12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228 |
- #pragma once
- #ifdef __GNUC__
- #pragma GCC diagnostic push
- #pragma GCC diagnostic ignored "-Wunused-parameter"
- #endif
- //===- llvm/CodeGen/TargetLowering.h - Target Lowering Info -----*- C++ -*-===//
- //
- // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
- // See https://llvm.org/LICENSE.txt for license information.
- // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
- //
- //===----------------------------------------------------------------------===//
- ///
- /// \file
- /// This file describes how to lower LLVM code to machine code. This has two
- /// main components:
- ///
- /// 1. Which ValueTypes are natively supported by the target.
- /// 2. Which operations are supported for supported ValueTypes.
- /// 3. Cost thresholds for alternative implementations of certain operations.
- ///
- /// In addition it has a few other components, like information about FP
- /// immediates.
- ///
- //===----------------------------------------------------------------------===//
- #ifndef LLVM_CODEGEN_TARGETLOWERING_H
- #define LLVM_CODEGEN_TARGETLOWERING_H
- #include "llvm/ADT/APInt.h"
- #include "llvm/ADT/ArrayRef.h"
- #include "llvm/ADT/DenseMap.h"
- #include "llvm/ADT/SmallVector.h"
- #include "llvm/ADT/StringRef.h"
- #include "llvm/CodeGen/ComplexDeinterleavingPass.h"
- #include "llvm/CodeGen/DAGCombine.h"
- #include "llvm/CodeGen/ISDOpcodes.h"
- #include "llvm/CodeGen/LowLevelType.h"
- #include "llvm/CodeGen/RuntimeLibcalls.h"
- #include "llvm/CodeGen/SelectionDAG.h"
- #include "llvm/CodeGen/SelectionDAGNodes.h"
- #include "llvm/CodeGen/TargetCallingConv.h"
- #include "llvm/CodeGen/ValueTypes.h"
- #include "llvm/IR/Attributes.h"
- #include "llvm/IR/CallingConv.h"
- #include "llvm/IR/DataLayout.h"
- #include "llvm/IR/DerivedTypes.h"
- #include "llvm/IR/Function.h"
- #include "llvm/IR/InlineAsm.h"
- #include "llvm/IR/Instruction.h"
- #include "llvm/IR/Instructions.h"
- #include "llvm/IR/Type.h"
- #include "llvm/Support/Alignment.h"
- #include "llvm/Support/AtomicOrdering.h"
- #include "llvm/Support/Casting.h"
- #include "llvm/Support/ErrorHandling.h"
- #include "llvm/Support/MachineValueType.h"
- #include <algorithm>
- #include <cassert>
- #include <climits>
- #include <cstdint>
- #include <iterator>
- #include <map>
- #include <string>
- #include <utility>
- #include <vector>
- namespace llvm {
- class AssumptionCache;
- class CCState;
- class CCValAssign;
- class Constant;
- class FastISel;
- class FunctionLoweringInfo;
- class GlobalValue;
- class Loop;
- class GISelKnownBits;
- class IntrinsicInst;
- class IRBuilderBase;
- struct KnownBits;
- class LegacyDivergenceAnalysis;
- class LLVMContext;
- class MachineBasicBlock;
- class MachineFunction;
- class MachineInstr;
- class MachineJumpTableInfo;
- class MachineLoop;
- class MachineRegisterInfo;
- class MCContext;
- class MCExpr;
- class Module;
- class ProfileSummaryInfo;
- class TargetLibraryInfo;
- class TargetMachine;
- class TargetRegisterClass;
- class TargetRegisterInfo;
- class TargetTransformInfo;
- class Value;
- namespace Sched {
- enum Preference {
- None, // No preference
- Source, // Follow source order.
- RegPressure, // Scheduling for lowest register pressure.
- Hybrid, // Scheduling for both latency and register pressure.
- ILP, // Scheduling for ILP in low register pressure mode.
- VLIW, // Scheduling for VLIW targets.
- Fast, // Fast suboptimal list scheduling
- Linearize // Linearize DAG, no scheduling
- };
- } // end namespace Sched
- // MemOp models a memory operation, either memset or memcpy/memmove.
- struct MemOp {
- private:
- // Shared
- uint64_t Size;
- bool DstAlignCanChange; // true if destination alignment can satisfy any
- // constraint.
- Align DstAlign; // Specified alignment of the memory operation.
- bool AllowOverlap;
- // memset only
- bool IsMemset; // If setthis memory operation is a memset.
- bool ZeroMemset; // If set clears out memory with zeros.
- // memcpy only
- bool MemcpyStrSrc; // Indicates whether the memcpy source is an in-register
- // constant so it does not need to be loaded.
- Align SrcAlign; // Inferred alignment of the source or default value if the
- // memory operation does not need to load the value.
- public:
- static MemOp Copy(uint64_t Size, bool DstAlignCanChange, Align DstAlign,
- Align SrcAlign, bool IsVolatile,
- bool MemcpyStrSrc = false) {
- MemOp Op;
- Op.Size = Size;
- Op.DstAlignCanChange = DstAlignCanChange;
- Op.DstAlign = DstAlign;
- Op.AllowOverlap = !IsVolatile;
- Op.IsMemset = false;
- Op.ZeroMemset = false;
- Op.MemcpyStrSrc = MemcpyStrSrc;
- Op.SrcAlign = SrcAlign;
- return Op;
- }
- static MemOp Set(uint64_t Size, bool DstAlignCanChange, Align DstAlign,
- bool IsZeroMemset, bool IsVolatile) {
- MemOp Op;
- Op.Size = Size;
- Op.DstAlignCanChange = DstAlignCanChange;
- Op.DstAlign = DstAlign;
- Op.AllowOverlap = !IsVolatile;
- Op.IsMemset = true;
- Op.ZeroMemset = IsZeroMemset;
- Op.MemcpyStrSrc = false;
- return Op;
- }
- uint64_t size() const { return Size; }
- Align getDstAlign() const {
- assert(!DstAlignCanChange);
- return DstAlign;
- }
- bool isFixedDstAlign() const { return !DstAlignCanChange; }
- bool allowOverlap() const { return AllowOverlap; }
- bool isMemset() const { return IsMemset; }
- bool isMemcpy() const { return !IsMemset; }
- bool isMemcpyWithFixedDstAlign() const {
- return isMemcpy() && !DstAlignCanChange;
- }
- bool isZeroMemset() const { return isMemset() && ZeroMemset; }
- bool isMemcpyStrSrc() const {
- assert(isMemcpy() && "Must be a memcpy");
- return MemcpyStrSrc;
- }
- Align getSrcAlign() const {
- assert(isMemcpy() && "Must be a memcpy");
- return SrcAlign;
- }
- bool isSrcAligned(Align AlignCheck) const {
- return isMemset() || llvm::isAligned(AlignCheck, SrcAlign.value());
- }
- bool isDstAligned(Align AlignCheck) const {
- return DstAlignCanChange || llvm::isAligned(AlignCheck, DstAlign.value());
- }
- bool isAligned(Align AlignCheck) const {
- return isSrcAligned(AlignCheck) && isDstAligned(AlignCheck);
- }
- };
- /// This base class for TargetLowering contains the SelectionDAG-independent
- /// parts that can be used from the rest of CodeGen.
- class TargetLoweringBase {
- public:
- /// This enum indicates whether operations are valid for a target, and if not,
- /// what action should be used to make them valid.
- enum LegalizeAction : uint8_t {
- Legal, // The target natively supports this operation.
- Promote, // This operation should be executed in a larger type.
- Expand, // Try to expand this to other ops, otherwise use a libcall.
- LibCall, // Don't try to expand this to other ops, always use a libcall.
- Custom // Use the LowerOperation hook to implement custom lowering.
- };
- /// This enum indicates whether a types are legal for a target, and if not,
- /// what action should be used to make them valid.
- enum LegalizeTypeAction : uint8_t {
- TypeLegal, // The target natively supports this type.
- TypePromoteInteger, // Replace this integer with a larger one.
- TypeExpandInteger, // Split this integer into two of half the size.
- TypeSoftenFloat, // Convert this float to a same size integer type.
- TypeExpandFloat, // Split this float into two of half the size.
- TypeScalarizeVector, // Replace this one-element vector with its element.
- TypeSplitVector, // Split this vector into two of half the size.
- TypeWidenVector, // This vector should be widened into a larger vector.
- TypePromoteFloat, // Replace this float with a larger one.
- TypeSoftPromoteHalf, // Soften half to i16 and use float to do arithmetic.
- TypeScalarizeScalableVector, // This action is explicitly left unimplemented.
- // While it is theoretically possible to
- // legalize operations on scalable types with a
- // loop that handles the vscale * #lanes of the
- // vector, this is non-trivial at SelectionDAG
- // level and these types are better to be
- // widened or promoted.
- };
- /// LegalizeKind holds the legalization kind that needs to happen to EVT
- /// in order to type-legalize it.
- using LegalizeKind = std::pair<LegalizeTypeAction, EVT>;
- /// Enum that describes how the target represents true/false values.
- enum BooleanContent {
- UndefinedBooleanContent, // Only bit 0 counts, the rest can hold garbage.
- ZeroOrOneBooleanContent, // All bits zero except for bit 0.
- ZeroOrNegativeOneBooleanContent // All bits equal to bit 0.
- };
- /// Enum that describes what type of support for selects the target has.
- enum SelectSupportKind {
- ScalarValSelect, // The target supports scalar selects (ex: cmov).
- ScalarCondVectorVal, // The target supports selects with a scalar condition
- // and vector values (ex: cmov).
- VectorMaskSelect // The target supports vector selects with a vector
- // mask (ex: x86 blends).
- };
- /// Enum that specifies what an atomic load/AtomicRMWInst is expanded
- /// to, if at all. Exists because different targets have different levels of
- /// support for these atomic instructions, and also have different options
- /// w.r.t. what they should expand to.
- enum class AtomicExpansionKind {
- None, // Don't expand the instruction.
- CastToInteger, // Cast the atomic instruction to another type, e.g. from
- // floating-point to integer type.
- LLSC, // Expand the instruction into loadlinked/storeconditional; used
- // by ARM/AArch64.
- LLOnly, // Expand the (load) instruction into just a load-linked, which has
- // greater atomic guarantees than a normal load.
- CmpXChg, // Expand the instruction into cmpxchg; used by at least X86.
- MaskedIntrinsic, // Use a target-specific intrinsic for the LL/SC loop.
- BitTestIntrinsic, // Use a target-specific intrinsic for special bit
- // operations; used by X86.
- CmpArithIntrinsic,// Use a target-specific intrinsic for special compare
- // operations; used by X86.
- Expand, // Generic expansion in terms of other atomic operations.
- // Rewrite to a non-atomic form for use in a known non-preemptible
- // environment.
- NotAtomic
- };
- /// Enum that specifies when a multiplication should be expanded.
- enum class MulExpansionKind {
- Always, // Always expand the instruction.
- OnlyLegalOrCustom, // Only expand when the resulting instructions are legal
- // or custom.
- };
- /// Enum that specifies when a float negation is beneficial.
- enum class NegatibleCost {
- Cheaper = 0, // Negated expression is cheaper.
- Neutral = 1, // Negated expression has the same cost.
- Expensive = 2 // Negated expression is more expensive.
- };
- class ArgListEntry {
- public:
- Value *Val = nullptr;
- SDValue Node = SDValue();
- Type *Ty = nullptr;
- bool IsSExt : 1;
- bool IsZExt : 1;
- bool IsInReg : 1;
- bool IsSRet : 1;
- bool IsNest : 1;
- bool IsByVal : 1;
- bool IsByRef : 1;
- bool IsInAlloca : 1;
- bool IsPreallocated : 1;
- bool IsReturned : 1;
- bool IsSwiftSelf : 1;
- bool IsSwiftAsync : 1;
- bool IsSwiftError : 1;
- bool IsCFGuardTarget : 1;
- MaybeAlign Alignment = std::nullopt;
- Type *IndirectType = nullptr;
- ArgListEntry()
- : IsSExt(false), IsZExt(false), IsInReg(false), IsSRet(false),
- IsNest(false), IsByVal(false), IsByRef(false), IsInAlloca(false),
- IsPreallocated(false), IsReturned(false), IsSwiftSelf(false),
- IsSwiftAsync(false), IsSwiftError(false), IsCFGuardTarget(false) {}
- void setAttributes(const CallBase *Call, unsigned ArgIdx);
- };
- using ArgListTy = std::vector<ArgListEntry>;
- virtual void markLibCallAttributes(MachineFunction *MF, unsigned CC,
- ArgListTy &Args) const {};
- static ISD::NodeType getExtendForContent(BooleanContent Content) {
- switch (Content) {
- case UndefinedBooleanContent:
- // Extend by adding rubbish bits.
- return ISD::ANY_EXTEND;
- case ZeroOrOneBooleanContent:
- // Extend by adding zero bits.
- return ISD::ZERO_EXTEND;
- case ZeroOrNegativeOneBooleanContent:
- // Extend by copying the sign bit.
- return ISD::SIGN_EXTEND;
- }
- llvm_unreachable("Invalid content kind");
- }
- explicit TargetLoweringBase(const TargetMachine &TM);
- TargetLoweringBase(const TargetLoweringBase &) = delete;
- TargetLoweringBase &operator=(const TargetLoweringBase &) = delete;
- virtual ~TargetLoweringBase() = default;
- /// Return true if the target support strict float operation
- bool isStrictFPEnabled() const {
- return IsStrictFPEnabled;
- }
- protected:
- /// Initialize all of the actions to default values.
- void initActions();
- public:
- const TargetMachine &getTargetMachine() const { return TM; }
- virtual bool useSoftFloat() const { return false; }
- /// Return the pointer type for the given address space, defaults to
- /// the pointer type from the data layout.
- /// FIXME: The default needs to be removed once all the code is updated.
- virtual MVT getPointerTy(const DataLayout &DL, uint32_t AS = 0) const {
- return MVT::getIntegerVT(DL.getPointerSizeInBits(AS));
- }
- /// Return the in-memory pointer type for the given address space, defaults to
- /// the pointer type from the data layout. FIXME: The default needs to be
- /// removed once all the code is updated.
- virtual MVT getPointerMemTy(const DataLayout &DL, uint32_t AS = 0) const {
- return MVT::getIntegerVT(DL.getPointerSizeInBits(AS));
- }
- /// Return the type for frame index, which is determined by
- /// the alloca address space specified through the data layout.
- MVT getFrameIndexTy(const DataLayout &DL) const {
- return getPointerTy(DL, DL.getAllocaAddrSpace());
- }
- /// Return the type for code pointers, which is determined by the program
- /// address space specified through the data layout.
- MVT getProgramPointerTy(const DataLayout &DL) const {
- return getPointerTy(DL, DL.getProgramAddressSpace());
- }
- /// Return the type for operands of fence.
- /// TODO: Let fence operands be of i32 type and remove this.
- virtual MVT getFenceOperandTy(const DataLayout &DL) const {
- return getPointerTy(DL);
- }
- /// Return the type to use for a scalar shift opcode, given the shifted amount
- /// type. Targets should return a legal type if the input type is legal.
- /// Targets can return a type that is too small if the input type is illegal.
- virtual MVT getScalarShiftAmountTy(const DataLayout &, EVT) const;
- /// Returns the type for the shift amount of a shift opcode. For vectors,
- /// returns the input type. For scalars, behavior depends on \p LegalTypes. If
- /// \p LegalTypes is true, calls getScalarShiftAmountTy, otherwise uses
- /// pointer type. If getScalarShiftAmountTy or pointer type cannot represent
- /// all possible shift amounts, returns MVT::i32. In general, \p LegalTypes
- /// should be set to true for calls during type legalization and after type
- /// legalization has been completed.
- EVT getShiftAmountTy(EVT LHSTy, const DataLayout &DL,
- bool LegalTypes = true) const;
- /// Return the preferred type to use for a shift opcode, given the shifted
- /// amount type is \p ShiftValueTy.
- LLVM_READONLY
- virtual LLT getPreferredShiftAmountTy(LLT ShiftValueTy) const {
- return ShiftValueTy;
- }
- /// Returns the type to be used for the index operand of:
- /// ISD::INSERT_VECTOR_ELT, ISD::EXTRACT_VECTOR_ELT,
- /// ISD::INSERT_SUBVECTOR, and ISD::EXTRACT_SUBVECTOR
- virtual MVT getVectorIdxTy(const DataLayout &DL) const {
- return getPointerTy(DL);
- }
- /// Returns the type to be used for the EVL/AVL operand of VP nodes:
- /// ISD::VP_ADD, ISD::VP_SUB, etc. It must be a legal scalar integer type,
- /// and must be at least as large as i32. The EVL is implicitly zero-extended
- /// to any larger type.
- virtual MVT getVPExplicitVectorLengthTy() const { return MVT::i32; }
- /// This callback is used to inspect load/store instructions and add
- /// target-specific MachineMemOperand flags to them. The default
- /// implementation does nothing.
- virtual MachineMemOperand::Flags getTargetMMOFlags(const Instruction &I) const {
- return MachineMemOperand::MONone;
- }
- MachineMemOperand::Flags
- getLoadMemOperandFlags(const LoadInst &LI, const DataLayout &DL,
- AssumptionCache *AC = nullptr,
- const TargetLibraryInfo *LibInfo = nullptr) const;
- MachineMemOperand::Flags getStoreMemOperandFlags(const StoreInst &SI,
- const DataLayout &DL) const;
- MachineMemOperand::Flags getAtomicMemOperandFlags(const Instruction &AI,
- const DataLayout &DL) const;
- virtual bool isSelectSupported(SelectSupportKind /*kind*/) const {
- return true;
- }
- /// Return true if the @llvm.get.active.lane.mask intrinsic should be expanded
- /// using generic code in SelectionDAGBuilder.
- virtual bool shouldExpandGetActiveLaneMask(EVT VT, EVT OpVT) const {
- return true;
- }
- /// Return true if it is profitable to convert a select of FP constants into
- /// a constant pool load whose address depends on the select condition. The
- /// parameter may be used to differentiate a select with FP compare from
- /// integer compare.
- virtual bool reduceSelectOfFPConstantLoads(EVT CmpOpVT) const {
- return true;
- }
- /// Return true if multiple condition registers are available.
- bool hasMultipleConditionRegisters() const {
- return HasMultipleConditionRegisters;
- }
- /// Return true if the target has BitExtract instructions.
- bool hasExtractBitsInsn() const { return HasExtractBitsInsn; }
- /// Return the preferred vector type legalization action.
- virtual TargetLoweringBase::LegalizeTypeAction
- getPreferredVectorAction(MVT VT) const {
- // The default action for one element vectors is to scalarize
- if (VT.getVectorElementCount().isScalar())
- return TypeScalarizeVector;
- // The default action for an odd-width vector is to widen.
- if (!VT.isPow2VectorType())
- return TypeWidenVector;
- // The default action for other vectors is to promote
- return TypePromoteInteger;
- }
- // Return true if the half type should be passed around as i16, but promoted
- // to float around arithmetic. The default behavior is to pass around as
- // float and convert around loads/stores/bitcasts and other places where
- // the size matters.
- virtual bool softPromoteHalfType() const { return false; }
- // There are two general methods for expanding a BUILD_VECTOR node:
- // 1. Use SCALAR_TO_VECTOR on the defined scalar values and then shuffle
- // them together.
- // 2. Build the vector on the stack and then load it.
- // If this function returns true, then method (1) will be used, subject to
- // the constraint that all of the necessary shuffles are legal (as determined
- // by isShuffleMaskLegal). If this function returns false, then method (2) is
- // always used. The vector type, and the number of defined values, are
- // provided.
- virtual bool
- shouldExpandBuildVectorWithShuffles(EVT /* VT */,
- unsigned DefinedValues) const {
- return DefinedValues < 3;
- }
- /// Return true if integer divide is usually cheaper than a sequence of
- /// several shifts, adds, and multiplies for this target.
- /// The definition of "cheaper" may depend on whether we're optimizing
- /// for speed or for size.
- virtual bool isIntDivCheap(EVT VT, AttributeList Attr) const { return false; }
- /// Return true if the target can handle a standalone remainder operation.
- virtual bool hasStandaloneRem(EVT VT) const {
- return true;
- }
- /// Return true if SQRT(X) shouldn't be replaced with X*RSQRT(X).
- virtual bool isFsqrtCheap(SDValue X, SelectionDAG &DAG) const {
- // Default behavior is to replace SQRT(X) with X*RSQRT(X).
- return false;
- }
- /// Reciprocal estimate status values used by the functions below.
- enum ReciprocalEstimate : int {
- Unspecified = -1,
- Disabled = 0,
- Enabled = 1
- };
- /// Return a ReciprocalEstimate enum value for a square root of the given type
- /// based on the function's attributes. If the operation is not overridden by
- /// the function's attributes, "Unspecified" is returned and target defaults
- /// are expected to be used for instruction selection.
- int getRecipEstimateSqrtEnabled(EVT VT, MachineFunction &MF) const;
- /// Return a ReciprocalEstimate enum value for a division of the given type
- /// based on the function's attributes. If the operation is not overridden by
- /// the function's attributes, "Unspecified" is returned and target defaults
- /// are expected to be used for instruction selection.
- int getRecipEstimateDivEnabled(EVT VT, MachineFunction &MF) const;
- /// Return the refinement step count for a square root of the given type based
- /// on the function's attributes. If the operation is not overridden by
- /// the function's attributes, "Unspecified" is returned and target defaults
- /// are expected to be used for instruction selection.
- int getSqrtRefinementSteps(EVT VT, MachineFunction &MF) const;
- /// Return the refinement step count for a division of the given type based
- /// on the function's attributes. If the operation is not overridden by
- /// the function's attributes, "Unspecified" is returned and target defaults
- /// are expected to be used for instruction selection.
- int getDivRefinementSteps(EVT VT, MachineFunction &MF) const;
- /// Returns true if target has indicated at least one type should be bypassed.
- bool isSlowDivBypassed() const { return !BypassSlowDivWidths.empty(); }
- /// Returns map of slow types for division or remainder with corresponding
- /// fast types
- const DenseMap<unsigned int, unsigned int> &getBypassSlowDivWidths() const {
- return BypassSlowDivWidths;
- }
- /// Return true only if vscale must be a power of two.
- virtual bool isVScaleKnownToBeAPowerOfTwo() const { return false; }
- /// Return true if Flow Control is an expensive operation that should be
- /// avoided.
- bool isJumpExpensive() const { return JumpIsExpensive; }
- /// Return true if selects are only cheaper than branches if the branch is
- /// unlikely to be predicted right.
- bool isPredictableSelectExpensive() const {
- return PredictableSelectIsExpensive;
- }
- virtual bool fallBackToDAGISel(const Instruction &Inst) const {
- return false;
- }
- /// Return true if the following transform is beneficial:
- /// fold (conv (load x)) -> (load (conv*)x)
- /// On architectures that don't natively support some vector loads
- /// efficiently, casting the load to a smaller vector of larger types and
- /// loading is more efficient, however, this can be undone by optimizations in
- /// dag combiner.
- virtual bool isLoadBitCastBeneficial(EVT LoadVT, EVT BitcastVT,
- const SelectionDAG &DAG,
- const MachineMemOperand &MMO) const;
- /// Return true if the following transform is beneficial:
- /// (store (y (conv x)), y*)) -> (store x, (x*))
- virtual bool isStoreBitCastBeneficial(EVT StoreVT, EVT BitcastVT,
- const SelectionDAG &DAG,
- const MachineMemOperand &MMO) const {
- // Default to the same logic as loads.
- return isLoadBitCastBeneficial(StoreVT, BitcastVT, DAG, MMO);
- }
- /// Return true if it is expected to be cheaper to do a store of a non-zero
- /// vector constant with the given size and type for the address space than to
- /// store the individual scalar element constants.
- virtual bool storeOfVectorConstantIsCheap(EVT MemVT,
- unsigned NumElem,
- unsigned AddrSpace) const {
- return false;
- }
- /// Allow store merging for the specified type after legalization in addition
- /// to before legalization. This may transform stores that do not exist
- /// earlier (for example, stores created from intrinsics).
- virtual bool mergeStoresAfterLegalization(EVT MemVT) const {
- return true;
- }
- /// Returns if it's reasonable to merge stores to MemVT size.
- virtual bool canMergeStoresTo(unsigned AS, EVT MemVT,
- const MachineFunction &MF) const {
- return true;
- }
- /// Return true if it is cheap to speculate a call to intrinsic cttz.
- virtual bool isCheapToSpeculateCttz(Type *Ty) const {
- return false;
- }
- /// Return true if it is cheap to speculate a call to intrinsic ctlz.
- virtual bool isCheapToSpeculateCtlz(Type *Ty) const {
- return false;
- }
- /// Return true if ctlz instruction is fast.
- virtual bool isCtlzFast() const {
- return false;
- }
- /// Return the maximum number of "x & (x - 1)" operations that can be done
- /// instead of deferring to a custom CTPOP.
- virtual unsigned getCustomCtpopCost(EVT VT, ISD::CondCode Cond) const {
- return 1;
- }
- /// Return true if instruction generated for equality comparison is folded
- /// with instruction generated for signed comparison.
- virtual bool isEqualityCmpFoldedWithSignedCmp() const { return true; }
- /// Return true if the heuristic to prefer icmp eq zero should be used in code
- /// gen prepare.
- virtual bool preferZeroCompareBranch() const { return false; }
- /// Return true if it is safe to transform an integer-domain bitwise operation
- /// into the equivalent floating-point operation. This should be set to true
- /// if the target has IEEE-754-compliant fabs/fneg operations for the input
- /// type.
- virtual bool hasBitPreservingFPLogic(EVT VT) const {
- return false;
- }
- /// Return true if it is cheaper to split the store of a merged int val
- /// from a pair of smaller values into multiple stores.
- virtual bool isMultiStoresCheaperThanBitsMerge(EVT LTy, EVT HTy) const {
- return false;
- }
- /// Return if the target supports combining a
- /// chain like:
- /// \code
- /// %andResult = and %val1, #mask
- /// %icmpResult = icmp %andResult, 0
- /// \endcode
- /// into a single machine instruction of a form like:
- /// \code
- /// cc = test %register, #mask
- /// \endcode
- virtual bool isMaskAndCmp0FoldingBeneficial(const Instruction &AndI) const {
- return false;
- }
- /// Use bitwise logic to make pairs of compares more efficient. For example:
- /// and (seteq A, B), (seteq C, D) --> seteq (or (xor A, B), (xor C, D)), 0
- /// This should be true when it takes more than one instruction to lower
- /// setcc (cmp+set on x86 scalar), when bitwise ops are faster than logic on
- /// condition bits (crand on PowerPC), and/or when reducing cmp+br is a win.
- virtual bool convertSetCCLogicToBitwiseLogic(EVT VT) const {
- return false;
- }
- /// Return the preferred operand type if the target has a quick way to compare
- /// integer values of the given size. Assume that any legal integer type can
- /// be compared efficiently. Targets may override this to allow illegal wide
- /// types to return a vector type if there is support to compare that type.
- virtual MVT hasFastEqualityCompare(unsigned NumBits) const {
- MVT VT = MVT::getIntegerVT(NumBits);
- return isTypeLegal(VT) ? VT : MVT::INVALID_SIMPLE_VALUE_TYPE;
- }
- /// Return true if the target should transform:
- /// (X & Y) == Y ---> (~X & Y) == 0
- /// (X & Y) != Y ---> (~X & Y) != 0
- ///
- /// This may be profitable if the target has a bitwise and-not operation that
- /// sets comparison flags. A target may want to limit the transformation based
- /// on the type of Y or if Y is a constant.
