12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120 |
- #pragma once
- #ifdef __GNUC__
- #pragma GCC diagnostic push
- #pragma GCC diagnostic ignored "-Wunused-parameter"
- #endif
- //===- llvm/CodeGen/TargetInstrInfo.h - Instruction Info --------*- C++ -*-===//
- //
- // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
- // See https://llvm.org/LICENSE.txt for license information.
- // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
- //
- //===----------------------------------------------------------------------===//
- //
- // This file describes the target machine instruction set to the code generator.
- //
- //===----------------------------------------------------------------------===//
- #ifndef LLVM_CODEGEN_TARGETINSTRINFO_H
- #define LLVM_CODEGEN_TARGETINSTRINFO_H
- #include "llvm/ADT/ArrayRef.h"
- #include "llvm/ADT/DenseMap.h"
- #include "llvm/ADT/DenseMapInfo.h"
- #include "llvm/ADT/Uniformity.h"
- #include "llvm/CodeGen/MIRFormatter.h"
- #include "llvm/CodeGen/MachineBasicBlock.h"
- #include "llvm/CodeGen/MachineFunction.h"
- #include "llvm/CodeGen/MachineInstr.h"
- #include "llvm/CodeGen/MachineInstrBuilder.h"
- #include "llvm/CodeGen/MachineOperand.h"
- #include "llvm/CodeGen/MachineOutliner.h"
- #include "llvm/CodeGen/RegisterClassInfo.h"
- #include "llvm/CodeGen/VirtRegMap.h"
- #include "llvm/MC/MCInstrInfo.h"
- #include "llvm/Support/BranchProbability.h"
- #include "llvm/Support/ErrorHandling.h"
- #include <cassert>
- #include <cstddef>
- #include <cstdint>
- #include <utility>
- #include <vector>
- namespace llvm {
- class DFAPacketizer;
- class InstrItineraryData;
- class LiveIntervals;
- class LiveVariables;
- class MachineLoop;
- class MachineMemOperand;
- class MachineRegisterInfo;
- class MCAsmInfo;
- class MCInst;
- struct MCSchedModel;
- class Module;
- class ScheduleDAG;
- class ScheduleDAGMI;
- class ScheduleHazardRecognizer;
- class SDNode;
- class SelectionDAG;
- class SMSchedule;
- class SwingSchedulerDAG;
- class RegScavenger;
- class TargetRegisterClass;
- class TargetRegisterInfo;
- class TargetSchedModel;
- class TargetSubtargetInfo;
- enum class MachineCombinerPattern;
- template <class T> class SmallVectorImpl;
- using ParamLoadedValue = std::pair<MachineOperand, DIExpression*>;
- struct DestSourcePair {
- const MachineOperand *Destination;
- const MachineOperand *Source;
- DestSourcePair(const MachineOperand &Dest, const MachineOperand &Src)
- : Destination(&Dest), Source(&Src) {}
- };
- /// Used to describe a register and immediate addition.
- struct RegImmPair {
- Register Reg;
- int64_t Imm;
- RegImmPair(Register Reg, int64_t Imm) : Reg(Reg), Imm(Imm) {}
- };
- /// Used to describe addressing mode similar to ExtAddrMode in CodeGenPrepare.
- /// It holds the register values, the scale value and the displacement.
- struct ExtAddrMode {
- Register BaseReg;
- Register ScaledReg;
- int64_t Scale;
- int64_t Displacement;
- };
- //---------------------------------------------------------------------------
- ///
- /// TargetInstrInfo - Interface to description of machine instruction set
- ///
- class TargetInstrInfo : public MCInstrInfo {
- public:
- TargetInstrInfo(unsigned CFSetupOpcode = ~0u, unsigned CFDestroyOpcode = ~0u,
- unsigned CatchRetOpcode = ~0u, unsigned ReturnOpcode = ~0u)
- : CallFrameSetupOpcode(CFSetupOpcode),
- CallFrameDestroyOpcode(CFDestroyOpcode), CatchRetOpcode(CatchRetOpcode),
- ReturnOpcode(ReturnOpcode) {}
- TargetInstrInfo(const TargetInstrInfo &) = delete;
- TargetInstrInfo &operator=(const TargetInstrInfo &) = delete;
- virtual ~TargetInstrInfo();
- static bool isGenericOpcode(unsigned Opc) {
- return Opc <= TargetOpcode::GENERIC_OP_END;
- }
- static bool isGenericAtomicRMWOpcode(unsigned Opc) {
- return Opc >= TargetOpcode::GENERIC_ATOMICRMW_OP_START &&
- Opc <= TargetOpcode::GENERIC_ATOMICRMW_OP_END;
- }
- /// Given a machine instruction descriptor, returns the register
- /// class constraint for OpNum, or NULL.
- virtual
- const TargetRegisterClass *getRegClass(const MCInstrDesc &MCID, unsigned OpNum,
- const TargetRegisterInfo *TRI,
- const MachineFunction &MF) const;
- /// Return true if the instruction is trivially rematerializable, meaning it
- /// has no side effects and requires no operands that aren't always available.
- /// This means the only allowed uses are constants and unallocatable physical
- /// registers so that the instructions result is independent of the place
- /// in the function.
- bool isTriviallyReMaterializable(const MachineInstr &MI) const {
- return MI.getOpcode() == TargetOpcode::IMPLICIT_DEF ||
- (MI.getDesc().isRematerializable() &&
- (isReallyTriviallyReMaterializable(MI) ||
- isReallyTriviallyReMaterializableGeneric(MI)));
- }
- /// Given \p MO is a PhysReg use return if it can be ignored for the purpose
- /// of instruction rematerialization or sinking.
- virtual bool isIgnorableUse(const MachineOperand &MO) const {
- return false;
- }
- protected:
- /// For instructions with opcodes for which the M_REMATERIALIZABLE flag is
- /// set, this hook lets the target specify whether the instruction is actually
- /// trivially rematerializable, taking into consideration its operands. This
- /// predicate must return false if the instruction has any side effects other
- /// than producing a value, or if it requres any address registers that are
- /// not always available.
- /// Requirements must be check as stated in isTriviallyReMaterializable() .
- virtual bool isReallyTriviallyReMaterializable(const MachineInstr &MI) const {
- return false;
- }
- /// This method commutes the operands of the given machine instruction MI.
- /// The operands to be commuted are specified by their indices OpIdx1 and
- /// OpIdx2.
- ///
- /// If a target has any instructions that are commutable but require
- /// converting to different instructions or making non-trivial changes
- /// to commute them, this method can be overloaded to do that.
- /// The default implementation simply swaps the commutable operands.
- ///
- /// If NewMI is false, MI is modified in place and returned; otherwise, a
- /// new machine instruction is created and returned.
- ///
- /// Do not call this method for a non-commutable instruction.
- /// Even though the instruction is commutable, the method may still
- /// fail to commute the operands, null pointer is returned in such cases.
- virtual MachineInstr *commuteInstructionImpl(MachineInstr &MI, bool NewMI,
- unsigned OpIdx1,
- unsigned OpIdx2) const;
- /// Assigns the (CommutableOpIdx1, CommutableOpIdx2) pair of commutable
- /// operand indices to (ResultIdx1, ResultIdx2).
- /// One or both input values of the pair: (ResultIdx1, ResultIdx2) may be
- /// predefined to some indices or be undefined (designated by the special
- /// value 'CommuteAnyOperandIndex').
- /// The predefined result indices cannot be re-defined.
- /// The function returns true iff after the result pair redefinition
- /// the fixed result pair is equal to or equivalent to the source pair of
- /// indices: (CommutableOpIdx1, CommutableOpIdx2). It is assumed here that
- /// the pairs (x,y) and (y,x) are equivalent.
- static bool fixCommutedOpIndices(unsigned &ResultIdx1, unsigned &ResultIdx2,
- unsigned CommutableOpIdx1,
- unsigned CommutableOpIdx2);
- private:
- /// For instructions with opcodes for which the M_REMATERIALIZABLE flag is
- /// set and the target hook isReallyTriviallyReMaterializable returns false,
- /// this function does target-independent tests to determine if the
- /// instruction is really trivially rematerializable.
- bool isReallyTriviallyReMaterializableGeneric(const MachineInstr &MI) const;
- public:
- /// These methods return the opcode of the frame setup/destroy instructions
- /// if they exist (-1 otherwise). Some targets use pseudo instructions in
- /// order to abstract away the difference between operating with a frame
- /// pointer and operating without, through the use of these two instructions.
- ///
- unsigned getCallFrameSetupOpcode() const { return CallFrameSetupOpcode; }
- unsigned getCallFrameDestroyOpcode() const { return CallFrameDestroyOpcode; }
- /// Returns true if the argument is a frame pseudo instruction.
- bool isFrameInstr(const MachineInstr &I) const {
- return I.getOpcode() == getCallFrameSetupOpcode() ||
- I.getOpcode() == getCallFrameDestroyOpcode();
- }
- /// Returns true if the argument is a frame setup pseudo instruction.
- bool isFrameSetup(const MachineInstr &I) const {
- return I.getOpcode() == getCallFrameSetupOpcode();
- }
- /// Returns size of the frame associated with the given frame instruction.
- /// For frame setup instruction this is frame that is set up space set up
- /// after the instruction. For frame destroy instruction this is the frame
- /// freed by the caller.
- /// Note, in some cases a call frame (or a part of it) may be prepared prior
- /// to the frame setup instruction. It occurs in the calls that involve
- /// inalloca arguments. This function reports only the size of the frame part
- /// that is set up between the frame setup and destroy pseudo instructions.
