getOperand(0)))
- return false;
- } else {
- // Without 'nsz', we need fsub -0.0, X exactly.
- if (!cstfp_pred_ty<is_neg_zero_fp>().match(FPMO->getOperand(0)))
- return false;
- }
- return X.match(FPMO->getOperand(1));
- }
- return false;
- }
- };
- /// Match 'fneg X' as 'fsub -0.0, X'.
- template <typename OpTy> inline FNeg_match<OpTy> m_FNeg(const OpTy &X) {
- return FNeg_match<OpTy>(X);
- }
- /// Match 'fneg X' as 'fsub +-0.0, X'.
- template <typename RHS>
- inline BinaryOp_match<cstfp_pred_ty<is_any_zero_fp>, RHS, Instruction::FSub>
- m_FNegNSZ(const RHS &X) {
- return m_FSub(m_AnyZeroFP(), X);
- }
- template <typename LHS, typename RHS>
- inline BinaryOp_match<LHS, RHS, Instruction::Mul> m_Mul(const LHS &L,
- const RHS &R) {
- return BinaryOp_match<LHS, RHS, Instruction::Mul>(L, R);
- }
- template <typename LHS, typename RHS>
- inline BinaryOp_match<LHS, RHS, Instruction::FMul> m_FMul(const LHS &L,
- const RHS &R) {
- return BinaryOp_match<LHS, RHS, Instruction::FMul>(L, R);
- }
- template <typename LHS, typename RHS>
- inline BinaryOp_match<LHS, RHS, Instruction::UDiv> m_UDiv(const LHS &L,
- const RHS &R) {
- return BinaryOp_match<LHS, RHS, Instruction::UDiv>(L, R);
- }
- template <typename LHS, typename RHS>
- inline BinaryOp_match<LHS, RHS, Instruction::SDiv> m_SDiv(const LHS &L,
- const RHS &R) {
- return BinaryOp_match<LHS, RHS, Instruction::SDiv>(L, R);
- }
- template <typename LHS, typename RHS>
- inline BinaryOp_match<LHS, RHS, Instruction::FDiv> m_FDiv(const LHS &L,
- const RHS &R) {
- return BinaryOp_match<LHS, RHS, Instruction::FDiv>(L, R);
- }
- template <typename LHS, typename RHS>
- inline BinaryOp_match<LHS, RHS, Instruction::URem> m_URem(const LHS &L,
- const RHS &R) {
- return BinaryOp_match<LHS, RHS, Instruction::URem>(L, R);
- }
- template <typename LHS, typename RHS>
- inline BinaryOp_match<LHS, RHS, Instruction::SRem> m_SRem(const LHS &L,
- const RHS &R) {
- return BinaryOp_match<LHS, RHS, Instruction::SRem>(L, R);
- }
- template <typename LHS, typename RHS>
- inline BinaryOp_match<LHS, RHS, Instruction::FRem> m_FRem(const LHS &L,
- const RHS &R) {
- return BinaryOp_match<LHS, RHS, Instruction::FRem>(L, R);
- }
- template <typename LHS, typename RHS>
- inline BinaryOp_match<LHS, RHS, Instruction::And> m_And(const LHS &L,
- const RHS &R) {
- return BinaryOp_match<LHS, RHS, Instruction::And>(L, R);
- }
- template <typename LHS, typename RHS>
- inline BinaryOp_match<LHS, RHS, Instruction::Or> m_Or(const LHS &L,
- const RHS &R) {
- return BinaryOp_match<LHS, RHS, Instruction::Or>(L, R);
- }
- template <typename LHS, typename RHS>
- inline BinaryOp_match<LHS, RHS, Instruction::Xor> m_Xor(const LHS &L,
- const RHS &R) {
- return BinaryOp_match<LHS, RHS, Instruction::Xor>(L, R);
- }
- template <typename LHS, typename RHS>
- inline BinaryOp_match<LHS, RHS, Instruction::Shl> m_Shl(const LHS &L,
- const RHS &R) {
- return BinaryOp_match<LHS, RHS, Instruction::Shl>(L, R);
- }
- template <typename LHS, typename RHS>
- inline BinaryOp_match<LHS, RHS, Instruction::LShr> m_LShr(const LHS &L,
- const RHS &R) {
- return BinaryOp_match<LHS, RHS, Instruction::LShr>(L, R);
- }
- template <typename LHS, typename RHS>
- inline BinaryOp_match<LHS, RHS, Instruction::AShr> m_AShr(const LHS &L,
- const RHS &R) {
- return BinaryOp_match<LHS, RHS, Instruction::AShr>(L, R);
- }
- template <typename LHS_t, typename RHS_t, unsigned Opcode,
- unsigned WrapFlags = 0>
- struct OverflowingBinaryOp_match {
- LHS_t L;
- RHS_t R;
- OverflowingBinaryOp_match(const LHS_t &LHS, const RHS_t &RHS)
- : L(LHS), R(RHS) {}
- template <typename OpTy> bool match(OpTy *V) {
- if (auto *Op = dyn_cast<OverflowingBinaryOperator>(V)) {
- if (Op->getOpcode() != Opcode)
- return false;
- if ((WrapFlags & OverflowingBinaryOperator::NoUnsignedWrap) &&
- !Op->hasNoUnsignedWrap())
- return false;
- if ((WrapFlags & OverflowingBinaryOperator::NoSignedWrap) &&
- !Op->hasNoSignedWrap())
- return false;
- return L.match(Op->getOperand(0)) && R.match(Op->getOperand(1));
- }
- return false;
- }
- };
- template <typename LHS, typename RHS>
- inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Add,
- OverflowingBinaryOperator::NoSignedWrap>
- m_NSWAdd(const LHS &L, const RHS &R) {
- return OverflowingBinaryOp_match<LHS, RHS, Instruction::Add,
- OverflowingBinaryOperator::NoSignedWrap>(L,
- R);
- }
- template <typename LHS, typename RHS>
- inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Sub,
- OverflowingBinaryOperator::NoSignedWrap>
- m_NSWSub(const LHS &L, const RHS &R) {
- return OverflowingBinaryOp_match<LHS, RHS, Instruction::Sub,
- OverflowingBinaryOperator::NoSignedWrap>(L,
- R);
- }
- template <typename LHS, typename RHS>
- inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Mul,
- OverflowingBinaryOperator::NoSignedWrap>
- m_NSWMul(const LHS &L, const RHS &R) {
- return OverflowingBinaryOp_match<LHS, RHS, Instruction::Mul,
- OverflowingBinaryOperator::NoSignedWrap>(L,
- R);
- }
- template <typename LHS, typename RHS>
- inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Shl,
- OverflowingBinaryOperator::NoSignedWrap>
- m_NSWShl(const LHS &L, const RHS &R) {
- return OverflowingBinaryOp_match<LHS, RHS, Instruction::Shl,
- OverflowingBinaryOperator::NoSignedWrap>(L,
- R);
- }
- template <typename LHS, typename RHS>
- inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Add,
- OverflowingBinaryOperator::NoUnsignedWrap>
- m_NUWAdd(const LHS &L, const RHS &R) {
- return OverflowingBinaryOp_match<LHS, RHS, Instruction::Add,
- OverflowingBinaryOperator::NoUnsignedWrap>(
- L, R);
- }
- template <typename LHS, typename RHS>
- inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Sub,
- OverflowingBinaryOperator::NoUnsignedWrap>
- m_NUWSub(const LHS &L, const RHS &R) {
- return OverflowingBinaryOp_match<LHS, RHS, Instruction::Sub,
- OverflowingBinaryOperator::NoUnsignedWrap>(
- L, R);
- }
- template <typename LHS, typename RHS>
- inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Mul,
- OverflowingBinaryOperator::NoUnsignedWrap>
- m_NUWMul(const LHS &L, const RHS &R) {
- return OverflowingBinaryOp_match<LHS, RHS, Instruction::Mul,
- OverflowingBinaryOperator::NoUnsignedWrap>(
- L, R);
- }
- template <typename LHS, typename RHS>
- inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Shl,
- OverflowingBinaryOperator::NoUnsignedWrap>
- m_NUWShl(const LHS &L, const RHS &R) {
- return OverflowingBinaryOp_match<LHS, RHS, Instruction::Shl,
- OverflowingBinaryOperator::NoUnsignedWrap>(
- L, R);
- }
- template <typename LHS_t, typename RHS_t, bool Commutable = false>
- struct SpecificBinaryOp_match
- : public BinaryOp_match<LHS_t, RHS_t, 0, Commutable> {
- unsigned Opcode;
- SpecificBinaryOp_match(unsigned Opcode, const LHS_t &LHS, const RHS_t &RHS)
- : BinaryOp_match<LHS_t, RHS_t, 0, Commutable>(LHS, RHS), Opcode(Opcode) {}
- template <typename OpTy> bool match(OpTy *V) {
- return BinaryOp_match<LHS_t, RHS_t, 0, Commutable>::match(Opcode, V);
- }
- };
- /// Matches a specific opcode.