- ///
- /// Note that the transform will not occur if Y is known to be a power-of-2
- /// because a mask and compare of a single bit can be handled by inverting the
- /// predicate, for example:
- /// (X & 8) == 8 ---> (X & 8) != 0
- virtual bool hasAndNotCompare(SDValue Y) const {
- return false;
- }
- /// Return true if the target has a bitwise and-not operation:
- /// X = ~A & B
- /// This can be used to simplify select or other instructions.
- virtual bool hasAndNot(SDValue X) const {
- // If the target has the more complex version of this operation, assume that
- // it has this operation too.
- return hasAndNotCompare(X);
- }
- /// Return true if the target has a bit-test instruction:
- /// (X & (1 << Y)) ==/!= 0
- /// This knowledge can be used to prevent breaking the pattern,
- /// or creating it if it could be recognized.
- virtual bool hasBitTest(SDValue X, SDValue Y) const { return false; }
- /// There are two ways to clear extreme bits (either low or high):
- /// Mask: x & (-1 << y) (the instcombine canonical form)
- /// Shifts: x >> y << y
- /// Return true if the variant with 2 variable shifts is preferred.
- /// Return false if there is no preference.
- virtual bool shouldFoldMaskToVariableShiftPair(SDValue X) const {
- // By default, let's assume that no one prefers shifts.
- return false;
- }
- /// Return true if it is profitable to fold a pair of shifts into a mask.
- /// This is usually true on most targets. But some targets, like Thumb1,
- /// have immediate shift instructions, but no immediate "and" instruction;
- /// this makes the fold unprofitable.
- virtual bool shouldFoldConstantShiftPairToMask(const SDNode *N,
- CombineLevel Level) const {
- return true;
- }
- /// Should we tranform the IR-optimal check for whether given truncation
- /// down into KeptBits would be truncating or not:
- /// (add %x, (1 << (KeptBits-1))) srccond (1 << KeptBits)
- /// Into it's more traditional form:
- /// ((%x << C) a>> C) dstcond %x
- /// Return true if we should transform.
- /// Return false if there is no preference.
- virtual bool shouldTransformSignedTruncationCheck(EVT XVT,
- unsigned KeptBits) const {
- // By default, let's assume that no one prefers shifts.
- return false;
- }
- /// Given the pattern
- /// (X & (C l>>/<< Y)) ==/!= 0
- /// return true if it should be transformed into:
- /// ((X <</l>> Y) & C) ==/!= 0
- /// WARNING: if 'X' is a constant, the fold may deadlock!
- /// FIXME: we could avoid passing XC, but we can't use isConstOrConstSplat()
- /// here because it can end up being not linked in.
- virtual bool shouldProduceAndByConstByHoistingConstFromShiftsLHSOfAnd(
- SDValue X, ConstantSDNode *XC, ConstantSDNode *CC, SDValue Y,
- unsigned OldShiftOpcode, unsigned NewShiftOpcode,
- SelectionDAG &DAG) const {
- if (hasBitTest(X, Y)) {
- // One interesting pattern that we'd want to form is 'bit test':
- // ((1 << Y) & C) ==/!= 0
- // But we also need to be careful not to try to reverse that fold.
- // Is this '1 << Y' ?
- if (OldShiftOpcode == ISD::SHL && CC->isOne())
- return false; // Keep the 'bit test' pattern.
- // Will it be '1 << Y' after the transform ?
- if (XC && NewShiftOpcode == ISD::SHL && XC->isOne())
- return true; // Do form the 'bit test' pattern.
- }
- // If 'X' is a constant, and we transform, then we will immediately
- // try to undo the fold, thus causing endless combine loop.
- // So by default, let's assume everyone prefers the fold
- // iff 'X' is not a constant.
- return !XC;
- }
- /// These two forms are equivalent:
- /// sub %y, (xor %x, -1)
- /// add (add %x, 1), %y
- /// The variant with two add's is IR-canonical.
- /// Some targets may prefer one to the other.
- virtual bool preferIncOfAddToSubOfNot(EVT VT) const {
- // By default, let's assume that everyone prefers the form with two add's.
- return true;
- }
- // Return true if the target wants to transform Op(Splat(X)) -> Splat(Op(X))
- virtual bool preferScalarizeSplat(unsigned Opc) const { return true; }
- /// Return true if the target wants to use the optimization that
- /// turns ext(promotableInst1(...(promotableInstN(load)))) into
- /// promotedInst1(...(promotedInstN(ext(load)))).
- bool enableExtLdPromotion() const { return EnableExtLdPromotion; }
- /// Return true if the target can combine store(extractelement VectorTy,
- /// Idx).
- /// \p Cost[out] gives the cost of that transformation when this is true.
- virtual bool canCombineStoreAndExtract(Type *VectorTy, Value *Idx,
- unsigned &Cost) const {
- return false;
- }
- /// Return true if inserting a scalar into a variable element of an undef
- /// vector is more efficiently handled by splatting the scalar instead.
- virtual bool shouldSplatInsEltVarIndex(EVT) const {
- return false;
- }
- /// Return true if target always benefits from combining into FMA for a
- /// given value type. This must typically return false on targets where FMA
- /// takes more cycles to execute than FADD.
- virtual bool enableAggressiveFMAFusion(EVT VT) const { return false; }
- /// Return true if target always benefits from combining into FMA for a
- /// given value type. This must typically return false on targets where FMA
- /// takes more cycles to execute than FADD.
- virtual bool enableAggressiveFMAFusion(LLT Ty) const { return false; }
- /// Return the ValueType of the result of SETCC operations.
- virtual EVT getSetCCResultType(const DataLayout &DL, LLVMContext &Context,
- EVT VT) const;
- /// Return the ValueType for comparison libcalls. Comparison libcalls include
- /// floating point comparison calls, and Ordered/Unordered check calls on
- /// floating point numbers.
- virtual
- MVT::SimpleValueType getCmpLibcallReturnType() const;
- /// For targets without i1 registers, this gives the nature of the high-bits
- /// of boolean values held in types wider than i1.
- ///
- /// "Boolean values" are special true/false values produced by nodes like
- /// SETCC and consumed (as the condition) by nodes like SELECT and BRCOND.
- /// Not to be confused with general values promoted from i1. Some cpus
- /// distinguish between vectors of boolean and scalars; the isVec parameter
- /// selects between the two kinds. For example on X86 a scalar boolean should
- /// be zero extended from i1, while the elements of a vector of booleans
- /// should be sign extended from i1.
- ///
- /// Some cpus also treat floating point types the same way as they treat
- /// vectors instead of the way they treat scalars.
- BooleanContent getBooleanContents(bool isVec, bool isFloat) const {
- if (isVec)
- return BooleanVectorContents;
- return isFloat ? BooleanFloatContents : BooleanContents;
- }
- BooleanContent getBooleanContents(EVT Type) const {
- return getBooleanContents(Type.isVector(), Type.isFloatingPoint());
- }
- /// Promote the given target boolean to a target boolean of the given type.
- /// A target boolean is an integer value, not necessarily of type i1, the bits
- /// of which conform to getBooleanContents.
- ///
- /// ValVT is the type of values that produced the boolean.
- SDValue promoteTargetBoolean(SelectionDAG &DAG, SDValue Bool,
- EVT ValVT) const {
- SDLoc dl(Bool);
- EVT BoolVT =
- getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), ValVT);
- ISD::NodeType ExtendCode = getExtendForContent(getBooleanContents(ValVT));
- return DAG.getNode(ExtendCode, dl, BoolVT, Bool);
- }
- /// Return target scheduling preference.
- Sched::Preference getSchedulingPreference() const {
- return SchedPreferenceInfo;
- }
- /// Some scheduler, e.g. hybrid, can switch to different scheduling heuristics
- /// for different nodes. This function returns the preference (or none) for
- /// the given node.
- virtual Sched::Preference getSchedulingPreference(SDNode *) const {
- return Sched::None;
- }
- /// Return the register class that should be used for the specified value
- /// type.
- virtual const TargetRegisterClass *getRegClassFor(MVT VT, bool isDivergent = false) const {
- (void)isDivergent;
- const TargetRegisterClass *RC = RegClassForVT[VT.SimpleTy];
- assert(RC && "This value type is not natively supported!");
- return RC;
- }
- /// Allows target to decide about the register class of the
- /// specific value that is live outside the defining block.
- /// Returns true if the value needs uniform register class.
- virtual bool requiresUniformRegister(MachineFunction &MF,
- const Value *) const {
- return false;
- }
- /// Return the 'representative' register class for the specified value
- /// type.
- ///
- /// The 'representative' register class is the largest legal super-reg
- /// register class for the register class of the value type. For example, on
- /// i386 the rep register class for i8, i16, and i32 are GR32; while the rep
- /// register class is GR64 on x86_64.
- virtual const TargetRegisterClass *getRepRegClassFor(MVT VT) const {
- const TargetRegisterClass *RC = RepRegClassForVT[VT.SimpleTy];
- return RC;
- }
- /// Return the cost of the 'representative' register class for the specified
- /// value type.
- virtual uint8_t getRepRegClassCostFor(MVT VT) const {
- return RepRegClassCostForVT[VT.SimpleTy];
- }
- /// Return the preferred strategy to legalize tihs SHIFT instruction, with
- /// \p ExpansionFactor being the recursion depth - how many expansion needed.
- enum class ShiftLegalizationStrategy {
- ExpandToParts,
- ExpandThroughStack,
- LowerToLibcall
- };
- virtual ShiftLegalizationStrategy
- preferredShiftLegalizationStrategy(SelectionDAG &DAG, SDNode *N,
- unsigned ExpansionFactor) const {
- if (ExpansionFactor == 1)
- return ShiftLegalizationStrategy::ExpandToParts;
- return ShiftLegalizationStrategy::ExpandThroughStack;
- }
- /// Return true if the target has native support for the specified value type.
- /// This means that it has a register that directly holds it without
- /// promotions or expansions.
- bool isTypeLegal(EVT VT) const {
- assert(!VT.isSimple() ||
- (unsigned)VT.getSimpleVT().SimpleTy < std::size(RegClassForVT));
- return VT.isSimple() && RegClassForVT[VT.getSimpleVT().SimpleTy] != nullptr;
- }
- class ValueTypeActionImpl {
- /// ValueTypeActions - For each value type, keep a LegalizeTypeAction enum
- /// that indicates how instruction selection should deal with the type.
- LegalizeTypeAction ValueTypeActions[MVT::VALUETYPE_SIZE];
- public:
- ValueTypeActionImpl() {
- std::fill(std::begin(ValueTypeActions), std::end(ValueTypeActions),
- TypeLegal);
- }
- LegalizeTypeAction getTypeAction(MVT VT) const {
- return ValueTypeActions[VT.SimpleTy];
- }
- void setTypeAction(MVT VT, LegalizeTypeAction Action) {
- ValueTypeActions[VT.SimpleTy] = Action;
- }
- };
- const ValueTypeActionImpl &getValueTypeActions() const {
- return ValueTypeActions;
- }
- /// Return pair that represents the legalization kind (first) that needs to
- /// happen to EVT (second) in order to type-legalize it.
- ///
- /// First: how we should legalize values of this type, either it is already
- /// legal (return 'Legal') or we need to promote it to a larger type (return
- /// 'Promote'), or we need to expand it into multiple registers of smaller
- /// integer type (return 'Expand'). 'Custom' is not an option.
- ///
- /// Second: for types supported by the target, this is an identity function.
- /// For types that must be promoted to larger types, this returns the larger
- /// type to promote to. For integer types that are larger than the largest
- /// integer register, this contains one step in the expansion to get to the
- /// smaller register. For illegal floating point types, this returns the
- /// integer type to transform to.
- LegalizeKind getTypeConversion(LLVMContext &Context, EVT VT) const;
- /// Return how we should legalize values of this type, either it is already
- /// legal (return 'Legal') or we need to promote it to a larger type (return
- /// 'Promote'), or we need to expand it into multiple registers of smaller
- /// integer type (return 'Expand'). 'Custom' is not an option.
- LegalizeTypeAction getTypeAction(LLVMContext &Context, EVT VT) const {
- return getTypeConversion(Context, VT).first;
- }
- LegalizeTypeAction getTypeAction(MVT VT) const {
- return ValueTypeActions.getTypeAction(VT);
- }
- /// For types supported by the target, this is an identity function. For
- /// types that must be promoted to larger types, this returns the larger type
- /// to promote to. For integer types that are larger than the largest integer
- /// register, this contains one step in the expansion to get to the smaller
- /// register. For illegal floating point types, this returns the integer type
- /// to transform to.
- virtual EVT getTypeToTransformTo(LLVMContext &Context, EVT VT) const {
- return getTypeConversion(Context, VT).second;
- }
- /// For types supported by the target, this is an identity function. For
- /// types that must be expanded (i.e. integer types that are larger than the
- /// largest integer register or illegal floating point types), this returns
- /// the largest legal type it will be expanded to.
- EVT getTypeToExpandTo(LLVMContext &Context, EVT VT) const {
- assert(!VT.isVector());
- while (true) {
- switch (getTypeAction(Context, VT)) {
- case TypeLegal:
- return VT;
- case TypeExpandInteger:
- VT = getTypeToTransformTo(Context, VT);
- break;
- default:
- llvm_unreachable("Type is not legal nor is it to be expanded!");
- }
- }
- }
- /// Vector types are broken down into some number of legal first class types.
- /// For example, EVT::v8f32 maps to 2 EVT::v4f32 with Altivec or SSE1, or 8
- /// promoted EVT::f64 values with the X86 FP stack. Similarly, EVT::v2i64
- /// turns into 4 EVT::i32 values with both PPC and X86.
- ///
- /// This method returns the number of registers needed, and the VT for each
- /// register. It also returns the VT and quantity of the intermediate values
- /// before they are promoted/expanded.
- unsigned getVectorTypeBreakdown(LLVMContext &Context, EVT VT,
- EVT &IntermediateVT,
- unsigned &NumIntermediates,
- MVT &RegisterVT) const;
- /// Certain targets such as MIPS require that some types such as vectors are
- /// always broken down into scalars in some contexts. This occurs even if the
- /// vector type is legal.
- virtual unsigned getVectorTypeBreakdownForCallingConv(
- LLVMContext &Context, CallingConv::ID CC, EVT VT, EVT &IntermediateVT,
- unsigned &NumIntermediates, MVT &RegisterVT) const {
- return getVectorTypeBreakdown(Context, VT, IntermediateVT, NumIntermediates,
- RegisterVT);
- }
- struct IntrinsicInfo {
- unsigned opc = 0; // target opcode
- EVT memVT; // memory VT
- // value representing memory location
- PointerUnion<const Value *, const PseudoSourceValue *> ptrVal;
- // Fallback address space for use if ptrVal is nullptr. std::nullopt means
- // unknown address space.
- std::optional<unsigned> fallbackAddressSpace;
- int offset = 0; // offset off of ptrVal
- uint64_t size = 0; // the size of the memory location
- // (taken from memVT if zero)
- MaybeAlign align = Align(1); // alignment
- MachineMemOperand::Flags flags = MachineMemOperand::MONone;
- IntrinsicInfo() = default;
- };
- /// Given an intrinsic, checks if on the target the intrinsic will need to map
- /// to a MemIntrinsicNode (touches memory). If this is the case, it returns
- /// true and store the intrinsic information into the IntrinsicInfo that was
- /// passed to the function.
- virtual bool getTgtMemIntrinsic(IntrinsicInfo &, const CallInst &,
- MachineFunction &,
- unsigned /*Intrinsic*/) const {
- return false;
- }
- /// Returns true if the target can instruction select the specified FP
- /// immediate natively. If false, the legalizer will materialize the FP
- /// immediate as a load from a constant pool.
- virtual bool isFPImmLegal(const APFloat & /*Imm*/, EVT /*VT*/,
- bool ForCodeSize = false) const {
- return false;
- }
- /// Targets can use this to indicate that they only support *some*
- /// VECTOR_SHUFFLE operations, those with specific masks. By default, if a
- /// target supports the VECTOR_SHUFFLE node, all mask values are assumed to be
- /// legal.
- virtual bool isShuffleMaskLegal(ArrayRef<int> /*Mask*/, EVT /*VT*/) const {
- return true;
- }
- /// Returns true if the operation can trap for the value type.
- ///
- /// VT must be a legal type. By default, we optimistically assume most
- /// operations don't trap except for integer divide and remainder.
- virtual bool canOpTrap(unsigned Op, EVT VT) const;
- /// Similar to isShuffleMaskLegal. Targets can use this to indicate if there
- /// is a suitable VECTOR_SHUFFLE that can be used to replace a VAND with a
- /// constant pool entry.
- virtual bool isVectorClearMaskLegal(ArrayRef<int> /*Mask*/,
- EVT /*VT*/) const {
- return false;
- }
- /// How to legalize this custom operation?
- virtual LegalizeAction getCustomOperationAction(SDNode &Op) const {
- return Legal;
- }
- /// Return how this operation should be treated: either it is legal, needs to
- /// be promoted to a larger size, needs to be expanded to some other code
- /// sequence, or the target has a custom expander for it.
- LegalizeAction getOperationAction(unsigned Op, EVT VT) const {
- if (VT.isExtended()) return Expand;
- // If a target-specific SDNode requires legalization, require the target
- // to provide custom legalization for it.
- if (Op >= std::size(OpActions[0]))
- return Custom;
- return OpActions[(unsigned)VT.getSimpleVT().SimpleTy][Op];
- }
- /// Custom method defined by each target to indicate if an operation which
- /// may require a scale is supported natively by the target.
- /// If not, the operation is illegal.
- virtual bool isSupportedFixedPointOperation(unsigned Op, EVT VT,
- unsigned Scale) const {
- return false;
- }
- /// Some fixed point operations may be natively supported by the target but
- /// only for specific scales. This method allows for checking
- /// if the width is supported by the target for a given operation that may
- /// depend on scale.
- LegalizeAction getFixedPointOperationAction(unsigned Op, EVT VT,
- unsigned Scale) const {
- auto Action = getOperationAction(Op, VT);
- if (Action != Legal)
- return Action;
- // This operation is supported in this type but may only work on specific
- // scales.
- bool Supported;
- switch (Op) {
- default:
- llvm_unreachable("Unexpected fixed point operation.");
- case ISD::SMULFIX:
- case ISD::SMULFIXSAT:
- case ISD::UMULFIX:
- case ISD::UMULFIXSAT:
- case ISD::SDIVFIX:
- case ISD::SDIVFIXSAT:
- case ISD::UDIVFIX:
- case ISD::UDIVFIXSAT:
- Supported = isSupportedFixedPointOperation(Op, VT, Scale);
- break;
- }
- return Supported ? Action : Expand;
- }
- // If Op is a strict floating-point operation, return the result
- // of getOperationAction for the equivalent non-strict operation.
- LegalizeAction getStrictFPOperationAction(unsigned Op, EVT VT) const {
- unsigned EqOpc;
- switch (Op) {
- default: llvm_unreachable("Unexpected FP pseudo-opcode");
- #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \
- case ISD::STRICT_##DAGN: EqOpc = ISD::DAGN; break;
- #define CMP_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \
- case ISD::STRICT_##DAGN: EqOpc = ISD::SETCC; break;
- #include "llvm/IR/ConstrainedOps.def"
- }
- return getOperationAction(EqOpc, VT);
- }
- /// Return true if the specified operation is legal on this target or can be
- /// made legal with custom lowering. This is used to help guide high-level
- /// lowering decisions. LegalOnly is an optional convenience for code paths
- /// traversed pre and post legalisation.
- bool isOperationLegalOrCustom(unsigned Op, EVT VT,
- bool LegalOnly = false) const {
- if (LegalOnly)
- return isOperationLegal(Op, VT);
- return (VT == MVT::Other || isTypeLegal(VT)) &&
- (getOperationAction(Op, VT) == Legal ||
- getOperationAction(Op, VT) == Custom);
- }
- /// Return true if the specified operation is legal on this target or can be
- /// made legal using promotion. This is used to help guide high-level lowering
- /// decisions. LegalOnly is an optional convenience for code paths traversed
- /// pre and post legalisation.
- bool isOperationLegalOrPromote(unsigned Op, EVT VT,
- bool LegalOnly = false) const {
- if (LegalOnly)
- return isOperationLegal(Op, VT);
- return (VT == MVT::Other || isTypeLegal(VT)) &&
- (getOperationAction(Op, VT) == Legal ||
- getOperationAction(Op, VT) == Promote);
- }
- /// Return true if the specified operation is legal on this target or can be
- /// made legal with custom lowering or using promotion. This is used to help
- /// guide high-level lowering decisions. LegalOnly is an optional convenience
- /// for code paths traversed pre and post legalisation.
- bool isOperationLegalOrCustomOrPromote(unsigned Op, EVT VT,
- bool LegalOnly = false) const {
- if (LegalOnly)
- return isOperationLegal(Op, VT);
- return (VT == MVT::Other || isTypeLegal(VT)) &&
- (getOperationAction(Op, VT) == Legal ||
- getOperationAction(Op, VT) == Custom ||
- getOperationAction(Op, VT) == Promote);
- }
- /// Return true if the operation uses custom lowering, regardless of whether
- /// the type is legal or not.
- bool isOperationCustom(unsigned Op, EVT VT) const {
- return getOperationAction(Op, VT) == Custom;
- }
- /// Return true if lowering to a jump table is allowed.
- virtual bool areJTsAllowed(const Function *Fn) const {
- if (Fn->getFnAttribute("no-jump-tables").getValueAsBool())
- return false;
- return isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) ||
- isOperationLegalOrCustom(ISD::BRIND, MVT::Other);
- }
- /// Check whether the range [Low,High] fits in a machine word.
- bool rangeFitsInWord(const APInt &Low, const APInt &High,
- const DataLayout &DL) const {
- // FIXME: Using the pointer type doesn't seem ideal.
- uint64_t BW = DL.getIndexSizeInBits(0u);
- uint64_t Range = (High - Low).getLimitedValue(UINT64_MAX - 1) + 1;
- return Range <= BW;
- }
- /// Return true if lowering to a jump table is suitable for a set of case
- /// clusters which may contain \p NumCases cases, \p Range range of values.
- virtual bool isSuitableForJumpTable(const SwitchInst *SI, uint64_t NumCases,
- uint64_t Range, ProfileSummaryInfo *PSI,
- BlockFrequencyInfo *BFI) const;
- /// Returns preferred type for switch condition.
- virtual MVT getPreferredSwitchConditionType(LLVMContext &Context,
- EVT ConditionVT) const;
- /// Return true if lowering to a bit test is suitable for a set of case
- /// clusters which contains \p NumDests unique destinations, \p Low and
- /// \p High as its lowest and highest case values, and expects \p NumCmps
- /// case value comparisons. Check if the number of destinations, comparison
- /// metric, and range are all suitable.
- bool isSuitableForBitTests(unsigned NumDests, unsigned NumCmps,
- const APInt &Low, const APInt &High,
- const DataLayout &DL) const {
- // FIXME: I don't think NumCmps is the correct metric: a single case and a
- // range of cases both require only one branch to lower. Just looking at the
- // number of clusters and destinations should be enough to decide whether to
- // build bit tests.
- // To lower a range with bit tests, the range must fit the bitwidth of a
- // machine word.
- if (!rangeFitsInWord(Low, High, DL))
- return false;
- // Decide whether it's profitable to lower this range with bit tests. Each
- // destination requires a bit test and branch, and there is an overall range
- // check branch. For a small number of clusters, separate comparisons might
- // be cheaper, and for many destinations, splitting the range might be
- // better.
- return (NumDests == 1 && NumCmps >= 3) || (NumDests == 2 && NumCmps >= 5) ||
- (NumDests == 3 && NumCmps >= 6);
- }
- /// Return true if the specified operation is illegal on this target or
- /// unlikely to be made legal with custom lowering. This is used to help guide
- /// high-level lowering decisions.
- bool isOperationExpand(unsigned Op, EVT VT) const {
- return (!isTypeLegal(VT) || getOperationAction(Op, VT) == Expand);
- }
- /// Return true if the specified operation is legal on this target.
- bool isOperationLegal(unsigned Op, EVT VT) const {
- return (VT == MVT::Other || isTypeLegal(VT)) &&
- getOperationAction(Op, VT) == Legal;
- }
- /// Return how this load with extension should be treated: either it is legal,
- /// needs to be promoted to a larger size, needs to be expanded to some other
- /// code sequence, or the target has a custom expander for it.
- LegalizeAction getLoadExtAction(unsigned ExtType, EVT ValVT,
- EVT MemVT) const {
- if (ValVT.isExtended() || MemVT.isExtended()) return Expand;
- unsigned ValI = (unsigned) ValVT.getSimpleVT().SimpleTy;
- unsigned MemI = (unsigned) MemVT.getSimpleVT().SimpleTy;
- assert(ExtType < ISD::LAST_LOADEXT_TYPE && ValI < MVT::VALUETYPE_SIZE &&
- MemI < MVT::VALUETYPE_SIZE && "Table isn't big enough!");
- unsigned Shift = 4 * ExtType;
- return (LegalizeAction)((LoadExtActions[ValI][MemI] >> Shift) & 0xf);
- }
- /// Return true if the specified load with extension is legal on this target.
- bool isLoadExtLegal(unsigned ExtType, EVT ValVT, EVT MemVT) const {
- return getLoadExtAction(ExtType, ValVT, MemVT) == Legal;
- }
- /// Return true if the specified load with extension is legal or custom
- /// on this target.
- bool isLoadExtLegalOrCustom(unsigned ExtType, EVT ValVT, EVT MemVT) const {
- return getLoadExtAction(ExtType, ValVT, MemVT) == Legal ||
- getLoadExtAction(ExtType, ValVT, MemVT) == Custom;
- }
- /// Return how this store with truncation should be treated: either it is
- /// legal, needs to be promoted to a larger size, needs to be expanded to some
- /// other code sequence, or the target has a custom expander for it.
- LegalizeAction getTruncStoreAction(EVT ValVT, EVT MemVT) const {
- if (ValVT.isExtended() || MemVT.isExtended()) return Expand;
- unsigned ValI = (unsigned) ValVT.getSimpleVT().SimpleTy;
- unsigned MemI = (unsigned) MemVT.getSimpleVT().SimpleTy;
- assert(ValI < MVT::VALUETYPE_SIZE && MemI < MVT::VALUETYPE_SIZE &&
- "Table isn't big enough!");
- return TruncStoreActions[ValI][MemI];
- }
- /// Return true if the specified store with truncation is legal on this
- /// target.
- bool isTruncStoreLegal(EVT ValVT, EVT MemVT) const {
- return isTypeLegal(ValVT) && getTruncStoreAction(ValVT, MemVT) == Legal;
- }
- /// Return true if the specified store with truncation has solution on this
- /// target.
- bool isTruncStoreLegalOrCustom(EVT ValVT, EVT MemVT) const {
- return isTypeLegal(ValVT) &&
- (getTruncStoreAction(ValVT, MemVT) == Legal ||
- getTruncStoreAction(ValVT, MemVT) == Custom);
- }
- virtual bool canCombineTruncStore(EVT ValVT, EVT MemVT,
- bool LegalOnly) const {
- if (LegalOnly)
- return isTruncStoreLegal(ValVT, MemVT);
- return isTruncStoreLegalOrCustom(ValVT, MemVT);
- }
- /// Return how the indexed load should be treated: either it is legal, needs
- /// to be promoted to a larger size, needs to be expanded to some other code
- /// sequence, or the target has a custom expander for it.
- LegalizeAction getIndexedLoadAction(unsigned IdxMode, MVT VT) const {
- return getIndexedModeAction(IdxMode, VT, IMAB_Load);
- }
- /// Return true if the specified indexed load is legal on this target.
- bool isIndexedLoadLegal(unsigned IdxMode, EVT VT) const {
- return VT.isSimple() &&
- (getIndexedLoadAction(IdxMode, VT.getSimpleVT()) == Legal ||
- getIndexedLoadAction(IdxMode, VT.getSimpleVT()) == Custom);
- }
- /// Return how the indexed store should be treated: either it is legal, needs
- /// to be promoted to a larger size, needs to be expanded to some other code
- /// sequence, or the target has a custom expander for it.