- int64_t getFrameSize(const MachineInstr &I) const {
- assert(isFrameInstr(I) && "Not a frame instruction");
- assert(I.getOperand(0).getImm() >= 0);
- return I.getOperand(0).getImm();
- }
- /// Returns the total frame size, which is made up of the space set up inside
- /// the pair of frame start-stop instructions and the space that is set up
- /// prior to the pair.
- int64_t getFrameTotalSize(const MachineInstr &I) const {
- if (isFrameSetup(I)) {
- assert(I.getOperand(1).getImm() >= 0 &&
- "Frame size must not be negative");
- return getFrameSize(I) + I.getOperand(1).getImm();
- }
- return getFrameSize(I);
- }
- unsigned getCatchReturnOpcode() const { return CatchRetOpcode; }
- unsigned getReturnOpcode() const { return ReturnOpcode; }
- /// Returns the actual stack pointer adjustment made by an instruction
- /// as part of a call sequence. By default, only call frame setup/destroy
- /// instructions adjust the stack, but targets may want to override this
- /// to enable more fine-grained adjustment, or adjust by a different value.
- virtual int getSPAdjust(const MachineInstr &MI) const;
- /// Return true if the instruction is a "coalescable" extension instruction.
- /// That is, it's like a copy where it's legal for the source to overlap the
- /// destination. e.g. X86::MOVSX64rr32. If this returns true, then it's
- /// expected the pre-extension value is available as a subreg of the result
- /// register. This also returns the sub-register index in SubIdx.
- virtual bool isCoalescableExtInstr(const MachineInstr &MI, Register &SrcReg,
- Register &DstReg, unsigned &SubIdx) const {
- return false;
- }
- /// If the specified machine instruction is a direct
- /// load from a stack slot, return the virtual or physical register number of
- /// the destination along with the FrameIndex of the loaded stack slot. If
- /// not, return 0. This predicate must return 0 if the instruction has
- /// any side effects other than loading from the stack slot.
- virtual unsigned isLoadFromStackSlot(const MachineInstr &MI,
- int &FrameIndex) const {
- return 0;
- }
- /// Optional extension of isLoadFromStackSlot that returns the number of
- /// bytes loaded from the stack. This must be implemented if a backend
- /// supports partial stack slot spills/loads to further disambiguate
- /// what the load does.
- virtual unsigned isLoadFromStackSlot(const MachineInstr &MI,
- int &FrameIndex,
- unsigned &MemBytes) const {
- MemBytes = 0;
- return isLoadFromStackSlot(MI, FrameIndex);
- }
- /// Check for post-frame ptr elimination stack locations as well.
- /// This uses a heuristic so it isn't reliable for correctness.
- virtual unsigned isLoadFromStackSlotPostFE(const MachineInstr &MI,
- int &FrameIndex) const {
- return 0;
- }
- /// If the specified machine instruction has a load from a stack slot,
- /// return true along with the FrameIndices of the loaded stack slot and the
- /// machine mem operands containing the reference.
- /// If not, return false. Unlike isLoadFromStackSlot, this returns true for
- /// any instructions that loads from the stack. This is just a hint, as some
- /// cases may be missed.
- virtual bool hasLoadFromStackSlot(
- const MachineInstr &MI,
- SmallVectorImpl<const MachineMemOperand *> &Accesses) const;
- /// If the specified machine instruction is a direct
- /// store to a stack slot, return the virtual or physical register number of
- /// the source reg along with the FrameIndex of the loaded stack slot. If
- /// not, return 0. This predicate must return 0 if the instruction has
- /// any side effects other than storing to the stack slot.
- virtual unsigned isStoreToStackSlot(const MachineInstr &MI,
- int &FrameIndex) const {
- return 0;
- }
- /// Optional extension of isStoreToStackSlot that returns the number of
- /// bytes stored to the stack. This must be implemented if a backend
- /// supports partial stack slot spills/loads to further disambiguate
- /// what the store does.
- virtual unsigned isStoreToStackSlot(const MachineInstr &MI,
- int &FrameIndex,
- unsigned &MemBytes) const {
- MemBytes = 0;
- return isStoreToStackSlot(MI, FrameIndex);
- }
- /// Check for post-frame ptr elimination stack locations as well.
- /// This uses a heuristic, so it isn't reliable for correctness.
- virtual unsigned isStoreToStackSlotPostFE(const MachineInstr &MI,
- int &FrameIndex) const {
- return 0;
- }
- /// If the specified machine instruction has a store to a stack slot,
- /// return true along with the FrameIndices of the loaded stack slot and the
- /// machine mem operands containing the reference.
- /// If not, return false. Unlike isStoreToStackSlot,
- /// this returns true for any instructions that stores to the
- /// stack. This is just a hint, as some cases may be missed.
- virtual bool hasStoreToStackSlot(
- const MachineInstr &MI,
- SmallVectorImpl<const MachineMemOperand *> &Accesses) const;
- /// Return true if the specified machine instruction
- /// is a copy of one stack slot to another and has no other effect.
- /// Provide the identity of the two frame indices.
- virtual bool isStackSlotCopy(const MachineInstr &MI, int &DestFrameIndex,
- int &SrcFrameIndex) const {
- return false;
- }
- /// Compute the size in bytes and offset within a stack slot of a spilled
- /// register or subregister.
- ///
- /// \param [out] Size in bytes of the spilled value.
- /// \param [out] Offset in bytes within the stack slot.
- /// \returns true if both Size and Offset are successfully computed.
- ///
- /// Not all subregisters have computable spill slots. For example,
- /// subregisters registers may not be byte-sized, and a pair of discontiguous
- /// subregisters has no single offset.
- ///
- /// Targets with nontrivial bigendian implementations may need to override
- /// this, particularly to support spilled vector registers.
- virtual bool getStackSlotRange(const TargetRegisterClass *RC, unsigned SubIdx,
- unsigned &Size, unsigned &Offset,
- const MachineFunction &MF) const;
- /// Return true if the given instruction is terminator that is unspillable,
- /// according to isUnspillableTerminatorImpl.
- bool isUnspillableTerminator(const MachineInstr *MI) const {
- return MI->isTerminator() && isUnspillableTerminatorImpl(MI);
- }
- /// Returns the size in bytes of the specified MachineInstr, or ~0U
- /// when this function is not implemented by a target.
- virtual unsigned getInstSizeInBytes(const MachineInstr &MI) const {
- return ~0U;
- }
- /// Return true if the instruction is as cheap as a move instruction.
- ///
- /// Targets for different archs need to override this, and different
- /// micro-architectures can also be finely tuned inside.
- virtual bool isAsCheapAsAMove(const MachineInstr &MI) const {
- return MI.isAsCheapAsAMove();
- }
- /// Return true if the instruction should be sunk by MachineSink.
- ///
- /// MachineSink determines on its own whether the instruction is safe to sink;
- /// this gives the target a hook to override the default behavior with regards
- /// to which instructions should be sunk.
- virtual bool shouldSink(const MachineInstr &MI) const { return true; }
- /// Return false if the instruction should not be hoisted by MachineLICM.
- ///
- /// MachineLICM determines on its own whether the instruction is safe to
- /// hoist; this gives the target a hook to extend this assessment and prevent
- /// an instruction being hoisted from a given loop for target specific
- /// reasons.
- virtual bool shouldHoist(const MachineInstr &MI,
- const MachineLoop *FromLoop) const {
- return true;
- }
- /// Re-issue the specified 'original' instruction at the
- /// specific location targeting a new destination register.
- /// The register in Orig->getOperand(0).getReg() will be substituted by
- /// DestReg:SubIdx. Any existing subreg index is preserved or composed with
- /// SubIdx.
- virtual void reMaterialize(MachineBasicBlock &MBB,
- MachineBasicBlock::iterator MI, Register DestReg,
- unsigned SubIdx, const MachineInstr &Orig,
- const TargetRegisterInfo &TRI) const;
- /// Clones instruction or the whole instruction bundle \p Orig and
- /// insert into \p MBB before \p InsertBefore. The target may update operands
- /// that are required to be unique.
- ///
- /// \p Orig must not return true for MachineInstr::isNotDuplicable().
- virtual MachineInstr &duplicate(MachineBasicBlock &MBB,
- MachineBasicBlock::iterator InsertBefore,
- const MachineInstr &Orig) const;
- /// This method must be implemented by targets that
- /// set the M_CONVERTIBLE_TO_3_ADDR flag. When this flag is set, the target
- /// may be able to convert a two-address instruction into one or more true
- /// three-address instructions on demand. This allows the X86 target (for
- /// example) to convert ADD and SHL instructions into LEA instructions if they
- /// would require register copies due to two-addressness.
- ///
- /// This method returns a null pointer if the transformation cannot be
- /// performed, otherwise it returns the last new instruction.
- ///
- /// If \p LIS is not nullptr, the LiveIntervals info should be updated for
- /// replacing \p MI with new instructions, even though this function does not
- /// remove MI.
- virtual MachineInstr *convertToThreeAddress(MachineInstr &MI,
- LiveVariables *LV,
- LiveIntervals *LIS) const {
- return nullptr;
- }
- // This constant can be used as an input value of operand index passed to
- // the method findCommutedOpIndices() to tell the method that the
- // corresponding operand index is not pre-defined and that the method
- // can pick any commutable operand.
- static const unsigned CommuteAnyOperandIndex = ~0U;
- /// This method commutes the operands of the given machine instruction MI.
- ///
- /// The operands to be commuted are specified by their indices OpIdx1 and
- /// OpIdx2. OpIdx1 and OpIdx2 arguments may be set to a special value
- /// 'CommuteAnyOperandIndex', which means that the method is free to choose
- /// any arbitrarily chosen commutable operand. If both arguments are set to
- /// 'CommuteAnyOperandIndex' then the method looks for 2 different commutable
- /// operands; then commutes them if such operands could be found.