- template <typename LHS, typename RHS>
- inline SpecificBinaryOp_match<LHS, RHS> m_BinOp(unsigned Opcode, const LHS &L,
- const RHS &R) {
- return SpecificBinaryOp_match<LHS, RHS>(Opcode, L, R);
- }
- //===----------------------------------------------------------------------===//
- // Class that matches a group of binary opcodes.
- //
- template <typename LHS_t, typename RHS_t, typename Predicate>
- struct BinOpPred_match : Predicate {
- LHS_t L;
- RHS_t R;
- BinOpPred_match(const LHS_t &LHS, const RHS_t &RHS) : L(LHS), R(RHS) {}
- template <typename OpTy> bool match(OpTy *V) {
- if (auto *I = dyn_cast<Instruction>(V))
- return this->isOpType(I->getOpcode()) && L.match(I->getOperand(0)) &&
- R.match(I->getOperand(1));
- if (auto *CE = dyn_cast<ConstantExpr>(V))
- return this->isOpType(CE->getOpcode()) && L.match(CE->getOperand(0)) &&
- R.match(CE->getOperand(1));
- return false;
- }
- };
- struct is_shift_op {
- bool isOpType(unsigned Opcode) { return Instruction::isShift(Opcode); }
- };
- struct is_right_shift_op {
- bool isOpType(unsigned Opcode) {
- return Opcode == Instruction::LShr || Opcode == Instruction::AShr;
- }
- };
- struct is_logical_shift_op {
- bool isOpType(unsigned Opcode) {
- return Opcode == Instruction::LShr || Opcode == Instruction::Shl;
- }
- };
- struct is_bitwiselogic_op {
- bool isOpType(unsigned Opcode) {
- return Instruction::isBitwiseLogicOp(Opcode);
- }
- };
- struct is_idiv_op {
- bool isOpType(unsigned Opcode) {
- return Opcode == Instruction::SDiv || Opcode == Instruction::UDiv;
- }
- };
- struct is_irem_op {
- bool isOpType(unsigned Opcode) {
- return Opcode == Instruction::SRem || Opcode == Instruction::URem;
- }
- };
- /// Matches shift operations.
- template <typename LHS, typename RHS>
- inline BinOpPred_match<LHS, RHS, is_shift_op> m_Shift(const LHS &L,
- const RHS &R) {
- return BinOpPred_match<LHS, RHS, is_shift_op>(L, R);
- }
- /// Matches logical shift operations.
- template <typename LHS, typename RHS>
- inline BinOpPred_match<LHS, RHS, is_right_shift_op> m_Shr(const LHS &L,
- const RHS &R) {
- return BinOpPred_match<LHS, RHS, is_right_shift_op>(L, R);
- }
- /// Matches logical shift operations.
- template <typename LHS, typename RHS>
- inline BinOpPred_match<LHS, RHS, is_logical_shift_op>
- m_LogicalShift(const LHS &L, const RHS &R) {
- return BinOpPred_match<LHS, RHS, is_logical_shift_op>(L, R);
- }
- /// Matches bitwise logic operations.
- template <typename LHS, typename RHS>
- inline BinOpPred_match<LHS, RHS, is_bitwiselogic_op>
- m_BitwiseLogic(const LHS &L, const RHS &R) {
- return BinOpPred_match<LHS, RHS, is_bitwiselogic_op>(L, R);
- }
- /// Matches integer division operations.
- template <typename LHS, typename RHS>
- inline BinOpPred_match<LHS, RHS, is_idiv_op> m_IDiv(const LHS &L,
- const RHS &R) {
- return BinOpPred_match<LHS, RHS, is_idiv_op>(L, R);
- }
- /// Matches integer remainder operations.
- template <typename LHS, typename RHS>
- inline BinOpPred_match<LHS, RHS, is_irem_op> m_IRem(const LHS &L,
- const RHS &R) {
- return BinOpPred_match<LHS, RHS, is_irem_op>(L, R);
- }
- //===----------------------------------------------------------------------===//
- // Class that matches exact binary ops.
- //
- template <typename SubPattern_t> struct Exact_match {
- SubPattern_t SubPattern;
- Exact_match(const SubPattern_t &SP) : SubPattern(SP) {}
- template <typename OpTy> bool match(OpTy *V) {
- if (auto *PEO = dyn_cast<PossiblyExactOperator>(V))
- return PEO->isExact() && SubPattern.match(V);
- return false;
- }
- };
- template <typename T> inline Exact_match<T> m_Exact(const T &SubPattern) {
- return SubPattern;
- }
- //===----------------------------------------------------------------------===//
- // Matchers for CmpInst classes
- //
- template <typename LHS_t, typename RHS_t, typename Class, typename PredicateTy,
- bool Commutable = false>
- struct CmpClass_match {
- PredicateTy &Predicate;
- LHS_t L;
- RHS_t R;
- // The evaluation order is always stable, regardless of Commutability.
- // The LHS is always matched first.
- CmpClass_match(PredicateTy &Pred, const LHS_t &LHS, const RHS_t &RHS)
- : Predicate(Pred), L(LHS), R(RHS) {}
- template <typename OpTy> bool match(OpTy *V) {
- if (auto *I = dyn_cast<Class>(V)) {
- if (L.match(I->getOperand(0)) && R.match(I->getOperand(1))) {
- Predicate = I->getPredicate();
- return true;
- } else if (Commutable && L.match(I->getOperand(1)) &&
- R.match(I->getOperand(0))) {
- Predicate = I->getSwappedPredicate();
- return true;
- }
- }
- return false;
- }
- };
- template <typename LHS, typename RHS>
- inline CmpClass_match<LHS, RHS, CmpInst, CmpInst::Predicate>
- m_Cmp(CmpInst::Predicate &Pred, const LHS &L, const RHS &R) {
- return CmpClass_match<LHS, RHS, CmpInst, CmpInst::Predicate>(Pred, L, R);
- }
- template <typename LHS, typename RHS>
- inline CmpClass_match<LHS, RHS, ICmpInst, ICmpInst::Predicate>
- m_ICmp(ICmpInst::Predicate &Pred, const LHS &L, const RHS &R) {
- return CmpClass_match<LHS, RHS, ICmpInst, ICmpInst::Predicate>(Pred, L, R);
- }
- template <typename LHS, typename RHS>
- inline CmpClass_match<LHS, RHS, FCmpInst, FCmpInst::Predicate>
- m_FCmp(FCmpInst::Predicate &Pred, const LHS &L, const RHS &R) {
- return CmpClass_match<LHS, RHS, FCmpInst, FCmpInst::Predicate>(Pred, L, R);
- }
- //===----------------------------------------------------------------------===//
- // Matchers for instructions with a given opcode and number of operands.
- //
- /// Matches instructions with Opcode and three operands.
- template <typename T0, unsigned Opcode> struct OneOps_match {
- T0 Op1;
- OneOps_match(const T0 &Op1) : Op1(Op1) {}
- template <typename OpTy> bool match(OpTy *V) {
- if (V->getValueID() == Value::InstructionVal + Opcode) {
- auto *I = cast<Instruction>(V);
- return Op1.match(I->getOperand(0));
- }
- return false;
- }
- };
- /// Matches instructions with Opcode and three operands.
- template <typename T0, typename T1, unsigned Opcode> struct TwoOps_match {
- T0 Op1;
- T1 Op2;
- TwoOps_match(const T0 &Op1, const T1 &Op2) : Op1(Op1), Op2(Op2) {}
- template <typename OpTy> bool match(OpTy *V) {
- if (V->getValueID() == Value::InstructionVal + Opcode) {
- auto *I = cast<Instruction>(V);
- return Op1.match(I->getOperand(0)) && Op2.match(I->getOperand(1));
- }
- return false;
- }
- };
- /// Matches instructions with Opcode and three operands.
- template <typename T0, typename T1, typename T2, unsigned Opcode>
- struct ThreeOps_match {
- T0 Op1;
- T1 Op2;
- T2 Op3;
- ThreeOps_match(const T0 &Op1, const T1 &Op2, const T2 &Op3)
- : Op1(Op1), Op2(Op2), Op3(Op3) {}
- template <typename OpTy> bool match(OpTy *V) {
- if (V->getValueID() == Value::InstructionVal + Opcode) {
- auto *I = cast<Instruction>(V);
- return Op1.match(I->getOperand(0)) && Op2.match(I->getOperand(1)) &&
- Op3.match(I->getOperand(2));
- }
- return false;
- }
- };
- /// Matches SelectInst.