- LegalizeAction getIndexedStoreAction(unsigned IdxMode, MVT VT) const {
- return getIndexedModeAction(IdxMode, VT, IMAB_Store);
- }
- /// Return true if the specified indexed load is legal on this target.
- bool isIndexedStoreLegal(unsigned IdxMode, EVT VT) const {
- return VT.isSimple() &&
- (getIndexedStoreAction(IdxMode, VT.getSimpleVT()) == Legal ||
- getIndexedStoreAction(IdxMode, VT.getSimpleVT()) == Custom);
- }
- /// Return how the indexed load should be treated: either it is legal, needs
- /// to be promoted to a larger size, needs to be expanded to some other code
- /// sequence, or the target has a custom expander for it.
- LegalizeAction getIndexedMaskedLoadAction(unsigned IdxMode, MVT VT) const {
- return getIndexedModeAction(IdxMode, VT, IMAB_MaskedLoad);
- }
- /// Return true if the specified indexed load is legal on this target.
- bool isIndexedMaskedLoadLegal(unsigned IdxMode, EVT VT) const {
- return VT.isSimple() &&
- (getIndexedMaskedLoadAction(IdxMode, VT.getSimpleVT()) == Legal ||
- getIndexedMaskedLoadAction(IdxMode, VT.getSimpleVT()) == Custom);
- }
- /// Return how the indexed store should be treated: either it is legal, needs
- /// to be promoted to a larger size, needs to be expanded to some other code
- /// sequence, or the target has a custom expander for it.
- LegalizeAction getIndexedMaskedStoreAction(unsigned IdxMode, MVT VT) const {
- return getIndexedModeAction(IdxMode, VT, IMAB_MaskedStore);
- }
- /// Return true if the specified indexed load is legal on this target.
- bool isIndexedMaskedStoreLegal(unsigned IdxMode, EVT VT) const {
- return VT.isSimple() &&
- (getIndexedMaskedStoreAction(IdxMode, VT.getSimpleVT()) == Legal ||
- getIndexedMaskedStoreAction(IdxMode, VT.getSimpleVT()) == Custom);
- }
- /// Returns true if the index type for a masked gather/scatter requires
- /// extending
- virtual bool shouldExtendGSIndex(EVT VT, EVT &EltTy) const { return false; }
- // Returns true if VT is a legal index type for masked gathers/scatters
- // on this target
- virtual bool shouldRemoveExtendFromGSIndex(EVT IndexVT, EVT DataVT) const {
- return false;
- }
- // Return true if the target supports a scatter/gather instruction with
- // indices which are scaled by the particular value. Note that all targets
- // must by definition support scale of 1.
- virtual bool isLegalScaleForGatherScatter(uint64_t Scale,
- uint64_t ElemSize) const {
- // MGATHER/MSCATTER are only required to support scaling by one or by the
- // element size.
- if (Scale != ElemSize && Scale != 1)
- return false;
- return true;
- }
- /// Return how the condition code should be treated: either it is legal, needs
- /// to be expanded to some other code sequence, or the target has a custom
- /// expander for it.
- LegalizeAction
- getCondCodeAction(ISD::CondCode CC, MVT VT) const {
- assert((unsigned)CC < std::size(CondCodeActions) &&
- ((unsigned)VT.SimpleTy >> 3) < std::size(CondCodeActions[0]) &&
- "Table isn't big enough!");
- // See setCondCodeAction for how this is encoded.
- uint32_t Shift = 4 * (VT.SimpleTy & 0x7);
- uint32_t Value = CondCodeActions[CC][VT.SimpleTy >> 3];
- LegalizeAction Action = (LegalizeAction) ((Value >> Shift) & 0xF);
- assert(Action != Promote && "Can't promote condition code!");
- return Action;
- }
- /// Return true if the specified condition code is legal on this target.
- bool isCondCodeLegal(ISD::CondCode CC, MVT VT) const {
- return getCondCodeAction(CC, VT) == Legal;
- }
- /// Return true if the specified condition code is legal or custom on this
- /// target.
- bool isCondCodeLegalOrCustom(ISD::CondCode CC, MVT VT) const {
- return getCondCodeAction(CC, VT) == Legal ||
- getCondCodeAction(CC, VT) == Custom;
- }
- /// If the action for this operation is to promote, this method returns the
- /// ValueType to promote to.
- MVT getTypeToPromoteTo(unsigned Op, MVT VT) const {
- assert(getOperationAction(Op, VT) == Promote &&
- "This operation isn't promoted!");
- // See if this has an explicit type specified.
- std::map<std::pair<unsigned, MVT::SimpleValueType>,
- MVT::SimpleValueType>::const_iterator PTTI =
- PromoteToType.find(std::make_pair(Op, VT.SimpleTy));
- if (PTTI != PromoteToType.end()) return PTTI->second;
- assert((VT.isInteger() || VT.isFloatingPoint()) &&
- "Cannot autopromote this type, add it with AddPromotedToType.");
- MVT NVT = VT;
- do {
- NVT = (MVT::SimpleValueType)(NVT.SimpleTy+1);
- assert(NVT.isInteger() == VT.isInteger() && NVT != MVT::isVoid &&
- "Didn't find type to promote to!");
- } while (!isTypeLegal(NVT) ||
- getOperationAction(Op, NVT) == Promote);
- return NVT;
- }
- virtual EVT getAsmOperandValueType(const DataLayout &DL, Type *Ty,
- bool AllowUnknown = false) const {
- return getValueType(DL, Ty, AllowUnknown);
- }
- /// Return the EVT corresponding to this LLVM type. This is fixed by the LLVM
- /// operations except for the pointer size. If AllowUnknown is true, this
- /// will return MVT::Other for types with no EVT counterpart (e.g. structs),
- /// otherwise it will assert.
- EVT getValueType(const DataLayout &DL, Type *Ty,
- bool AllowUnknown = false) const {
- // Lower scalar pointers to native pointer types.
- if (auto *PTy = dyn_cast<PointerType>(Ty))
- return getPointerTy(DL, PTy->getAddressSpace());
- if (auto *VTy = dyn_cast<VectorType>(Ty)) {
- Type *EltTy = VTy->getElementType();
- // Lower vectors of pointers to native pointer types.
- if (auto *PTy = dyn_cast<PointerType>(EltTy)) {
- EVT PointerTy(getPointerTy(DL, PTy->getAddressSpace()));
- EltTy = PointerTy.getTypeForEVT(Ty->getContext());
- }
- return EVT::getVectorVT(Ty->getContext(), EVT::getEVT(EltTy, false),
- VTy->getElementCount());
- }
- return EVT::getEVT(Ty, AllowUnknown);
- }
- EVT getMemValueType(const DataLayout &DL, Type *Ty,
- bool AllowUnknown = false) const {
- // Lower scalar pointers to native pointer types.
- if (PointerType *PTy = dyn_cast<PointerType>(Ty))
- return getPointerMemTy(DL, PTy->getAddressSpace());
- else if (VectorType *VTy = dyn_cast<VectorType>(Ty)) {
- Type *Elm = VTy->getElementType();
- if (PointerType *PT = dyn_cast<PointerType>(Elm)) {
- EVT PointerTy(getPointerMemTy(DL, PT->getAddressSpace()));
- Elm = PointerTy.getTypeForEVT(Ty->getContext());
- }
- return EVT::getVectorVT(Ty->getContext(), EVT::getEVT(Elm, false),
- VTy->getElementCount());
- }
- return getValueType(DL, Ty, AllowUnknown);
- }
- /// Return the MVT corresponding to this LLVM type. See getValueType.
- MVT getSimpleValueType(const DataLayout &DL, Type *Ty,
- bool AllowUnknown = false) const {
- return getValueType(DL, Ty, AllowUnknown).getSimpleVT();
- }
- /// Return the desired alignment for ByVal or InAlloca aggregate function
- /// arguments in the caller parameter area. This is the actual alignment, not
- /// its logarithm.
- virtual uint64_t getByValTypeAlignment(Type *Ty, const DataLayout &DL) const;
- /// Return the type of registers that this ValueType will eventually require.
- MVT getRegisterType(MVT VT) const {
- assert((unsigned)VT.SimpleTy < std::size(RegisterTypeForVT));
- return RegisterTypeForVT[VT.SimpleTy];
- }
- /// Return the type of registers that this ValueType will eventually require.
- MVT getRegisterType(LLVMContext &Context, EVT VT) const {
- if (VT.isSimple()) {
- assert((unsigned)VT.getSimpleVT().SimpleTy <
- std::size(RegisterTypeForVT));
- return RegisterTypeForVT[VT.getSimpleVT().SimpleTy];
- }
- if (VT.isVector()) {
- EVT VT1;
- MVT RegisterVT;
- unsigned NumIntermediates;
- (void)getVectorTypeBreakdown(Context, VT, VT1,
- NumIntermediates, RegisterVT);
- return RegisterVT;
- }
- if (VT.isInteger()) {
- return getRegisterType(Context, getTypeToTransformTo(Context, VT));
- }
- llvm_unreachable("Unsupported extended type!");
- }
- /// Return the number of registers that this ValueType will eventually
- /// require.
- ///
- /// This is one for any types promoted to live in larger registers, but may be
- /// more than one for types (like i64) that are split into pieces. For types
- /// like i140, which are first promoted then expanded, it is the number of
- /// registers needed to hold all the bits of the original type. For an i140
- /// on a 32 bit machine this means 5 registers.
- ///
- /// RegisterVT may be passed as a way to override the default settings, for
- /// instance with i128 inline assembly operands on SystemZ.
- virtual unsigned
- getNumRegisters(LLVMContext &Context, EVT VT,
- std::optional<MVT> RegisterVT = std::nullopt) const {
- if (VT.isSimple()) {
- assert((unsigned)VT.getSimpleVT().SimpleTy <
- std::size(NumRegistersForVT));
- return NumRegistersForVT[VT.getSimpleVT().SimpleTy];
- }
- if (VT.isVector()) {
- EVT VT1;
- MVT VT2;
- unsigned NumIntermediates;
- return getVectorTypeBreakdown(Context, VT, VT1, NumIntermediates, VT2);
- }
- if (VT.isInteger()) {
- unsigned BitWidth = VT.getSizeInBits();
- unsigned RegWidth = getRegisterType(Context, VT).getSizeInBits();
- return (BitWidth + RegWidth - 1) / RegWidth;
- }
- llvm_unreachable("Unsupported extended type!");
- }
- /// Certain combinations of ABIs, Targets and features require that types
- /// are legal for some operations and not for other operations.
- /// For MIPS all vector types must be passed through the integer register set.
- virtual MVT getRegisterTypeForCallingConv(LLVMContext &Context,
- CallingConv::ID CC, EVT VT) const {
- return getRegisterType(Context, VT);
- }
- /// Certain targets require unusual breakdowns of certain types. For MIPS,
- /// this occurs when a vector type is used, as vector are passed through the
- /// integer register set.
- virtual unsigned getNumRegistersForCallingConv(LLVMContext &Context,
- CallingConv::ID CC,
- EVT VT) const {
- return getNumRegisters(Context, VT);
- }
- /// Certain targets have context sensitive alignment requirements, where one
- /// type has the alignment requirement of another type.
- virtual Align getABIAlignmentForCallingConv(Type *ArgTy,
- const DataLayout &DL) const {
- return DL.getABITypeAlign(ArgTy);
- }
- /// If true, then instruction selection should seek to shrink the FP constant
- /// of the specified type to a smaller type in order to save space and / or
- /// reduce runtime.
- virtual bool ShouldShrinkFPConstant(EVT) const { return true; }
- /// Return true if it is profitable to reduce a load to a smaller type.
- /// Example: (i16 (trunc (i32 (load x))) -> i16 load x
- virtual bool shouldReduceLoadWidth(SDNode *Load, ISD::LoadExtType ExtTy,
- EVT NewVT) const {
- // By default, assume that it is cheaper to extract a subvector from a wide
- // vector load rather than creating multiple narrow vector loads.
- if (NewVT.isVector() && !Load->hasOneUse())
- return false;
- return true;
- }
- /// When splitting a value of the specified type into parts, does the Lo
- /// or Hi part come first? This usually follows the endianness, except
- /// for ppcf128, where the Hi part always comes first.
- bool hasBigEndianPartOrdering(EVT VT, const DataLayout &DL) const {
- return DL.isBigEndian() || VT == MVT::ppcf128;
- }
- /// If true, the target has custom DAG combine transformations that it can
- /// perform for the specified node.
- bool hasTargetDAGCombine(ISD::NodeType NT) const {
- assert(unsigned(NT >> 3) < std::size(TargetDAGCombineArray));
- return TargetDAGCombineArray[NT >> 3] & (1 << (NT&7));
- }
- unsigned getGatherAllAliasesMaxDepth() const {
- return GatherAllAliasesMaxDepth;
- }
- /// Returns the size of the platform's va_list object.
- virtual unsigned getVaListSizeInBits(const DataLayout &DL) const {
- return getPointerTy(DL).getSizeInBits();
- }
- /// Get maximum # of store operations permitted for llvm.memset
- ///
- /// This function returns the maximum number of store operations permitted
- /// to replace a call to llvm.memset. The value is set by the target at the
- /// performance threshold for such a replacement. If OptSize is true,
- /// return the limit for functions that have OptSize attribute.
- unsigned getMaxStoresPerMemset(bool OptSize) const {
- return OptSize ? MaxStoresPerMemsetOptSize : MaxStoresPerMemset;
- }
- /// Get maximum # of store operations permitted for llvm.memcpy
- ///
- /// This function returns the maximum number of store operations permitted
- /// to replace a call to llvm.memcpy. The value is set by the target at the
- /// performance threshold for such a replacement. If OptSize is true,
- /// return the limit for functions that have OptSize attribute.
- unsigned getMaxStoresPerMemcpy(bool OptSize) const {
- return OptSize ? MaxStoresPerMemcpyOptSize : MaxStoresPerMemcpy;
- }
- /// \brief Get maximum # of store operations to be glued together
- ///
- /// This function returns the maximum number of store operations permitted
- /// to glue together during lowering of llvm.memcpy. The value is set by
- // the target at the performance threshold for such a replacement.
- virtual unsigned getMaxGluedStoresPerMemcpy() const {
- return MaxGluedStoresPerMemcpy;
- }
- /// Get maximum # of load operations permitted for memcmp
- ///
- /// This function returns the maximum number of load operations permitted
- /// to replace a call to memcmp. The value is set by the target at the
- /// performance threshold for such a replacement. If OptSize is true,
- /// return the limit for functions that have OptSize attribute.
- unsigned getMaxExpandSizeMemcmp(bool OptSize) const {
- return OptSize ? MaxLoadsPerMemcmpOptSize : MaxLoadsPerMemcmp;
- }
- /// Get maximum # of store operations permitted for llvm.memmove
- ///
- /// This function returns the maximum number of store operations permitted
- /// to replace a call to llvm.memmove. The value is set by the target at the
- /// performance threshold for such a replacement. If OptSize is true,
- /// return the limit for functions that have OptSize attribute.
- unsigned getMaxStoresPerMemmove(bool OptSize) const {
- return OptSize ? MaxStoresPerMemmoveOptSize : MaxStoresPerMemmove;
- }
- /// Determine if the target supports unaligned memory accesses.
- ///
- /// This function returns true if the target allows unaligned memory accesses
- /// of the specified type in the given address space. If true, it also returns
- /// a relative speed of the unaligned memory access in the last argument by
- /// reference. The higher the speed number the faster the operation comparing
- /// to a number returned by another such call. This is used, for example, in
- /// situations where an array copy/move/set is converted to a sequence of
- /// store operations. Its use helps to ensure that such replacements don't
- /// generate code that causes an alignment error (trap) on the target machine.
- virtual bool allowsMisalignedMemoryAccesses(
- EVT, unsigned AddrSpace = 0, Align Alignment = Align(1),
- MachineMemOperand::Flags Flags = MachineMemOperand::MONone,
- unsigned * /*Fast*/ = nullptr) const {
- return false;
- }
- /// LLT handling variant.
- virtual bool allowsMisalignedMemoryAccesses(
- LLT, unsigned AddrSpace = 0, Align Alignment = Align(1),
- MachineMemOperand::Flags Flags = MachineMemOperand::MONone,
- unsigned * /*Fast*/ = nullptr) const {
- return false;
- }
- /// This function returns true if the memory access is aligned or if the
- /// target allows this specific unaligned memory access. If the access is
- /// allowed, the optional final parameter returns a relative speed of the
- /// access (as defined by the target).
- bool allowsMemoryAccessForAlignment(
- LLVMContext &Context, const DataLayout &DL, EVT VT,
- unsigned AddrSpace = 0, Align Alignment = Align(1),
- MachineMemOperand::Flags Flags = MachineMemOperand::MONone,
- unsigned *Fast = nullptr) const;
- /// Return true if the memory access of this type is aligned or if the target
- /// allows this specific unaligned access for the given MachineMemOperand.
- /// If the access is allowed, the optional final parameter returns a relative
- /// speed of the access (as defined by the target).
- bool allowsMemoryAccessForAlignment(LLVMContext &Context,
- const DataLayout &DL, EVT VT,
- const MachineMemOperand &MMO,
- unsigned *Fast = nullptr) const;
- /// Return true if the target supports a memory access of this type for the
- /// given address space and alignment. If the access is allowed, the optional
- /// final parameter returns the relative speed of the access (as defined by
- /// the target).
- virtual bool
- allowsMemoryAccess(LLVMContext &Context, const DataLayout &DL, EVT VT,
- unsigned AddrSpace = 0, Align Alignment = Align(1),
- MachineMemOperand::Flags Flags = MachineMemOperand::MONone,
- unsigned *Fast = nullptr) const;
- /// Return true if the target supports a memory access of this type for the
- /// given MachineMemOperand. If the access is allowed, the optional
- /// final parameter returns the relative access speed (as defined by the
- /// target).
- bool allowsMemoryAccess(LLVMContext &Context, const DataLayout &DL, EVT VT,
- const MachineMemOperand &MMO,
- unsigned *Fast = nullptr) const;
- /// LLT handling variant.
- bool allowsMemoryAccess(LLVMContext &Context, const DataLayout &DL, LLT Ty,
- const MachineMemOperand &MMO,
- unsigned *Fast = nullptr) const;
- /// Returns the target specific optimal type for load and store operations as
- /// a result of memset, memcpy, and memmove lowering.
- /// It returns EVT::Other if the type should be determined using generic
- /// target-independent logic.
- virtual EVT
- getOptimalMemOpType(const MemOp &Op,
- const AttributeList & /*FuncAttributes*/) const {
- return MVT::Other;
- }
- /// LLT returning variant.
- virtual LLT
- getOptimalMemOpLLT(const MemOp &Op,
- const AttributeList & /*FuncAttributes*/) const {
- return LLT();
- }
- /// Returns true if it's safe to use load / store of the specified type to
- /// expand memcpy / memset inline.
- ///
- /// This is mostly true for all types except for some special cases. For
- /// example, on X86 targets without SSE2 f64 load / store are done with fldl /
- /// fstpl which also does type conversion. Note the specified type doesn't
- /// have to be legal as the hook is used before type legalization.
- virtual bool isSafeMemOpType(MVT /*VT*/) const { return true; }
- /// Return lower limit for number of blocks in a jump table.
- virtual unsigned getMinimumJumpTableEntries() const;
- /// Return lower limit of the density in a jump table.
- unsigned getMinimumJumpTableDensity(bool OptForSize) const;
- /// Return upper limit for number of entries in a jump table.
- /// Zero if no limit.
- unsigned getMaximumJumpTableSize() const;
- virtual bool isJumpTableRelative() const;
- /// If a physical register, this specifies the register that
- /// llvm.savestack/llvm.restorestack should save and restore.
- Register getStackPointerRegisterToSaveRestore() const {
- return StackPointerRegisterToSaveRestore;
- }
- /// If a physical register, this returns the register that receives the
- /// exception address on entry to an EH pad.
- virtual Register
- getExceptionPointerRegister(const Constant *PersonalityFn) const {
- return Register();
- }
- /// If a physical register, this returns the register that receives the
- /// exception typeid on entry to a landing pad.
- virtual Register
- getExceptionSelectorRegister(const Constant *PersonalityFn) const {
- return Register();
- }
- virtual bool needsFixedCatchObjects() const {
- report_fatal_error("Funclet EH is not implemented for this target");
- }
- /// Return the minimum stack alignment of an argument.
- Align getMinStackArgumentAlignment() const {
- return MinStackArgumentAlignment;
- }
- /// Return the minimum function alignment.
- Align getMinFunctionAlignment() const { return MinFunctionAlignment; }
- /// Return the preferred function alignment.
- Align getPrefFunctionAlignment() const { return PrefFunctionAlignment; }
- /// Return the preferred loop alignment.
- virtual Align getPrefLoopAlignment(MachineLoop *ML = nullptr) const;
- /// Return the maximum amount of bytes allowed to be emitted when padding for
- /// alignment
- virtual unsigned
- getMaxPermittedBytesForAlignment(MachineBasicBlock *MBB) const;
- /// Should loops be aligned even when the function is marked OptSize (but not
- /// MinSize).
- virtual bool alignLoopsWithOptSize() const { return false; }
- /// If the target has a standard location for the stack protector guard,
- /// returns the address of that location. Otherwise, returns nullptr.
- /// DEPRECATED: please override useLoadStackGuardNode and customize
- /// LOAD_STACK_GUARD, or customize \@llvm.stackguard().
- virtual Value *getIRStackGuard(IRBuilderBase &IRB) const;
- /// Inserts necessary declarations for SSP (stack protection) purpose.
- /// Should be used only when getIRStackGuard returns nullptr.
- virtual void insertSSPDeclarations(Module &M) const;
- /// Return the variable that's previously inserted by insertSSPDeclarations,
- /// if any, otherwise return nullptr. Should be used only when
- /// getIRStackGuard returns nullptr.
- virtual Value *getSDagStackGuard(const Module &M) const;
- /// If this function returns true, stack protection checks should XOR the
- /// frame pointer (or whichever pointer is used to address locals) into the
- /// stack guard value before checking it. getIRStackGuard must return nullptr
- /// if this returns true.
- virtual bool useStackGuardXorFP() const { return false; }
- /// If the target has a standard stack protection check function that
- /// performs validation and error handling, returns the function. Otherwise,
- /// returns nullptr. Must be previously inserted by insertSSPDeclarations.
- /// Should be used only when getIRStackGuard returns nullptr.
- virtual Function *getSSPStackGuardCheck(const Module &M) const;
- /// \returns true if a constant G_UBFX is legal on the target.
- virtual bool isConstantUnsignedBitfieldExtractLegal(unsigned Opc, LLT Ty1,
- LLT Ty2) const {
- return false;
- }
- protected:
- Value *getDefaultSafeStackPointerLocation(IRBuilderBase &IRB,
- bool UseTLS) const;
- public:
- /// Returns the target-specific address of the unsafe stack pointer.
- virtual Value *getSafeStackPointerLocation(IRBuilderBase &IRB) const;
- /// Returns the name of the symbol used to emit stack probes or the empty
- /// string if not applicable.
- virtual bool hasStackProbeSymbol(const MachineFunction &MF) const { return false; }
- virtual bool hasInlineStackProbe(const MachineFunction &MF) const { return false; }
- virtual StringRef getStackProbeSymbolName(const MachineFunction &MF) const {
- return "";
- }
- /// Returns true if a cast from SrcAS to DestAS is "cheap", such that e.g. we
- /// are happy to sink it into basic blocks. A cast may be free, but not
- /// necessarily a no-op. e.g. a free truncate from a 64-bit to 32-bit pointer.
- virtual bool isFreeAddrSpaceCast(unsigned SrcAS, unsigned DestAS) const;
- /// Return true if the pointer arguments to CI should be aligned by aligning
- /// the object whose address is being passed. If so then MinSize is set to the
- /// minimum size the object must be to be aligned and PrefAlign is set to the
- /// preferred alignment.
- virtual bool shouldAlignPointerArgs(CallInst * /*CI*/, unsigned & /*MinSize*/,
- Align & /*PrefAlign*/) const {
- return false;
- }
- //===--------------------------------------------------------------------===//
- /// \name Helpers for TargetTransformInfo implementations
- /// @{
- /// Get the ISD node that corresponds to the Instruction class opcode.
- int InstructionOpcodeToISD(unsigned Opcode) const;
- /// @}
- //===--------------------------------------------------------------------===//
- /// \name Helpers for atomic expansion.
- /// @{
- /// Returns the maximum atomic operation size (in bits) supported by
- /// the backend. Atomic operations greater than this size (as well
- /// as ones that are not naturally aligned), will be expanded by
- /// AtomicExpandPass into an __atomic_* library call.
- unsigned getMaxAtomicSizeInBitsSupported() const {
- return MaxAtomicSizeInBitsSupported;
- }
- /// Returns the size in bits of the maximum div/rem the backend supports.
- /// Larger operations will be expanded by ExpandLargeDivRem.
- unsigned getMaxDivRemBitWidthSupported() const {
- return MaxDivRemBitWidthSupported;
- }
- /// Returns the size in bits of the maximum larget fp convert the backend
- /// supports. Larger operations will be expanded by ExpandLargeFPConvert.
- unsigned getMaxLargeFPConvertBitWidthSupported() const {
- return MaxLargeFPConvertBitWidthSupported;
- }
- /// Returns the size of the smallest cmpxchg or ll/sc instruction
- /// the backend supports. Any smaller operations are widened in
- /// AtomicExpandPass.
- ///
- /// Note that *unlike* operations above the maximum size, atomic ops
- /// are still natively supported below the minimum; they just
- /// require a more complex expansion.
- unsigned getMinCmpXchgSizeInBits() const { return MinCmpXchgSizeInBits; }
- /// Whether the target supports unaligned atomic operations.
- bool supportsUnalignedAtomics() const { return SupportsUnalignedAtomics; }
- /// Whether AtomicExpandPass should automatically insert fences and reduce
- /// ordering for this atomic. This should be true for most architectures with
- /// weak memory ordering. Defaults to false.
- virtual bool shouldInsertFencesForAtomic(const Instruction *I) const {
- return false;
- }
- /// Whether AtomicExpandPass should automatically insert a trailing fence
- /// without reducing the ordering for this atomic. Defaults to false.
- virtual bool
- shouldInsertTrailingFenceForAtomicStore(const Instruction *I) const {
- return false;
- }
- /// Perform a load-linked operation on Addr, returning a "Value *" with the
- /// corresponding pointee type. This may entail some non-trivial operations to
- /// truncate or reconstruct types that will be illegal in the backend. See
- /// ARMISelLowering for an example implementation.
- virtual Value *emitLoadLinked(IRBuilderBase &Builder, Type *ValueTy,
- Value *Addr, AtomicOrdering Ord) const {
- llvm_unreachable("Load linked unimplemented on this target");
- }
- /// Perform a store-conditional operation to Addr. Return the status of the
- /// store. This should be 0 if the store succeeded, non-zero otherwise.
- virtual Value *emitStoreConditional(IRBuilderBase &Builder, Value *Val,
- Value *Addr, AtomicOrdering Ord) const {
- llvm_unreachable("Store conditional unimplemented on this target");
- }
- /// Perform a masked atomicrmw using a target-specific intrinsic. This
- /// represents the core LL/SC loop which will be lowered at a late stage by
- /// the backend. The target-specific intrinsic returns the loaded value and
- /// is not responsible for masking and shifting the result.