- ///
- /// If NewMI is false, MI is modified in place and returned; otherwise, a
- /// new machine instruction is created and returned.
- ///
- /// Do not call this method for a non-commutable instruction or
- /// for non-commuable operands.
- /// Even though the instruction is commutable, the method may still
- /// fail to commute the operands, null pointer is returned in such cases.
- MachineInstr *
- commuteInstruction(MachineInstr &MI, bool NewMI = false,
- unsigned OpIdx1 = CommuteAnyOperandIndex,
- unsigned OpIdx2 = CommuteAnyOperandIndex) const;
- /// Returns true iff the routine could find two commutable operands in the
- /// given machine instruction.
- /// The 'SrcOpIdx1' and 'SrcOpIdx2' are INPUT and OUTPUT arguments.
- /// If any of the INPUT values is set to the special value
- /// 'CommuteAnyOperandIndex' then the method arbitrarily picks a commutable
- /// operand, then returns its index in the corresponding argument.
- /// If both of INPUT values are set to 'CommuteAnyOperandIndex' then method
- /// looks for 2 commutable operands.
- /// If INPUT values refer to some operands of MI, then the method simply
- /// returns true if the corresponding operands are commutable and returns
- /// false otherwise.
- ///
- /// For example, calling this method this way:
- /// unsigned Op1 = 1, Op2 = CommuteAnyOperandIndex;
- /// findCommutedOpIndices(MI, Op1, Op2);
- /// can be interpreted as a query asking to find an operand that would be
- /// commutable with the operand#1.
- virtual bool findCommutedOpIndices(const MachineInstr &MI,
- unsigned &SrcOpIdx1,
- unsigned &SrcOpIdx2) const;
- /// Returns true if the target has a preference on the operands order of
- /// the given machine instruction. And specify if \p Commute is required to
- /// get the desired operands order.
- virtual bool hasCommutePreference(MachineInstr &MI, bool &Commute) const {
- return false;
- }
- /// A pair composed of a register and a sub-register index.
- /// Used to give some type checking when modeling Reg:SubReg.
- struct RegSubRegPair {
- Register Reg;
- unsigned SubReg;
- RegSubRegPair(Register Reg = Register(), unsigned SubReg = 0)
- : Reg(Reg), SubReg(SubReg) {}
- bool operator==(const RegSubRegPair& P) const {
- return Reg == P.Reg && SubReg == P.SubReg;
- }
- bool operator!=(const RegSubRegPair& P) const {
- return !(*this == P);
- }
- };
- /// A pair composed of a pair of a register and a sub-register index,
- /// and another sub-register index.
- /// Used to give some type checking when modeling Reg:SubReg1, SubReg2.
- struct RegSubRegPairAndIdx : RegSubRegPair {
- unsigned SubIdx;
- RegSubRegPairAndIdx(Register Reg = Register(), unsigned SubReg = 0,
- unsigned SubIdx = 0)
- : RegSubRegPair(Reg, SubReg), SubIdx(SubIdx) {}
- };
- /// Build the equivalent inputs of a REG_SEQUENCE for the given \p MI
- /// and \p DefIdx.
- /// \p [out] InputRegs of the equivalent REG_SEQUENCE. Each element of
- /// the list is modeled as <Reg:SubReg, SubIdx>. Operands with the undef
- /// flag are not added to this list.
- /// E.g., REG_SEQUENCE %1:sub1, sub0, %2, sub1 would produce
- /// two elements:
- /// - %1:sub1, sub0
- /// - %2<:0>, sub1
- ///
- /// \returns true if it is possible to build such an input sequence
- /// with the pair \p MI, \p DefIdx. False otherwise.
- ///
- /// \pre MI.isRegSequence() or MI.isRegSequenceLike().
- ///
- /// \note The generic implementation does not provide any support for
- /// MI.isRegSequenceLike(). In other words, one has to override
- /// getRegSequenceLikeInputs for target specific instructions.
- bool
- getRegSequenceInputs(const MachineInstr &MI, unsigned DefIdx,
- SmallVectorImpl<RegSubRegPairAndIdx> &InputRegs) const;
- /// Build the equivalent inputs of a EXTRACT_SUBREG for the given \p MI
- /// and \p DefIdx.
- /// \p [out] InputReg of the equivalent EXTRACT_SUBREG.
- /// E.g., EXTRACT_SUBREG %1:sub1, sub0, sub1 would produce:
- /// - %1:sub1, sub0
- ///
- /// \returns true if it is possible to build such an input sequence
- /// with the pair \p MI, \p DefIdx and the operand has no undef flag set.
- /// False otherwise.
- ///
- /// \pre MI.isExtractSubreg() or MI.isExtractSubregLike().
- ///
- /// \note The generic implementation does not provide any support for
- /// MI.isExtractSubregLike(). In other words, one has to override
- /// getExtractSubregLikeInputs for target specific instructions.
- bool getExtractSubregInputs(const MachineInstr &MI, unsigned DefIdx,
- RegSubRegPairAndIdx &InputReg) const;
- /// Build the equivalent inputs of a INSERT_SUBREG for the given \p MI
- /// and \p DefIdx.
- /// \p [out] BaseReg and \p [out] InsertedReg contain
- /// the equivalent inputs of INSERT_SUBREG.
- /// E.g., INSERT_SUBREG %0:sub0, %1:sub1, sub3 would produce:
- /// - BaseReg: %0:sub0
- /// - InsertedReg: %1:sub1, sub3
- ///
- /// \returns true if it is possible to build such an input sequence
- /// with the pair \p MI, \p DefIdx and the operand has no undef flag set.
- /// False otherwise.
- ///
- /// \pre MI.isInsertSubreg() or MI.isInsertSubregLike().
- ///
- /// \note The generic implementation does not provide any support for
- /// MI.isInsertSubregLike(). In other words, one has to override
- /// getInsertSubregLikeInputs for target specific instructions.
- bool getInsertSubregInputs(const MachineInstr &MI, unsigned DefIdx,
- RegSubRegPair &BaseReg,
- RegSubRegPairAndIdx &InsertedReg) const;
- /// Return true if two machine instructions would produce identical values.
- /// By default, this is only true when the two instructions
- /// are deemed identical except for defs. If this function is called when the
- /// IR is still in SSA form, the caller can pass the MachineRegisterInfo for
- /// aggressive checks.
- virtual bool produceSameValue(const MachineInstr &MI0,
- const MachineInstr &MI1,
- const MachineRegisterInfo *MRI = nullptr) const;
- /// \returns true if a branch from an instruction with opcode \p BranchOpc
- /// bytes is capable of jumping to a position \p BrOffset bytes away.
- virtual bool isBranchOffsetInRange(unsigned BranchOpc,
- int64_t BrOffset) const {
- llvm_unreachable("target did not implement");
- }
- /// \returns The block that branch instruction \p MI jumps to.
- virtual MachineBasicBlock *getBranchDestBlock(const MachineInstr &MI) const {
- llvm_unreachable("target did not implement");
- }
- /// Insert an unconditional indirect branch at the end of \p MBB to \p
- /// NewDestBB. Optionally, insert the clobbered register restoring in \p
- /// RestoreBB. \p BrOffset indicates the offset of \p NewDestBB relative to
- /// the offset of the position to insert the new branch.
- virtual void insertIndirectBranch(MachineBasicBlock &MBB,
- MachineBasicBlock &NewDestBB,
- MachineBasicBlock &RestoreBB,
- const DebugLoc &DL, int64_t BrOffset = 0,
- RegScavenger *RS = nullptr) const {
- llvm_unreachable("target did not implement");
- }
- /// Analyze the branching code at the end of MBB, returning
- /// true if it cannot be understood (e.g. it's a switch dispatch or isn't
- /// implemented for a target). Upon success, this returns false and returns
- /// with the following information in various cases:
- ///
- /// 1. If this block ends with no branches (it just falls through to its succ)
- /// just return false, leaving TBB/FBB null.
- /// 2. If this block ends with only an unconditional branch, it sets TBB to be
- /// the destination block.
- /// 3. If this block ends with a conditional branch and it falls through to a
- /// successor block, it sets TBB to be the branch destination block and a
- /// list of operands that evaluate the condition. These operands can be
- /// passed to other TargetInstrInfo methods to create new branches.
- /// 4. If this block ends with a conditional branch followed by an
- /// unconditional branch, it returns the 'true' destination in TBB, the
- /// 'false' destination in FBB, and a list of operands that evaluate the
- /// condition. These operands can be passed to other TargetInstrInfo
- /// methods to create new branches.
- ///
- /// Note that removeBranch and insertBranch must be implemented to support
- /// cases where this method returns success.
- ///
- /// If AllowModify is true, then this routine is allowed to modify the basic
- /// block (e.g. delete instructions after the unconditional branch).
- ///
- /// The CFG information in MBB.Predecessors and MBB.Successors must be valid
- /// before calling this function.
- virtual bool analyzeBranch(MachineBasicBlock &MBB, MachineBasicBlock *&TBB,
- MachineBasicBlock *&FBB,
- SmallVectorImpl<MachineOperand> &Cond,
- bool AllowModify = false) const {
- return true;
- }
- /// Represents a predicate at the MachineFunction level. The control flow a
- /// MachineBranchPredicate represents is:
- ///
- /// Reg = LHS `Predicate` RHS == ConditionDef
- /// if Reg then goto TrueDest else goto FalseDest
- ///
- struct MachineBranchPredicate {
- enum ComparePredicate {
- PRED_EQ, // True if two values are equal
- PRED_NE, // True if two values are not equal
- PRED_INVALID // Sentinel value
- };
- ComparePredicate Predicate = PRED_INVALID;
- MachineOperand LHS = MachineOperand::CreateImm(0);
- MachineOperand RHS = MachineOperand::CreateImm(0);
- MachineBasicBlock *TrueDest = nullptr;
- MachineBasicBlock *FalseDest = nullptr;
- MachineInstr *ConditionDef = nullptr;
- /// SingleUseCondition is true if ConditionDef is dead except for the
- /// branch(es) at the end of the basic block.