- template <typename Cond, typename LHS, typename RHS>
- inline ThreeOps_match<Cond, LHS, RHS, Instruction::Select>
- m_Select(const Cond &C, const LHS &L, const RHS &R) {
- return ThreeOps_match<Cond, LHS, RHS, Instruction::Select>(C, L, R);
- }
- /// This matches a select of two constants, e.g.:
- /// m_SelectCst<-1, 0>(m_Value(V))
- template <int64_t L, int64_t R, typename Cond>
- inline ThreeOps_match<Cond, constantint_match<L>, constantint_match<R>,
- Instruction::Select>
- m_SelectCst(const Cond &C) {
- return m_Select(C, m_ConstantInt<L>(), m_ConstantInt<R>());
- }
- /// Matches FreezeInst.
- template <typename OpTy>
- inline OneOps_match<OpTy, Instruction::Freeze> m_Freeze(const OpTy &Op) {
- return OneOps_match<OpTy, Instruction::Freeze>(Op);
- }
- /// Matches InsertElementInst.
- template <typename Val_t, typename Elt_t, typename Idx_t>
- inline ThreeOps_match<Val_t, Elt_t, Idx_t, Instruction::InsertElement>
- m_InsertElt(const Val_t &Val, const Elt_t &Elt, const Idx_t &Idx) {
- return ThreeOps_match<Val_t, Elt_t, Idx_t, Instruction::InsertElement>(
- Val, Elt, Idx);
- }
- /// Matches ExtractElementInst.
- template <typename Val_t, typename Idx_t>
- inline TwoOps_match<Val_t, Idx_t, Instruction::ExtractElement>
- m_ExtractElt(const Val_t &Val, const Idx_t &Idx) {
- return TwoOps_match<Val_t, Idx_t, Instruction::ExtractElement>(Val, Idx);
- }
- /// Matches shuffle.
- template <typename T0, typename T1, typename T2> struct Shuffle_match {
- T0 Op1;
- T1 Op2;
- T2 Mask;
- Shuffle_match(const T0 &Op1, const T1 &Op2, const T2 &Mask)
- : Op1(Op1), Op2(Op2), Mask(Mask) {}
- template <typename OpTy> bool match(OpTy *V) {
- if (auto *I = dyn_cast<ShuffleVectorInst>(V)) {
- return Op1.match(I->getOperand(0)) && Op2.match(I->getOperand(1)) &&
- Mask.match(I->getShuffleMask());
- }
- return false;
- }
- };
- struct m_Mask {
- ArrayRef<int> &MaskRef;
- m_Mask(ArrayRef<int> &MaskRef) : MaskRef(MaskRef) {}
- bool match(ArrayRef<int> Mask) {
- MaskRef = Mask;
- return true;
- }
- };
- struct m_ZeroMask {
- bool match(ArrayRef<int> Mask) {
- return all_of(Mask, [](int Elem) { return Elem == 0 || Elem == -1; });
- }
- };
- struct m_SpecificMask {
- ArrayRef<int> &MaskRef;
- m_SpecificMask(ArrayRef<int> &MaskRef) : MaskRef(MaskRef) {}
- bool match(ArrayRef<int> Mask) { return MaskRef == Mask; }
- };
- struct m_SplatOrUndefMask {
- int &SplatIndex;
- m_SplatOrUndefMask(int &SplatIndex) : SplatIndex(SplatIndex) {}
- bool match(ArrayRef<int> Mask) {
- auto First = find_if(Mask, [](int Elem) { return Elem != -1; });
- if (First == Mask.end())
- return false;
- SplatIndex = *First;
- return all_of(Mask,
- [First](int Elem) { return Elem == *First || Elem == -1; });
- }
- };
- /// Matches ShuffleVectorInst independently of mask value.
- template <typename V1_t, typename V2_t>
- inline TwoOps_match<V1_t, V2_t, Instruction::ShuffleVector>
- m_Shuffle(const V1_t &v1, const V2_t &v2) {
- return TwoOps_match<V1_t, V2_t, Instruction::ShuffleVector>(v1, v2);
- }
- template <typename V1_t, typename V2_t, typename Mask_t>
- inline Shuffle_match<V1_t, V2_t, Mask_t>
- m_Shuffle(const V1_t &v1, const V2_t &v2, const Mask_t &mask) {
- return Shuffle_match<V1_t, V2_t, Mask_t>(v1, v2, mask);
- }
- /// Matches LoadInst.
- template <typename OpTy>
- inline OneOps_match<OpTy, Instruction::Load> m_Load(const OpTy &Op) {
- return OneOps_match<OpTy, Instruction::Load>(Op);
- }
- /// Matches StoreInst.
- template <typename ValueOpTy, typename PointerOpTy>
- inline TwoOps_match<ValueOpTy, PointerOpTy, Instruction::Store>
- m_Store(const ValueOpTy &ValueOp, const PointerOpTy &PointerOp) {
- return TwoOps_match<ValueOpTy, PointerOpTy, Instruction::Store>(ValueOp,
- PointerOp);
- }
- //===----------------------------------------------------------------------===//
- // Matchers for CastInst classes
- //
- template <typename Op_t, unsigned Opcode> struct CastClass_match {
- Op_t Op;
- CastClass_match(const Op_t &OpMatch) : Op(OpMatch) {}
- template <typename OpTy> bool match(OpTy *V) {
- if (auto *O = dyn_cast<Operator>(V))
- return O->getOpcode() == Opcode && Op.match(O->getOperand(0));
- return false;
- }
- };
- /// Matches BitCast.
- template <typename OpTy>
- inline CastClass_match<OpTy, Instruction::BitCast> m_BitCast(const OpTy &Op) {
- return CastClass_match<OpTy, Instruction::BitCast>(Op);
- }
- /// Matches PtrToInt.
- template <typename OpTy>
- inline CastClass_match<OpTy, Instruction::PtrToInt> m_PtrToInt(const OpTy &Op) {
- return CastClass_match<OpTy, Instruction::PtrToInt>(Op);
- }
- /// Matches IntToPtr.
- template <typename OpTy>
- inline CastClass_match<OpTy, Instruction::IntToPtr> m_IntToPtr(const OpTy &Op) {
- return CastClass_match<OpTy, Instruction::IntToPtr>(Op);
- }
- /// Matches Trunc.
- template <typename OpTy>
- inline CastClass_match<OpTy, Instruction::Trunc> m_Trunc(const OpTy &Op) {
- return CastClass_match<OpTy, Instruction::Trunc>(Op);
- }
- template <typename OpTy>
- inline match_combine_or<CastClass_match<OpTy, Instruction::Trunc>, OpTy>
- m_TruncOrSelf(const OpTy &Op) {
- return m_CombineOr(m_Trunc(Op), Op);
- }
- /// Matches SExt.
- template <typename OpTy>
- inline CastClass_match<OpTy, Instruction::SExt> m_SExt(const OpTy &Op) {
- return CastClass_match<OpTy, Instruction::SExt>(Op);
- }
- /// Matches ZExt.
- template <typename OpTy>
- inline CastClass_match<OpTy, Instruction::ZExt> m_ZExt(const OpTy &Op) {
- return CastClass_match<OpTy, Instruction::ZExt>(Op);
- }
- template <typename OpTy>
- inline match_combine_or<CastClass_match<OpTy, Instruction::ZExt>, OpTy>
- m_ZExtOrSelf(const OpTy &Op) {
- return m_CombineOr(m_ZExt(Op), Op);
- }
- template <typename OpTy>
- inline match_combine_or<CastClass_match<OpTy, Instruction::SExt>, OpTy>
- m_SExtOrSelf(const OpTy &Op) {
- return m_CombineOr(m_SExt(Op), Op);
- }
- template <typename OpTy>
- inline match_combine_or<CastClass_match<OpTy, Instruction::ZExt>,
- CastClass_match<OpTy, Instruction::SExt>>
- m_ZExtOrSExt(const OpTy &Op) {
- return m_CombineOr(m_ZExt(Op), m_SExt(Op));
- }
- template <typename OpTy>
- inline match_combine_or<
- match_combine_or<CastClass_match<OpTy, Instruction::ZExt>,
- CastClass_match<OpTy, Instruction::SExt>>,
- OpTy>
- m_ZExtOrSExtOrSelf(const OpTy &Op) {
- return m_CombineOr(m_ZExtOrSExt(Op), Op);
- }
- template <typename OpTy>
- inline CastClass_match<OpTy, Instruction::UIToFP> m_UIToFP(const OpTy &Op) {
- return CastClass_match<OpTy, Instruction::UIToFP>(Op);
- }
- template <typename OpTy>
- inline CastClass_match<OpTy, Instruction::SIToFP> m_SIToFP(const OpTy &Op) {
- return CastClass_match<OpTy, Instruction::SIToFP>(Op);
- }
- template <typename OpTy>
- inline CastClass_match<OpTy, Instruction::FPToUI> m_FPToUI(const OpTy &Op) {
- return CastClass_match<OpTy, Instruction::FPToUI>(Op);
- }
- template <typename OpTy>
- inline CastClass_match<OpTy, Instruction::FPToSI> m_FPToSI(const OpTy &Op) {
- return CastClass_match<OpTy, Instruction::FPToSI>(Op);
- }
- template <typename OpTy>
- inline CastClass_match<OpTy, Instruction::FPTrunc> m_FPTrunc(const OpTy &Op) {
- return CastClass_match<OpTy, Instruction::FPTrunc>(Op);
- }
- template <typename OpTy>
- inline CastClass_match<OpTy, Instruction::FPExt> m_FPExt(const OpTy &Op) {
- return CastClass_match<OpTy, Instruction::FPExt>(Op);
- }
- //===----------------------------------------------------------------------===//
- // Matchers for control flow.