- virtual Value *emitMaskedAtomicRMWIntrinsic(IRBuilderBase &Builder,
- AtomicRMWInst *AI,
- Value *AlignedAddr, Value *Incr,
- Value *Mask, Value *ShiftAmt,
- AtomicOrdering Ord) const {
- llvm_unreachable("Masked atomicrmw expansion unimplemented on this target");
- }
- /// Perform a atomicrmw expansion using a target-specific way. This is
- /// expected to be called when masked atomicrmw and bit test atomicrmw don't
- /// work, and the target supports another way to lower atomicrmw.
- virtual void emitExpandAtomicRMW(AtomicRMWInst *AI) const {
- llvm_unreachable(
- "Generic atomicrmw expansion unimplemented on this target");
- }
- /// Perform a bit test atomicrmw using a target-specific intrinsic. This
- /// represents the combined bit test intrinsic which will be lowered at a late
- /// stage by the backend.
- virtual void emitBitTestAtomicRMWIntrinsic(AtomicRMWInst *AI) const {
- llvm_unreachable(
- "Bit test atomicrmw expansion unimplemented on this target");
- }
- /// Perform a atomicrmw which the result is only used by comparison, using a
- /// target-specific intrinsic. This represents the combined atomic and compare
- /// intrinsic which will be lowered at a late stage by the backend.
- virtual void emitCmpArithAtomicRMWIntrinsic(AtomicRMWInst *AI) const {
- llvm_unreachable(
- "Compare arith atomicrmw expansion unimplemented on this target");
- }
- /// Perform a masked cmpxchg using a target-specific intrinsic. This
- /// represents the core LL/SC loop which will be lowered at a late stage by
- /// the backend. The target-specific intrinsic returns the loaded value and
- /// is not responsible for masking and shifting the result.
- virtual Value *emitMaskedAtomicCmpXchgIntrinsic(
- IRBuilderBase &Builder, AtomicCmpXchgInst *CI, Value *AlignedAddr,
- Value *CmpVal, Value *NewVal, Value *Mask, AtomicOrdering Ord) const {
- llvm_unreachable("Masked cmpxchg expansion unimplemented on this target");
- }
- /// Inserts in the IR a target-specific intrinsic specifying a fence.
- /// It is called by AtomicExpandPass before expanding an
- /// AtomicRMW/AtomicCmpXchg/AtomicStore/AtomicLoad
- /// if shouldInsertFencesForAtomic returns true.
- ///
- /// Inst is the original atomic instruction, prior to other expansions that
- /// may be performed.
- ///
- /// This function should either return a nullptr, or a pointer to an IR-level
- /// Instruction*. Even complex fence sequences can be represented by a
- /// single Instruction* through an intrinsic to be lowered later.
- /// Backends should override this method to produce target-specific intrinsic
- /// for their fences.
- /// FIXME: Please note that the default implementation here in terms of
- /// IR-level fences exists for historical/compatibility reasons and is
- /// *unsound* ! Fences cannot, in general, be used to restore sequential
- /// consistency. For example, consider the following example:
- /// atomic<int> x = y = 0;
- /// int r1, r2, r3, r4;
- /// Thread 0:
- /// x.store(1);
- /// Thread 1:
- /// y.store(1);
- /// Thread 2:
- /// r1 = x.load();
- /// r2 = y.load();
- /// Thread 3:
- /// r3 = y.load();
- /// r4 = x.load();
- /// r1 = r3 = 1 and r2 = r4 = 0 is impossible as long as the accesses are all
- /// seq_cst. But if they are lowered to monotonic accesses, no amount of
- /// IR-level fences can prevent it.
- /// @{
- virtual Instruction *emitLeadingFence(IRBuilderBase &Builder,
- Instruction *Inst,
- AtomicOrdering Ord) const;
- virtual Instruction *emitTrailingFence(IRBuilderBase &Builder,
- Instruction *Inst,
- AtomicOrdering Ord) const;
- /// @}
- // Emits code that executes when the comparison result in the ll/sc
- // expansion of a cmpxchg instruction is such that the store-conditional will
- // not execute. This makes it possible to balance out the load-linked with
- // a dedicated instruction, if desired.
- // E.g., on ARM, if ldrex isn't followed by strex, the exclusive monitor would
- // be unnecessarily held, except if clrex, inserted by this hook, is executed.
- virtual void emitAtomicCmpXchgNoStoreLLBalance(IRBuilderBase &Builder) const {}
- /// Returns true if arguments should be sign-extended in lib calls.
- virtual bool shouldSignExtendTypeInLibCall(EVT Type, bool IsSigned) const {
- return IsSigned;
- }
- /// Returns true if arguments should be extended in lib calls.
- virtual bool shouldExtendTypeInLibCall(EVT Type) const {
- return true;
- }
- /// Returns how the given (atomic) load should be expanded by the
- /// IR-level AtomicExpand pass.
- virtual AtomicExpansionKind shouldExpandAtomicLoadInIR(LoadInst *LI) const {
- return AtomicExpansionKind::None;
- }
- /// Returns how the given (atomic) load should be cast by the IR-level
- /// AtomicExpand pass.
- virtual AtomicExpansionKind shouldCastAtomicLoadInIR(LoadInst *LI) const {
- if (LI->getType()->isFloatingPointTy())
- return AtomicExpansionKind::CastToInteger;
- return AtomicExpansionKind::None;
- }
- /// Returns how the given (atomic) store should be expanded by the IR-level
- /// AtomicExpand pass into. For instance AtomicExpansionKind::Expand will try
- /// to use an atomicrmw xchg.
- virtual AtomicExpansionKind shouldExpandAtomicStoreInIR(StoreInst *SI) const {
- return AtomicExpansionKind::None;
- }
- /// Returns how the given (atomic) store should be cast by the IR-level
- /// AtomicExpand pass into. For instance AtomicExpansionKind::CastToInteger
- /// will try to cast the operands to integer values.
- virtual AtomicExpansionKind shouldCastAtomicStoreInIR(StoreInst *SI) const {
- if (SI->getValueOperand()->getType()->isFloatingPointTy())
- return AtomicExpansionKind::CastToInteger;
- return AtomicExpansionKind::None;
- }
- /// Returns how the given atomic cmpxchg should be expanded by the IR-level
- /// AtomicExpand pass.
- virtual AtomicExpansionKind
- shouldExpandAtomicCmpXchgInIR(AtomicCmpXchgInst *AI) const {
- return AtomicExpansionKind::None;
- }
- /// Returns how the IR-level AtomicExpand pass should expand the given
- /// AtomicRMW, if at all. Default is to never expand.
- virtual AtomicExpansionKind shouldExpandAtomicRMWInIR(AtomicRMWInst *RMW) const {
- return RMW->isFloatingPointOperation() ?
- AtomicExpansionKind::CmpXChg : AtomicExpansionKind::None;
- }
- /// Returns how the given atomic atomicrmw should be cast by the IR-level
- /// AtomicExpand pass.
- virtual AtomicExpansionKind
- shouldCastAtomicRMWIInIR(AtomicRMWInst *RMWI) const {
- if (RMWI->getOperation() == AtomicRMWInst::Xchg &&
- (RMWI->getValOperand()->getType()->isFloatingPointTy() ||
- RMWI->getValOperand()->getType()->isPointerTy()))
- return AtomicExpansionKind::CastToInteger;
- return AtomicExpansionKind::None;
- }
- /// On some platforms, an AtomicRMW that never actually modifies the value
- /// (such as fetch_add of 0) can be turned into a fence followed by an
- /// atomic load. This may sound useless, but it makes it possible for the
- /// processor to keep the cacheline shared, dramatically improving
- /// performance. And such idempotent RMWs are useful for implementing some
- /// kinds of locks, see for example (justification + benchmarks):
- /// http://www.hpl.hp.com/techreports/2012/HPL-2012-68.pdf
- /// This method tries doing that transformation, returning the atomic load if
- /// it succeeds, and nullptr otherwise.
- /// If shouldExpandAtomicLoadInIR returns true on that load, it will undergo
- /// another round of expansion.
- virtual LoadInst *
- lowerIdempotentRMWIntoFencedLoad(AtomicRMWInst *RMWI) const {
- return nullptr;
- }
- /// Returns how the platform's atomic operations are extended (ZERO_EXTEND,
- /// SIGN_EXTEND, or ANY_EXTEND).
- virtual ISD::NodeType getExtendForAtomicOps() const {
- return ISD::ZERO_EXTEND;
- }
- /// Returns how the platform's atomic compare and swap expects its comparison
- /// value to be extended (ZERO_EXTEND, SIGN_EXTEND, or ANY_EXTEND). This is
- /// separate from getExtendForAtomicOps, which is concerned with the
- /// sign-extension of the instruction's output, whereas here we are concerned
- /// with the sign-extension of the input. For targets with compare-and-swap
- /// instructions (or sub-word comparisons in their LL/SC loop expansions),
- /// the input can be ANY_EXTEND, but the output will still have a specific
- /// extension.
- virtual ISD::NodeType getExtendForAtomicCmpSwapArg() const {
- return ISD::ANY_EXTEND;
- }
- /// @}
- /// Returns true if we should normalize
- /// select(N0&N1, X, Y) => select(N0, select(N1, X, Y), Y) and
- /// select(N0|N1, X, Y) => select(N0, select(N1, X, Y, Y)) if it is likely
- /// that it saves us from materializing N0 and N1 in an integer register.
- /// Targets that are able to perform and/or on flags should return false here.
- virtual bool shouldNormalizeToSelectSequence(LLVMContext &Context,
- EVT VT) const {
- // If a target has multiple condition registers, then it likely has logical
- // operations on those registers.
- if (hasMultipleConditionRegisters())
- return false;
- // Only do the transform if the value won't be split into multiple
- // registers.
- LegalizeTypeAction Action = getTypeAction(Context, VT);
- return Action != TypeExpandInteger && Action != TypeExpandFloat &&
- Action != TypeSplitVector;
- }
- virtual bool isProfitableToCombineMinNumMaxNum(EVT VT) const { return true; }
- /// Return true if a select of constants (select Cond, C1, C2) should be
- /// transformed into simple math ops with the condition value. For example:
- /// select Cond, C1, C1-1 --> add (zext Cond), C1-1
- virtual bool convertSelectOfConstantsToMath(EVT VT) const {
- return false;
- }
- /// Return true if it is profitable to transform an integer
- /// multiplication-by-constant into simpler operations like shifts and adds.
- /// This may be true if the target does not directly support the
- /// multiplication operation for the specified type or the sequence of simpler
- /// ops is faster than the multiply.
- virtual bool decomposeMulByConstant(LLVMContext &Context,
- EVT VT, SDValue C) const {
- return false;
- }
- /// Return true if it may be profitable to transform
- /// (mul (add x, c1), c2) -> (add (mul x, c2), c1*c2).
- /// This may not be true if c1 and c2 can be represented as immediates but
- /// c1*c2 cannot, for example.
- /// The target should check if c1, c2 and c1*c2 can be represented as
- /// immediates, or have to be materialized into registers. If it is not sure
- /// about some cases, a default true can be returned to let the DAGCombiner
- /// decide.
- /// AddNode is (add x, c1), and ConstNode is c2.
- virtual bool isMulAddWithConstProfitable(SDValue AddNode,
- SDValue ConstNode) const {
- return true;
- }
- /// Return true if it is more correct/profitable to use strict FP_TO_INT
- /// conversion operations - canonicalizing the FP source value instead of
- /// converting all cases and then selecting based on value.
- /// This may be true if the target throws exceptions for out of bounds
- /// conversions or has fast FP CMOV.
- virtual bool shouldUseStrictFP_TO_INT(EVT FpVT, EVT IntVT,
- bool IsSigned) const {
- return false;
- }
- /// Return true if it is beneficial to expand an @llvm.powi.* intrinsic.
- /// If not optimizing for size, expanding @llvm.powi.* intrinsics is always
- /// considered beneficial.
- /// If optimizing for size, expansion is only considered beneficial for upto
- /// 5 multiplies and a divide (if the exponent is negative).
- bool isBeneficialToExpandPowI(int Exponent, bool OptForSize) const {
- if (Exponent < 0)
- Exponent = -Exponent;
- return !OptForSize ||
- (llvm::popcount((unsigned int)Exponent) + Log2_32(Exponent) < 7);
- }
- //===--------------------------------------------------------------------===//
- // TargetLowering Configuration Methods - These methods should be invoked by
- // the derived class constructor to configure this object for the target.
- //
- protected:
- /// Specify how the target extends the result of integer and floating point
- /// boolean values from i1 to a wider type. See getBooleanContents.
- void setBooleanContents(BooleanContent Ty) {
- BooleanContents = Ty;
- BooleanFloatContents = Ty;
- }
- /// Specify how the target extends the result of integer and floating point
- /// boolean values from i1 to a wider type. See getBooleanContents.
- void setBooleanContents(BooleanContent IntTy, BooleanContent FloatTy) {
- BooleanContents = IntTy;
- BooleanFloatContents = FloatTy;
- }
- /// Specify how the target extends the result of a vector boolean value from a
- /// vector of i1 to a wider type. See getBooleanContents.
- void setBooleanVectorContents(BooleanContent Ty) {
- BooleanVectorContents = Ty;
- }
- /// Specify the target scheduling preference.
- void setSchedulingPreference(Sched::Preference Pref) {
- SchedPreferenceInfo = Pref;
- }
- /// Indicate the minimum number of blocks to generate jump tables.
- void setMinimumJumpTableEntries(unsigned Val);
- /// Indicate the maximum number of entries in jump tables.
- /// Set to zero to generate unlimited jump tables.
- void setMaximumJumpTableSize(unsigned);
- /// If set to a physical register, this specifies the register that
- /// llvm.savestack/llvm.restorestack should save and restore.
- void setStackPointerRegisterToSaveRestore(Register R) {
- StackPointerRegisterToSaveRestore = R;
- }
- /// Tells the code generator that the target has multiple (allocatable)
- /// condition registers that can be used to store the results of comparisons
- /// for use by selects and conditional branches. With multiple condition
- /// registers, the code generator will not aggressively sink comparisons into
- /// the blocks of their users.
- void setHasMultipleConditionRegisters(bool hasManyRegs = true) {
- HasMultipleConditionRegisters = hasManyRegs;
- }
- /// Tells the code generator that the target has BitExtract instructions.
- /// The code generator will aggressively sink "shift"s into the blocks of
- /// their users if the users will generate "and" instructions which can be
- /// combined with "shift" to BitExtract instructions.
- void setHasExtractBitsInsn(bool hasExtractInsn = true) {
- HasExtractBitsInsn = hasExtractInsn;
- }
- /// Tells the code generator not to expand logic operations on comparison
- /// predicates into separate sequences that increase the amount of flow
- /// control.
- void setJumpIsExpensive(bool isExpensive = true);
- /// Tells the code generator which bitwidths to bypass.
- void addBypassSlowDiv(unsigned int SlowBitWidth, unsigned int FastBitWidth) {
- BypassSlowDivWidths[SlowBitWidth] = FastBitWidth;
- }
- /// Add the specified register class as an available regclass for the
- /// specified value type. This indicates the selector can handle values of
- /// that class natively.
- void addRegisterClass(MVT VT, const TargetRegisterClass *RC) {
- assert((unsigned)VT.SimpleTy < std::size(RegClassForVT));
- RegClassForVT[VT.SimpleTy] = RC;
- }
- /// Return the largest legal super-reg register class of the register class
- /// for the specified type and its associated "cost".
- virtual std::pair<const TargetRegisterClass *, uint8_t>
- findRepresentativeClass(const TargetRegisterInfo *TRI, MVT VT) const;
- /// Once all of the register classes are added, this allows us to compute
- /// derived properties we expose.
- void computeRegisterProperties(const TargetRegisterInfo *TRI);
- /// Indicate that the specified operation does not work with the specified
- /// type and indicate what to do about it. Note that VT may refer to either
- /// the type of a result or that of an operand of Op.
- void setOperationAction(unsigned Op, MVT VT, LegalizeAction Action) {
- assert(Op < std::size(OpActions[0]) && "Table isn't big enough!");
- OpActions[(unsigned)VT.SimpleTy][Op] = Action;
- }
- void setOperationAction(ArrayRef<unsigned> Ops, MVT VT,
- LegalizeAction Action) {
- for (auto Op : Ops)
- setOperationAction(Op, VT, Action);
- }
- void setOperationAction(ArrayRef<unsigned> Ops, ArrayRef<MVT> VTs,
- LegalizeAction Action) {
- for (auto VT : VTs)
- setOperationAction(Ops, VT, Action);
- }
- /// Indicate that the specified load with extension does not work with the
- /// specified type and indicate what to do about it.
- void setLoadExtAction(unsigned ExtType, MVT ValVT, MVT MemVT,
- LegalizeAction Action) {
- assert(ExtType < ISD::LAST_LOADEXT_TYPE && ValVT.isValid() &&
- MemVT.isValid() && "Table isn't big enough!");
- assert((unsigned)Action < 0x10 && "too many bits for bitfield array");
- unsigned Shift = 4 * ExtType;
- LoadExtActions[ValVT.SimpleTy][MemVT.SimpleTy] &= ~((uint16_t)0xF << Shift);
- LoadExtActions[ValVT.SimpleTy][MemVT.SimpleTy] |= (uint16_t)Action << Shift;
- }
- void setLoadExtAction(ArrayRef<unsigned> ExtTypes, MVT ValVT, MVT MemVT,
- LegalizeAction Action) {
- for (auto ExtType : ExtTypes)
- setLoadExtAction(ExtType, ValVT, MemVT, Action);
- }
- void setLoadExtAction(ArrayRef<unsigned> ExtTypes, MVT ValVT,
- ArrayRef<MVT> MemVTs, LegalizeAction Action) {
- for (auto MemVT : MemVTs)
- setLoadExtAction(ExtTypes, ValVT, MemVT, Action);
- }
- /// Indicate that the specified truncating store does not work with the
- /// specified type and indicate what to do about it.
- void setTruncStoreAction(MVT ValVT, MVT MemVT, LegalizeAction Action) {
- assert(ValVT.isValid() && MemVT.isValid() && "Table isn't big enough!");
- TruncStoreActions[(unsigned)ValVT.SimpleTy][MemVT.SimpleTy] = Action;
- }
- /// Indicate that the specified indexed load does or does not work with the
- /// specified type and indicate what to do abort it.
- ///
- /// NOTE: All indexed mode loads are initialized to Expand in
- /// TargetLowering.cpp
- void setIndexedLoadAction(ArrayRef<unsigned> IdxModes, MVT VT,
- LegalizeAction Action) {
- for (auto IdxMode : IdxModes)
- setIndexedModeAction(IdxMode, VT, IMAB_Load, Action);
- }
- void setIndexedLoadAction(ArrayRef<unsigned> IdxModes, ArrayRef<MVT> VTs,
- LegalizeAction Action) {
- for (auto VT : VTs)
- setIndexedLoadAction(IdxModes, VT, Action);
- }
- /// Indicate that the specified indexed store does or does not work with the
- /// specified type and indicate what to do about it.
- ///
- /// NOTE: All indexed mode stores are initialized to Expand in
- /// TargetLowering.cpp
- void setIndexedStoreAction(ArrayRef<unsigned> IdxModes, MVT VT,
- LegalizeAction Action) {
- for (auto IdxMode : IdxModes)
- setIndexedModeAction(IdxMode, VT, IMAB_Store, Action);
- }
- void setIndexedStoreAction(ArrayRef<unsigned> IdxModes, ArrayRef<MVT> VTs,
- LegalizeAction Action) {
- for (auto VT : VTs)
- setIndexedStoreAction(IdxModes, VT, Action);
- }
- /// Indicate that the specified indexed masked load does or does not work with
- /// the specified type and indicate what to do about it.
- ///
- /// NOTE: All indexed mode masked loads are initialized to Expand in
- /// TargetLowering.cpp
- void setIndexedMaskedLoadAction(unsigned IdxMode, MVT VT,
- LegalizeAction Action) {
- setIndexedModeAction(IdxMode, VT, IMAB_MaskedLoad, Action);
- }
- /// Indicate that the specified indexed masked store does or does not work
- /// with the specified type and indicate what to do about it.
- ///
- /// NOTE: All indexed mode masked stores are initialized to Expand in
- /// TargetLowering.cpp
- void setIndexedMaskedStoreAction(unsigned IdxMode, MVT VT,
- LegalizeAction Action) {
- setIndexedModeAction(IdxMode, VT, IMAB_MaskedStore, Action);
- }
- /// Indicate that the specified condition code is or isn't supported on the
- /// target and indicate what to do about it.
- void setCondCodeAction(ArrayRef<ISD::CondCode> CCs, MVT VT,
- LegalizeAction Action) {
- for (auto CC : CCs) {
- assert(VT.isValid() && (unsigned)CC < std::size(CondCodeActions) &&
- "Table isn't big enough!");
- assert((unsigned)Action < 0x10 && "too many bits for bitfield array");
- /// The lower 3 bits of the SimpleTy index into Nth 4bit set from the
- /// 32-bit value and the upper 29 bits index into the second dimension of
- /// the array to select what 32-bit value to use.
- uint32_t Shift = 4 * (VT.SimpleTy & 0x7);
- CondCodeActions[CC][VT.SimpleTy >> 3] &= ~((uint32_t)0xF << Shift);
- CondCodeActions[CC][VT.SimpleTy >> 3] |= (uint32_t)Action << Shift;
- }
- }
- void setCondCodeAction(ArrayRef<ISD::CondCode> CCs, ArrayRef<MVT> VTs,
- LegalizeAction Action) {
- for (auto VT : VTs)
- setCondCodeAction(CCs, VT, Action);
- }
- /// If Opc/OrigVT is specified as being promoted, the promotion code defaults
- /// to trying a larger integer/fp until it can find one that works. If that
- /// default is insufficient, this method can be used by the target to override
- /// the default.
- void AddPromotedToType(unsigned Opc, MVT OrigVT, MVT DestVT) {
- PromoteToType[std::make_pair(Opc, OrigVT.SimpleTy)] = DestVT.SimpleTy;
- }
- /// Convenience method to set an operation to Promote and specify the type
- /// in a single call.
- void setOperationPromotedToType(unsigned Opc, MVT OrigVT, MVT DestVT) {
- setOperationAction(Opc, OrigVT, Promote);
- AddPromotedToType(Opc, OrigVT, DestVT);
- }
- /// Targets should invoke this method for each target independent node that
- /// they want to provide a custom DAG combiner for by implementing the
- /// PerformDAGCombine virtual method.
- void setTargetDAGCombine(ArrayRef<ISD::NodeType> NTs) {
- for (auto NT : NTs) {
- assert(unsigned(NT >> 3) < std::size(TargetDAGCombineArray));
- TargetDAGCombineArray[NT >> 3] |= 1 << (NT & 7);
- }
- }
- /// Set the target's minimum function alignment.
- void setMinFunctionAlignment(Align Alignment) {
- MinFunctionAlignment = Alignment;
- }
- /// Set the target's preferred function alignment. This should be set if
- /// there is a performance benefit to higher-than-minimum alignment
- void setPrefFunctionAlignment(Align Alignment) {
- PrefFunctionAlignment = Alignment;
- }
- /// Set the target's preferred loop alignment. Default alignment is one, it
- /// means the target does not care about loop alignment. The target may also
- /// override getPrefLoopAlignment to provide per-loop values.
- void setPrefLoopAlignment(Align Alignment) { PrefLoopAlignment = Alignment; }
- void setMaxBytesForAlignment(unsigned MaxBytes) {
- MaxBytesForAlignment = MaxBytes;
- }
- /// Set the minimum stack alignment of an argument.
- void setMinStackArgumentAlignment(Align Alignment) {
- MinStackArgumentAlignment = Alignment;
- }
- /// Set the maximum atomic operation size supported by the
- /// backend. Atomic operations greater than this size (as well as
- /// ones that are not naturally aligned), will be expanded by
- /// AtomicExpandPass into an __atomic_* library call.
- void setMaxAtomicSizeInBitsSupported(unsigned SizeInBits) {
- MaxAtomicSizeInBitsSupported = SizeInBits;
- }
- /// Set the size in bits of the maximum div/rem the backend supports.
- /// Larger operations will be expanded by ExpandLargeDivRem.
- void setMaxDivRemBitWidthSupported(unsigned SizeInBits) {
- MaxDivRemBitWidthSupported = SizeInBits;
- }
- /// Set the size in bits of the maximum fp convert the backend supports.
- /// Larger operations will be expanded by ExpandLargeFPConvert.
- void setMaxLargeFPConvertBitWidthSupported(unsigned SizeInBits) {
- MaxLargeFPConvertBitWidthSupported = SizeInBits;
- }
- /// Sets the minimum cmpxchg or ll/sc size supported by the backend.
- void setMinCmpXchgSizeInBits(unsigned SizeInBits) {
- MinCmpXchgSizeInBits = SizeInBits;
- }
- /// Sets whether unaligned atomic operations are supported.
- void setSupportsUnalignedAtomics(bool UnalignedSupported) {
- SupportsUnalignedAtomics = UnalignedSupported;
- }
- public:
- //===--------------------------------------------------------------------===//
- // Addressing mode description hooks (used by LSR etc).
- //
- /// CodeGenPrepare sinks address calculations into the same BB as Load/Store
- /// instructions reading the address. This allows as much computation as
- /// possible to be done in the address mode for that operand. This hook lets
- /// targets also pass back when this should be done on intrinsics which
- /// load/store.
- virtual bool getAddrModeArguments(IntrinsicInst * /*I*/,
- SmallVectorImpl<Value*> &/*Ops*/,
- Type *&/*AccessTy*/) const {
- return false;
- }
- /// This represents an addressing mode of:
- /// BaseGV + BaseOffs + BaseReg + Scale*ScaleReg
- /// If BaseGV is null, there is no BaseGV.
- /// If BaseOffs is zero, there is no base offset.
- /// If HasBaseReg is false, there is no base register.
- /// If Scale is zero, there is no ScaleReg. Scale of 1 indicates a reg with
- /// no scale.
- struct AddrMode {
- GlobalValue *BaseGV = nullptr;
- int64_t BaseOffs = 0;
- bool HasBaseReg = false;
- int64_t Scale = 0;
- AddrMode() = default;
- };
- /// Return true if the addressing mode represented by AM is legal for this
- /// target, for a load/store of the specified type.
- ///
- /// The type may be VoidTy, in which case only return true if the addressing
- /// mode is legal for a load/store of any legal type. TODO: Handle
- /// pre/postinc as well.
- ///
- /// If the address space cannot be determined, it will be -1.
- ///
- /// TODO: Remove default argument
- virtual bool isLegalAddressingMode(const DataLayout &DL, const AddrMode &AM,
- Type *Ty, unsigned AddrSpace,
- Instruction *I = nullptr) const;
- /// Return true if the specified immediate is legal icmp immediate, that is
- /// the target has icmp instructions which can compare a register against the
- /// immediate without having to materialize the immediate into a register.
- virtual bool isLegalICmpImmediate(int64_t) const {
- return true;
- }
- /// Return true if the specified immediate is legal add immediate, that is the
- /// target has add instructions which can add a register with the immediate
- /// without having to materialize the immediate into a register.
- virtual bool isLegalAddImmediate(int64_t) const {
- return true;
- }
- /// Return true if the specified immediate is legal for the value input of a
- /// store instruction.
- virtual bool isLegalStoreImmediate(int64_t Value) const {
- // Default implementation assumes that at least 0 works since it is likely
- // that a zero register exists or a zero immediate is allowed.
- return Value == 0;
- }
- /// Return true if it's significantly cheaper to shift a vector by a uniform
- /// scalar than by an amount which will vary across each lane. On x86 before
- /// AVX2 for example, there is a "psllw" instruction for the former case, but
- /// no simple instruction for a general "a << b" operation on vectors.
- /// This should also apply to lowering for vector funnel shifts (rotates).