- ///
- bool SingleUseCondition = false;
- explicit MachineBranchPredicate() = default;
- };
- /// Analyze the branching code at the end of MBB and parse it into the
- /// MachineBranchPredicate structure if possible. Returns false on success
- /// and true on failure.
- ///
- /// If AllowModify is true, then this routine is allowed to modify the basic
- /// block (e.g. delete instructions after the unconditional branch).
- ///
- virtual bool analyzeBranchPredicate(MachineBasicBlock &MBB,
- MachineBranchPredicate &MBP,
- bool AllowModify = false) const {
- return true;
- }
- /// Remove the branching code at the end of the specific MBB.
- /// This is only invoked in cases where analyzeBranch returns success. It
- /// returns the number of instructions that were removed.
- /// If \p BytesRemoved is non-null, report the change in code size from the
- /// removed instructions.
- virtual unsigned removeBranch(MachineBasicBlock &MBB,
- int *BytesRemoved = nullptr) const {
- llvm_unreachable("Target didn't implement TargetInstrInfo::removeBranch!");
- }
- /// Insert branch code into the end of the specified MachineBasicBlock. The
- /// operands to this method are the same as those returned by analyzeBranch.
- /// This is only invoked in cases where analyzeBranch returns success. It
- /// returns the number of instructions inserted. If \p BytesAdded is non-null,
- /// report the change in code size from the added instructions.
- ///
- /// It is also invoked by tail merging to add unconditional branches in
- /// cases where analyzeBranch doesn't apply because there was no original
- /// branch to analyze. At least this much must be implemented, else tail
- /// merging needs to be disabled.
- ///
- /// The CFG information in MBB.Predecessors and MBB.Successors must be valid
- /// before calling this function.
- virtual unsigned insertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
- MachineBasicBlock *FBB,
- ArrayRef<MachineOperand> Cond,
- const DebugLoc &DL,
- int *BytesAdded = nullptr) const {
- llvm_unreachable("Target didn't implement TargetInstrInfo::insertBranch!");
- }
- unsigned insertUnconditionalBranch(MachineBasicBlock &MBB,
- MachineBasicBlock *DestBB,
- const DebugLoc &DL,
- int *BytesAdded = nullptr) const {
- return insertBranch(MBB, DestBB, nullptr, ArrayRef<MachineOperand>(), DL,
- BytesAdded);
- }
- /// Object returned by analyzeLoopForPipelining. Allows software pipelining
- /// implementations to query attributes of the loop being pipelined and to
- /// apply target-specific updates to the loop once pipelining is complete.
- class PipelinerLoopInfo {
- public:
- virtual ~PipelinerLoopInfo();
- /// Return true if the given instruction should not be pipelined and should
- /// be ignored. An example could be a loop comparison, or induction variable
- /// update with no users being pipelined.
- virtual bool shouldIgnoreForPipelining(const MachineInstr *MI) const = 0;
- /// Return true if the proposed schedule should used. Otherwise return
- /// false to not pipeline the loop. This function should be used to ensure
- /// that pipelined loops meet target-specific quality heuristics.
- virtual bool shouldUseSchedule(SwingSchedulerDAG &SSD, SMSchedule &SMS) {
- return true;
- }
- /// Create a condition to determine if the trip count of the loop is greater
- /// than TC, where TC is always one more than for the previous prologue or
- /// 0 if this is being called for the outermost prologue.
- ///
- /// If the trip count is statically known to be greater than TC, return
- /// true. If the trip count is statically known to be not greater than TC,
- /// return false. Otherwise return nullopt and fill out Cond with the test
- /// condition.
- ///
- /// Note: This hook is guaranteed to be called from the innermost to the
- /// outermost prologue of the loop being software pipelined.
- virtual std::optional<bool>
- createTripCountGreaterCondition(int TC, MachineBasicBlock &MBB,
- SmallVectorImpl<MachineOperand> &Cond) = 0;
- /// Modify the loop such that the trip count is
- /// OriginalTC + TripCountAdjust.
- virtual void adjustTripCount(int TripCountAdjust) = 0;
- /// Called when the loop's preheader has been modified to NewPreheader.
- virtual void setPreheader(MachineBasicBlock *NewPreheader) = 0;
- /// Called when the loop is being removed. Any instructions in the preheader
- /// should be removed.
- ///
- /// Once this function is called, no other functions on this object are
- /// valid; the loop has been removed.
- virtual void disposed() = 0;
- };
- /// Analyze loop L, which must be a single-basic-block loop, and if the
- /// conditions can be understood enough produce a PipelinerLoopInfo object.
- virtual std::unique_ptr<PipelinerLoopInfo>
- analyzeLoopForPipelining(MachineBasicBlock *LoopBB) const {
- return nullptr;
- }
- /// Analyze the loop code, return true if it cannot be understood. Upon
- /// success, this function returns false and returns information about the
- /// induction variable and compare instruction used at the end.
- virtual bool analyzeLoop(MachineLoop &L, MachineInstr *&IndVarInst,
- MachineInstr *&CmpInst) const {
- return true;
- }
- /// Generate code to reduce the loop iteration by one and check if the loop
- /// is finished. Return the value/register of the new loop count. We need
- /// this function when peeling off one or more iterations of a loop. This
- /// function assumes the nth iteration is peeled first.
- virtual unsigned reduceLoopCount(MachineBasicBlock &MBB,
- MachineBasicBlock &PreHeader,
- MachineInstr *IndVar, MachineInstr &Cmp,
- SmallVectorImpl<MachineOperand> &Cond,
- SmallVectorImpl<MachineInstr *> &PrevInsts,
- unsigned Iter, unsigned MaxIter) const {
- llvm_unreachable("Target didn't implement ReduceLoopCount");
- }
- /// Delete the instruction OldInst and everything after it, replacing it with
- /// an unconditional branch to NewDest. This is used by the tail merging pass.
- virtual void ReplaceTailWithBranchTo(MachineBasicBlock::iterator Tail,
- MachineBasicBlock *NewDest) const;
- /// Return true if it's legal to split the given basic
- /// block at the specified instruction (i.e. instruction would be the start
- /// of a new basic block).
- virtual bool isLegalToSplitMBBAt(MachineBasicBlock &MBB,
- MachineBasicBlock::iterator MBBI) const {
- return true;
- }
- /// Return true if it's profitable to predicate
- /// instructions with accumulated instruction latency of "NumCycles"
- /// of the specified basic block, where the probability of the instructions
- /// being executed is given by Probability, and Confidence is a measure
- /// of our confidence that it will be properly predicted.
- virtual bool isProfitableToIfCvt(MachineBasicBlock &MBB, unsigned NumCycles,
- unsigned ExtraPredCycles,
- BranchProbability Probability) const {
- return false;
- }
- /// Second variant of isProfitableToIfCvt. This one
- /// checks for the case where two basic blocks from true and false path
- /// of a if-then-else (diamond) are predicated on mutually exclusive
- /// predicates, where the probability of the true path being taken is given
- /// by Probability, and Confidence is a measure of our confidence that it
- /// will be properly predicted.
- virtual bool isProfitableToIfCvt(MachineBasicBlock &TMBB, unsigned NumTCycles,
- unsigned ExtraTCycles,
- MachineBasicBlock &FMBB, unsigned NumFCycles,
- unsigned ExtraFCycles,
- BranchProbability Probability) const {
- return false;
- }
- /// Return true if it's profitable for if-converter to duplicate instructions
- /// of specified accumulated instruction latencies in the specified MBB to
- /// enable if-conversion.
- /// The probability of the instructions being executed is given by
- /// Probability, and Confidence is a measure of our confidence that it
- /// will be properly predicted.
- virtual bool isProfitableToDupForIfCvt(MachineBasicBlock &MBB,
- unsigned NumCycles,
- BranchProbability Probability) const {
- return false;
- }
- /// Return the increase in code size needed to predicate a contiguous run of
- /// NumInsts instructions.
- virtual unsigned extraSizeToPredicateInstructions(const MachineFunction &MF,
- unsigned NumInsts) const {
- return 0;
- }
- /// Return an estimate for the code size reduction (in bytes) which will be
- /// caused by removing the given branch instruction during if-conversion.
- virtual unsigned predictBranchSizeForIfCvt(MachineInstr &MI) const {
- return getInstSizeInBytes(MI);
- }
- /// Return true if it's profitable to unpredicate
- /// one side of a 'diamond', i.e. two sides of if-else predicated on mutually
- /// exclusive predicates.
- /// e.g.
- /// subeq r0, r1, #1
- /// addne r0, r1, #1
- /// =>
- /// sub r0, r1, #1
- /// addne r0, r1, #1
- ///
- /// This may be profitable is conditional instructions are always executed.
- virtual bool isProfitableToUnpredicate(MachineBasicBlock &TMBB,
- MachineBasicBlock &FMBB) const {
- return false;
- }
- /// Return true if it is possible to insert a select
- /// instruction that chooses between TrueReg and FalseReg based on the
- /// condition code in Cond.
- ///
- /// When successful, also return the latency in cycles from TrueReg,
- /// FalseReg, and Cond to the destination register. In most cases, a select
- /// instruction will be 1 cycle, so CondCycles = TrueCycles = FalseCycles = 1
- ///
- /// Some x86 implementations have 2-cycle cmov instructions.