- //
- struct br_match {
- BasicBlock *&Succ;
- br_match(BasicBlock *&Succ) : Succ(Succ) {}
- template <typename OpTy> bool match(OpTy *V) {
- if (auto *BI = dyn_cast<BranchInst>(V))
- if (BI->isUnconditional()) {
- Succ = BI->getSuccessor(0);
- return true;
- }
- return false;
- }
- };
- inline br_match m_UnconditionalBr(BasicBlock *&Succ) { return br_match(Succ); }
- template <typename Cond_t, typename TrueBlock_t, typename FalseBlock_t>
- struct brc_match {
- Cond_t Cond;
- TrueBlock_t T;
- FalseBlock_t F;
- brc_match(const Cond_t &C, const TrueBlock_t &t, const FalseBlock_t &f)
- : Cond(C), T(t), F(f) {}
- template <typename OpTy> bool match(OpTy *V) {
- if (auto *BI = dyn_cast<BranchInst>(V))
- if (BI->isConditional() && Cond.match(BI->getCondition()))
- return T.match(BI->getSuccessor(0)) && F.match(BI->getSuccessor(1));
- return false;
- }
- };
- template <typename Cond_t>
- inline brc_match<Cond_t, bind_ty<BasicBlock>, bind_ty<BasicBlock>>
- m_Br(const Cond_t &C, BasicBlock *&T, BasicBlock *&F) {
- return brc_match<Cond_t, bind_ty<BasicBlock>, bind_ty<BasicBlock>>(
- C, m_BasicBlock(T), m_BasicBlock(F));
- }
- template <typename Cond_t, typename TrueBlock_t, typename FalseBlock_t>
- inline brc_match<Cond_t, TrueBlock_t, FalseBlock_t>
- m_Br(const Cond_t &C, const TrueBlock_t &T, const FalseBlock_t &F) {
- return brc_match<Cond_t, TrueBlock_t, FalseBlock_t>(C, T, F);
- }
- //===----------------------------------------------------------------------===//
- // Matchers for max/min idioms, eg: "select (sgt x, y), x, y" -> smax(x,y).
- //
- template <typename CmpInst_t, typename LHS_t, typename RHS_t, typename Pred_t,
- bool Commutable = false>
- struct MaxMin_match {
- using PredType = Pred_t;
- LHS_t L;
- RHS_t R;
- // The evaluation order is always stable, regardless of Commutability.
- // The LHS is always matched first.
- MaxMin_match(const LHS_t &LHS, const RHS_t &RHS) : L(LHS), R(RHS) {}
- template <typename OpTy> bool match(OpTy *V) {
- if (auto *II = dyn_cast<IntrinsicInst>(V)) {
- Intrinsic::ID IID = II->getIntrinsicID();
- if ((IID == Intrinsic::smax && Pred_t::match(ICmpInst::ICMP_SGT)) ||
- (IID == Intrinsic::smin && Pred_t::match(ICmpInst::ICMP_SLT)) ||
- (IID == Intrinsic::umax && Pred_t::match(ICmpInst::ICMP_UGT)) ||
- (IID == Intrinsic::umin && Pred_t::match(ICmpInst::ICMP_ULT))) {
- Value *LHS = II->getOperand(0), *RHS = II->getOperand(1);
- return (L.match(LHS) && R.match(RHS)) ||
- (Commutable && L.match(RHS) && R.match(LHS));
- }
- }
- // Look for "(x pred y) ? x : y" or "(x pred y) ? y : x".
- auto *SI = dyn_cast<SelectInst>(V);
- if (!SI)
- return false;
- auto *Cmp = dyn_cast<CmpInst_t>(SI->getCondition());
- if (!Cmp)
- return false;
- // At this point we have a select conditioned on a comparison. Check that
- // it is the values returned by the select that are being compared.
- auto *TrueVal = SI->getTrueValue();
- auto *FalseVal = SI->getFalseValue();
- auto *LHS = Cmp->getOperand(0);
- auto *RHS = Cmp->getOperand(1);
- if ((TrueVal != LHS || FalseVal != RHS) &&
- (TrueVal != RHS || FalseVal != LHS))
- return false;
- typename CmpInst_t::Predicate Pred =
- LHS == TrueVal ? Cmp->getPredicate() : Cmp->getInversePredicate();
- // Does "(x pred y) ? x : y" represent the desired max/min operation?
- if (!Pred_t::match(Pred))
- return false;
- // It does! Bind the operands.
- return (L.match(LHS) && R.match(RHS)) ||
- (Commutable && L.match(RHS) && R.match(LHS));
- }
- };
- /// Helper class for identifying signed max predicates.
- struct smax_pred_ty {
- static bool match(ICmpInst::Predicate Pred) {
- return Pred == CmpInst::ICMP_SGT || Pred == CmpInst::ICMP_SGE;
- }
- };
- /// Helper class for identifying signed min predicates.
- struct smin_pred_ty {
- static bool match(ICmpInst::Predicate Pred) {
- return Pred == CmpInst::ICMP_SLT || Pred == CmpInst::ICMP_SLE;
- }
- };
- /// Helper class for identifying unsigned max predicates.
- struct umax_pred_ty {
- static bool match(ICmpInst::Predicate Pred) {
- return Pred == CmpInst::ICMP_UGT || Pred == CmpInst::ICMP_UGE;
- }
- };
- /// Helper class for identifying unsigned min predicates.
- struct umin_pred_ty {
- static bool match(ICmpInst::Predicate Pred) {
- return Pred == CmpInst::ICMP_ULT || Pred == CmpInst::ICMP_ULE;
- }
- };
- /// Helper class for identifying ordered max predicates.
- struct ofmax_pred_ty {
- static bool match(FCmpInst::Predicate Pred) {
- return Pred == CmpInst::FCMP_OGT || Pred == CmpInst::FCMP_OGE;
- }
- };
- /// Helper class for identifying ordered min predicates.
- struct ofmin_pred_ty {
- static bool match(FCmpInst::Predicate Pred) {
- return Pred == CmpInst::FCMP_OLT || Pred == CmpInst::FCMP_OLE;
- }
- };
- /// Helper class for identifying unordered max predicates.
- struct ufmax_pred_ty {
- static bool match(FCmpInst::Predicate Pred) {
- return Pred == CmpInst::FCMP_UGT || Pred == CmpInst::FCMP_UGE;
- }
- };
- /// Helper class for identifying unordered min predicates.
- struct ufmin_pred_ty {
- static bool match(FCmpInst::Predicate Pred) {
- return Pred == CmpInst::FCMP_ULT || Pred == CmpInst::FCMP_ULE;
- }
- };
- template <typename LHS, typename RHS>
- inline MaxMin_match<ICmpInst, LHS, RHS, smax_pred_ty> m_SMax(const LHS &L,
- const RHS &R) {
- return MaxMin_match<ICmpInst, LHS, RHS, smax_pred_ty>(L, R);
- }
- template <typename LHS, typename RHS>
- inline MaxMin_match<ICmpInst, LHS, RHS, smin_pred_ty> m_SMin(const LHS &L,
- const RHS &R) {
- return MaxMin_match<ICmpInst, LHS, RHS, smin_pred_ty>(L, R);
- }
- template <typename LHS, typename RHS>
- inline MaxMin_match<ICmpInst, LHS, RHS, umax_pred_ty> m_UMax(const LHS &L,
- const RHS &R) {
- return MaxMin_match<ICmpInst, LHS, RHS, umax_pred_ty>(L, R);
- }
- template <typename LHS, typename RHS>
- inline MaxMin_match<ICmpInst, LHS, RHS, umin_pred_ty> m_UMin(const LHS &L,
- const RHS &R) {
- return MaxMin_match<ICmpInst, LHS, RHS, umin_pred_ty>(L, R);
- }
- template <typename LHS, typename RHS>
- inline match_combine_or<
- match_combine_or<MaxMin_match<ICmpInst, LHS, RHS, smax_pred_ty>,
- MaxMin_match<ICmpInst, LHS, RHS, smin_pred_ty>>,
- match_combine_or<MaxMin_match<ICmpInst, LHS, RHS, umax_pred_ty>,
- MaxMin_match<ICmpInst, LHS, RHS, umin_pred_ty>>>
- m_MaxOrMin(const LHS &L, const RHS &R) {
- return m_CombineOr(m_CombineOr(m_SMax(L, R), m_SMin(L, R)),
- m_CombineOr(m_UMax(L, R), m_UMin(L, R)));
- }
- /// Match an 'ordered' floating point maximum function.