- virtual bool isVectorShiftByScalarCheap(Type *Ty) const {
- return false;
- }
- /// Given a shuffle vector SVI representing a vector splat, return a new
- /// scalar type of size equal to SVI's scalar type if the new type is more
- /// profitable. Returns nullptr otherwise. For example under MVE float splats
- /// are converted to integer to prevent the need to move from SPR to GPR
- /// registers.
- virtual Type* shouldConvertSplatType(ShuffleVectorInst* SVI) const {
- return nullptr;
- }
- /// Given a set in interconnected phis of type 'From' that are loaded/stored
- /// or bitcast to type 'To', return true if the set should be converted to
- /// 'To'.
- virtual bool shouldConvertPhiType(Type *From, Type *To) const {
- return (From->isIntegerTy() || From->isFloatingPointTy()) &&
- (To->isIntegerTy() || To->isFloatingPointTy());
- }
- /// Returns true if the opcode is a commutative binary operation.
- virtual bool isCommutativeBinOp(unsigned Opcode) const {
- // FIXME: This should get its info from the td file.
- switch (Opcode) {
- case ISD::ADD:
- case ISD::SMIN:
- case ISD::SMAX:
- case ISD::UMIN:
- case ISD::UMAX:
- case ISD::MUL:
- case ISD::MULHU:
- case ISD::MULHS:
- case ISD::SMUL_LOHI:
- case ISD::UMUL_LOHI:
- case ISD::FADD:
- case ISD::FMUL:
- case ISD::AND:
- case ISD::OR:
- case ISD::XOR:
- case ISD::SADDO:
- case ISD::UADDO:
- case ISD::ADDC:
- case ISD::ADDE:
- case ISD::SADDSAT:
- case ISD::UADDSAT:
- case ISD::FMINNUM:
- case ISD::FMAXNUM:
- case ISD::FMINNUM_IEEE:
- case ISD::FMAXNUM_IEEE:
- case ISD::FMINIMUM:
- case ISD::FMAXIMUM:
- case ISD::AVGFLOORS:
- case ISD::AVGFLOORU:
- case ISD::AVGCEILS:
- case ISD::AVGCEILU:
- return true;
- default: return false;
- }
- }
- /// Return true if the node is a math/logic binary operator.
- virtual bool isBinOp(unsigned Opcode) const {
- // A commutative binop must be a binop.
- if (isCommutativeBinOp(Opcode))
- return true;
- // These are non-commutative binops.
- switch (Opcode) {
- case ISD::SUB:
- case ISD::SHL:
- case ISD::SRL:
- case ISD::SRA:
- case ISD::ROTL:
- case ISD::ROTR:
- case ISD::SDIV:
- case ISD::UDIV:
- case ISD::SREM:
- case ISD::UREM:
- case ISD::SSUBSAT:
- case ISD::USUBSAT:
- case ISD::FSUB:
- case ISD::FDIV:
- case ISD::FREM:
- return true;
- default:
- return false;
- }
- }
- /// Return true if it's free to truncate a value of type FromTy to type
- /// ToTy. e.g. On x86 it's free to truncate a i32 value in register EAX to i16
- /// by referencing its sub-register AX.
- /// Targets must return false when FromTy <= ToTy.
- virtual bool isTruncateFree(Type *FromTy, Type *ToTy) const {
- return false;
- }
- /// Return true if a truncation from FromTy to ToTy is permitted when deciding
- /// whether a call is in tail position. Typically this means that both results
- /// would be assigned to the same register or stack slot, but it could mean
- /// the target performs adequate checks of its own before proceeding with the
- /// tail call. Targets must return false when FromTy <= ToTy.
- virtual bool allowTruncateForTailCall(Type *FromTy, Type *ToTy) const {
- return false;
- }
- virtual bool isTruncateFree(EVT FromVT, EVT ToVT) const { return false; }
- virtual bool isTruncateFree(LLT FromTy, LLT ToTy, const DataLayout &DL,
- LLVMContext &Ctx) const {
- return isTruncateFree(getApproximateEVTForLLT(FromTy, DL, Ctx),
- getApproximateEVTForLLT(ToTy, DL, Ctx));
- }
- virtual bool isProfitableToHoist(Instruction *I) const { return true; }
- /// Return true if the extension represented by \p I is free.
- /// Unlikely the is[Z|FP]ExtFree family which is based on types,
- /// this method can use the context provided by \p I to decide
- /// whether or not \p I is free.
- /// This method extends the behavior of the is[Z|FP]ExtFree family.
- /// In other words, if is[Z|FP]Free returns true, then this method
- /// returns true as well. The converse is not true.
- /// The target can perform the adequate checks by overriding isExtFreeImpl.
- /// \pre \p I must be a sign, zero, or fp extension.
- bool isExtFree(const Instruction *I) const {
- switch (I->getOpcode()) {
- case Instruction::FPExt:
- if (isFPExtFree(EVT::getEVT(I->getType()),
- EVT::getEVT(I->getOperand(0)->getType())))
- return true;
- break;
- case Instruction::ZExt:
- if (isZExtFree(I->getOperand(0)->getType(), I->getType()))
- return true;
- break;
- case Instruction::SExt:
- break;
- default:
- llvm_unreachable("Instruction is not an extension");
- }
- return isExtFreeImpl(I);
- }
- /// Return true if \p Load and \p Ext can form an ExtLoad.
- /// For example, in AArch64
- /// %L = load i8, i8* %ptr
- /// %E = zext i8 %L to i32
- /// can be lowered into one load instruction
- /// ldrb w0, [x0]
- bool isExtLoad(const LoadInst *Load, const Instruction *Ext,
- const DataLayout &DL) const {
- EVT VT = getValueType(DL, Ext->getType());
- EVT LoadVT = getValueType(DL, Load->getType());
- // If the load has other users and the truncate is not free, the ext
- // probably isn't free.
- if (!Load->hasOneUse() && (isTypeLegal(LoadVT) || !isTypeLegal(VT)) &&
- !isTruncateFree(Ext->getType(), Load->getType()))
- return false;
- // Check whether the target supports casts folded into loads.
- unsigned LType;
- if (isa<ZExtInst>(Ext))
- LType = ISD::ZEXTLOAD;
- else {
- assert(isa<SExtInst>(Ext) && "Unexpected ext type!");
- LType = ISD::SEXTLOAD;
- }
- return isLoadExtLegal(LType, VT, LoadVT);
- }
- /// Return true if any actual instruction that defines a value of type FromTy
- /// implicitly zero-extends the value to ToTy in the result register.
- ///
- /// The function should return true when it is likely that the truncate can
- /// be freely folded with an instruction defining a value of FromTy. If
- /// the defining instruction is unknown (because you're looking at a
- /// function argument, PHI, etc.) then the target may require an
- /// explicit truncate, which is not necessarily free, but this function
- /// does not deal with those cases.
- /// Targets must return false when FromTy >= ToTy.
- virtual bool isZExtFree(Type *FromTy, Type *ToTy) const {
- return false;
- }
- virtual bool isZExtFree(EVT FromTy, EVT ToTy) const { return false; }
- virtual bool isZExtFree(LLT FromTy, LLT ToTy, const DataLayout &DL,
- LLVMContext &Ctx) const {
- return isZExtFree(getApproximateEVTForLLT(FromTy, DL, Ctx),
- getApproximateEVTForLLT(ToTy, DL, Ctx));
- }
- /// Return true if sign-extension from FromTy to ToTy is cheaper than
- /// zero-extension.
- virtual bool isSExtCheaperThanZExt(EVT FromTy, EVT ToTy) const {
- return false;
- }
- /// Return true if this constant should be sign extended when promoting to
- /// a larger type.
- virtual bool signExtendConstant(const ConstantInt *C) const { return false; }
- /// Return true if sinking I's operands to the same basic block as I is
- /// profitable, e.g. because the operands can be folded into a target
- /// instruction during instruction selection. After calling the function
- /// \p Ops contains the Uses to sink ordered by dominance (dominating users
- /// come first).
- virtual bool shouldSinkOperands(Instruction *I,
- SmallVectorImpl<Use *> &Ops) const {
- return false;
- }
- /// Try to optimize extending or truncating conversion instructions (like
- /// zext, trunc, fptoui, uitofp) for the target.
- virtual bool optimizeExtendOrTruncateConversion(Instruction *I,
- Loop *L) const {
- return false;
- }
- /// Return true if the target supplies and combines to a paired load
- /// two loaded values of type LoadedType next to each other in memory.
- /// RequiredAlignment gives the minimal alignment constraints that must be met
- /// to be able to select this paired load.
- ///
- /// This information is *not* used to generate actual paired loads, but it is
- /// used to generate a sequence of loads that is easier to combine into a
- /// paired load.
- /// For instance, something like this:
- /// a = load i64* addr
- /// b = trunc i64 a to i32
- /// c = lshr i64 a, 32
- /// d = trunc i64 c to i32
- /// will be optimized into:
- /// b = load i32* addr1
- /// d = load i32* addr2
- /// Where addr1 = addr2 +/- sizeof(i32).
- ///
- /// In other words, unless the target performs a post-isel load combining,
- /// this information should not be provided because it will generate more
- /// loads.
- virtual bool hasPairedLoad(EVT /*LoadedType*/,
- Align & /*RequiredAlignment*/) const {
- return false;
- }
- /// Return true if the target has a vector blend instruction.
- virtual bool hasVectorBlend() const { return false; }
- /// Get the maximum supported factor for interleaved memory accesses.
- /// Default to be the minimum interleave factor: 2.
- virtual unsigned getMaxSupportedInterleaveFactor() const { return 2; }
- /// Lower an interleaved load to target specific intrinsics. Return
- /// true on success.
- ///
- /// \p LI is the vector load instruction.
- /// \p Shuffles is the shufflevector list to DE-interleave the loaded vector.
- /// \p Indices is the corresponding indices for each shufflevector.
- /// \p Factor is the interleave factor.
- virtual bool lowerInterleavedLoad(LoadInst *LI,
- ArrayRef<ShuffleVectorInst *> Shuffles,
- ArrayRef<unsigned> Indices,
- unsigned Factor) const {
- return false;
- }
- /// Lower an interleaved store to target specific intrinsics. Return
- /// true on success.
- ///
- /// \p SI is the vector store instruction.
- /// \p SVI is the shufflevector to RE-interleave the stored vector.
- /// \p Factor is the interleave factor.
- virtual bool lowerInterleavedStore(StoreInst *SI, ShuffleVectorInst *SVI,
- unsigned Factor) const {
- return false;
- }
- /// Return true if zero-extending the specific node Val to type VT2 is free
- /// (either because it's implicitly zero-extended such as ARM ldrb / ldrh or
- /// because it's folded such as X86 zero-extending loads).
- virtual bool isZExtFree(SDValue Val, EVT VT2) const {
- return isZExtFree(Val.getValueType(), VT2);
- }
- /// Return true if an fpext operation is free (for instance, because
- /// single-precision floating-point numbers are implicitly extended to
- /// double-precision).
- virtual bool isFPExtFree(EVT DestVT, EVT SrcVT) const {
- assert(SrcVT.isFloatingPoint() && DestVT.isFloatingPoint() &&
- "invalid fpext types");
- return false;
- }
- /// Return true if an fpext operation input to an \p Opcode operation is free
- /// (for instance, because half-precision floating-point numbers are
- /// implicitly extended to float-precision) for an FMA instruction.
- virtual bool isFPExtFoldable(const MachineInstr &MI, unsigned Opcode,
- LLT DestTy, LLT SrcTy) const {
- return false;
- }
- /// Return true if an fpext operation input to an \p Opcode operation is free
- /// (for instance, because half-precision floating-point numbers are
- /// implicitly extended to float-precision) for an FMA instruction.
- virtual bool isFPExtFoldable(const SelectionDAG &DAG, unsigned Opcode,
- EVT DestVT, EVT SrcVT) const {
- assert(DestVT.isFloatingPoint() && SrcVT.isFloatingPoint() &&
- "invalid fpext types");
- return isFPExtFree(DestVT, SrcVT);
- }
- /// Return true if folding a vector load into ExtVal (a sign, zero, or any
- /// extend node) is profitable.
- virtual bool isVectorLoadExtDesirable(SDValue ExtVal) const { return false; }
- /// Return true if an fneg operation is free to the point where it is never
- /// worthwhile to replace it with a bitwise operation.
- virtual bool isFNegFree(EVT VT) const {
- assert(VT.isFloatingPoint());
- return false;
- }
- /// Return true if an fabs operation is free to the point where it is never
- /// worthwhile to replace it with a bitwise operation.
- virtual bool isFAbsFree(EVT VT) const {
- assert(VT.isFloatingPoint());
- return false;
- }
- /// Return true if an FMA operation is faster than a pair of fmul and fadd
- /// instructions. fmuladd intrinsics will be expanded to FMAs when this method
- /// returns true, otherwise fmuladd is expanded to fmul + fadd.
- ///
- /// NOTE: This may be called before legalization on types for which FMAs are
- /// not legal, but should return true if those types will eventually legalize
- /// to types that support FMAs. After legalization, it will only be called on
- /// types that support FMAs (via Legal or Custom actions)
- virtual bool isFMAFasterThanFMulAndFAdd(const MachineFunction &MF,
- EVT) const {
- return false;
- }
- /// Return true if an FMA operation is faster than a pair of fmul and fadd
- /// instructions. fmuladd intrinsics will be expanded to FMAs when this method
- /// returns true, otherwise fmuladd is expanded to fmul + fadd.
- ///
- /// NOTE: This may be called before legalization on types for which FMAs are
- /// not legal, but should return true if those types will eventually legalize
- /// to types that support FMAs. After legalization, it will only be called on
- /// types that support FMAs (via Legal or Custom actions)
- virtual bool isFMAFasterThanFMulAndFAdd(const MachineFunction &MF,
- LLT) const {
- return false;
- }
- /// IR version
- virtual bool isFMAFasterThanFMulAndFAdd(const Function &F, Type *) const {
- return false;
- }
- /// Returns true if \p MI can be combined with another instruction to
- /// form TargetOpcode::G_FMAD. \p N may be an TargetOpcode::G_FADD,
- /// TargetOpcode::G_FSUB, or an TargetOpcode::G_FMUL which will be
- /// distributed into an fadd/fsub.
- virtual bool isFMADLegal(const MachineInstr &MI, LLT Ty) const {
- assert((MI.getOpcode() == TargetOpcode::G_FADD ||
- MI.getOpcode() == TargetOpcode::G_FSUB ||
- MI.getOpcode() == TargetOpcode::G_FMUL) &&
- "unexpected node in FMAD forming combine");
- switch (Ty.getScalarSizeInBits()) {
- case 16:
- return isOperationLegal(TargetOpcode::G_FMAD, MVT::f16);
- case 32:
- return isOperationLegal(TargetOpcode::G_FMAD, MVT::f32);
- case 64:
- return isOperationLegal(TargetOpcode::G_FMAD, MVT::f64);
- default:
- break;
- }
- return false;
- }
- /// Returns true if be combined with to form an ISD::FMAD. \p N may be an
- /// ISD::FADD, ISD::FSUB, or an ISD::FMUL which will be distributed into an
- /// fadd/fsub.
- virtual bool isFMADLegal(const SelectionDAG &DAG, const SDNode *N) const {
- assert((N->getOpcode() == ISD::FADD || N->getOpcode() == ISD::FSUB ||
- N->getOpcode() == ISD::FMUL) &&
- "unexpected node in FMAD forming combine");
- return isOperationLegal(ISD::FMAD, N->getValueType(0));
- }
- // Return true when the decision to generate FMA's (or FMS, FMLA etc) rather
- // than FMUL and ADD is delegated to the machine combiner.
- virtual bool generateFMAsInMachineCombiner(EVT VT,
- CodeGenOpt::Level OptLevel) const {
- return false;
- }
- /// Return true if it's profitable to narrow operations of type VT1 to
- /// VT2. e.g. on x86, it's profitable to narrow from i32 to i8 but not from
- /// i32 to i16.
- virtual bool isNarrowingProfitable(EVT /*VT1*/, EVT /*VT2*/) const {
- return false;
- }
- /// Return true if pulling a binary operation into a select with an identity
- /// constant is profitable. This is the inverse of an IR transform.
- /// Example: X + (Cond ? Y : 0) --> Cond ? (X + Y) : X
- virtual bool shouldFoldSelectWithIdentityConstant(unsigned BinOpcode,
- EVT VT) const {
- return false;
- }
- /// Return true if it is beneficial to convert a load of a constant to
- /// just the constant itself.
- /// On some targets it might be more efficient to use a combination of
- /// arithmetic instructions to materialize the constant instead of loading it
- /// from a constant pool.
- virtual bool shouldConvertConstantLoadToIntImm(const APInt &Imm,
- Type *Ty) const {
- return false;
- }
- /// Return true if EXTRACT_SUBVECTOR is cheap for extracting this result type
- /// from this source type with this index. This is needed because
- /// EXTRACT_SUBVECTOR usually has custom lowering that depends on the index of
- /// the first element, and only the target knows which lowering is cheap.
- virtual bool isExtractSubvectorCheap(EVT ResVT, EVT SrcVT,
- unsigned Index) const {
- return false;
- }
- /// Try to convert an extract element of a vector binary operation into an
- /// extract element followed by a scalar operation.
- virtual bool shouldScalarizeBinop(SDValue VecOp) const {
- return false;
- }
- /// Return true if extraction of a scalar element from the given vector type
- /// at the given index is cheap. For example, if scalar operations occur on
- /// the same register file as vector operations, then an extract element may
- /// be a sub-register rename rather than an actual instruction.
- virtual bool isExtractVecEltCheap(EVT VT, unsigned Index) const {
- return false;
- }
- /// Try to convert math with an overflow comparison into the corresponding DAG
- /// node operation. Targets may want to override this independently of whether
- /// the operation is legal/custom for the given type because it may obscure
- /// matching of other patterns.
- virtual bool shouldFormOverflowOp(unsigned Opcode, EVT VT,
- bool MathUsed) const {
- // TODO: The default logic is inherited from code in CodeGenPrepare.
- // The opcode should not make a difference by default?
- if (Opcode != ISD::UADDO)
- return false;
- // Allow the transform as long as we have an integer type that is not
- // obviously illegal and unsupported and if the math result is used
- // besides the overflow check. On some targets (e.g. SPARC), it is
- // not profitable to form on overflow op if the math result has no
- // concrete users.
- if (VT.isVector())
- return false;
- return MathUsed && (VT.isSimple() || !isOperationExpand(Opcode, VT));
- }
- // Return true if it is profitable to use a scalar input to a BUILD_VECTOR
- // even if the vector itself has multiple uses.
- virtual bool aggressivelyPreferBuildVectorSources(EVT VecVT) const {
- return false;
- }
- // Return true if CodeGenPrepare should consider splitting large offset of a
- // GEP to make the GEP fit into the addressing mode and can be sunk into the
- // same blocks of its users.
- virtual bool shouldConsiderGEPOffsetSplit() const { return false; }
- /// Return true if creating a shift of the type by the given
- /// amount is not profitable.
- virtual bool shouldAvoidTransformToShift(EVT VT, unsigned Amount) const {
- return false;
- }
- /// Does this target require the clearing of high-order bits in a register
- /// passed to the fp16 to fp conversion library function.
- virtual bool shouldKeepZExtForFP16Conv() const { return false; }
- /// Should we generate fp_to_si_sat and fp_to_ui_sat from type FPVT to type VT
- /// from min(max(fptoi)) saturation patterns.
- virtual bool shouldConvertFpToSat(unsigned Op, EVT FPVT, EVT VT) const {
- return isOperationLegalOrCustom(Op, VT);
- }
- /// Does this target support complex deinterleaving
- virtual bool isComplexDeinterleavingSupported() const { return false; }
- /// Does this target support complex deinterleaving with the given operation
- /// and type
- virtual bool isComplexDeinterleavingOperationSupported(
- ComplexDeinterleavingOperation Operation, Type *Ty) const {
- return false;
- }
- /// Create the IR node for the given complex deinterleaving operation.
- /// If one cannot be created using all the given inputs, nullptr should be
- /// returned.
- virtual Value *createComplexDeinterleavingIR(
- Instruction *I, ComplexDeinterleavingOperation OperationType,
- ComplexDeinterleavingRotation Rotation, Value *InputA, Value *InputB,
- Value *Accumulator = nullptr) const {
- return nullptr;
- }
- //===--------------------------------------------------------------------===//
- // Runtime Library hooks
- //
- /// Rename the default libcall routine name for the specified libcall.
- void setLibcallName(RTLIB::Libcall Call, const char *Name) {
- LibcallRoutineNames[Call] = Name;
- }
- void setLibcallName(ArrayRef<RTLIB::Libcall> Calls, const char *Name) {
- for (auto Call : Calls)
- setLibcallName(Call, Name);
- }
- /// Get the libcall routine name for the specified libcall.
- const char *getLibcallName(RTLIB::Libcall Call) const {
- return LibcallRoutineNames[Call];
- }
- /// Override the default CondCode to be used to test the result of the
- /// comparison libcall against zero.
- void setCmpLibcallCC(RTLIB::Libcall Call, ISD::CondCode CC) {
- CmpLibcallCCs[Call] = CC;
- }
- /// Get the CondCode that's to be used to test the result of the comparison
- /// libcall against zero.
- ISD::CondCode getCmpLibcallCC(RTLIB::Libcall Call) const {
- return CmpLibcallCCs[Call];
- }
- /// Set the CallingConv that should be used for the specified libcall.
- void setLibcallCallingConv(RTLIB::Libcall Call, CallingConv::ID CC) {
- LibcallCallingConvs[Call] = CC;
- }
- /// Get the CallingConv that should be used for the specified libcall.
- CallingConv::ID getLibcallCallingConv(RTLIB::Libcall Call) const {
- return LibcallCallingConvs[Call];
- }
- /// Execute target specific actions to finalize target lowering.
- /// This is used to set extra flags in MachineFrameInformation and freezing
- /// the set of reserved registers.
- /// The default implementation just freezes the set of reserved registers.
- virtual void finalizeLowering(MachineFunction &MF) const;
- //===----------------------------------------------------------------------===//
- // GlobalISel Hooks
- //===----------------------------------------------------------------------===//
- /// Check whether or not \p MI needs to be moved close to its uses.
- virtual bool shouldLocalize(const MachineInstr &MI, const TargetTransformInfo *TTI) const;
- private:
- const TargetMachine &TM;
- /// Tells the code generator that the target has multiple (allocatable)
- /// condition registers that can be used to store the results of comparisons
- /// for use by selects and conditional branches. With multiple condition
- /// registers, the code generator will not aggressively sink comparisons into
- /// the blocks of their users.
- bool HasMultipleConditionRegisters;
- /// Tells the code generator that the target has BitExtract instructions.
- /// The code generator will aggressively sink "shift"s into the blocks of
- /// their users if the users will generate "and" instructions which can be
- /// combined with "shift" to BitExtract instructions.
- bool HasExtractBitsInsn;
- /// Tells the code generator to bypass slow divide or remainder
- /// instructions. For example, BypassSlowDivWidths[32,8] tells the code
- /// generator to bypass 32-bit integer div/rem with an 8-bit unsigned integer
- /// div/rem when the operands are positive and less than 256.
- DenseMap <unsigned int, unsigned int> BypassSlowDivWidths;
- /// Tells the code generator that it shouldn't generate extra flow control
- /// instructions and should attempt to combine flow control instructions via
- /// predication.
- bool JumpIsExpensive;
- /// Information about the contents of the high-bits in boolean values held in
- /// a type wider than i1. See getBooleanContents.
- BooleanContent BooleanContents;
- /// Information about the contents of the high-bits in boolean values held in
- /// a type wider than i1. See getBooleanContents.
- BooleanContent BooleanFloatContents;
- /// Information about the contents of the high-bits in boolean vector values
- /// when the element type is wider than i1. See getBooleanContents.
- BooleanContent BooleanVectorContents;
- /// The target scheduling preference: shortest possible total cycles or lowest
- /// register usage.
- Sched::Preference SchedPreferenceInfo;
- /// The minimum alignment that any argument on the stack needs to have.
- Align MinStackArgumentAlignment;
- /// The minimum function alignment (used when optimizing for size, and to
- /// prevent explicitly provided alignment from leading to incorrect code).
- Align MinFunctionAlignment;
- /// The preferred function alignment (used when alignment unspecified and
- /// optimizing for speed).
- Align PrefFunctionAlignment;
- /// The preferred loop alignment (in log2 bot in bytes).
- Align PrefLoopAlignment;
- /// The maximum amount of bytes permitted to be emitted for alignment.
- unsigned MaxBytesForAlignment;
- /// Size in bits of the maximum atomics size the backend supports.
- /// Accesses larger than this will be expanded by AtomicExpandPass.
- unsigned MaxAtomicSizeInBitsSupported;
- /// Size in bits of the maximum div/rem size the backend supports.
- /// Larger operations will be expanded by ExpandLargeDivRem.
- unsigned MaxDivRemBitWidthSupported;
- /// Size in bits of the maximum larget fp convert size the backend
- /// supports. Larger operations will be expanded by ExpandLargeFPConvert.
- unsigned MaxLargeFPConvertBitWidthSupported;
- /// Size in bits of the minimum cmpxchg or ll/sc operation the
- /// backend supports.
- unsigned MinCmpXchgSizeInBits;
- /// This indicates if the target supports unaligned atomic operations.
- bool SupportsUnalignedAtomics;
- /// If set to a physical register, this specifies the register that
- /// llvm.savestack/llvm.restorestack should save and restore.
- Register StackPointerRegisterToSaveRestore;
- /// This indicates the default register class to use for each ValueType the
- /// target supports natively.
- const TargetRegisterClass *RegClassForVT[MVT::VALUETYPE_SIZE];
- uint16_t NumRegistersForVT[MVT::VALUETYPE_SIZE];
- MVT RegisterTypeForVT[MVT::VALUETYPE_SIZE];
- /// This indicates the "representative" register class to use for each
- /// ValueType the target supports natively. This information is used by the
- /// scheduler to track register pressure. By default, the representative
- /// register class is the largest legal super-reg register class of the
- /// register class of the specified type. e.g. On x86, i8, i16, and i32's
- /// representative class would be GR32.
- const TargetRegisterClass *RepRegClassForVT[MVT::VALUETYPE_SIZE];
- /// This indicates the "cost" of the "representative" register class for each
- /// ValueType. The cost is used by the scheduler to approximate register
- /// pressure.
- uint8_t RepRegClassCostForVT[MVT::VALUETYPE_SIZE];
- /// For any value types we are promoting or expanding, this contains the value
- /// type that we are changing to. For Expanded types, this contains one step
- /// of the expand (e.g. i64 -> i32), even if there are multiple steps required
- /// (e.g. i64 -> i16). For types natively supported by the system, this holds
- /// the same type (e.g. i32 -> i32).
- MVT TransformToType[MVT::VALUETYPE_SIZE];
- /// For each operation and each value type, keep a LegalizeAction that
- /// indicates how instruction selection should deal with the operation. Most
- /// operations are Legal (aka, supported natively by the target), but
- /// operations that are not should be described. Note that operations on
- /// non-legal value types are not described here.
- LegalizeAction OpActions[MVT::VALUETYPE_SIZE][ISD::BUILTIN_OP_END];
- /// For each load extension type and each value type, keep a LegalizeAction
- /// that indicates how instruction selection should deal with a load of a
- /// specific value type and extension type. Uses 4-bits to store the action
- /// for each of the 4 load ext types.
- uint16_t LoadExtActions[MVT::VALUETYPE_SIZE][MVT::VALUETYPE_SIZE];
- /// For each value type pair keep a LegalizeAction that indicates whether a
- /// truncating store of a specific value type and truncating type is legal.
- LegalizeAction TruncStoreActions[MVT::VALUETYPE_SIZE][MVT::VALUETYPE_SIZE];
- /// For each indexed mode and each value type, keep a quad of LegalizeAction
- /// that indicates how instruction selection should deal with the load /
- /// store / maskedload / maskedstore.