- ///
- /// @param MBB Block where select instruction would be inserted.
- /// @param Cond Condition returned by analyzeBranch.
- /// @param DstReg Virtual dest register that the result should write to.
- /// @param TrueReg Virtual register to select when Cond is true.
- /// @param FalseReg Virtual register to select when Cond is false.
- /// @param CondCycles Latency from Cond+Branch to select output.
- /// @param TrueCycles Latency from TrueReg to select output.
- /// @param FalseCycles Latency from FalseReg to select output.
- virtual bool canInsertSelect(const MachineBasicBlock &MBB,
- ArrayRef<MachineOperand> Cond, Register DstReg,
- Register TrueReg, Register FalseReg,
- int &CondCycles, int &TrueCycles,
- int &FalseCycles) const {
- return false;
- }
- /// Insert a select instruction into MBB before I that will copy TrueReg to
- /// DstReg when Cond is true, and FalseReg to DstReg when Cond is false.
- ///
- /// This function can only be called after canInsertSelect() returned true.
- /// The condition in Cond comes from analyzeBranch, and it can be assumed
- /// that the same flags or registers required by Cond are available at the
- /// insertion point.
- ///
- /// @param MBB Block where select instruction should be inserted.
- /// @param I Insertion point.
- /// @param DL Source location for debugging.
- /// @param DstReg Virtual register to be defined by select instruction.
- /// @param Cond Condition as computed by analyzeBranch.
- /// @param TrueReg Virtual register to copy when Cond is true.
- /// @param FalseReg Virtual register to copy when Cons is false.
- virtual void insertSelect(MachineBasicBlock &MBB,
- MachineBasicBlock::iterator I, const DebugLoc &DL,
- Register DstReg, ArrayRef<MachineOperand> Cond,
- Register TrueReg, Register FalseReg) const {
- llvm_unreachable("Target didn't implement TargetInstrInfo::insertSelect!");
- }
- /// Analyze the given select instruction, returning true if
- /// it cannot be understood. It is assumed that MI->isSelect() is true.
- ///
- /// When successful, return the controlling condition and the operands that
- /// determine the true and false result values.
- ///
- /// Result = SELECT Cond, TrueOp, FalseOp
- ///
- /// Some targets can optimize select instructions, for example by predicating
- /// the instruction defining one of the operands. Such targets should set
- /// Optimizable.
- ///
- /// @param MI Select instruction to analyze.
- /// @param Cond Condition controlling the select.
- /// @param TrueOp Operand number of the value selected when Cond is true.
- /// @param FalseOp Operand number of the value selected when Cond is false.
- /// @param Optimizable Returned as true if MI is optimizable.
- /// @returns False on success.
- virtual bool analyzeSelect(const MachineInstr &MI,
- SmallVectorImpl<MachineOperand> &Cond,
- unsigned &TrueOp, unsigned &FalseOp,
- bool &Optimizable) const {
- assert(MI.getDesc().isSelect() && "MI must be a select instruction");
- return true;
- }
- /// Given a select instruction that was understood by
- /// analyzeSelect and returned Optimizable = true, attempt to optimize MI by
- /// merging it with one of its operands. Returns NULL on failure.
- ///
- /// When successful, returns the new select instruction. The client is
- /// responsible for deleting MI.
- ///
- /// If both sides of the select can be optimized, PreferFalse is used to pick
- /// a side.
- ///
- /// @param MI Optimizable select instruction.
- /// @param NewMIs Set that record all MIs in the basic block up to \p
- /// MI. Has to be updated with any newly created MI or deleted ones.
- /// @param PreferFalse Try to optimize FalseOp instead of TrueOp.
- /// @returns Optimized instruction or NULL.
- virtual MachineInstr *optimizeSelect(MachineInstr &MI,
- SmallPtrSetImpl<MachineInstr *> &NewMIs,
- bool PreferFalse = false) const {
- // This function must be implemented if Optimizable is ever set.
- llvm_unreachable("Target must implement TargetInstrInfo::optimizeSelect!");
- }
- /// Emit instructions to copy a pair of physical registers.
- ///
- /// This function should support copies within any legal register class as
- /// well as any cross-class copies created during instruction selection.
- ///
- /// The source and destination registers may overlap, which may require a
- /// careful implementation when multiple copy instructions are required for
- /// large registers. See for example the ARM target.
- virtual void copyPhysReg(MachineBasicBlock &MBB,
- MachineBasicBlock::iterator MI, const DebugLoc &DL,
- MCRegister DestReg, MCRegister SrcReg,
- bool KillSrc) const {
- llvm_unreachable("Target didn't implement TargetInstrInfo::copyPhysReg!");
- }
- /// Allow targets to tell MachineVerifier whether a specific register
- /// MachineOperand can be used as part of PC-relative addressing.
- /// PC-relative addressing modes in many CISC architectures contain
- /// (non-PC) registers as offsets or scaling values, which inherently
- /// tags the corresponding MachineOperand with OPERAND_PCREL.
- ///
- /// @param MO The MachineOperand in question. MO.isReg() should always
- /// be true.
- /// @return Whether this operand is allowed to be used PC-relatively.
- virtual bool isPCRelRegisterOperandLegal(const MachineOperand &MO) const {
- return false;
- }
- protected:
- /// Target-dependent implementation for IsCopyInstr.
- /// If the specific machine instruction is a instruction that moves/copies
- /// value from one register to another register return destination and source
- /// registers as machine operands.
- virtual std::optional<DestSourcePair>
- isCopyInstrImpl(const MachineInstr &MI) const {
- return std::nullopt;
- }
- /// Return true if the given terminator MI is not expected to spill. This
- /// sets the live interval as not spillable and adjusts phi node lowering to
- /// not introduce copies after the terminator. Use with care, these are
- /// currently used for hardware loop intrinsics in very controlled situations,
- /// created prior to registry allocation in loops that only have single phi
- /// users for the terminators value. They may run out of registers if not used
- /// carefully.
- virtual bool isUnspillableTerminatorImpl(const MachineInstr *MI) const {
- return false;
- }
- public:
- /// If the specific machine instruction is a instruction that moves/copies
- /// value from one register to another register return destination and source
- /// registers as machine operands.
- /// For COPY-instruction the method naturally returns destination and source
- /// registers as machine operands, for all other instructions the method calls
- /// target-dependent implementation.
- std::optional<DestSourcePair> isCopyInstr(const MachineInstr &MI) const {
- if (MI.isCopy()) {
- return DestSourcePair{MI.getOperand(0), MI.getOperand(1)};
- }
- return isCopyInstrImpl(MI);
- }
- /// If the specific machine instruction is an instruction that adds an
- /// immediate value and a physical register, and stores the result in
- /// the given physical register \c Reg, return a pair of the source
- /// register and the offset which has been added.
- virtual std::optional<RegImmPair> isAddImmediate(const MachineInstr &MI,
- Register Reg) const {
- return std::nullopt;
- }
- /// Returns true if MI is an instruction that defines Reg to have a constant
- /// value and the value is recorded in ImmVal. The ImmVal is a result that
- /// should be interpreted as modulo size of Reg.
- virtual bool getConstValDefinedInReg(const MachineInstr &MI,
- const Register Reg,
- int64_t &ImmVal) const {
- return false;
- }
- /// Store the specified register of the given register class to the specified
- /// stack frame index. The store instruction is to be added to the given
- /// machine basic block before the specified machine instruction. If isKill
- /// is true, the register operand is the last use and must be marked kill. If
- /// \p SrcReg is being directly spilled as part of assigning a virtual
- /// register, \p VReg is the register being assigned. This additional register
- /// argument is needed for certain targets when invoked from RegAllocFast to
- /// map the spilled physical register to its virtual register. A null register
- /// can be passed elsewhere.
- virtual void storeRegToStackSlot(MachineBasicBlock &MBB,
- MachineBasicBlock::iterator MI,
- Register SrcReg, bool isKill, int FrameIndex,
- const TargetRegisterClass *RC,
- const TargetRegisterInfo *TRI,
- Register VReg) const {
- llvm_unreachable("Target didn't implement "
- "TargetInstrInfo::storeRegToStackSlot!");
- }
- /// Load the specified register of the given register class from the specified
- /// stack frame index. The load instruction is to be added to the given
- /// machine basic block before the specified machine instruction. If \p
- /// DestReg is being directly reloaded as part of assigning a virtual
- /// register, \p VReg is the register being assigned. This additional register
- /// argument is needed for certain targets when invoked from RegAllocFast to
- /// map the loaded physical register to its virtual register. A null register
- /// can be passed elsewhere.
- virtual void loadRegFromStackSlot(MachineBasicBlock &MBB,
- MachineBasicBlock::iterator MI,
- Register DestReg, int FrameIndex,
- const TargetRegisterClass *RC,
- const TargetRegisterInfo *TRI,
- Register VReg) const {
- llvm_unreachable("Target didn't implement "
- "TargetInstrInfo::loadRegFromStackSlot!");
- }
- /// This function is called for all pseudo instructions
- /// that remain after register allocation. Many pseudo instructions are
- /// created to help register allocation. This is the place to convert them
- /// into real instructions. The target can edit MI in place, or it can insert
- /// new instructions and erase MI. The function should return true if
- /// anything was changed.
- virtual bool expandPostRAPseudo(MachineInstr &MI) const { return false; }
- /// Check whether the target can fold a load that feeds a subreg operand
- /// (or a subreg operand that feeds a store).
- /// For example, X86 may want to return true if it can fold
- /// movl (%esp), %eax
- /// subb, %al, ...
- /// Into:
- /// subb (%esp), ...