- /// Floating point has one special value 'NaN'. Therefore, there is no total
- /// order. However, if we can ignore the 'NaN' value (for example, because of a
- /// 'no-nans-float-math' flag) a combination of a fcmp and select has 'maximum'
- /// semantics. In the presence of 'NaN' we have to preserve the original
- /// select(fcmp(ogt/ge, L, R), L, R) semantics matched by this predicate.
- ///
- /// max(L, R) iff L and R are not NaN
- /// m_OrdFMax(L, R) = R iff L or R are NaN
- template <typename LHS, typename RHS>
- inline MaxMin_match<FCmpInst, LHS, RHS, ofmax_pred_ty> m_OrdFMax(const LHS &L,
- const RHS &R) {
- return MaxMin_match<FCmpInst, LHS, RHS, ofmax_pred_ty>(L, R);
- }
- /// Match an 'ordered' floating point minimum function.
- /// Floating point has one special value 'NaN'. Therefore, there is no total
- /// order. However, if we can ignore the 'NaN' value (for example, because of a
- /// 'no-nans-float-math' flag) a combination of a fcmp and select has 'minimum'
- /// semantics. In the presence of 'NaN' we have to preserve the original
- /// select(fcmp(olt/le, L, R), L, R) semantics matched by this predicate.
- ///
- /// min(L, R) iff L and R are not NaN
- /// m_OrdFMin(L, R) = R iff L or R are NaN
- template <typename LHS, typename RHS>
- inline MaxMin_match<FCmpInst, LHS, RHS, ofmin_pred_ty> m_OrdFMin(const LHS &L,
- const RHS &R) {
- return MaxMin_match<FCmpInst, LHS, RHS, ofmin_pred_ty>(L, R);
- }
- /// Match an 'unordered' floating point maximum function.
- /// Floating point has one special value 'NaN'. Therefore, there is no total
- /// order. However, if we can ignore the 'NaN' value (for example, because of a
- /// 'no-nans-float-math' flag) a combination of a fcmp and select has 'maximum'
- /// semantics. In the presence of 'NaN' we have to preserve the original
- /// select(fcmp(ugt/ge, L, R), L, R) semantics matched by this predicate.
- ///
- /// max(L, R) iff L and R are not NaN
- /// m_UnordFMax(L, R) = L iff L or R are NaN
- template <typename LHS, typename RHS>
- inline MaxMin_match<FCmpInst, LHS, RHS, ufmax_pred_ty>
- m_UnordFMax(const LHS &L, const RHS &R) {
- return MaxMin_match<FCmpInst, LHS, RHS, ufmax_pred_ty>(L, R);
- }
- /// Match an 'unordered' floating point minimum function.
- /// Floating point has one special value 'NaN'. Therefore, there is no total
- /// order. However, if we can ignore the 'NaN' value (for example, because of a
- /// 'no-nans-float-math' flag) a combination of a fcmp and select has 'minimum'
- /// semantics. In the presence of 'NaN' we have to preserve the original
- /// select(fcmp(ult/le, L, R), L, R) semantics matched by this predicate.
- ///
- /// min(L, R) iff L and R are not NaN
- /// m_UnordFMin(L, R) = L iff L or R are NaN
- template <typename LHS, typename RHS>
- inline MaxMin_match<FCmpInst, LHS, RHS, ufmin_pred_ty>
- m_UnordFMin(const LHS &L, const RHS &R) {
- return MaxMin_match<FCmpInst, LHS, RHS, ufmin_pred_ty>(L, R);
- }
- //===----------------------------------------------------------------------===//
- // Matchers for overflow check patterns: e.g. (a + b) u< a, (a ^ -1) <u b
- // Note that S might be matched to other instructions than AddInst.
- //
- template <typename LHS_t, typename RHS_t, typename Sum_t>
- struct UAddWithOverflow_match {
- LHS_t L;
- RHS_t R;
- Sum_t S;
- UAddWithOverflow_match(const LHS_t &L, const RHS_t &R, const Sum_t &S)
- : L(L), R(R), S(S) {}
- template <typename OpTy> bool match(OpTy *V) {
- Value *ICmpLHS, *ICmpRHS;
- ICmpInst::Predicate Pred;
- if (!m_ICmp(Pred, m_Value(ICmpLHS), m_Value(ICmpRHS)).match(V))
- return false;
- Value *AddLHS, *AddRHS;
- auto AddExpr = m_Add(m_Value(AddLHS), m_Value(AddRHS));
- // (a + b) u< a, (a + b) u< b
- if (Pred == ICmpInst::ICMP_ULT)
- if (AddExpr.match(ICmpLHS) && (ICmpRHS == AddLHS || ICmpRHS == AddRHS))
- return L.match(AddLHS) && R.match(AddRHS) && S.match(ICmpLHS);
- // a >u (a + b), b >u (a + b)
- if (Pred == ICmpInst::ICMP_UGT)
- if (AddExpr.match(ICmpRHS) && (ICmpLHS == AddLHS || ICmpLHS == AddRHS))
- return L.match(AddLHS) && R.match(AddRHS) && S.match(ICmpRHS);
- Value *Op1;
- auto XorExpr = m_OneUse(m_Xor(m_Value(Op1), m_AllOnes()));
- // (a ^ -1) <u b
- if (Pred == ICmpInst::ICMP_ULT) {
- if (XorExpr.match(ICmpLHS))
- return L.match(Op1) && R.match(ICmpRHS) && S.match(ICmpLHS);
- }
- // b > u (a ^ -1)
- if (Pred == ICmpInst::ICMP_UGT) {
- if (XorExpr.match(ICmpRHS))
- return L.match(Op1) && R.match(ICmpLHS) && S.match(ICmpRHS);
- }
- // Match special-case for increment-by-1.
- if (Pred == ICmpInst::ICMP_EQ) {
- // (a + 1) == 0
- // (1 + a) == 0
- if (AddExpr.match(ICmpLHS) && m_ZeroInt().match(ICmpRHS) &&
- (m_One().match(AddLHS) || m_One().match(AddRHS)))
- return L.match(AddLHS) && R.match(AddRHS) && S.match(ICmpLHS);
- // 0 == (a + 1)
- // 0 == (1 + a)
- if (m_ZeroInt().match(ICmpLHS) && AddExpr.match(ICmpRHS) &&
- (m_One().match(AddLHS) || m_One().match(AddRHS)))
- return L.match(AddLHS) && R.match(AddRHS) && S.match(ICmpRHS);
- }
- return false;
- }
- };
- /// Match an icmp instruction checking for unsigned overflow on addition.
- ///
- /// S is matched to the addition whose result is being checked for overflow, and
- /// L and R are matched to the LHS and RHS of S.
- template <typename LHS_t, typename RHS_t, typename Sum_t>
- UAddWithOverflow_match<LHS_t, RHS_t, Sum_t>
- m_UAddWithOverflow(const LHS_t &L, const RHS_t &R, const Sum_t &S) {
- return UAddWithOverflow_match<LHS_t, RHS_t, Sum_t>(L, R, S);
- }
- template <typename Opnd_t> struct Argument_match {
- unsigned OpI;
- Opnd_t Val;
- Argument_match(unsigned OpIdx, const Opnd_t &V) : OpI(OpIdx), Val(V) {}
- template <typename OpTy> bool match(OpTy *V) {
- // FIXME: Should likely be switched to use `CallBase`.
- if (const auto *CI = dyn_cast<CallInst>(V))
- return Val.match(CI->getArgOperand(OpI));
- return false;
- }
- };
- /// Match an argument.
- template <unsigned OpI, typename Opnd_t>
- inline Argument_match<Opnd_t> m_Argument(const Opnd_t &Op) {
- return Argument_match<Opnd_t>(OpI, Op);
- }
- /// Intrinsic matchers.