- ///
- /// The first dimension is the value_type for the reference. The second
- /// dimension represents the various modes for load store.
- uint16_t IndexedModeActions[MVT::VALUETYPE_SIZE][ISD::LAST_INDEXED_MODE];
- /// For each condition code (ISD::CondCode) keep a LegalizeAction that
- /// indicates how instruction selection should deal with the condition code.
- ///
- /// Because each CC action takes up 4 bits, we need to have the array size be
- /// large enough to fit all of the value types. This can be done by rounding
- /// up the MVT::VALUETYPE_SIZE value to the next multiple of 8.
- uint32_t CondCodeActions[ISD::SETCC_INVALID][(MVT::VALUETYPE_SIZE + 7) / 8];
- ValueTypeActionImpl ValueTypeActions;
- private:
- /// Targets can specify ISD nodes that they would like PerformDAGCombine
- /// callbacks for by calling setTargetDAGCombine(), which sets a bit in this
- /// array.
- unsigned char
- TargetDAGCombineArray[(ISD::BUILTIN_OP_END+CHAR_BIT-1)/CHAR_BIT];
- /// For operations that must be promoted to a specific type, this holds the
- /// destination type. This map should be sparse, so don't hold it as an
- /// array.
- ///
- /// Targets add entries to this map with AddPromotedToType(..), clients access
- /// this with getTypeToPromoteTo(..).
- std::map<std::pair<unsigned, MVT::SimpleValueType>, MVT::SimpleValueType>
- PromoteToType;
- /// Stores the name each libcall.
- const char *LibcallRoutineNames[RTLIB::UNKNOWN_LIBCALL + 1];
- /// The ISD::CondCode that should be used to test the result of each of the
- /// comparison libcall against zero.
- ISD::CondCode CmpLibcallCCs[RTLIB::UNKNOWN_LIBCALL];
- /// Stores the CallingConv that should be used for each libcall.
- CallingConv::ID LibcallCallingConvs[RTLIB::UNKNOWN_LIBCALL];
- /// Set default libcall names and calling conventions.
- void InitLibcalls(const Triple &TT);
- /// The bits of IndexedModeActions used to store the legalisation actions
- /// We store the data as | ML | MS | L | S | each taking 4 bits.
- enum IndexedModeActionsBits {
- IMAB_Store = 0,
- IMAB_Load = 4,
- IMAB_MaskedStore = 8,
- IMAB_MaskedLoad = 12
- };
- void setIndexedModeAction(unsigned IdxMode, MVT VT, unsigned Shift,
- LegalizeAction Action) {
- assert(VT.isValid() && IdxMode < ISD::LAST_INDEXED_MODE &&
- (unsigned)Action < 0xf && "Table isn't big enough!");
- unsigned Ty = (unsigned)VT.SimpleTy;
- IndexedModeActions[Ty][IdxMode] &= ~(0xf << Shift);
- IndexedModeActions[Ty][IdxMode] |= ((uint16_t)Action) << Shift;
- }
- LegalizeAction getIndexedModeAction(unsigned IdxMode, MVT VT,
- unsigned Shift) const {
- assert(IdxMode < ISD::LAST_INDEXED_MODE && VT.isValid() &&
- "Table isn't big enough!");
- unsigned Ty = (unsigned)VT.SimpleTy;
- return (LegalizeAction)((IndexedModeActions[Ty][IdxMode] >> Shift) & 0xf);
- }
- protected:
- /// Return true if the extension represented by \p I is free.
- /// \pre \p I is a sign, zero, or fp extension and
- /// is[Z|FP]ExtFree of the related types is not true.
- virtual bool isExtFreeImpl(const Instruction *I) const { return false; }
- /// Depth that GatherAllAliases should should continue looking for chain
- /// dependencies when trying to find a more preferable chain. As an
- /// approximation, this should be more than the number of consecutive stores
- /// expected to be merged.
- unsigned GatherAllAliasesMaxDepth;
- /// \brief Specify maximum number of store instructions per memset call.
- ///
- /// When lowering \@llvm.memset this field specifies the maximum number of
- /// store operations that may be substituted for the call to memset. Targets
- /// must set this value based on the cost threshold for that target. Targets
- /// should assume that the memset will be done using as many of the largest
- /// store operations first, followed by smaller ones, if necessary, per
- /// alignment restrictions. For example, storing 9 bytes on a 32-bit machine
- /// with 16-bit alignment would result in four 2-byte stores and one 1-byte
- /// store. This only applies to setting a constant array of a constant size.
- unsigned MaxStoresPerMemset;
- /// Likewise for functions with the OptSize attribute.
- unsigned MaxStoresPerMemsetOptSize;
- /// \brief Specify maximum number of store instructions per memcpy call.
- ///
- /// When lowering \@llvm.memcpy this field specifies the maximum number of
- /// store operations that may be substituted for a call to memcpy. Targets
- /// must set this value based on the cost threshold for that target. Targets
- /// should assume that the memcpy will be done using as many of the largest
- /// store operations first, followed by smaller ones, if necessary, per
- /// alignment restrictions. For example, storing 7 bytes on a 32-bit machine
- /// with 32-bit alignment would result in one 4-byte store, a one 2-byte store
- /// and one 1-byte store. This only applies to copying a constant array of
- /// constant size.
- unsigned MaxStoresPerMemcpy;
- /// Likewise for functions with the OptSize attribute.
- unsigned MaxStoresPerMemcpyOptSize;
- /// \brief Specify max number of store instructions to glue in inlined memcpy.
- ///
- /// When memcpy is inlined based on MaxStoresPerMemcpy, specify maximum number
- /// of store instructions to keep together. This helps in pairing and
- // vectorization later on.
- unsigned MaxGluedStoresPerMemcpy = 0;
- /// \brief Specify maximum number of load instructions per memcmp call.
- ///
- /// When lowering \@llvm.memcmp this field specifies the maximum number of
- /// pairs of load operations that may be substituted for a call to memcmp.
- /// Targets must set this value based on the cost threshold for that target.
- /// Targets should assume that the memcmp will be done using as many of the
- /// largest load operations first, followed by smaller ones, if necessary, per
- /// alignment restrictions. For example, loading 7 bytes on a 32-bit machine
- /// with 32-bit alignment would result in one 4-byte load, a one 2-byte load
- /// and one 1-byte load. This only applies to copying a constant array of
- /// constant size.
- unsigned MaxLoadsPerMemcmp;
- /// Likewise for functions with the OptSize attribute.
- unsigned MaxLoadsPerMemcmpOptSize;
- /// \brief Specify maximum number of store instructions per memmove call.
- ///
- /// When lowering \@llvm.memmove this field specifies the maximum number of
- /// store instructions that may be substituted for a call to memmove. Targets
- /// must set this value based on the cost threshold for that target. Targets
- /// should assume that the memmove will be done using as many of the largest
- /// store operations first, followed by smaller ones, if necessary, per
- /// alignment restrictions. For example, moving 9 bytes on a 32-bit machine
- /// with 8-bit alignment would result in nine 1-byte stores. This only
- /// applies to copying a constant array of constant size.
- unsigned MaxStoresPerMemmove;
- /// Likewise for functions with the OptSize attribute.
- unsigned MaxStoresPerMemmoveOptSize;
- /// Tells the code generator that select is more expensive than a branch if
- /// the branch is usually predicted right.
- bool PredictableSelectIsExpensive;
- /// \see enableExtLdPromotion.
- bool EnableExtLdPromotion;
- /// Return true if the value types that can be represented by the specified
- /// register class are all legal.
- bool isLegalRC(const TargetRegisterInfo &TRI,
- const TargetRegisterClass &RC) const;
- /// Replace/modify any TargetFrameIndex operands with a targte-dependent
- /// sequence of memory operands that is recognized by PrologEpilogInserter.
- MachineBasicBlock *emitPatchPoint(MachineInstr &MI,
- MachineBasicBlock *MBB) const;
- bool IsStrictFPEnabled;
- };
- /// This class defines information used to lower LLVM code to legal SelectionDAG
- /// operators that the target instruction selector can accept natively.
- ///
- /// This class also defines callbacks that targets must implement to lower
- /// target-specific constructs to SelectionDAG operators.
- class TargetLowering : public TargetLoweringBase {
- public:
- struct DAGCombinerInfo;
- struct MakeLibCallOptions;
- TargetLowering(const TargetLowering &) = delete;
- TargetLowering &operator=(const TargetLowering &) = delete;
- explicit TargetLowering(const TargetMachine &TM);
- bool isPositionIndependent() const;
- virtual bool isSDNodeSourceOfDivergence(const SDNode *N,
- FunctionLoweringInfo *FLI,
- LegacyDivergenceAnalysis *DA) const {
- return false;
- }
- // Lets target to control the following reassociation of operands: (op (op x,
- // c1), y) -> (op (op x, y), c1) where N0 is (op x, c1) and N1 is y. By
- // default consider profitable any case where N0 has single use. This
- // behavior reflects the condition replaced by this target hook call in the
- // DAGCombiner. Any particular target can implement its own heuristic to
- // restrict common combiner.
- virtual bool isReassocProfitable(SelectionDAG &DAG, SDValue N0,
- SDValue N1) const {
- return N0.hasOneUse();
- }
- virtual bool isSDNodeAlwaysUniform(const SDNode * N) const {
- return false;
- }
- /// Returns true by value, base pointer and offset pointer and addressing mode
- /// by reference if the node's address can be legally represented as
- /// pre-indexed load / store address.
- virtual bool getPreIndexedAddressParts(SDNode * /*N*/, SDValue &/*Base*/,
- SDValue &/*Offset*/,
- ISD::MemIndexedMode &/*AM*/,
- SelectionDAG &/*DAG*/) const {
- return false;
- }
- /// Returns true by value, base pointer and offset pointer and addressing mode
- /// by reference if this node can be combined with a load / store to form a
- /// post-indexed load / store.
- virtual bool getPostIndexedAddressParts(SDNode * /*N*/, SDNode * /*Op*/,
- SDValue &/*Base*/,
- SDValue &/*Offset*/,
- ISD::MemIndexedMode &/*AM*/,
- SelectionDAG &/*DAG*/) const {
- return false;
- }
- /// Returns true if the specified base+offset is a legal indexed addressing
- /// mode for this target. \p MI is the load or store instruction that is being
- /// considered for transformation.
- virtual bool isIndexingLegal(MachineInstr &MI, Register Base, Register Offset,
- bool IsPre, MachineRegisterInfo &MRI) const {
- return false;
- }
- /// Return the entry encoding for a jump table in the current function. The
- /// returned value is a member of the MachineJumpTableInfo::JTEntryKind enum.
- virtual unsigned getJumpTableEncoding() const;
- virtual const MCExpr *
- LowerCustomJumpTableEntry(const MachineJumpTableInfo * /*MJTI*/,
- const MachineBasicBlock * /*MBB*/, unsigned /*uid*/,
- MCContext &/*Ctx*/) const {
- llvm_unreachable("Need to implement this hook if target has custom JTIs");
- }
- /// Returns relocation base for the given PIC jumptable.
- virtual SDValue getPICJumpTableRelocBase(SDValue Table,
- SelectionDAG &DAG) const;
- /// This returns the relocation base for the given PIC jumptable, the same as
- /// getPICJumpTableRelocBase, but as an MCExpr.
- virtual const MCExpr *
- getPICJumpTableRelocBaseExpr(const MachineFunction *MF,
- unsigned JTI, MCContext &Ctx) const;
- /// Return true if folding a constant offset with the given GlobalAddress is
- /// legal. It is frequently not legal in PIC relocation models.
- virtual bool isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const;
- /// Return true if the operand with index OpNo corresponding to a target
- /// branch, for example, in following case
- ///
- /// call void asm "lea r8, $0\0A\09call qword ptr ${1:P}\0A\09ret",
- /// "*m,*m,~{r8},~{dirflag},~{fpsr},~{flags}"
- /// ([9 x i32]* @Arr), void (...)* @sincos_asm)
- ///
- /// the operand $1 (sincos_asm) is target branch in inline asm, but the
- /// operand $0 (Arr) is not.
- virtual bool
- isInlineAsmTargetBranch(const SmallVectorImpl<StringRef> &AsmStrs,
- unsigned OpNo) const {
- return false;
- }
- bool isInTailCallPosition(SelectionDAG &DAG, SDNode *Node,
- SDValue &Chain) const;
- void softenSetCCOperands(SelectionDAG &DAG, EVT VT, SDValue &NewLHS,
- SDValue &NewRHS, ISD::CondCode &CCCode,
- const SDLoc &DL, const SDValue OldLHS,
- const SDValue OldRHS) const;
- void softenSetCCOperands(SelectionDAG &DAG, EVT VT, SDValue &NewLHS,
- SDValue &NewRHS, ISD::CondCode &CCCode,
- const SDLoc &DL, const SDValue OldLHS,
- const SDValue OldRHS, SDValue &Chain,
- bool IsSignaling = false) const;
- /// Returns a pair of (return value, chain).
- /// It is an error to pass RTLIB::UNKNOWN_LIBCALL as \p LC.
- std::pair<SDValue, SDValue> makeLibCall(SelectionDAG &DAG, RTLIB::Libcall LC,
- EVT RetVT, ArrayRef<SDValue> Ops,
- MakeLibCallOptions CallOptions,
- const SDLoc &dl,
- SDValue Chain = SDValue()) const;
- /// Check whether parameters to a call that are passed in callee saved
- /// registers are the same as from the calling function. This needs to be
- /// checked for tail call eligibility.
- bool parametersInCSRMatch(const MachineRegisterInfo &MRI,
- const uint32_t *CallerPreservedMask,
- const SmallVectorImpl<CCValAssign> &ArgLocs,
- const SmallVectorImpl<SDValue> &OutVals) const;
- //===--------------------------------------------------------------------===//
- // TargetLowering Optimization Methods
- //
- /// A convenience struct that encapsulates a DAG, and two SDValues for
- /// returning information from TargetLowering to its clients that want to
- /// combine.
- struct TargetLoweringOpt {
- SelectionDAG &DAG;
- bool LegalTys;
- bool LegalOps;
- SDValue Old;
- SDValue New;
- explicit TargetLoweringOpt(SelectionDAG &InDAG,
- bool LT, bool LO) :
- DAG(InDAG), LegalTys(LT), LegalOps(LO) {}
- bool LegalTypes() const { return LegalTys; }
- bool LegalOperations() const { return LegalOps; }
- bool CombineTo(SDValue O, SDValue N) {
- Old = O;
- New = N;
- return true;
- }
- };
- /// Determines the optimal series of memory ops to replace the memset / memcpy.
- /// Return true if the number of memory ops is below the threshold (Limit).
- /// Note that this is always the case when Limit is ~0.
- /// It returns the types of the sequence of memory ops to perform
- /// memset / memcpy by reference.
- virtual bool
- findOptimalMemOpLowering(std::vector<EVT> &MemOps, unsigned Limit,
- const MemOp &Op, unsigned DstAS, unsigned SrcAS,
- const AttributeList &FuncAttributes) const;
- /// Check to see if the specified operand of the specified instruction is a
- /// constant integer. If so, check to see if there are any bits set in the
- /// constant that are not demanded. If so, shrink the constant and return
- /// true.
- bool ShrinkDemandedConstant(SDValue Op, const APInt &DemandedBits,
- const APInt &DemandedElts,
- TargetLoweringOpt &TLO) const;
- /// Helper wrapper around ShrinkDemandedConstant, demanding all elements.
- bool ShrinkDemandedConstant(SDValue Op, const APInt &DemandedBits,
- TargetLoweringOpt &TLO) const;
- // Target hook to do target-specific const optimization, which is called by
- // ShrinkDemandedConstant. This function should return true if the target
- // doesn't want ShrinkDemandedConstant to further optimize the constant.
- virtual bool targetShrinkDemandedConstant(SDValue Op,
- const APInt &DemandedBits,
- const APInt &DemandedElts,
- TargetLoweringOpt &TLO) const {
- return false;
- }
- /// Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the casts are free. This
- /// uses isZExtFree and ZERO_EXTEND for the widening cast, but it could be
- /// generalized for targets with other types of implicit widening casts.
- bool ShrinkDemandedOp(SDValue Op, unsigned BitWidth, const APInt &Demanded,
- TargetLoweringOpt &TLO) const;
- /// Look at Op. At this point, we know that only the DemandedBits bits of the
- /// result of Op are ever used downstream. If we can use this information to
- /// simplify Op, create a new simplified DAG node and return true, returning
- /// the original and new nodes in Old and New. Otherwise, analyze the
- /// expression and return a mask of KnownOne and KnownZero bits for the
- /// expression (used to simplify the caller). The KnownZero/One bits may only
- /// be accurate for those bits in the Demanded masks.
- /// \p AssumeSingleUse When this parameter is true, this function will
- /// attempt to simplify \p Op even if there are multiple uses.
- /// Callers are responsible for correctly updating the DAG based on the
- /// results of this function, because simply replacing replacing TLO.Old
- /// with TLO.New will be incorrect when this parameter is true and TLO.Old
- /// has multiple uses.
- bool SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits,
- const APInt &DemandedElts, KnownBits &Known,
- TargetLoweringOpt &TLO, unsigned Depth = 0,
- bool AssumeSingleUse = false) const;
- /// Helper wrapper around SimplifyDemandedBits, demanding all elements.
- /// Adds Op back to the worklist upon success.
- bool SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits,
- KnownBits &Known, TargetLoweringOpt &TLO,
- unsigned Depth = 0,
- bool AssumeSingleUse = false) const;
- /// Helper wrapper around SimplifyDemandedBits.
- /// Adds Op back to the worklist upon success.
- bool SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits,
- DAGCombinerInfo &DCI) const;
- /// Helper wrapper around SimplifyDemandedBits.
- /// Adds Op back to the worklist upon success.
- bool SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits,
- const APInt &DemandedElts,
- DAGCombinerInfo &DCI) const;
- /// More limited version of SimplifyDemandedBits that can be used to "look
- /// through" ops that don't contribute to the DemandedBits/DemandedElts -
- /// bitwise ops etc.
- SDValue SimplifyMultipleUseDemandedBits(SDValue Op, const APInt &DemandedBits,
- const APInt &DemandedElts,
- SelectionDAG &DAG,
- unsigned Depth = 0) const;
- /// Helper wrapper around SimplifyMultipleUseDemandedBits, demanding all
- /// elements.
- SDValue SimplifyMultipleUseDemandedBits(SDValue Op, const APInt &DemandedBits,
- SelectionDAG &DAG,
- unsigned Depth = 0) const;
- /// Helper wrapper around SimplifyMultipleUseDemandedBits, demanding all
- /// bits from only some vector elements.
- SDValue SimplifyMultipleUseDemandedVectorElts(SDValue Op,
- const APInt &DemandedElts,
- SelectionDAG &DAG,
- unsigned Depth = 0) const;
- /// Look at Vector Op. At this point, we know that only the DemandedElts
- /// elements of the result of Op are ever used downstream. If we can use
- /// this information to simplify Op, create a new simplified DAG node and
- /// return true, storing the original and new nodes in TLO.
- /// Otherwise, analyze the expression and return a mask of KnownUndef and
- /// KnownZero elements for the expression (used to simplify the caller).
- /// The KnownUndef/Zero elements may only be accurate for those bits
- /// in the DemandedMask.
- /// \p AssumeSingleUse When this parameter is true, this function will
- /// attempt to simplify \p Op even if there are multiple uses.
- /// Callers are responsible for correctly updating the DAG based on the
- /// results of this function, because simply replacing replacing TLO.Old
- /// with TLO.New will be incorrect when this parameter is true and TLO.Old
- /// has multiple uses.
- bool SimplifyDemandedVectorElts(SDValue Op, const APInt &DemandedEltMask,
- APInt &KnownUndef, APInt &KnownZero,
- TargetLoweringOpt &TLO, unsigned Depth = 0,
- bool AssumeSingleUse = false) const;
- /// Helper wrapper around SimplifyDemandedVectorElts.
- /// Adds Op back to the worklist upon success.
- bool SimplifyDemandedVectorElts(SDValue Op, const APInt &DemandedElts,
- DAGCombinerInfo &DCI) const;
- /// Return true if the target supports simplifying demanded vector elements by
- /// converting them to undefs.
- virtual bool
- shouldSimplifyDemandedVectorElts(SDValue Op,
- const TargetLoweringOpt &TLO) const {
- return true;
- }
- /// Determine which of the bits specified in Mask are known to be either zero
- /// or one and return them in the KnownZero/KnownOne bitsets. The DemandedElts
- /// argument allows us to only collect the known bits that are shared by the
- /// requested vector elements.
- virtual void computeKnownBitsForTargetNode(const SDValue Op,
- KnownBits &Known,
- const APInt &DemandedElts,
- const SelectionDAG &DAG,
- unsigned Depth = 0) const;
- /// Determine which of the bits specified in Mask are known to be either zero
- /// or one and return them in the KnownZero/KnownOne bitsets. The DemandedElts
- /// argument allows us to only collect the known bits that are shared by the
- /// requested vector elements. This is for GISel.
- virtual void computeKnownBitsForTargetInstr(GISelKnownBits &Analysis,
- Register R, KnownBits &Known,
- const APInt &DemandedElts,
- const MachineRegisterInfo &MRI,
- unsigned Depth = 0) const;
- /// Determine the known alignment for the pointer value \p R. This is can
- /// typically be inferred from the number of low known 0 bits. However, for a
- /// pointer with a non-integral address space, the alignment value may be
- /// independent from the known low bits.
- virtual Align computeKnownAlignForTargetInstr(GISelKnownBits &Analysis,
- Register R,
- const MachineRegisterInfo &MRI,
- unsigned Depth = 0) const;
- /// Determine which of the bits of FrameIndex \p FIOp are known to be 0.
- /// Default implementation computes low bits based on alignment
- /// information. This should preserve known bits passed into it.
- virtual void computeKnownBitsForFrameIndex(int FIOp,
- KnownBits &Known,
- const MachineFunction &MF) const;
- /// This method can be implemented by targets that want to expose additional
- /// information about sign bits to the DAG Combiner. The DemandedElts
- /// argument allows us to only collect the minimum sign bits that are shared
- /// by the requested vector elements.
- virtual unsigned ComputeNumSignBitsForTargetNode(SDValue Op,
- const APInt &DemandedElts,
- const SelectionDAG &DAG,
- unsigned Depth = 0) const;
- /// This method can be implemented by targets that want to expose additional
- /// information about sign bits to GlobalISel combiners. The DemandedElts
- /// argument allows us to only collect the minimum sign bits that are shared
- /// by the requested vector elements.
- virtual unsigned computeNumSignBitsForTargetInstr(GISelKnownBits &Analysis,
- Register R,
- const APInt &DemandedElts,
- const MachineRegisterInfo &MRI,
- unsigned Depth = 0) const;
- /// Attempt to simplify any target nodes based on the demanded vector
- /// elements, returning true on success. Otherwise, analyze the expression and
- /// return a mask of KnownUndef and KnownZero elements for the expression
- /// (used to simplify the caller). The KnownUndef/Zero elements may only be
- /// accurate for those bits in the DemandedMask.
- virtual bool SimplifyDemandedVectorEltsForTargetNode(
- SDValue Op, const APInt &DemandedElts, APInt &KnownUndef,
- APInt &KnownZero, TargetLoweringOpt &TLO, unsigned Depth = 0) const;
- /// Attempt to simplify any target nodes based on the demanded bits/elts,
- /// returning true on success. Otherwise, analyze the
- /// expression and return a mask of KnownOne and KnownZero bits for the
- /// expression (used to simplify the caller). The KnownZero/One bits may only
- /// be accurate for those bits in the Demanded masks.
- virtual bool SimplifyDemandedBitsForTargetNode(SDValue Op,
- const APInt &DemandedBits,
- const APInt &DemandedElts,
- KnownBits &Known,
- TargetLoweringOpt &TLO,
- unsigned Depth = 0) const;
- /// More limited version of SimplifyDemandedBits that can be used to "look
- /// through" ops that don't contribute to the DemandedBits/DemandedElts -
- /// bitwise ops etc.
- virtual SDValue SimplifyMultipleUseDemandedBitsForTargetNode(
- SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
- SelectionDAG &DAG, unsigned Depth) const;
- /// Return true if this function can prove that \p Op is never poison
- /// and, if \p PoisonOnly is false, does not have undef bits. The DemandedElts
- /// argument limits the check to the requested vector elements.
- virtual bool isGuaranteedNotToBeUndefOrPoisonForTargetNode(
- SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG,
- bool PoisonOnly, unsigned Depth) const;
- /// Return true if Op can create undef or poison from non-undef & non-poison
- /// operands. The DemandedElts argument limits the check to the requested
- /// vector elements.
- virtual bool
- canCreateUndefOrPoisonForTargetNode(SDValue Op, const APInt &DemandedElts,
- const SelectionDAG &DAG, bool PoisonOnly,
- bool ConsiderFlags, unsigned Depth) const;
- /// Tries to build a legal vector shuffle using the provided parameters
- /// or equivalent variations. The Mask argument maybe be modified as the
- /// function tries different variations.
- /// Returns an empty SDValue if the operation fails.
- SDValue buildLegalVectorShuffle(EVT VT, const SDLoc &DL, SDValue N0,
- SDValue N1, MutableArrayRef<int> Mask,
- SelectionDAG &DAG) const;
- /// This method returns the constant pool value that will be loaded by LD.
- /// NOTE: You must check for implicit extensions of the constant by LD.
- virtual const Constant *getTargetConstantFromLoad(LoadSDNode *LD) const;
- /// If \p SNaN is false, \returns true if \p Op is known to never be any
- /// NaN. If \p sNaN is true, returns if \p Op is known to never be a signaling
- /// NaN.
- virtual bool isKnownNeverNaNForTargetNode(SDValue Op,
- const SelectionDAG &DAG,
- bool SNaN = false,
- unsigned Depth = 0) const;
- /// Return true if vector \p Op has the same value across all \p DemandedElts,
- /// indicating any elements which may be undef in the output \p UndefElts.
- virtual bool isSplatValueForTargetNode(SDValue Op, const APInt &DemandedElts,
- APInt &UndefElts,
- const SelectionDAG &DAG,
- unsigned Depth = 0) const;
- /// Returns true if the given Opc is considered a canonical constant for the
- /// target, which should not be transformed back into a BUILD_VECTOR.
- virtual bool isTargetCanonicalConstantNode(SDValue Op) const {
- return Op.getOpcode() == ISD::SPLAT_VECTOR;
- }
- struct DAGCombinerInfo {
- void *DC; // The DAG Combiner object.
- CombineLevel Level;
- bool CalledByLegalizer;
- public:
- SelectionDAG &DAG;
- DAGCombinerInfo(SelectionDAG &dag, CombineLevel level, bool cl, void *dc)
- : DC(dc), Level(level), CalledByLegalizer(cl), DAG(dag) {}
- bool isBeforeLegalize() const { return Level == BeforeLegalizeTypes; }
- bool isBeforeLegalizeOps() const { return Level < AfterLegalizeVectorOps; }
- bool isAfterLegalizeDAG() const { return Level >= AfterLegalizeDAG; }
- CombineLevel getDAGCombineLevel() { return Level; }
- bool isCalledByLegalizer() const { return CalledByLegalizer; }
- void AddToWorklist(SDNode *N);
- SDValue CombineTo(SDNode *N, ArrayRef<SDValue> To, bool AddTo = true);
- SDValue CombineTo(SDNode *N, SDValue Res, bool AddTo = true);
- SDValue CombineTo(SDNode *N, SDValue Res0, SDValue Res1, bool AddTo = true);
- bool recursivelyDeleteUnusedNodes(SDNode *N);
- void CommitTargetLoweringOpt(const TargetLoweringOpt &TLO);
- };
- /// Return if the N is a constant or constant vector equal to the true value
- /// from getBooleanContents().