- ///
- /// Ideally, we'd like the target implementation of foldMemoryOperand() to
- /// reject subregs - but since this behavior used to be enforced in the
- /// target-independent code, moving this responsibility to the targets
- /// has the potential of causing nasty silent breakage in out-of-tree targets.
- virtual bool isSubregFoldable() const { return false; }
- /// For a patchpoint, stackmap, or statepoint intrinsic, return the range of
- /// operands which can't be folded into stack references. Operands outside
- /// of the range are most likely foldable but it is not guaranteed.
- /// These instructions are unique in that stack references for some operands
- /// have the same execution cost (e.g. none) as the unfolded register forms.
- /// The ranged return is guaranteed to include all operands which can't be
- /// folded at zero cost.
- virtual std::pair<unsigned, unsigned>
- getPatchpointUnfoldableRange(const MachineInstr &MI) const;
- /// Attempt to fold a load or store of the specified stack
- /// slot into the specified machine instruction for the specified operand(s).
- /// If this is possible, a new instruction is returned with the specified
- /// operand folded, otherwise NULL is returned.
- /// The new instruction is inserted before MI, and the client is responsible
- /// for removing the old instruction.
- /// If VRM is passed, the assigned physregs can be inspected by target to
- /// decide on using an opcode (note that those assignments can still change).
- MachineInstr *foldMemoryOperand(MachineInstr &MI, ArrayRef<unsigned> Ops,
- int FI,
- LiveIntervals *LIS = nullptr,
- VirtRegMap *VRM = nullptr) const;
- /// Same as the previous version except it allows folding of any load and
- /// store from / to any address, not just from a specific stack slot.
- MachineInstr *foldMemoryOperand(MachineInstr &MI, ArrayRef<unsigned> Ops,
- MachineInstr &LoadMI,
- LiveIntervals *LIS = nullptr) const;
- /// Return true when there is potentially a faster code sequence
- /// for an instruction chain ending in \p Root. All potential patterns are
- /// returned in the \p Pattern vector. Pattern should be sorted in priority
- /// order since the pattern evaluator stops checking as soon as it finds a
- /// faster sequence.
- /// \param Root - Instruction that could be combined with one of its operands
- /// \param Patterns - Vector of possible combination patterns
- virtual bool
- getMachineCombinerPatterns(MachineInstr &Root,
- SmallVectorImpl<MachineCombinerPattern> &Patterns,
- bool DoRegPressureReduce) const;
- /// Return true if target supports reassociation of instructions in machine
- /// combiner pass to reduce register pressure for a given BB.
- virtual bool
- shouldReduceRegisterPressure(const MachineBasicBlock *MBB,
- const RegisterClassInfo *RegClassInfo) const {
- return false;
- }
- /// Fix up the placeholder we may add in genAlternativeCodeSequence().
- virtual void
- finalizeInsInstrs(MachineInstr &Root, MachineCombinerPattern &P,
- SmallVectorImpl<MachineInstr *> &InsInstrs) const {}
- /// Return true when a code sequence can improve throughput. It
- /// should be called only for instructions in loops.
- /// \param Pattern - combiner pattern
- virtual bool isThroughputPattern(MachineCombinerPattern Pattern) const;
- /// Return true if the input \P Inst is part of a chain of dependent ops
- /// that are suitable for reassociation, otherwise return false.
- /// If the instruction's operands must be commuted to have a previous
- /// instruction of the same type define the first source operand, \P Commuted
- /// will be set to true.
- bool isReassociationCandidate(const MachineInstr &Inst, bool &Commuted) const;
- /// Return true when \P Inst is both associative and commutative. If \P Invert
- /// is true, then the inverse of \P Inst operation must be tested.
- virtual bool isAssociativeAndCommutative(const MachineInstr &Inst,
- bool Invert = false) const {
- return false;
- }
- /// Return the inverse operation opcode if it exists for \P Opcode (e.g. add
- /// for sub and vice versa).
- virtual std::optional<unsigned> getInverseOpcode(unsigned Opcode) const {
- return std::nullopt;
- }
- /// Return true when \P Opcode1 or its inversion is equal to \P Opcode2.
- bool areOpcodesEqualOrInverse(unsigned Opcode1, unsigned Opcode2) const;
- /// Return true when \P Inst has reassociable operands in the same \P MBB.
- virtual bool hasReassociableOperands(const MachineInstr &Inst,
- const MachineBasicBlock *MBB) const;
- /// Return true when \P Inst has reassociable sibling.
- virtual bool hasReassociableSibling(const MachineInstr &Inst,
- bool &Commuted) const;
- /// When getMachineCombinerPatterns() finds patterns, this function generates
- /// the instructions that could replace the original code sequence. The client
- /// has to decide whether the actual replacement is beneficial or not.
- /// \param Root - Instruction that could be combined with one of its operands
- /// \param Pattern - Combination pattern for Root
- /// \param InsInstrs - Vector of new instructions that implement P
- /// \param DelInstrs - Old instructions, including Root, that could be
- /// replaced by InsInstr
- /// \param InstIdxForVirtReg - map of virtual register to instruction in
- /// InsInstr that defines it
- virtual void genAlternativeCodeSequence(
- MachineInstr &Root, MachineCombinerPattern Pattern,
- SmallVectorImpl<MachineInstr *> &InsInstrs,
- SmallVectorImpl<MachineInstr *> &DelInstrs,
- DenseMap<unsigned, unsigned> &InstIdxForVirtReg) const;
- /// Attempt to reassociate \P Root and \P Prev according to \P Pattern to
- /// reduce critical path length.
- void reassociateOps(MachineInstr &Root, MachineInstr &Prev,
- MachineCombinerPattern Pattern,
- SmallVectorImpl<MachineInstr *> &InsInstrs,
- SmallVectorImpl<MachineInstr *> &DelInstrs,
- DenseMap<unsigned, unsigned> &InstrIdxForVirtReg) const;
- /// Reassociation of some instructions requires inverse operations (e.g.
- /// (X + A) - Y => (X - Y) + A). This method returns a pair of new opcodes
- /// (new root opcode, new prev opcode) that must be used to reassociate \P
- /// Root and \P Prev accoring to \P Pattern.
- std::pair<unsigned, unsigned>
- getReassociationOpcodes(MachineCombinerPattern Pattern,
- const MachineInstr &Root,
- const MachineInstr &Prev) const;
- /// The limit on resource length extension we accept in MachineCombiner Pass.
- virtual int getExtendResourceLenLimit() const { return 0; }
- /// This is an architecture-specific helper function of reassociateOps.
- /// Set special operand attributes for new instructions after reassociation.
- virtual void setSpecialOperandAttr(MachineInstr &OldMI1, MachineInstr &OldMI2,
- MachineInstr &NewMI1,
- MachineInstr &NewMI2) const {}
- /// Return true when a target supports MachineCombiner.
- virtual bool useMachineCombiner() const { return false; }
- /// Return true if the given SDNode can be copied during scheduling
- /// even if it has glue.
- virtual bool canCopyGluedNodeDuringSchedule(SDNode *N) const { return false; }
- protected:
- /// Target-dependent implementation for foldMemoryOperand.
- /// Target-independent code in foldMemoryOperand will
- /// take care of adding a MachineMemOperand to the newly created instruction.
- /// The instruction and any auxiliary instructions necessary will be inserted
- /// at InsertPt.
- virtual MachineInstr *
- foldMemoryOperandImpl(MachineFunction &MF, MachineInstr &MI,
- ArrayRef<unsigned> Ops,
- MachineBasicBlock::iterator InsertPt, int FrameIndex,
- LiveIntervals *LIS = nullptr,
- VirtRegMap *VRM = nullptr) const {
- return nullptr;
- }
- /// Target-dependent implementation for foldMemoryOperand.
- /// Target-independent code in foldMemoryOperand will
- /// take care of adding a MachineMemOperand to the newly created instruction.
- /// The instruction and any auxiliary instructions necessary will be inserted
- /// at InsertPt.
- virtual MachineInstr *foldMemoryOperandImpl(
- MachineFunction &MF, MachineInstr &MI, ArrayRef<unsigned> Ops,
- MachineBasicBlock::iterator InsertPt, MachineInstr &LoadMI,
- LiveIntervals *LIS = nullptr) const {
- return nullptr;
- }
- /// Target-dependent implementation of getRegSequenceInputs.
- ///
- /// \returns true if it is possible to build the equivalent
- /// REG_SEQUENCE inputs with the pair \p MI, \p DefIdx. False otherwise.
- ///
- /// \pre MI.isRegSequenceLike().
- ///
- /// \see TargetInstrInfo::getRegSequenceInputs.
- virtual bool getRegSequenceLikeInputs(
- const MachineInstr &MI, unsigned DefIdx,
- SmallVectorImpl<RegSubRegPairAndIdx> &InputRegs) const {
- return false;
- }
- /// Target-dependent implementation of getExtractSubregInputs.
- ///
- /// \returns true if it is possible to build the equivalent
- /// EXTRACT_SUBREG inputs with the pair \p MI, \p DefIdx. False otherwise.
- ///
- /// \pre MI.isExtractSubregLike().
- ///
- /// \see TargetInstrInfo::getExtractSubregInputs.
- virtual bool getExtractSubregLikeInputs(const MachineInstr &MI,
- unsigned DefIdx,
- RegSubRegPairAndIdx &InputReg) const {
- return false;
- }
- /// Target-dependent implementation of getInsertSubregInputs.
- ///
- /// \returns true if it is possible to build the equivalent
- /// INSERT_SUBREG inputs with the pair \p MI, \p DefIdx. False otherwise.
- ///
- /// \pre MI.isInsertSubregLike().