- struct IntrinsicID_match {
- unsigned ID;
- IntrinsicID_match(Intrinsic::ID IntrID) : ID(IntrID) {}
- template <typename OpTy> bool match(OpTy *V) {
- if (const auto *CI = dyn_cast<CallInst>(V))
- if (const auto *F = CI->getCalledFunction())
- return F->getIntrinsicID() == ID;
- return false;
- }
- };
- /// Intrinsic matches are combinations of ID matchers, and argument
- /// matchers. Higher arity matcher are defined recursively in terms of and-ing
- /// them with lower arity matchers. Here's some convenient typedefs for up to
- /// several arguments, and more can be added as needed
- template <typename T0 = void, typename T1 = void, typename T2 = void,
- typename T3 = void, typename T4 = void, typename T5 = void,
- typename T6 = void, typename T7 = void, typename T8 = void,
- typename T9 = void, typename T10 = void>
- struct m_Intrinsic_Ty;
- template <typename T0> struct m_Intrinsic_Ty<T0> {
- using Ty = match_combine_and<IntrinsicID_match, Argument_match<T0>>;
- };
- template <typename T0, typename T1> struct m_Intrinsic_Ty<T0, T1> {
- using Ty =
- match_combine_and<typename m_Intrinsic_Ty<T0>::Ty, Argument_match<T1>>;
- };
- template <typename T0, typename T1, typename T2>
- struct m_Intrinsic_Ty<T0, T1, T2> {
- using Ty = match_combine_and<typename m_Intrinsic_Ty<T0, T1>::Ty,
- Argument_match<T2>>;
- };
- template <typename T0, typename T1, typename T2, typename T3>
- struct m_Intrinsic_Ty<T0, T1, T2, T3> {
- using Ty = match_combine_and<typename m_Intrinsic_Ty<T0, T1, T2>::Ty,
- Argument_match<T3>>;
- };
- template <typename T0, typename T1, typename T2, typename T3, typename T4>
- struct m_Intrinsic_Ty<T0, T1, T2, T3, T4> {
- using Ty = match_combine_and<typename m_Intrinsic_Ty<T0, T1, T2, T3>::Ty,
- Argument_match<T4>>;
- };
- template <typename T0, typename T1, typename T2, typename T3, typename T4,
- typename T5>
- struct m_Intrinsic_Ty<T0, T1, T2, T3, T4, T5> {
- using Ty = match_combine_and<typename m_Intrinsic_Ty<T0, T1, T2, T3, T4>::Ty,
- Argument_match<T5>>;
- };
- /// Match intrinsic calls like this:
- /// m_Intrinsic<Intrinsic::fabs>(m_Value(X))
- template <Intrinsic::ID IntrID> inline IntrinsicID_match m_Intrinsic() {
- return IntrinsicID_match(IntrID);
- }
- /// Matches MaskedLoad Intrinsic.
- template <typename Opnd0, typename Opnd1, typename Opnd2, typename Opnd3>
- inline typename m_Intrinsic_Ty<Opnd0, Opnd1, Opnd2, Opnd3>::Ty
- m_MaskedLoad(const Opnd0 &Op0, const Opnd1 &Op1, const Opnd2 &Op2,
- const Opnd3 &Op3) {
- return m_Intrinsic<Intrinsic::masked_load>(Op0, Op1, Op2, Op3);
- }
- /// Matches MaskedGather Intrinsic.
- template <typename Opnd0, typename Opnd1, typename Opnd2, typename Opnd3>
- inline typename m_Intrinsic_Ty<Opnd0, Opnd1, Opnd2, Opnd3>::Ty
- m_MaskedGather(const Opnd0 &Op0, const Opnd1 &Op1, const Opnd2 &Op2,
- const Opnd3 &Op3) {
- return m_Intrinsic<Intrinsic::masked_gather>(Op0, Op1, Op2, Op3);
- }
- template <Intrinsic::ID IntrID, typename T0>
- inline typename m_Intrinsic_Ty<T0>::Ty m_Intrinsic(const T0 &Op0) {
- return m_CombineAnd(m_Intrinsic<IntrID>(), m_Argument<0>(Op0));
- }
- template <Intrinsic::ID IntrID, typename T0, typename T1>
- inline typename m_Intrinsic_Ty<T0, T1>::Ty m_Intrinsic(const T0 &Op0,
- const T1 &Op1) {
- return m_CombineAnd(m_Intrinsic<IntrID>(Op0), m_Argument<1>(Op1));
- }
- template <Intrinsic::ID IntrID, typename T0, typename T1, typename T2>
- inline typename m_Intrinsic_Ty<T0, T1, T2>::Ty
- m_Intrinsic(const T0 &Op0, const T1 &Op1, const T2 &Op2) {
- return m_CombineAnd(m_Intrinsic<IntrID>(Op0, Op1), m_Argument<2>(Op2));
- }
- template <Intrinsic::ID IntrID, typename T0, typename T1, typename T2,
- typename T3>
- inline typename m_Intrinsic_Ty<T0, T1, T2, T3>::Ty
- m_Intrinsic(const T0 &Op0, const T1 &Op1, const T2 &Op2, const T3 &Op3) {
- return m_CombineAnd(m_Intrinsic<IntrID>(Op0, Op1, Op2), m_Argument<3>(Op3));
- }
- template <Intrinsic::ID IntrID, typename T0, typename T1, typename T2,
- typename T3, typename T4>
- inline typename m_Intrinsic_Ty<T0, T1, T2, T3, T4>::Ty
- m_Intrinsic(const T0 &Op0, const T1 &Op1, const T2 &Op2, const T3 &Op3,
- const T4 &Op4) {
- return m_CombineAnd(m_Intrinsic<IntrID>(Op0, Op1, Op2, Op3),
- m_Argument<4>(Op4));
- }
- template <Intrinsic::ID IntrID, typename T0, typename T1, typename T2,
- typename T3, typename T4, typename T5>
- inline typename m_Intrinsic_Ty<T0, T1, T2, T3, T4, T5>::Ty
- m_Intrinsic(const T0 &Op0, const T1 &Op1, const T2 &Op2, const T3 &Op3,
- const T4 &Op4, const T5 &Op5) {
- return m_CombineAnd(m_Intrinsic<IntrID>(Op0, Op1, Op2, Op3, Op4),
- m_Argument<5>(Op5));
- }
- // Helper intrinsic matching specializations.
- template <typename Opnd0>
- inline typename m_Intrinsic_Ty<Opnd0>::Ty m_BitReverse(const Opnd0 &Op0) {
- return m_Intrinsic<Intrinsic::bitreverse>(Op0);
- }
- template <typename Opnd0>
- inline typename m_Intrinsic_Ty<Opnd0>::Ty m_BSwap(const Opnd0 &Op0) {
- return m_Intrinsic<Intrinsic::bswap>(Op0);
- }
- template <typename Opnd0>
- inline typename m_Intrinsic_Ty<Opnd0>::Ty m_FAbs(const Opnd0 &Op0) {
- return m_Intrinsic<Intrinsic::fabs>(Op0);
- }
- template <typename Opnd0>
- inline typename m_Intrinsic_Ty<Opnd0>::Ty m_FCanonicalize(const Opnd0 &Op0) {
- return m_Intrinsic<Intrinsic::canonicalize>(Op0);
- }
- template <typename Opnd0, typename Opnd1>
- inline typename m_Intrinsic_Ty<Opnd0, Opnd1>::Ty m_FMin(const Opnd0 &Op0,
- const Opnd1 &Op1) {
- return m_Intrinsic<Intrinsic::minnum>(Op0, Op1);
- }
- template <typename Opnd0, typename Opnd1>
- inline typename m_Intrinsic_Ty<Opnd0, Opnd1>::Ty m_FMax(const Opnd0 &Op0,
- const Opnd1 &Op1) {
- return m_Intrinsic<Intrinsic::maxnum>(Op0, Op1);
- }
- template <typename Opnd0, typename Opnd1, typename Opnd2>
- inline typename m_Intrinsic_Ty<Opnd0, Opnd1, Opnd2>::Ty
- m_FShl(const Opnd0 &Op0, const Opnd1 &Op1, const Opnd2 &Op2) {
- return m_Intrinsic<Intrinsic::fshl>(Op0, Op1, Op2);
- }
- template <typename Opnd0, typename Opnd1, typename Opnd2>
- inline typename m_Intrinsic_Ty<Opnd0, Opnd1, Opnd2>::Ty
- m_FShr(const Opnd0 &Op0, const Opnd1 &Op1, const Opnd2 &Op2) {
- return m_Intrinsic<Intrinsic::fshr>(Op0, Op1, Op2);
- }
- template <typename Opnd0>
- inline typename m_Intrinsic_Ty<Opnd0>::Ty m_Sqrt(const Opnd0 &Op0) {
- return m_Intrinsic<Intrinsic::sqrt>(Op0);
- }
- template <typename Opnd0, typename Opnd1>
- inline typename m_Intrinsic_Ty<Opnd0, Opnd1>::Ty m_CopySign(const Opnd0 &Op0,
- const Opnd1 &Op1) {
- return m_Intrinsic<Intrinsic::copysign>(Op0, Op1);
- }
- template <typename Opnd0>
- inline typename m_Intrinsic_Ty<Opnd0>::Ty m_VecReverse(const Opnd0 &Op0) {
- return m_Intrinsic<Intrinsic::experimental_vector_reverse>(Op0);
- }
- //===----------------------------------------------------------------------===//
- // Matchers for two-operands operators with the operators in either order
- //
- /// Matches a BinaryOperator with LHS and RHS in either order.