- bool isConstTrueVal(SDValue N) const;
- /// Return if the N is a constant or constant vector equal to the false value
- /// from getBooleanContents().
- bool isConstFalseVal(SDValue N) const;
- /// Return if \p N is a True value when extended to \p VT.
- bool isExtendedTrueVal(const ConstantSDNode *N, EVT VT, bool SExt) const;
- /// Try to simplify a setcc built with the specified operands and cc. If it is
- /// unable to simplify it, return a null SDValue.
- SDValue SimplifySetCC(EVT VT, SDValue N0, SDValue N1, ISD::CondCode Cond,
- bool foldBooleans, DAGCombinerInfo &DCI,
- const SDLoc &dl) const;
- // For targets which wrap address, unwrap for analysis.
- virtual SDValue unwrapAddress(SDValue N) const { return N; }
- /// Returns true (and the GlobalValue and the offset) if the node is a
- /// GlobalAddress + offset.
- virtual bool
- isGAPlusOffset(SDNode *N, const GlobalValue* &GA, int64_t &Offset) const;
- /// This method will be invoked for all target nodes and for any
- /// target-independent nodes that the target has registered with invoke it
- /// for.
- ///
- /// The semantics are as follows:
- /// Return Value:
- /// SDValue.Val == 0 - No change was made
- /// SDValue.Val == N - N was replaced, is dead, and is already handled.
- /// otherwise - N should be replaced by the returned Operand.
- ///
- /// In addition, methods provided by DAGCombinerInfo may be used to perform
- /// more complex transformations.
- ///
- virtual SDValue PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const;
- /// Return true if it is profitable to move this shift by a constant amount
- /// through its operand, adjusting any immediate operands as necessary to
- /// preserve semantics. This transformation may not be desirable if it
- /// disrupts a particularly auspicious target-specific tree (e.g. bitfield
- /// extraction in AArch64). By default, it returns true.
- ///
- /// @param N the shift node
- /// @param Level the current DAGCombine legalization level.
- virtual bool isDesirableToCommuteWithShift(const SDNode *N,
- CombineLevel Level) const {
- return true;
- }
- /// Return true if it is profitable to combine an XOR of a logical shift
- /// to create a logical shift of NOT. This transformation may not be desirable
- /// if it disrupts a particularly auspicious target-specific tree (e.g.
- /// BIC on ARM/AArch64). By default, it returns true.
- virtual bool isDesirableToCommuteXorWithShift(const SDNode *N) const {
- return true;
- }
- /// Return true if the target has native support for the specified value type
- /// and it is 'desirable' to use the type for the given node type. e.g. On x86
- /// i16 is legal, but undesirable since i16 instruction encodings are longer
- /// and some i16 instructions are slow.
- virtual bool isTypeDesirableForOp(unsigned /*Opc*/, EVT VT) const {
- // By default, assume all legal types are desirable.
- return isTypeLegal(VT);
- }
- /// Return true if it is profitable for dag combiner to transform a floating
- /// point op of specified opcode to a equivalent op of an integer
- /// type. e.g. f32 load -> i32 load can be profitable on ARM.
- virtual bool isDesirableToTransformToIntegerOp(unsigned /*Opc*/,
- EVT /*VT*/) const {
- return false;
- }
- /// This method query the target whether it is beneficial for dag combiner to
- /// promote the specified node. If true, it should return the desired
- /// promotion type by reference.
- virtual bool IsDesirableToPromoteOp(SDValue /*Op*/, EVT &/*PVT*/) const {
- return false;
- }
- /// Return true if the target supports swifterror attribute. It optimizes
- /// loads and stores to reading and writing a specific register.
- virtual bool supportSwiftError() const {
- return false;
- }
- /// Return true if the target supports that a subset of CSRs for the given
- /// machine function is handled explicitly via copies.
- virtual bool supportSplitCSR(MachineFunction *MF) const {
- return false;
- }
- /// Return true if the target supports kcfi operand bundles.
- virtual bool supportKCFIBundles() const { return false; }
- /// Perform necessary initialization to handle a subset of CSRs explicitly
- /// via copies. This function is called at the beginning of instruction
- /// selection.
- virtual void initializeSplitCSR(MachineBasicBlock *Entry) const {
- llvm_unreachable("Not Implemented");
- }
- /// Insert explicit copies in entry and exit blocks. We copy a subset of
- /// CSRs to virtual registers in the entry block, and copy them back to
- /// physical registers in the exit blocks. This function is called at the end
- /// of instruction selection.
- virtual void insertCopiesSplitCSR(
- MachineBasicBlock *Entry,
- const SmallVectorImpl<MachineBasicBlock *> &Exits) const {
- llvm_unreachable("Not Implemented");
- }
- /// Return the newly negated expression if the cost is not expensive and
- /// set the cost in \p Cost to indicate that if it is cheaper or neutral to
- /// do the negation.
- virtual SDValue getNegatedExpression(SDValue Op, SelectionDAG &DAG,
- bool LegalOps, bool OptForSize,
- NegatibleCost &Cost,
- unsigned Depth = 0) const;
- SDValue getCheaperOrNeutralNegatedExpression(
- SDValue Op, SelectionDAG &DAG, bool LegalOps, bool OptForSize,
- const NegatibleCost CostThreshold = NegatibleCost::Neutral,
- unsigned Depth = 0) const {
- NegatibleCost Cost = NegatibleCost::Expensive;
- SDValue Neg =
- getNegatedExpression(Op, DAG, LegalOps, OptForSize, Cost, Depth);
- if (!Neg)
- return SDValue();
- if (Cost <= CostThreshold)
- return Neg;
- // Remove the new created node to avoid the side effect to the DAG.
- if (Neg->use_empty())
- DAG.RemoveDeadNode(Neg.getNode());
- return SDValue();
- }
- /// This is the helper function to return the newly negated expression only
- /// when the cost is cheaper.
- SDValue getCheaperNegatedExpression(SDValue Op, SelectionDAG &DAG,
- bool LegalOps, bool OptForSize,
- unsigned Depth = 0) const {
- return getCheaperOrNeutralNegatedExpression(Op, DAG, LegalOps, OptForSize,
- NegatibleCost::Cheaper, Depth);
- }
- /// This is the helper function to return the newly negated expression if
- /// the cost is not expensive.
- SDValue getNegatedExpression(SDValue Op, SelectionDAG &DAG, bool LegalOps,
- bool OptForSize, unsigned Depth = 0) const {
- NegatibleCost Cost = NegatibleCost::Expensive;
- return getNegatedExpression(Op, DAG, LegalOps, OptForSize, Cost, Depth);
- }
- //===--------------------------------------------------------------------===//
- // Lowering methods - These methods must be implemented by targets so that
- // the SelectionDAGBuilder code knows how to lower these.
- //
- /// Target-specific splitting of values into parts that fit a register
- /// storing a legal type
- virtual bool splitValueIntoRegisterParts(
- SelectionDAG & DAG, const SDLoc &DL, SDValue Val, SDValue *Parts,
- unsigned NumParts, MVT PartVT, std::optional<CallingConv::ID> CC) const {
- return false;
- }
- /// Allows the target to handle physreg-carried dependency
- /// in target-specific way. Used from the ScheduleDAGSDNodes to decide whether
- /// to add the edge to the dependency graph.
- /// Def - input: Selection DAG node defininfg physical register
- /// User - input: Selection DAG node using physical register
- /// Op - input: Number of User operand
- /// PhysReg - inout: set to the physical register if the edge is
- /// necessary, unchanged otherwise
- /// Cost - inout: physical register copy cost.
- /// Returns 'true' is the edge is necessary, 'false' otherwise
- virtual bool checkForPhysRegDependency(SDNode *Def, SDNode *User, unsigned Op,
- const TargetRegisterInfo *TRI,
- const TargetInstrInfo *TII,
- unsigned &PhysReg, int &Cost) const {
- return false;
- }
- /// Target-specific combining of register parts into its original value
- virtual SDValue
- joinRegisterPartsIntoValue(SelectionDAG &DAG, const SDLoc &DL,
- const SDValue *Parts, unsigned NumParts,
- MVT PartVT, EVT ValueVT,
- std::optional<CallingConv::ID> CC) const {
- return SDValue();
- }
- /// This hook must be implemented to lower the incoming (formal) arguments,
- /// described by the Ins array, into the specified DAG. The implementation
- /// should fill in the InVals array with legal-type argument values, and
- /// return the resulting token chain value.
- virtual SDValue LowerFormalArguments(
- SDValue /*Chain*/, CallingConv::ID /*CallConv*/, bool /*isVarArg*/,
- const SmallVectorImpl<ISD::InputArg> & /*Ins*/, const SDLoc & /*dl*/,
- SelectionDAG & /*DAG*/, SmallVectorImpl<SDValue> & /*InVals*/) const {
- llvm_unreachable("Not Implemented");
- }
- /// This structure contains all information that is necessary for lowering
- /// calls. It is passed to TLI::LowerCallTo when the SelectionDAG builder
- /// needs to lower a call, and targets will see this struct in their LowerCall
- /// implementation.
- struct CallLoweringInfo {
- SDValue Chain;
- Type *RetTy = nullptr;
- bool RetSExt : 1;
- bool RetZExt : 1;
- bool IsVarArg : 1;
- bool IsInReg : 1;
- bool DoesNotReturn : 1;
- bool IsReturnValueUsed : 1;
- bool IsConvergent : 1;
- bool IsPatchPoint : 1;
- bool IsPreallocated : 1;
- bool NoMerge : 1;
- // IsTailCall should be modified by implementations of
- // TargetLowering::LowerCall that perform tail call conversions.
- bool IsTailCall = false;
- // Is Call lowering done post SelectionDAG type legalization.
- bool IsPostTypeLegalization = false;
- unsigned NumFixedArgs = -1;
- CallingConv::ID CallConv = CallingConv::C;
- SDValue Callee;
- ArgListTy Args;
- SelectionDAG &DAG;
- SDLoc DL;
- const CallBase *CB = nullptr;
- SmallVector<ISD::OutputArg, 32> Outs;
- SmallVector<SDValue, 32> OutVals;
- SmallVector<ISD::InputArg, 32> Ins;
- SmallVector<SDValue, 4> InVals;
- const ConstantInt *CFIType = nullptr;
- CallLoweringInfo(SelectionDAG &DAG)
- : RetSExt(false), RetZExt(false), IsVarArg(false), IsInReg(false),
- DoesNotReturn(false), IsReturnValueUsed(true), IsConvergent(false),
- IsPatchPoint(false), IsPreallocated(false), NoMerge(false),
- DAG(DAG) {}
- CallLoweringInfo &setDebugLoc(const SDLoc &dl) {
- DL = dl;
- return *this;
- }
- CallLoweringInfo &setChain(SDValue InChain) {
- Chain = InChain;
- return *this;
- }
- // setCallee with target/module-specific attributes
- CallLoweringInfo &setLibCallee(CallingConv::ID CC, Type *ResultType,
- SDValue Target, ArgListTy &&ArgsList) {
- RetTy = ResultType;
- Callee = Target;
- CallConv = CC;
- NumFixedArgs = ArgsList.size();
- Args = std::move(ArgsList);
- DAG.getTargetLoweringInfo().markLibCallAttributes(
- &(DAG.getMachineFunction()), CC, Args);
- return *this;
- }
- CallLoweringInfo &setCallee(CallingConv::ID CC, Type *ResultType,
- SDValue Target, ArgListTy &&ArgsList) {
- RetTy = ResultType;
- Callee = Target;
- CallConv = CC;
- NumFixedArgs = ArgsList.size();
- Args = std::move(ArgsList);
- return *this;
- }
- CallLoweringInfo &setCallee(Type *ResultType, FunctionType *FTy,
- SDValue Target, ArgListTy &&ArgsList,
- const CallBase &Call) {
- RetTy = ResultType;
- IsInReg = Call.hasRetAttr(Attribute::InReg);
- DoesNotReturn =
- Call.doesNotReturn() ||
- (!isa<InvokeInst>(Call) && isa<UnreachableInst>(Call.getNextNode()));
- IsVarArg = FTy->isVarArg();
- IsReturnValueUsed = !Call.use_empty();
- RetSExt = Call.hasRetAttr(Attribute::SExt);
- RetZExt = Call.hasRetAttr(Attribute::ZExt);
- NoMerge = Call.hasFnAttr(Attribute::NoMerge);
- Callee = Target;
- CallConv = Call.getCallingConv();
- NumFixedArgs = FTy->getNumParams();
- Args = std::move(ArgsList);
- CB = &Call;
- return *this;
- }
- CallLoweringInfo &setInRegister(bool Value = true) {
- IsInReg = Value;
- return *this;
- }
- CallLoweringInfo &setNoReturn(bool Value = true) {
- DoesNotReturn = Value;
- return *this;
- }
- CallLoweringInfo &setVarArg(bool Value = true) {
- IsVarArg = Value;
- return *this;
- }
- CallLoweringInfo &setTailCall(bool Value = true) {
- IsTailCall = Value;
- return *this;
- }
- CallLoweringInfo &setDiscardResult(bool Value = true) {
- IsReturnValueUsed = !Value;
- return *this;
- }
- CallLoweringInfo &setConvergent(bool Value = true) {
- IsConvergent = Value;
- return *this;
- }
- CallLoweringInfo &setSExtResult(bool Value = true) {
- RetSExt = Value;
- return *this;
- }
- CallLoweringInfo &setZExtResult(bool Value = true) {
- RetZExt = Value;
- return *this;
- }
- CallLoweringInfo &setIsPatchPoint(bool Value = true) {
- IsPatchPoint = Value;
- return *this;
- }
- CallLoweringInfo &setIsPreallocated(bool Value = true) {
- IsPreallocated = Value;
- return *this;
- }
- CallLoweringInfo &setIsPostTypeLegalization(bool Value=true) {
- IsPostTypeLegalization = Value;
- return *this;
- }
- CallLoweringInfo &setCFIType(const ConstantInt *Type) {
- CFIType = Type;
- return *this;
- }
- ArgListTy &getArgs() {
- return Args;
- }
- };
- /// This structure is used to pass arguments to makeLibCall function.
- struct MakeLibCallOptions {
- // By passing type list before soften to makeLibCall, the target hook
- // shouldExtendTypeInLibCall can get the original type before soften.
- ArrayRef<EVT> OpsVTBeforeSoften;
- EVT RetVTBeforeSoften;
- bool IsSExt : 1;
- bool DoesNotReturn : 1;
- bool IsReturnValueUsed : 1;
- bool IsPostTypeLegalization : 1;
- bool IsSoften : 1;
- MakeLibCallOptions()
- : IsSExt(false), DoesNotReturn(false), IsReturnValueUsed(true),
- IsPostTypeLegalization(false), IsSoften(false) {}
- MakeLibCallOptions &setSExt(bool Value = true) {
- IsSExt = Value;
- return *this;
- }
- MakeLibCallOptions &setNoReturn(bool Value = true) {
- DoesNotReturn = Value;
- return *this;
- }
- MakeLibCallOptions &setDiscardResult(bool Value = true) {
- IsReturnValueUsed = !Value;
- return *this;
- }
- MakeLibCallOptions &setIsPostTypeLegalization(bool Value = true) {
- IsPostTypeLegalization = Value;
- return *this;
- }
- MakeLibCallOptions &setTypeListBeforeSoften(ArrayRef<EVT> OpsVT, EVT RetVT,
- bool Value = true) {
- OpsVTBeforeSoften = OpsVT;
- RetVTBeforeSoften = RetVT;
- IsSoften = Value;
- return *this;
- }
- };
- /// This function lowers an abstract call to a function into an actual call.
- /// This returns a pair of operands. The first element is the return value
- /// for the function (if RetTy is not VoidTy). The second element is the
- /// outgoing token chain. It calls LowerCall to do the actual lowering.
- std::pair<SDValue, SDValue> LowerCallTo(CallLoweringInfo &CLI) const;
- /// This hook must be implemented to lower calls into the specified
- /// DAG. The outgoing arguments to the call are described by the Outs array,
- /// and the values to be returned by the call are described by the Ins
- /// array. The implementation should fill in the InVals array with legal-type
- /// return values from the call, and return the resulting token chain value.
- virtual SDValue
- LowerCall(CallLoweringInfo &/*CLI*/,
- SmallVectorImpl<SDValue> &/*InVals*/) const {
- llvm_unreachable("Not Implemented");
- }
- /// Target-specific cleanup for formal ByVal parameters.
- virtual void HandleByVal(CCState *, unsigned &, Align) const {}
- /// This hook should be implemented to check whether the return values
- /// described by the Outs array can fit into the return registers. If false
- /// is returned, an sret-demotion is performed.
- virtual bool CanLowerReturn(CallingConv::ID /*CallConv*/,
- MachineFunction &/*MF*/, bool /*isVarArg*/,
- const SmallVectorImpl<ISD::OutputArg> &/*Outs*/,
- LLVMContext &/*Context*/) const
- {
- // Return true by default to get preexisting behavior.
- return true;
- }
- /// This hook must be implemented to lower outgoing return values, described
- /// by the Outs array, into the specified DAG. The implementation should
- /// return the resulting token chain value.
- virtual SDValue LowerReturn(SDValue /*Chain*/, CallingConv::ID /*CallConv*/,
- bool /*isVarArg*/,
- const SmallVectorImpl<ISD::OutputArg> & /*Outs*/,
- const SmallVectorImpl<SDValue> & /*OutVals*/,
- const SDLoc & /*dl*/,
- SelectionDAG & /*DAG*/) const {
- llvm_unreachable("Not Implemented");
- }
- /// Return true if result of the specified node is used by a return node
- /// only. It also compute and return the input chain for the tail call.
- ///
- /// This is used to determine whether it is possible to codegen a libcall as
- /// tail call at legalization time.
- virtual bool isUsedByReturnOnly(SDNode *, SDValue &/*Chain*/) const {
- return false;
- }
- /// Return true if the target may be able emit the call instruction as a tail
- /// call. This is used by optimization passes to determine if it's profitable
- /// to duplicate return instructions to enable tailcall optimization.
- virtual bool mayBeEmittedAsTailCall(const CallInst *) const {
- return false;
- }
- /// Return the builtin name for the __builtin___clear_cache intrinsic
- /// Default is to invoke the clear cache library call
- virtual const char * getClearCacheBuiltinName() const {
- return "__clear_cache";
- }
- /// Return the register ID of the name passed in. Used by named register
- /// global variables extension. There is no target-independent behaviour
- /// so the default action is to bail.
- virtual Register getRegisterByName(const char* RegName, LLT Ty,
- const MachineFunction &MF) const {
- report_fatal_error("Named registers not implemented for this target");
- }
- /// Return the type that should be used to zero or sign extend a
- /// zeroext/signext integer return value. FIXME: Some C calling conventions
- /// require the return type to be promoted, but this is not true all the time,
- /// e.g. i1/i8/i16 on x86/x86_64. It is also not necessary for non-C calling
- /// conventions. The frontend should handle this and include all of the
- /// necessary information.
- virtual EVT getTypeForExtReturn(LLVMContext &Context, EVT VT,
- ISD::NodeType /*ExtendKind*/) const {
- EVT MinVT = getRegisterType(Context, MVT::i32);
- return VT.bitsLT(MinVT) ? MinVT : VT;
- }
- /// For some targets, an LLVM struct type must be broken down into multiple
- /// simple types, but the calling convention specifies that the entire struct
- /// must be passed in a block of consecutive registers.
- virtual bool
- functionArgumentNeedsConsecutiveRegisters(Type *Ty, CallingConv::ID CallConv,
- bool isVarArg,
- const DataLayout &DL) const {
- return false;
- }
- /// For most targets, an LLVM type must be broken down into multiple
- /// smaller types. Usually the halves are ordered according to the endianness
- /// but for some platform that would break. So this method will default to
- /// matching the endianness but can be overridden.
- virtual bool
- shouldSplitFunctionArgumentsAsLittleEndian(const DataLayout &DL) const {
- return DL.isLittleEndian();
- }
- /// Returns a 0 terminated array of registers that can be safely used as
- /// scratch registers.
- virtual const MCPhysReg *getScratchRegisters(CallingConv::ID CC) const {
- return nullptr;
- }
- /// This callback is used to prepare for a volatile or atomic load.
- /// It takes a chain node as input and returns the chain for the load itself.
- ///
- /// Having a callback like this is necessary for targets like SystemZ,
- /// which allows a CPU to reuse the result of a previous load indefinitely,
- /// even if a cache-coherent store is performed by another CPU. The default
- /// implementation does nothing.
- virtual SDValue prepareVolatileOrAtomicLoad(SDValue Chain, const SDLoc &DL,
- SelectionDAG &DAG) const {
- return Chain;
- }
- /// Should SelectionDAG lower an atomic store of the given kind as a normal
- /// StoreSDNode (as opposed to an AtomicSDNode)? NOTE: The intention is to
- /// eventually migrate all targets to the using StoreSDNodes, but porting is
- /// being done target at a time.
- virtual bool lowerAtomicStoreAsStoreSDNode(const StoreInst &SI) const {
- assert(SI.isAtomic() && "violated precondition");
- return false;
- }
- /// Should SelectionDAG lower an atomic load of the given kind as a normal
- /// LoadSDNode (as opposed to an AtomicSDNode)? NOTE: The intention is to
- /// eventually migrate all targets to the using LoadSDNodes, but porting is
- /// being done target at a time.
- virtual bool lowerAtomicLoadAsLoadSDNode(const LoadInst &LI) const {
- assert(LI.isAtomic() && "violated precondition");
- return false;
- }
- /// This callback is invoked by the type legalizer to legalize nodes with an
- /// illegal operand type but legal result types. It replaces the
- /// LowerOperation callback in the type Legalizer. The reason we can not do
- /// away with LowerOperation entirely is that LegalizeDAG isn't yet ready to
- /// use this callback.
- ///
- /// TODO: Consider merging with ReplaceNodeResults.
- ///
- /// The target places new result values for the node in Results (their number
- /// and types must exactly match those of the original return values of
- /// the node), or leaves Results empty, which indicates that the node is not
- /// to be custom lowered after all.
- /// The default implementation calls LowerOperation.
- virtual void LowerOperationWrapper(SDNode *N,
- SmallVectorImpl<SDValue> &Results,
- SelectionDAG &DAG) const;
- /// This callback is invoked for operations that are unsupported by the
- /// target, which are registered to use 'custom' lowering, and whose defined
- /// values are all legal. If the target has no operations that require custom
- /// lowering, it need not implement this. The default implementation of this
- /// aborts.
- virtual SDValue LowerOperation(SDValue Op, SelectionDAG &DAG) const;
- /// This callback is invoked when a node result type is illegal for the
- /// target, and the operation was registered to use 'custom' lowering for that
- /// result type. The target places new result values for the node in Results
- /// (their number and types must exactly match those of the original return
- /// values of the node), or leaves Results empty, which indicates that the
- /// node is not to be custom lowered after all.
- ///
- /// If the target has no operations that require custom lowering, it need not
- /// implement this. The default implementation aborts.
- virtual void ReplaceNodeResults(SDNode * /*N*/,
- SmallVectorImpl<SDValue> &/*Results*/,
- SelectionDAG &/*DAG*/) const {
- llvm_unreachable("ReplaceNodeResults not implemented for this target!");
- }
- /// This method returns the name of a target specific DAG node.
- virtual const char *getTargetNodeName(unsigned Opcode) const;
- /// This method returns a target specific FastISel object, or null if the
- /// target does not support "fast" ISel.
- virtual FastISel *createFastISel(FunctionLoweringInfo &,
- const TargetLibraryInfo *) const {
- return nullptr;
- }
- bool verifyReturnAddressArgumentIsConstant(SDValue Op,
- SelectionDAG &DAG) const;
- //===--------------------------------------------------------------------===//
- // Inline Asm Support hooks
- //
- /// This hook allows the target to expand an inline asm call to be explicit
- /// llvm code if it wants to. This is useful for turning simple inline asms
- /// into LLVM intrinsics, which gives the compiler more information about the
- /// behavior of the code.
- virtual bool ExpandInlineAsm(CallInst *) const {
- return false;
- }
- enum ConstraintType {
- C_Register, // Constraint represents specific register(s).
- C_RegisterClass, // Constraint represents any of register(s) in class.
- C_Memory, // Memory constraint.
- C_Address, // Address constraint.
- C_Immediate, // Requires an immediate.
- C_Other, // Something else.
- C_Unknown // Unsupported constraint.
- };
- enum ConstraintWeight {
- // Generic weights.
- CW_Invalid = -1, // No match.
- CW_Okay = 0, // Acceptable.
- CW_Good = 1, // Good weight.
- CW_Better = 2, // Better weight.
- CW_Best = 3, // Best weight.
- // Well-known weights.
- CW_SpecificReg = CW_Okay, // Specific register operands.
- CW_Register = CW_Good, // Register operands.
- CW_Memory = CW_Better, // Memory operands.
- CW_Constant = CW_Best, // Constant operand.
- CW_Default = CW_Okay // Default or don't know type.
- };
- /// This contains information for each constraint that we are lowering.
- struct AsmOperandInfo : public InlineAsm::ConstraintInfo {
- /// This contains the actual string for the code, like "m". TargetLowering
- /// picks the 'best' code from ConstraintInfo::Codes that most closely
- /// matches the operand.
- std::string ConstraintCode;
- /// Information about the constraint code, e.g. Register, RegisterClass,
- /// Memory, Other, Unknown.
- TargetLowering::ConstraintType ConstraintType = TargetLowering::C_Unknown;
- /// If this is the result output operand or a clobber, this is null,
- /// otherwise it is the incoming operand to the CallInst. This gets
- /// modified as the asm is processed.
- Value *CallOperandVal = nullptr;
- /// The ValueType for the operand value.
- MVT ConstraintVT = MVT::Other;
- /// Copy constructor for copying from a ConstraintInfo.
- AsmOperandInfo(InlineAsm::ConstraintInfo Info)
- : InlineAsm::ConstraintInfo(std::move(Info)) {}
- /// Return true of this is an input operand that is a matching constraint
- /// like "4".
- bool isMatchingInputConstraint() const;
- /// If this is an input matching constraint, this method returns the output
- /// operand it matches.
- unsigned getMatchedOperand() const;
- };
- using AsmOperandInfoVector = std::vector<AsmOperandInfo>;
- /// Split up the constraint string from the inline assembly value into the
- /// specific constraints and their prefixes, and also tie in the associated
- /// operand values. If this returns an empty vector, and if the constraint
- /// string itself isn't empty, there was an error parsing.
- virtual AsmOperandInfoVector ParseConstraints(const DataLayout &DL,
- const TargetRegisterInfo *TRI,
- const CallBase &Call) const;
- /// Examine constraint type and operand type and determine a weight value.
- /// The operand object must already have been set up with the operand type.
- virtual ConstraintWeight getMultipleConstraintMatchWeight(
- AsmOperandInfo &info, int maIndex) const;
- /// Examine constraint string and operand type and determine a weight value.
- /// The operand object must already have been set up with the operand type.
- virtual ConstraintWeight getSingleConstraintMatchWeight(
- AsmOperandInfo &info, const char *constraint) const;
- /// Determines the constraint code and constraint type to use for the specific
- /// AsmOperandInfo, setting OpInfo.ConstraintCode and OpInfo.ConstraintType.
- /// If the actual operand being passed in is available, it can be passed in as
- /// Op, otherwise an empty SDValue can be passed.
- virtual void ComputeConstraintToUse(AsmOperandInfo &OpInfo,
- SDValue Op,
- SelectionDAG *DAG = nullptr) const;
- /// Given a constraint, return the type of constraint it is for this target.
- virtual ConstraintType getConstraintType(StringRef Constraint) const;
- /// Given a physical register constraint (e.g. {edx}), return the register
- /// number and the register class for the register.