- ///
- /// \see TargetInstrInfo::getInsertSubregInputs.
- virtual bool
- getInsertSubregLikeInputs(const MachineInstr &MI, unsigned DefIdx,
- RegSubRegPair &BaseReg,
- RegSubRegPairAndIdx &InsertedReg) const {
- return false;
- }
- public:
- /// unfoldMemoryOperand - Separate a single instruction which folded a load or
- /// a store or a load and a store into two or more instruction. If this is
- /// possible, returns true as well as the new instructions by reference.
- virtual bool
- unfoldMemoryOperand(MachineFunction &MF, MachineInstr &MI, unsigned Reg,
- bool UnfoldLoad, bool UnfoldStore,
- SmallVectorImpl<MachineInstr *> &NewMIs) const {
- return false;
- }
- virtual bool unfoldMemoryOperand(SelectionDAG &DAG, SDNode *N,
- SmallVectorImpl<SDNode *> &NewNodes) const {
- return false;
- }
- /// Returns the opcode of the would be new
- /// instruction after load / store are unfolded from an instruction of the
- /// specified opcode. It returns zero if the specified unfolding is not
- /// possible. If LoadRegIndex is non-null, it is filled in with the operand
- /// index of the operand which will hold the register holding the loaded
- /// value.
- virtual unsigned
- getOpcodeAfterMemoryUnfold(unsigned Opc, bool UnfoldLoad, bool UnfoldStore,
- unsigned *LoadRegIndex = nullptr) const {
- return 0;
- }
- /// This is used by the pre-regalloc scheduler to determine if two loads are
- /// loading from the same base address. It should only return true if the base
- /// pointers are the same and the only differences between the two addresses
- /// are the offset. It also returns the offsets by reference.
- virtual bool areLoadsFromSameBasePtr(SDNode *Load1, SDNode *Load2,
- int64_t &Offset1,
- int64_t &Offset2) const {
- return false;
- }
- /// This is a used by the pre-regalloc scheduler to determine (in conjunction
- /// with areLoadsFromSameBasePtr) if two loads should be scheduled together.
- /// On some targets if two loads are loading from
- /// addresses in the same cache line, it's better if they are scheduled
- /// together. This function takes two integers that represent the load offsets
- /// from the common base address. It returns true if it decides it's desirable
- /// to schedule the two loads together. "NumLoads" is the number of loads that
- /// have already been scheduled after Load1.
- virtual bool shouldScheduleLoadsNear(SDNode *Load1, SDNode *Load2,
- int64_t Offset1, int64_t Offset2,
- unsigned NumLoads) const {
- return false;
- }
- /// Get the base operand and byte offset of an instruction that reads/writes
- /// memory. This is a convenience function for callers that are only prepared
- /// to handle a single base operand.
- bool getMemOperandWithOffset(const MachineInstr &MI,
- const MachineOperand *&BaseOp, int64_t &Offset,
- bool &OffsetIsScalable,
- const TargetRegisterInfo *TRI) const;
- /// Get zero or more base operands and the byte offset of an instruction that
- /// reads/writes memory. Note that there may be zero base operands if the
- /// instruction accesses a constant address.
- /// It returns false if MI does not read/write memory.
- /// It returns false if base operands and offset could not be determined.
- /// It is not guaranteed to always recognize base operands and offsets in all
- /// cases.
- virtual bool getMemOperandsWithOffsetWidth(
- const MachineInstr &MI, SmallVectorImpl<const MachineOperand *> &BaseOps,
- int64_t &Offset, bool &OffsetIsScalable, unsigned &Width,
- const TargetRegisterInfo *TRI) const {
- return false;
- }
- /// Return true if the instruction contains a base register and offset. If
- /// true, the function also sets the operand position in the instruction
- /// for the base register and offset.
- virtual bool getBaseAndOffsetPosition(const MachineInstr &MI,
- unsigned &BasePos,
- unsigned &OffsetPos) const {
- return false;
- }
- /// Target dependent implementation to get the values constituting the address
- /// MachineInstr that is accessing memory. These values are returned as a
- /// struct ExtAddrMode which contains all relevant information to make up the
- /// address.
- virtual std::optional<ExtAddrMode>
- getAddrModeFromMemoryOp(const MachineInstr &MemI,
- const TargetRegisterInfo *TRI) const {
- return std::nullopt;
- }
- /// Returns true if MI's Def is NullValueReg, and the MI
- /// does not change the Zero value. i.e. cases such as rax = shr rax, X where
- /// NullValueReg = rax. Note that if the NullValueReg is non-zero, this
- /// function can return true even if becomes zero. Specifically cases such as
- /// NullValueReg = shl NullValueReg, 63.
- virtual bool preservesZeroValueInReg(const MachineInstr *MI,
- const Register NullValueReg,
- const TargetRegisterInfo *TRI) const {
- return false;
- }
- /// If the instruction is an increment of a constant value, return the amount.
- virtual bool getIncrementValue(const MachineInstr &MI, int &Value) const {
- return false;
- }
- /// Returns true if the two given memory operations should be scheduled
- /// adjacent. Note that you have to add:
- /// DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI));
- /// or
- /// DAG->addMutation(createStoreClusterDAGMutation(DAG->TII, DAG->TRI));
- /// to TargetPassConfig::createMachineScheduler() to have an effect.
- ///
- /// \p BaseOps1 and \p BaseOps2 are memory operands of two memory operations.
- /// \p NumLoads is the number of loads that will be in the cluster if this
- /// hook returns true.
- /// \p NumBytes is the number of bytes that will be loaded from all the
- /// clustered loads if this hook returns true.
- virtual bool shouldClusterMemOps(ArrayRef<const MachineOperand *> BaseOps1,
- ArrayRef<const MachineOperand *> BaseOps2,
- unsigned NumLoads, unsigned NumBytes) const {
- llvm_unreachable("target did not implement shouldClusterMemOps()");
- }
- /// Reverses the branch condition of the specified condition list,
- /// returning false on success and true if it cannot be reversed.
- virtual bool
- reverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const {
- return true;
- }
- /// Insert a noop into the instruction stream at the specified point.
- virtual void insertNoop(MachineBasicBlock &MBB,
- MachineBasicBlock::iterator MI) const;
- /// Insert noops into the instruction stream at the specified point.
- virtual void insertNoops(MachineBasicBlock &MBB,
- MachineBasicBlock::iterator MI,
- unsigned Quantity) const;
- /// Return the noop instruction to use for a noop.
- virtual MCInst getNop() const;
- /// Return true for post-incremented instructions.
- virtual bool isPostIncrement(const MachineInstr &MI) const { return false; }
- /// Returns true if the instruction is already predicated.
- virtual bool isPredicated(const MachineInstr &MI) const { return false; }
- /// Assumes the instruction is already predicated and returns true if the
- /// instruction can be predicated again.
- virtual bool canPredicatePredicatedInstr(const MachineInstr &MI) const {
- assert(isPredicated(MI) && "Instruction is not predicated");
- return false;
- }
- // Returns a MIRPrinter comment for this machine operand.
- virtual std::string
- createMIROperandComment(const MachineInstr &MI, const MachineOperand &Op,
- unsigned OpIdx, const TargetRegisterInfo *TRI) const;
- /// Returns true if the instruction is a
- /// terminator instruction that has not been predicated.
- bool isUnpredicatedTerminator(const MachineInstr &MI) const;
- /// Returns true if MI is an unconditional tail call.
- virtual bool isUnconditionalTailCall(const MachineInstr &MI) const {
- return false;
- }
- /// Returns true if the tail call can be made conditional on BranchCond.
- virtual bool canMakeTailCallConditional(SmallVectorImpl<MachineOperand> &Cond,
- const MachineInstr &TailCall) const {
- return false;
- }
- /// Replace the conditional branch in MBB with a conditional tail call.
- virtual void replaceBranchWithTailCall(MachineBasicBlock &MBB,
- SmallVectorImpl<MachineOperand> &Cond,
- const MachineInstr &TailCall) const {
- llvm_unreachable("Target didn't implement replaceBranchWithTailCall!");
- }
- /// Convert the instruction into a predicated instruction.
- /// It returns true if the operation was successful.
- virtual bool PredicateInstruction(MachineInstr &MI,
- ArrayRef<MachineOperand> Pred) const;
- /// Returns true if the first specified predicate
- /// subsumes the second, e.g. GE subsumes GT.
- virtual bool SubsumesPredicate(ArrayRef<MachineOperand> Pred1,
- ArrayRef<MachineOperand> Pred2) const {
- return false;
- }
- /// If the specified instruction defines any predicate
- /// or condition code register(s) used for predication, returns true as well
- /// as the definition predicate(s) by reference.
- /// SkipDead should be set to false at any point that dead
- /// predicate instructions should be considered as being defined.
- /// A dead predicate instruction is one that is guaranteed to be removed
- /// after a call to PredicateInstruction.
- virtual bool ClobbersPredicate(MachineInstr &MI,
- std::vector<MachineOperand> &Pred,
- bool SkipDead) const {
- return false;
- }
- /// Return true if the specified instruction can be predicated.
- /// By default, this returns true for every instruction with a
- /// PredicateOperand.
- virtual bool isPredicable(const MachineInstr &MI) const {
- return MI.getDesc().isPredicable();
- }
- /// Return true if it's safe to move a machine
- /// instruction that defines the specified register class.
- virtual bool isSafeToMoveRegClassDefs(const TargetRegisterClass *RC) const {
- return true;
- }
- /// Test if the given instruction should be considered a scheduling boundary.
- /// This primarily includes labels and terminators.
- virtual bool isSchedulingBoundary(const MachineInstr &MI,
- const MachineBasicBlock *MBB,
- const MachineFunction &MF) const;
- /// Measure the specified inline asm to determine an approximation of its
- /// length.