- template <typename LHS, typename RHS>
- inline AnyBinaryOp_match<LHS, RHS, true> m_c_BinOp(const LHS &L, const RHS &R) {
- return AnyBinaryOp_match<LHS, RHS, true>(L, R);
- }
- /// Matches an ICmp with a predicate over LHS and RHS in either order.
- /// Swaps the predicate if operands are commuted.
- template <typename LHS, typename RHS>
- inline CmpClass_match<LHS, RHS, ICmpInst, ICmpInst::Predicate, true>
- m_c_ICmp(ICmpInst::Predicate &Pred, const LHS &L, const RHS &R) {
- return CmpClass_match<LHS, RHS, ICmpInst, ICmpInst::Predicate, true>(Pred, L,
- R);
- }
- /// Matches a specific opcode with LHS and RHS in either order.
- template <typename LHS, typename RHS>
- inline SpecificBinaryOp_match<LHS, RHS, true>
- m_c_BinOp(unsigned Opcode, const LHS &L, const RHS &R) {
- return SpecificBinaryOp_match<LHS, RHS, true>(Opcode, L, R);
- }
- /// Matches a Add with LHS and RHS in either order.
- template <typename LHS, typename RHS>
- inline BinaryOp_match<LHS, RHS, Instruction::Add, true> m_c_Add(const LHS &L,
- const RHS &R) {
- return BinaryOp_match<LHS, RHS, Instruction::Add, true>(L, R);
- }
- /// Matches a Mul with LHS and RHS in either order.
- template <typename LHS, typename RHS>
- inline BinaryOp_match<LHS, RHS, Instruction::Mul, true> m_c_Mul(const LHS &L,
- const RHS &R) {
- return BinaryOp_match<LHS, RHS, Instruction::Mul, true>(L, R);
- }
- /// Matches an And with LHS and RHS in either order.
- template <typename LHS, typename RHS>
- inline BinaryOp_match<LHS, RHS, Instruction::And, true> m_c_And(const LHS &L,
- const RHS &R) {
- return BinaryOp_match<LHS, RHS, Instruction::And, true>(L, R);
- }
- /// Matches an Or with LHS and RHS in either order.
- template <typename LHS, typename RHS>
- inline BinaryOp_match<LHS, RHS, Instruction::Or, true> m_c_Or(const LHS &L,
- const RHS &R) {
- return BinaryOp_match<LHS, RHS, Instruction::Or, true>(L, R);
- }
- /// Matches an Xor with LHS and RHS in either order.
- template <typename LHS, typename RHS>
- inline BinaryOp_match<LHS, RHS, Instruction::Xor, true> m_c_Xor(const LHS &L,
- const RHS &R) {
- return BinaryOp_match<LHS, RHS, Instruction::Xor, true>(L, R);
- }
- /// Matches a 'Neg' as 'sub 0, V'.
- template <typename ValTy>
- inline BinaryOp_match<cst_pred_ty<is_zero_int>, ValTy, Instruction::Sub>
- m_Neg(const ValTy &V) {
- return m_Sub(m_ZeroInt(), V);
- }
- /// Matches a 'Neg' as 'sub nsw 0, V'.
- template <typename ValTy>
- inline OverflowingBinaryOp_match<cst_pred_ty<is_zero_int>, ValTy,
- Instruction::Sub,
- OverflowingBinaryOperator::NoSignedWrap>
- m_NSWNeg(const ValTy &V) {
- return m_NSWSub(m_ZeroInt(), V);
- }
- /// Matches a 'Not' as 'xor V, -1' or 'xor -1, V'.
- /// NOTE: we first match the 'Not' (by matching '-1'),
- /// and only then match the inner matcher!
- template <typename ValTy>
- inline BinaryOp_match<cst_pred_ty<is_all_ones>, ValTy, Instruction::Xor, true>
- m_Not(const ValTy &V) {
- return m_c_Xor(m_AllOnes(), V);
- }
- template <typename ValTy> struct NotForbidUndef_match {
- ValTy Val;
- NotForbidUndef_match(const ValTy &V) : Val(V) {}
- template <typename OpTy> bool match(OpTy *V) {
- // We do not use m_c_Xor because that could match an arbitrary APInt that is
- // not -1 as C and then fail to match the other operand if it is -1.
- // This code should still work even when both operands are constants.
- Value *X;
- const APInt *C;
- if (m_Xor(m_Value(X), m_APIntForbidUndef(C)).match(V) && C->isAllOnes())
- return Val.match(X);
- if (m_Xor(m_APIntForbidUndef(C), m_Value(X)).match(V) && C->isAllOnes())
- return Val.match(X);
- return false;
- }
- };
- /// Matches a bitwise 'not' as 'xor V, -1' or 'xor -1, V'. For vectors, the
- /// constant value must be composed of only -1 scalar elements.
- template <typename ValTy>
- inline NotForbidUndef_match<ValTy> m_NotForbidUndef(const ValTy &V) {
- return NotForbidUndef_match<ValTy>(V);
- }
- /// Matches an SMin with LHS and RHS in either order.
- template <typename LHS, typename RHS>
- inline MaxMin_match<ICmpInst, LHS, RHS, smin_pred_ty, true>
- m_c_SMin(const LHS &L, const RHS &R) {
- return MaxMin_match<ICmpInst, LHS, RHS, smin_pred_ty, true>(L, R);
- }
- /// Matches an SMax with LHS and RHS in either order.
- template <typename LHS, typename RHS>
- inline MaxMin_match<ICmpInst, LHS, RHS, smax_pred_ty, true>
- m_c_SMax(const LHS &L, const RHS &R) {
- return MaxMin_match<ICmpInst, LHS, RHS, smax_pred_ty, true>(L, R);
- }
- /// Matches a UMin with LHS and RHS in either order.
- template <typename LHS, typename RHS>
- inline MaxMin_match<ICmpInst, LHS, RHS, umin_pred_ty, true>
- m_c_UMin(const LHS &L, const RHS &R) {
- return MaxMin_match<ICmpInst, LHS, RHS, umin_pred_ty, true>(L, R);
- }
- /// Matches a UMax with LHS and RHS in either order.
- template <typename LHS, typename RHS>
- inline MaxMin_match<ICmpInst, LHS, RHS, umax_pred_ty, true>
- m_c_UMax(const LHS &L, const RHS &R) {
- return MaxMin_match<ICmpInst, LHS, RHS, umax_pred_ty, true>(L, R);
- }
- template <typename LHS, typename RHS>
- inline match_combine_or<
- match_combine_or<MaxMin_match<ICmpInst, LHS, RHS, smax_pred_ty, true>,
- MaxMin_match<ICmpInst, LHS, RHS, smin_pred_ty, true>>,
- match_combine_or<MaxMin_match<ICmpInst, LHS, RHS, umax_pred_ty, true>,
- MaxMin_match<ICmpInst, LHS, RHS, umin_pred_ty, true>>>
- m_c_MaxOrMin(const LHS &L, const RHS &R) {
- return m_CombineOr(m_CombineOr(m_c_SMax(L, R), m_c_SMin(L, R)),
- m_CombineOr(m_c_UMax(L, R), m_c_UMin(L, R)));
- }
- /// Matches FAdd with LHS and RHS in either order.
- template <typename LHS, typename RHS>
- inline BinaryOp_match<LHS, RHS, Instruction::FAdd, true>
- m_c_FAdd(const LHS &L, const RHS &R) {
- return BinaryOp_match<LHS, RHS, Instruction::FAdd, true>(L, R);
- }
- /// Matches FMul with LHS and RHS in either order.
- template <typename LHS, typename RHS>
- inline BinaryOp_match<LHS, RHS, Instruction::FMul, true>
- m_c_FMul(const LHS &L, const RHS &R) {
- return BinaryOp_match<LHS, RHS, Instruction::FMul, true>(L, R);
- }
- template <typename Opnd_t> struct Signum_match {
- Opnd_t Val;
- Signum_match(const Opnd_t &V) : Val(V) {}
- template <typename OpTy> bool match(OpTy *V) {
- unsigned TypeSize = V->getType()->getScalarSizeInBits();
- if (TypeSize == 0)
- return false;
- unsigned ShiftWidth = TypeSize - 1;
- Value *OpL = nullptr, *OpR = nullptr;
- // This is the representation of signum we match:
- //
- // signum(x) == (x >> 63) | (-x >>u 63)
- //
- // An i1 value is its own signum, so it's correct to match
- //
- // signum(x) == (x >> 0) | (-x >>u 0)
- //
- // for i1 values.