- ///
- /// Given a register class constraint, like 'r', if this corresponds directly
- /// to an LLVM register class, return a register of 0 and the register class
- /// pointer.
- ///
- /// This should only be used for C_Register constraints. On error, this
- /// returns a register number of 0 and a null register class pointer.
- virtual std::pair<unsigned, const TargetRegisterClass *>
- getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
- StringRef Constraint, MVT VT) const;
- virtual unsigned getInlineAsmMemConstraint(StringRef ConstraintCode) const {
- if (ConstraintCode == "m")
- return InlineAsm::Constraint_m;
- if (ConstraintCode == "o")
- return InlineAsm::Constraint_o;
- if (ConstraintCode == "X")
- return InlineAsm::Constraint_X;
- if (ConstraintCode == "p")
- return InlineAsm::Constraint_p;
- return InlineAsm::Constraint_Unknown;
- }
- /// Try to replace an X constraint, which matches anything, with another that
- /// has more specific requirements based on the type of the corresponding
- /// operand. This returns null if there is no replacement to make.
- virtual const char *LowerXConstraint(EVT ConstraintVT) const;
- /// Lower the specified operand into the Ops vector. If it is invalid, don't
- /// add anything to Ops.
- virtual void LowerAsmOperandForConstraint(SDValue Op, std::string &Constraint,
- std::vector<SDValue> &Ops,
- SelectionDAG &DAG) const;
- // Lower custom output constraints. If invalid, return SDValue().
- virtual SDValue LowerAsmOutputForConstraint(SDValue &Chain, SDValue &Flag,
- const SDLoc &DL,
- const AsmOperandInfo &OpInfo,
- SelectionDAG &DAG) const;
- // Targets may override this function to collect operands from the CallInst
- // and for example, lower them into the SelectionDAG operands.
- virtual void CollectTargetIntrinsicOperands(const CallInst &I,
- SmallVectorImpl<SDValue> &Ops,
- SelectionDAG &DAG) const;
- //===--------------------------------------------------------------------===//
- // Div utility functions
- //
- SDValue BuildSDIV(SDNode *N, SelectionDAG &DAG, bool IsAfterLegalization,
- SmallVectorImpl<SDNode *> &Created) const;
- SDValue BuildUDIV(SDNode *N, SelectionDAG &DAG, bool IsAfterLegalization,
- SmallVectorImpl<SDNode *> &Created) const;
- /// Targets may override this function to provide custom SDIV lowering for
- /// power-of-2 denominators. If the target returns an empty SDValue, LLVM
- /// assumes SDIV is expensive and replaces it with a series of other integer
- /// operations.
- virtual SDValue BuildSDIVPow2(SDNode *N, const APInt &Divisor,
- SelectionDAG &DAG,
- SmallVectorImpl<SDNode *> &Created) const;
- /// Targets may override this function to provide custom SREM lowering for
- /// power-of-2 denominators. If the target returns an empty SDValue, LLVM
- /// assumes SREM is expensive and replaces it with a series of other integer
- /// operations.
- virtual SDValue BuildSREMPow2(SDNode *N, const APInt &Divisor,
- SelectionDAG &DAG,
- SmallVectorImpl<SDNode *> &Created) const;
- /// Indicate whether this target prefers to combine FDIVs with the same
- /// divisor. If the transform should never be done, return zero. If the
- /// transform should be done, return the minimum number of divisor uses
- /// that must exist.
- virtual unsigned combineRepeatedFPDivisors() const {
- return 0;
- }
- /// Hooks for building estimates in place of slower divisions and square
- /// roots.
- /// Return either a square root or its reciprocal estimate value for the input
- /// operand.
- /// \p Enabled is a ReciprocalEstimate enum with value either 'Unspecified' or
- /// 'Enabled' as set by a potential default override attribute.
- /// If \p RefinementSteps is 'Unspecified', the number of Newton-Raphson
- /// refinement iterations required to generate a sufficient (though not
- /// necessarily IEEE-754 compliant) estimate is returned in that parameter.
- /// The boolean UseOneConstNR output is used to select a Newton-Raphson
- /// algorithm implementation that uses either one or two constants.
- /// The boolean Reciprocal is used to select whether the estimate is for the
- /// square root of the input operand or the reciprocal of its square root.
- /// A target may choose to implement its own refinement within this function.
- /// If that's true, then return '0' as the number of RefinementSteps to avoid
- /// any further refinement of the estimate.
- /// An empty SDValue return means no estimate sequence can be created.
- virtual SDValue getSqrtEstimate(SDValue Operand, SelectionDAG &DAG,
- int Enabled, int &RefinementSteps,
- bool &UseOneConstNR, bool Reciprocal) const {
- return SDValue();
- }
- /// Try to convert the fminnum/fmaxnum to a compare/select sequence. This is
- /// required for correctness since InstCombine might have canonicalized a
- /// fcmp+select sequence to a FMINNUM/FMAXNUM intrinsic. If we were to fall
- /// through to the default expansion/soften to libcall, we might introduce a
- /// link-time dependency on libm into a file that originally did not have one.
- SDValue createSelectForFMINNUM_FMAXNUM(SDNode *Node, SelectionDAG &DAG) const;
- /// Return a reciprocal estimate value for the input operand.
- /// \p Enabled is a ReciprocalEstimate enum with value either 'Unspecified' or
- /// 'Enabled' as set by a potential default override attribute.
- /// If \p RefinementSteps is 'Unspecified', the number of Newton-Raphson
- /// refinement iterations required to generate a sufficient (though not
- /// necessarily IEEE-754 compliant) estimate is returned in that parameter.
- /// A target may choose to implement its own refinement within this function.
- /// If that's true, then return '0' as the number of RefinementSteps to avoid
- /// any further refinement of the estimate.
- /// An empty SDValue return means no estimate sequence can be created.
- virtual SDValue getRecipEstimate(SDValue Operand, SelectionDAG &DAG,
- int Enabled, int &RefinementSteps) const {
- return SDValue();
- }
- /// Return a target-dependent comparison result if the input operand is
- /// suitable for use with a square root estimate calculation. For example, the
- /// comparison may check if the operand is NAN, INF, zero, normal, etc. The
- /// result should be used as the condition operand for a select or branch.
- virtual SDValue getSqrtInputTest(SDValue Operand, SelectionDAG &DAG,
- const DenormalMode &Mode) const;
- /// Return a target-dependent result if the input operand is not suitable for
- /// use with a square root estimate calculation.
- virtual SDValue getSqrtResultForDenormInput(SDValue Operand,
- SelectionDAG &DAG) const {
- return DAG.getConstantFP(0.0, SDLoc(Operand), Operand.getValueType());
- }
- //===--------------------------------------------------------------------===//
- // Legalization utility functions
- //
- /// Expand a MUL or [US]MUL_LOHI of n-bit values into two or four nodes,
- /// respectively, each computing an n/2-bit part of the result.
- /// \param Result A vector that will be filled with the parts of the result
- /// in little-endian order.
- /// \param LL Low bits of the LHS of the MUL. You can use this parameter
- /// if you want to control how low bits are extracted from the LHS.
- /// \param LH High bits of the LHS of the MUL. See LL for meaning.
- /// \param RL Low bits of the RHS of the MUL. See LL for meaning
- /// \param RH High bits of the RHS of the MUL. See LL for meaning.
- /// \returns true if the node has been expanded, false if it has not
- bool expandMUL_LOHI(unsigned Opcode, EVT VT, const SDLoc &dl, SDValue LHS,
- SDValue RHS, SmallVectorImpl<SDValue> &Result, EVT HiLoVT,
- SelectionDAG &DAG, MulExpansionKind Kind,
- SDValue LL = SDValue(), SDValue LH = SDValue(),
- SDValue RL = SDValue(), SDValue RH = SDValue()) const;
- /// Expand a MUL into two nodes. One that computes the high bits of
- /// the result and one that computes the low bits.
- /// \param HiLoVT The value type to use for the Lo and Hi nodes.
- /// \param LL Low bits of the LHS of the MUL. You can use this parameter
- /// if you want to control how low bits are extracted from the LHS.
- /// \param LH High bits of the LHS of the MUL. See LL for meaning.
- /// \param RL Low bits of the RHS of the MUL. See LL for meaning
- /// \param RH High bits of the RHS of the MUL. See LL for meaning.
- /// \returns true if the node has been expanded. false if it has not
- bool expandMUL(SDNode *N, SDValue &Lo, SDValue &Hi, EVT HiLoVT,
- SelectionDAG &DAG, MulExpansionKind Kind,
- SDValue LL = SDValue(), SDValue LH = SDValue(),
- SDValue RL = SDValue(), SDValue RH = SDValue()) const;
- /// Attempt to expand an n-bit div/rem/divrem by constant using a n/2-bit
- /// urem by constant and other arithmetic ops. The n/2-bit urem by constant
- /// will be expanded by DAGCombiner. This is not possible for all constant
- /// divisors.
- /// \param N Node to expand
- /// \param Result A vector that will be filled with the lo and high parts of
- /// the results. For *DIVREM, this will be the quotient parts followed
- /// by the remainder parts.
- /// \param HiLoVT The value type to use for the Lo and Hi parts. Should be
- /// half of VT.
- /// \param LL Low bits of the LHS of the operation. You can use this
- /// parameter if you want to control how low bits are extracted from
- /// the LHS.
- /// \param LH High bits of the LHS of the operation. See LL for meaning.
- /// \returns true if the node has been expanded, false if it has not.
- bool expandDIVREMByConstant(SDNode *N, SmallVectorImpl<SDValue> &Result,
- EVT HiLoVT, SelectionDAG &DAG,
- SDValue LL = SDValue(),
- SDValue LH = SDValue()) const;
- /// Expand funnel shift.
- /// \param N Node to expand
- /// \returns The expansion if successful, SDValue() otherwise
- SDValue expandFunnelShift(SDNode *N, SelectionDAG &DAG) const;
- /// Expand rotations.
- /// \param N Node to expand
- /// \param AllowVectorOps expand vector rotate, this should only be performed
- /// if the legalization is happening outside of LegalizeVectorOps
- /// \returns The expansion if successful, SDValue() otherwise
- SDValue expandROT(SDNode *N, bool AllowVectorOps, SelectionDAG &DAG) const;
- /// Expand shift-by-parts.
- /// \param N Node to expand
- /// \param Lo lower-output-part after conversion
- /// \param Hi upper-output-part after conversion
- void expandShiftParts(SDNode *N, SDValue &Lo, SDValue &Hi,
- SelectionDAG &DAG) const;
- /// Expand float(f32) to SINT(i64) conversion
- /// \param N Node to expand
- /// \param Result output after conversion
- /// \returns True, if the expansion was successful, false otherwise
- bool expandFP_TO_SINT(SDNode *N, SDValue &Result, SelectionDAG &DAG) const;
- /// Expand float to UINT conversion
- /// \param N Node to expand
- /// \param Result output after conversion
- /// \param Chain output chain after conversion
- /// \returns True, if the expansion was successful, false otherwise
- bool expandFP_TO_UINT(SDNode *N, SDValue &Result, SDValue &Chain,
- SelectionDAG &DAG) const;
- /// Expand UINT(i64) to double(f64) conversion
- /// \param N Node to expand
- /// \param Result output after conversion
- /// \param Chain output chain after conversion
- /// \returns True, if the expansion was successful, false otherwise
- bool expandUINT_TO_FP(SDNode *N, SDValue &Result, SDValue &Chain,
- SelectionDAG &DAG) const;
- /// Expand fminnum/fmaxnum into fminnum_ieee/fmaxnum_ieee with quieted inputs.
- SDValue expandFMINNUM_FMAXNUM(SDNode *N, SelectionDAG &DAG) const;
- /// Expand FP_TO_[US]INT_SAT into FP_TO_[US]INT and selects or min/max.
- /// \param N Node to expand
- /// \returns The expansion result
- SDValue expandFP_TO_INT_SAT(SDNode *N, SelectionDAG &DAG) const;
- /// Expand check for floating point class.
- /// \param ResultVT The type of intrinsic call result.
- /// \param Op The tested value.
- /// \param Test The test to perform.
- /// \param Flags The optimization flags.
- /// \returns The expansion result or SDValue() if it fails.
- SDValue expandIS_FPCLASS(EVT ResultVT, SDValue Op, unsigned Test,
- SDNodeFlags Flags, const SDLoc &DL,
- SelectionDAG &DAG) const;
- /// Expand CTPOP nodes. Expands vector/scalar CTPOP nodes,
- /// vector nodes can only succeed if all operations are legal/custom.
- /// \param N Node to expand
- /// \returns The expansion result or SDValue() if it fails.
- SDValue expandCTPOP(SDNode *N, SelectionDAG &DAG) const;
- /// Expand VP_CTPOP nodes.
- /// \returns The expansion result or SDValue() if it fails.
- SDValue expandVPCTPOP(SDNode *N, SelectionDAG &DAG) const;
- /// Expand CTLZ/CTLZ_ZERO_UNDEF nodes. Expands vector/scalar CTLZ nodes,
- /// vector nodes can only succeed if all operations are legal/custom.
- /// \param N Node to expand
- /// \returns The expansion result or SDValue() if it fails.
- SDValue expandCTLZ(SDNode *N, SelectionDAG &DAG) const;
- /// Expand VP_CTLZ/VP_CTLZ_ZERO_UNDEF nodes.
- /// \param N Node to expand
- /// \returns The expansion result or SDValue() if it fails.
- SDValue expandVPCTLZ(SDNode *N, SelectionDAG &DAG) const;
- /// Expand CTTZ via Table Lookup.
- /// \param N Node to expand
- /// \returns The expansion result or SDValue() if it fails.
- SDValue CTTZTableLookup(SDNode *N, SelectionDAG &DAG, const SDLoc &DL, EVT VT,
- SDValue Op, unsigned NumBitsPerElt) const;
- /// Expand CTTZ/CTTZ_ZERO_UNDEF nodes. Expands vector/scalar CTTZ nodes,
- /// vector nodes can only succeed if all operations are legal/custom.
- /// \param N Node to expand
- /// \returns The expansion result or SDValue() if it fails.
- SDValue expandCTTZ(SDNode *N, SelectionDAG &DAG) const;
- /// Expand VP_CTTZ/VP_CTTZ_ZERO_UNDEF nodes.
- /// \param N Node to expand
- /// \returns The expansion result or SDValue() if it fails.
- SDValue expandVPCTTZ(SDNode *N, SelectionDAG &DAG) const;
- /// Expand ABS nodes. Expands vector/scalar ABS nodes,
- /// vector nodes can only succeed if all operations are legal/custom.
- /// (ABS x) -> (XOR (ADD x, (SRA x, type_size)), (SRA x, type_size))
- /// \param N Node to expand
- /// \param IsNegative indicate negated abs
- /// \returns The expansion result or SDValue() if it fails.
- SDValue expandABS(SDNode *N, SelectionDAG &DAG,
- bool IsNegative = false) const;
- /// Expand BSWAP nodes. Expands scalar/vector BSWAP nodes with i16/i32/i64
- /// scalar types. Returns SDValue() if expand fails.
- /// \param N Node to expand
- /// \returns The expansion result or SDValue() if it fails.
- SDValue expandBSWAP(SDNode *N, SelectionDAG &DAG) const;
- /// Expand VP_BSWAP nodes. Expands VP_BSWAP nodes with
- /// i16/i32/i64 scalar types. Returns SDValue() if expand fails. \param N Node
- /// to expand \returns The expansion result or SDValue() if it fails.
- SDValue expandVPBSWAP(SDNode *N, SelectionDAG &DAG) const;
- /// Expand BITREVERSE nodes. Expands scalar/vector BITREVERSE nodes.
- /// Returns SDValue() if expand fails.
- /// \param N Node to expand
- /// \returns The expansion result or SDValue() if it fails.
- SDValue expandBITREVERSE(SDNode *N, SelectionDAG &DAG) const;
- /// Expand VP_BITREVERSE nodes. Expands VP_BITREVERSE nodes with
- /// i8/i16/i32/i64 scalar types. \param N Node to expand \returns The
- /// expansion result or SDValue() if it fails.
- SDValue expandVPBITREVERSE(SDNode *N, SelectionDAG &DAG) const;
- /// Turn load of vector type into a load of the individual elements.
- /// \param LD load to expand
- /// \returns BUILD_VECTOR and TokenFactor nodes.
- std::pair<SDValue, SDValue> scalarizeVectorLoad(LoadSDNode *LD,
- SelectionDAG &DAG) const;
- // Turn a store of a vector type into stores of the individual elements.
- /// \param ST Store with a vector value type
- /// \returns TokenFactor of the individual store chains.
- SDValue scalarizeVectorStore(StoreSDNode *ST, SelectionDAG &DAG) const;
- /// Expands an unaligned load to 2 half-size loads for an integer, and
- /// possibly more for vectors.
- std::pair<SDValue, SDValue> expandUnalignedLoad(LoadSDNode *LD,
- SelectionDAG &DAG) const;
- /// Expands an unaligned store to 2 half-size stores for integer values, and
- /// possibly more for vectors.
- SDValue expandUnalignedStore(StoreSDNode *ST, SelectionDAG &DAG) const;
- /// Increments memory address \p Addr according to the type of the value
- /// \p DataVT that should be stored. If the data is stored in compressed
- /// form, the memory address should be incremented according to the number of
- /// the stored elements. This number is equal to the number of '1's bits
- /// in the \p Mask.
- /// \p DataVT is a vector type. \p Mask is a vector value.
- /// \p DataVT and \p Mask have the same number of vector elements.
- SDValue IncrementMemoryAddress(SDValue Addr, SDValue Mask, const SDLoc &DL,
- EVT DataVT, SelectionDAG &DAG,
- bool IsCompressedMemory) const;
- /// Get a pointer to vector element \p Idx located in memory for a vector of
- /// type \p VecVT starting at a base address of \p VecPtr. If \p Idx is out of
- /// bounds the returned pointer is unspecified, but will be within the vector
- /// bounds.
- SDValue getVectorElementPointer(SelectionDAG &DAG, SDValue VecPtr, EVT VecVT,
- SDValue Index) const;
- /// Get a pointer to a sub-vector of type \p SubVecVT at index \p Idx located
- /// in memory for a vector of type \p VecVT starting at a base address of
- /// \p VecPtr. If \p Idx plus the size of \p SubVecVT is out of bounds the
- /// returned pointer is unspecified, but the value returned will be such that
- /// the entire subvector would be within the vector bounds.
- SDValue getVectorSubVecPointer(SelectionDAG &DAG, SDValue VecPtr, EVT VecVT,
- EVT SubVecVT, SDValue Index) const;
- /// Method for building the DAG expansion of ISD::[US][MIN|MAX]. This
- /// method accepts integers as its arguments.
- SDValue expandIntMINMAX(SDNode *Node, SelectionDAG &DAG) const;
- /// Method for building the DAG expansion of ISD::[US][ADD|SUB]SAT. This
- /// method accepts integers as its arguments.
- SDValue expandAddSubSat(SDNode *Node, SelectionDAG &DAG) const;
- /// Method for building the DAG expansion of ISD::[US]SHLSAT. This
- /// method accepts integers as its arguments.
- SDValue expandShlSat(SDNode *Node, SelectionDAG &DAG) const;
- /// Method for building the DAG expansion of ISD::[U|S]MULFIX[SAT]. This
- /// method accepts integers as its arguments.
- SDValue expandFixedPointMul(SDNode *Node, SelectionDAG &DAG) const;
- /// Method for building the DAG expansion of ISD::[US]DIVFIX[SAT]. This
- /// method accepts integers as its arguments.
- /// Note: This method may fail if the division could not be performed
- /// within the type. Clients must retry with a wider type if this happens.
- SDValue expandFixedPointDiv(unsigned Opcode, const SDLoc &dl,
- SDValue LHS, SDValue RHS,
- unsigned Scale, SelectionDAG &DAG) const;
- /// Method for building the DAG expansion of ISD::U(ADD|SUB)O. Expansion
- /// always suceeds and populates the Result and Overflow arguments.
- void expandUADDSUBO(SDNode *Node, SDValue &Result, SDValue &Overflow,
- SelectionDAG &DAG) const;
- /// Method for building the DAG expansion of ISD::S(ADD|SUB)O. Expansion
- /// always suceeds and populates the Result and Overflow arguments.
- void expandSADDSUBO(SDNode *Node, SDValue &Result, SDValue &Overflow,
- SelectionDAG &DAG) const;
- /// Method for building the DAG expansion of ISD::[US]MULO. Returns whether
- /// expansion was successful and populates the Result and Overflow arguments.
- bool expandMULO(SDNode *Node, SDValue &Result, SDValue &Overflow,
- SelectionDAG &DAG) const;
- /// Expand a VECREDUCE_* into an explicit calculation. If Count is specified,
- /// only the first Count elements of the vector are used.
- SDValue expandVecReduce(SDNode *Node, SelectionDAG &DAG) const;
- /// Expand a VECREDUCE_SEQ_* into an explicit ordered calculation.
- SDValue expandVecReduceSeq(SDNode *Node, SelectionDAG &DAG) const;
- /// Expand an SREM or UREM using SDIV/UDIV or SDIVREM/UDIVREM, if legal.
- /// Returns true if the expansion was successful.
- bool expandREM(SDNode *Node, SDValue &Result, SelectionDAG &DAG) const;
- /// Method for building the DAG expansion of ISD::VECTOR_SPLICE. This
- /// method accepts vectors as its arguments.
- SDValue expandVectorSplice(SDNode *Node, SelectionDAG &DAG) const;
- /// Legalize a SETCC or VP_SETCC with given LHS and RHS and condition code CC
- /// on the current target. A VP_SETCC will additionally be given a Mask
- /// and/or EVL not equal to SDValue().
- ///
- /// If the SETCC has been legalized using AND / OR, then the legalized node
- /// will be stored in LHS. RHS and CC will be set to SDValue(). NeedInvert
- /// will be set to false. This will also hold if the VP_SETCC has been
- /// legalized using VP_AND / VP_OR.
- ///
- /// If the SETCC / VP_SETCC has been legalized by using
- /// getSetCCSwappedOperands(), then the values of LHS and RHS will be
- /// swapped, CC will be set to the new condition, and NeedInvert will be set
- /// to false.
- ///
- /// If the SETCC / VP_SETCC has been legalized using the inverse condcode,
- /// then LHS and RHS will be unchanged, CC will set to the inverted condcode,
- /// and NeedInvert will be set to true. The caller must invert the result of
- /// the SETCC with SelectionDAG::getLogicalNOT() or take equivalent action to
- /// swap the effect of a true/false result.
- ///
- /// \returns true if the SETCC / VP_SETCC has been legalized, false if it
- /// hasn't.
- bool LegalizeSetCCCondCode(SelectionDAG &DAG, EVT VT, SDValue &LHS,
- SDValue &RHS, SDValue &CC, SDValue Mask,
- SDValue EVL, bool &NeedInvert, const SDLoc &dl,
- SDValue &Chain, bool IsSignaling = false) const;
- //===--------------------------------------------------------------------===//
- // Instruction Emitting Hooks
- //
- /// This method should be implemented by targets that mark instructions with
- /// the 'usesCustomInserter' flag. These instructions are special in various
- /// ways, which require special support to insert. The specified MachineInstr
- /// is created but not inserted into any basic blocks, and this method is
- /// called to expand it into a sequence of instructions, potentially also
- /// creating new basic blocks and control flow.
- /// As long as the returned basic block is different (i.e., we created a new
- /// one), the custom inserter is free to modify the rest of \p MBB.
- virtual MachineBasicBlock *
- EmitInstrWithCustomInserter(MachineInstr &MI, MachineBasicBlock *MBB) const;
- /// This method should be implemented by targets that mark instructions with
- /// the 'hasPostISelHook' flag. These instructions must be adjusted after
- /// instruction selection by target hooks. e.g. To fill in optional defs for
- /// ARM 's' setting instructions.
- virtual void AdjustInstrPostInstrSelection(MachineInstr &MI,
- SDNode *Node) const;
- /// If this function returns true, SelectionDAGBuilder emits a
- /// LOAD_STACK_GUARD node when it is lowering Intrinsic::stackprotector.
- virtual bool useLoadStackGuardNode() const {
- return false;
- }
- virtual SDValue emitStackGuardXorFP(SelectionDAG &DAG, SDValue Val,
- const SDLoc &DL) const {
- llvm_unreachable("not implemented for this target");
- }
- /// Lower TLS global address SDNode for target independent emulated TLS model.
- virtual SDValue LowerToTLSEmulatedModel(const GlobalAddressSDNode *GA,
- SelectionDAG &DAG) const;
- /// Expands target specific indirect branch for the case of JumpTable
- /// expanasion.
- virtual SDValue expandIndirectJTBranch(const SDLoc& dl, SDValue Value, SDValue Addr,
- SelectionDAG &DAG) const {
- return DAG.getNode(ISD::BRIND, dl, MVT::Other, Value, Addr);
- }
- // seteq(x, 0) -> truncate(srl(ctlz(zext(x)), log2(#bits)))
- // If we're comparing for equality to zero and isCtlzFast is true, expose the
- // fact that this can be implemented as a ctlz/srl pair, so that the dag
- // combiner can fold the new nodes.
- SDValue lowerCmpEqZeroToCtlzSrl(SDValue Op, SelectionDAG &DAG) const;
- private:
- SDValue foldSetCCWithAnd(EVT VT, SDValue N0, SDValue N1, ISD::CondCode Cond,
- const SDLoc &DL, DAGCombinerInfo &DCI) const;
- SDValue foldSetCCWithBinOp(EVT VT, SDValue N0, SDValue N1, ISD::CondCode Cond,
- const SDLoc &DL, DAGCombinerInfo &DCI) const;
- SDValue optimizeSetCCOfSignedTruncationCheck(EVT SCCVT, SDValue N0,
- SDValue N1, ISD::CondCode Cond,
- DAGCombinerInfo &DCI,
- const SDLoc &DL) const;
- // (X & (C l>>/<< Y)) ==/!= 0 --> ((X <</l>> Y) & C) ==/!= 0
- SDValue optimizeSetCCByHoistingAndByConstFromLogicalShift(
- EVT SCCVT, SDValue N0, SDValue N1C, ISD::CondCode Cond,
- DAGCombinerInfo &DCI, const SDLoc &DL) const;
- SDValue prepareUREMEqFold(EVT SETCCVT, SDValue REMNode,
- SDValue CompTargetNode, ISD::CondCode Cond,
- DAGCombinerInfo &DCI, const SDLoc &DL,
- SmallVectorImpl<SDNode *> &Created) const;
- SDValue buildUREMEqFold(EVT SETCCVT, SDValue REMNode, SDValue CompTargetNode,
- ISD::CondCode Cond, DAGCombinerInfo &DCI,
- const SDLoc &DL) const;
- SDValue prepareSREMEqFold(EVT SETCCVT, SDValue REMNode,
- SDValue CompTargetNode, ISD::CondCode Cond,
- DAGCombinerInfo &DCI, const SDLoc &DL,
- SmallVectorImpl<SDNode *> &Created) const;
- SDValue buildSREMEqFold(EVT SETCCVT, SDValue REMNode, SDValue CompTargetNode,
- ISD::CondCode Cond, DAGCombinerInfo &DCI,
- const SDLoc &DL) const;
- };
- /// Given an LLVM IR type and return type attributes, compute the return value
- /// EVTs and flags, and optionally also the offsets, if the return value is
- /// being lowered to memory.
- void GetReturnInfo(CallingConv::ID CC, Type *ReturnType, AttributeList attr,
- SmallVectorImpl<ISD::OutputArg> &Outs,
- const TargetLowering &TLI, const DataLayout &DL);
- } // end namespace llvm
- #endif // LLVM_CODEGEN_TARGETLOWERING_H
- #ifdef __GNUC__
- #pragma GCC diagnostic pop
- #endif
|