- auto LHS = m_AShr(m_Value(OpL), m_SpecificInt(ShiftWidth));
- auto RHS = m_LShr(m_Neg(m_Value(OpR)), m_SpecificInt(ShiftWidth));
- auto Signum = m_Or(LHS, RHS);
- return Signum.match(V) && OpL == OpR && Val.match(OpL);
- }
- };
- /// Matches a signum pattern.
- ///
- /// signum(x) =
- /// x > 0 -> 1
- /// x == 0 -> 0
- /// x < 0 -> -1
- template <typename Val_t> inline Signum_match<Val_t> m_Signum(const Val_t &V) {
- return Signum_match<Val_t>(V);
- }
- template <int Ind, typename Opnd_t> struct ExtractValue_match {
- Opnd_t Val;
- ExtractValue_match(const Opnd_t &V) : Val(V) {}
- template <typename OpTy> bool match(OpTy *V) {
- if (auto *I = dyn_cast<ExtractValueInst>(V)) {
- // If Ind is -1, don't inspect indices
- if (Ind != -1 &&
- !(I->getNumIndices() == 1 && I->getIndices()[0] == (unsigned)Ind))
- return false;
- return Val.match(I->getAggregateOperand());
- }
- return false;
- }
- };
- /// Match a single index ExtractValue instruction.
- /// For example m_ExtractValue<1>(...)
- template <int Ind, typename Val_t>
- inline ExtractValue_match<Ind, Val_t> m_ExtractValue(const Val_t &V) {
- return ExtractValue_match<Ind, Val_t>(V);
- }
- /// Match an ExtractValue instruction with any index.
- /// For example m_ExtractValue(...)
- template <typename Val_t>
- inline ExtractValue_match<-1, Val_t> m_ExtractValue(const Val_t &V) {
- return ExtractValue_match<-1, Val_t>(V);
- }
- /// Matcher for a single index InsertValue instruction.
- template <int Ind, typename T0, typename T1> struct InsertValue_match {
- T0 Op0;
- T1 Op1;
- InsertValue_match(const T0 &Op0, const T1 &Op1) : Op0(Op0), Op1(Op1) {}
- template <typename OpTy> bool match(OpTy *V) {
- if (auto *I = dyn_cast<InsertValueInst>(V)) {
- return Op0.match(I->getOperand(0)) && Op1.match(I->getOperand(1)) &&
- I->getNumIndices() == 1 && Ind == I->getIndices()[0];
- }
- return false;
- }
- };
- /// Matches a single index InsertValue instruction.
- template <int Ind, typename Val_t, typename Elt_t>
- inline InsertValue_match<Ind, Val_t, Elt_t> m_InsertValue(const Val_t &Val,
- const Elt_t &Elt) {
- return InsertValue_match<Ind, Val_t, Elt_t>(Val, Elt);
- }
- /// Matches patterns for `vscale`. This can either be a call to `llvm.vscale` or
- /// the constant expression
- /// `ptrtoint(gep <vscale x 1 x i8>, <vscale x 1 x i8>* null, i32 1>`
- /// under the right conditions determined by DataLayout.
- struct VScaleVal_match {
- const DataLayout &DL;
- VScaleVal_match(const DataLayout &DL) : DL(DL) {}
- template <typename ITy> bool match(ITy *V) {
- if (m_Intrinsic<Intrinsic::vscale>().match(V))
- return true;
- Value *Ptr;
- if (m_PtrToInt(m_Value(Ptr)).match(V)) {
- if (auto *GEP = dyn_cast<GEPOperator>(Ptr)) {
- auto *DerefTy = GEP->getSourceElementType();
- if (GEP->getNumIndices() == 1 && isa<ScalableVectorType>(DerefTy) &&
- m_Zero().match(GEP->getPointerOperand()) &&
- m_SpecificInt(1).match(GEP->idx_begin()->get()) &&
- DL.getTypeAllocSizeInBits(DerefTy).getKnownMinValue() == 8)
- return true;
- }
- }
- return false;
- }
- };
- inline VScaleVal_match m_VScale(const DataLayout &DL) {
- return VScaleVal_match(DL);
- }
- template <typename LHS, typename RHS, unsigned Opcode, bool Commutable = false>
- struct LogicalOp_match {
- LHS L;
- RHS R;
- LogicalOp_match(const LHS &L, const RHS &R) : L(L), R(R) {}
- template <typename T> bool match(T *V) {
- auto *I = dyn_cast<Instruction>(V);
- if (!I || !I->getType()->isIntOrIntVectorTy(1))
- return false;
- if (I->getOpcode() == Opcode) {
- auto *Op0 = I->getOperand(0);
- auto *Op1 = I->getOperand(1);
- return (L.match(Op0) && R.match(Op1)) ||
- (Commutable && L.match(Op1) && R.match(Op0));
- }
- if (auto *Select = dyn_cast<SelectInst>(I)) {
- auto *Cond = Select->getCondition();
- auto *TVal = Select->getTrueValue();
- auto *FVal = Select->getFalseValue();
- // Don't match a scalar select of bool vectors.
- // Transforms expect a single type for operands if this matches.
- if (Cond->getType() != Select->getType())
- return false;
- if (Opcode == Instruction::And) {
- auto *C = dyn_cast<Constant>(FVal);
- if (C && C->isNullValue())
- return (L.match(Cond) && R.match(TVal)) ||
- (Commutable && L.match(TVal) && R.match(Cond));
- } else {
- assert(Opcode == Instruction::Or);
- auto *C = dyn_cast<Constant>(TVal);
- if (C && C->isOneValue())
- return (L.match(Cond) && R.match(FVal)) ||
- (Commutable && L.match(FVal) && R.match(Cond));
- }
- }
- return false;
- }
- };
- /// Matches L && R either in the form of L & R or L ? R : false.
- /// Note that the latter form is poison-blocking.
- template <typename LHS, typename RHS>
- inline LogicalOp_match<LHS, RHS, Instruction::And> m_LogicalAnd(const LHS &L,
- const RHS &R) {
- return LogicalOp_match<LHS, RHS, Instruction::And>(L, R);
- }
- /// Matches L && R where L and R are arbitrary values.
- inline auto m_LogicalAnd() { return m_LogicalAnd(m_Value(), m_Value()); }
- /// Matches L && R with LHS and RHS in either order.
- template <typename LHS, typename RHS>
- inline LogicalOp_match<LHS, RHS, Instruction::And, true>
- m_c_LogicalAnd(const LHS &L, const RHS &R) {
- return LogicalOp_match<LHS, RHS, Instruction::And, true>(L, R);
- }
- /// Matches L || R either in the form of L | R or L ? true : R.
- /// Note that the latter form is poison-blocking.
- template <typename LHS, typename RHS>
- inline LogicalOp_match<LHS, RHS, Instruction::Or> m_LogicalOr(const LHS &L,
- const RHS &R) {
- return LogicalOp_match<LHS, RHS, Instruction::Or>(L, R);
- }
- /// Matches L || R where L and R are arbitrary values.
- inline auto m_LogicalOr() { return m_LogicalOr(m_Value(), m_Value()); }
- /// Matches L || R with LHS and RHS in either order.
- template <typename LHS, typename RHS>
- inline LogicalOp_match<LHS, RHS, Instruction::Or, true>
- m_c_LogicalOr(const LHS &L, const RHS &R) {
- return LogicalOp_match<LHS, RHS, Instruction::Or, true>(L, R);
- }
- /// Matches either L && R or L || R,
- /// either one being in the either binary or logical form.
- /// Note that the latter form is poison-blocking.
- template <typename LHS, typename RHS, bool Commutable = false>
- inline auto m_LogicalOp(const LHS &L, const RHS &R) {
- return m_CombineOr(
- LogicalOp_match<LHS, RHS, Instruction::And, Commutable>(L, R),
- LogicalOp_match<LHS, RHS, Instruction::Or, Commutable>(L, R));
- }
- /// Matches either L && R or L || R where L and R are arbitrary values.
- inline auto m_LogicalOp() { return m_LogicalOp(m_Value(), m_Value()); }
- /// Matches either L && R or L || R with LHS and RHS in either order.
- template <typename LHS, typename RHS>
- inline auto m_c_LogicalOp(const LHS &L, const RHS &R) {
- return m_LogicalOp<LHS, RHS, /*Commutable=*/true>(L, R);
- }
- } // end namespace PatternMatch
- } // end namespace llvm
- #endif // LLVM_IR_PATTERNMATCH_H
- #ifdef __GNUC__
- #pragma GCC diagnostic pop
- #endif
|