- virtual unsigned getInlineAsmLength(
- const char *Str, const MCAsmInfo &MAI,
- const TargetSubtargetInfo *STI = nullptr) const;
- /// Allocate and return a hazard recognizer to use for this target when
- /// scheduling the machine instructions before register allocation.
- virtual ScheduleHazardRecognizer *
- CreateTargetHazardRecognizer(const TargetSubtargetInfo *STI,
- const ScheduleDAG *DAG) const;
- /// Allocate and return a hazard recognizer to use for this target when
- /// scheduling the machine instructions before register allocation.
- virtual ScheduleHazardRecognizer *
- CreateTargetMIHazardRecognizer(const InstrItineraryData *,
- const ScheduleDAGMI *DAG) const;
- /// Allocate and return a hazard recognizer to use for this target when
- /// scheduling the machine instructions after register allocation.
- virtual ScheduleHazardRecognizer *
- CreateTargetPostRAHazardRecognizer(const InstrItineraryData *,
- const ScheduleDAG *DAG) const;
- /// Allocate and return a hazard recognizer to use for by non-scheduling
- /// passes.
- virtual ScheduleHazardRecognizer *
- CreateTargetPostRAHazardRecognizer(const MachineFunction &MF) const {
- return nullptr;
- }
- /// Provide a global flag for disabling the PreRA hazard recognizer that
- /// targets may choose to honor.
- bool usePreRAHazardRecognizer() const;
- /// For a comparison instruction, return the source registers
- /// in SrcReg and SrcReg2 if having two register operands, and the value it
- /// compares against in CmpValue. Return true if the comparison instruction
- /// can be analyzed.
- virtual bool analyzeCompare(const MachineInstr &MI, Register &SrcReg,
- Register &SrcReg2, int64_t &Mask,
- int64_t &Value) const {
- return false;
- }
- /// See if the comparison instruction can be converted
- /// into something more efficient. E.g., on ARM most instructions can set the
- /// flags register, obviating the need for a separate CMP.
- virtual bool optimizeCompareInstr(MachineInstr &CmpInstr, Register SrcReg,
- Register SrcReg2, int64_t Mask,
- int64_t Value,
- const MachineRegisterInfo *MRI) const {
- return false;
- }
- virtual bool optimizeCondBranch(MachineInstr &MI) const { return false; }
- /// Try to remove the load by folding it to a register operand at the use.
- /// We fold the load instructions if and only if the
- /// def and use are in the same BB. We only look at one load and see
- /// whether it can be folded into MI. FoldAsLoadDefReg is the virtual register
- /// defined by the load we are trying to fold. DefMI returns the machine
- /// instruction that defines FoldAsLoadDefReg, and the function returns
- /// the machine instruction generated due to folding.
- virtual MachineInstr *optimizeLoadInstr(MachineInstr &MI,
- const MachineRegisterInfo *MRI,
- Register &FoldAsLoadDefReg,
- MachineInstr *&DefMI) const {
- return nullptr;
- }
- /// 'Reg' is known to be defined by a move immediate instruction,
- /// try to fold the immediate into the use instruction.
- /// If MRI->hasOneNonDBGUse(Reg) is true, and this function returns true,
- /// then the caller may assume that DefMI has been erased from its parent
- /// block. The caller may assume that it will not be erased by this
- /// function otherwise.
- virtual bool FoldImmediate(MachineInstr &UseMI, MachineInstr &DefMI,
- Register Reg, MachineRegisterInfo *MRI) const {
- return false;
- }
- /// Return the number of u-operations the given machine
- /// instruction will be decoded to on the target cpu. The itinerary's
- /// IssueWidth is the number of microops that can be dispatched each
- /// cycle. An instruction with zero microops takes no dispatch resources.
- virtual unsigned getNumMicroOps(const InstrItineraryData *ItinData,
- const MachineInstr &MI) const;
- /// Return true for pseudo instructions that don't consume any
- /// machine resources in their current form. These are common cases that the
- /// scheduler should consider free, rather than conservatively handling them
- /// as instructions with no itinerary.
- bool isZeroCost(unsigned Opcode) const {
- return Opcode <= TargetOpcode::COPY;
- }
- virtual int getOperandLatency(const InstrItineraryData *ItinData,
- SDNode *DefNode, unsigned DefIdx,
- SDNode *UseNode, unsigned UseIdx) const;
- /// Compute and return the use operand latency of a given pair of def and use.
- /// In most cases, the static scheduling itinerary was enough to determine the
- /// operand latency. But it may not be possible for instructions with variable
- /// number of defs / uses.
- ///
- /// This is a raw interface to the itinerary that may be directly overridden
- /// by a target. Use computeOperandLatency to get the best estimate of
- /// latency.
- virtual int getOperandLatency(const InstrItineraryData *ItinData,
- const MachineInstr &DefMI, unsigned DefIdx,
- const MachineInstr &UseMI,
- unsigned UseIdx) const;
- /// Compute the instruction latency of a given instruction.
- /// If the instruction has higher cost when predicated, it's returned via
- /// PredCost.
- virtual unsigned getInstrLatency(const InstrItineraryData *ItinData,
- const MachineInstr &MI,
- unsigned *PredCost = nullptr) const;
- virtual unsigned getPredicationCost(const MachineInstr &MI) const;
- virtual int getInstrLatency(const InstrItineraryData *ItinData,
- SDNode *Node) const;
- /// Return the default expected latency for a def based on its opcode.
- unsigned defaultDefLatency(const MCSchedModel &SchedModel,
- const MachineInstr &DefMI) const;
- /// Return true if this opcode has high latency to its result.
- virtual bool isHighLatencyDef(int opc) const { return false; }
- /// Compute operand latency between a def of 'Reg'
- /// and a use in the current loop. Return true if the target considered
- /// it 'high'. This is used by optimization passes such as machine LICM to
- /// determine whether it makes sense to hoist an instruction out even in a
- /// high register pressure situation.
- virtual bool hasHighOperandLatency(const TargetSchedModel &SchedModel,
- const MachineRegisterInfo *MRI,
- const MachineInstr &DefMI, unsigned DefIdx,
- const MachineInstr &UseMI,
- unsigned UseIdx) const {
- return false;
- }
- /// Compute operand latency of a def of 'Reg'. Return true
- /// if the target considered it 'low'.
- virtual bool hasLowDefLatency(const TargetSchedModel &SchedModel,
- const MachineInstr &DefMI,
- unsigned DefIdx) const;
- /// Perform target-specific instruction verification.
- virtual bool verifyInstruction(const MachineInstr &MI,
- StringRef &ErrInfo) const {
- return true;
- }
- /// Return the current execution domain and bit mask of
- /// possible domains for instruction.
- ///
- /// Some micro-architectures have multiple execution domains, and multiple
- /// opcodes that perform the same operation in different domains. For
- /// example, the x86 architecture provides the por, orps, and orpd
- /// instructions that all do the same thing. There is a latency penalty if a
- /// register is written in one domain and read in another.
- ///
- /// This function returns a pair (domain, mask) containing the execution
- /// domain of MI, and a bit mask of possible domains. The setExecutionDomain
- /// function can be used to change the opcode to one of the domains in the
- /// bit mask. Instructions whose execution domain can't be changed should
- /// return a 0 mask.
- ///
- /// The execution domain numbers don't have any special meaning except domain
- /// 0 is used for instructions that are not associated with any interesting
- /// execution domain.
- ///
- virtual std::pair<uint16_t, uint16_t>
- getExecutionDomain(const MachineInstr &MI) const {
- return std::make_pair(0, 0);
- }
- /// Change the opcode of MI to execute in Domain.
- ///
- /// The bit (1 << Domain) must be set in the mask returned from
- /// getExecutionDomain(MI).
- virtual void setExecutionDomain(MachineInstr &MI, unsigned Domain) const {}
- /// Returns the preferred minimum clearance
- /// before an instruction with an unwanted partial register update.
- ///
- /// Some instructions only write part of a register, and implicitly need to
- /// read the other parts of the register. This may cause unwanted stalls
- /// preventing otherwise unrelated instructions from executing in parallel in
- /// an out-of-order CPU.
- ///
- /// For example, the x86 instruction cvtsi2ss writes its result to bits
- /// [31:0] of the destination xmm register. Bits [127:32] are unaffected, so
- /// the instruction needs to wait for the old value of the register to become
- /// available:
- ///
- /// addps %xmm1, %xmm0
- /// movaps %xmm0, (%rax)
- /// cvtsi2ss %rbx, %xmm0
- ///
- /// In the code above, the cvtsi2ss instruction needs to wait for the addps
- /// instruction before it can issue, even though the high bits of %xmm0
- /// probably aren't needed.
- ///
- /// This hook returns the preferred clearance before MI, measured in
- /// instructions. Other defs of MI's operand OpNum are avoided in the last N
- /// instructions before MI. It should only return a positive value for
- /// unwanted dependencies. If the old bits of the defined register have
- /// useful values, or if MI is determined to otherwise read the dependency,
- /// the hook should return 0.
- ///
- /// The unwanted dependency may be handled by:
- ///
- /// 1. Allocating the same register for an MI def and use. That makes the
- /// unwanted dependency identical to a required dependency.
- ///
- /// 2. Allocating a register for the def that has no defs in the previous N
- /// instructions.
- ///
- /// 3. Calling breakPartialRegDependency() with the same arguments. This
- /// allows the target to insert a dependency breaking instruction.
- ///
- virtual unsigned
- getPartialRegUpdateClearance(const MachineInstr &MI, unsigned OpNum,
- const TargetRegisterInfo *TRI) const {
- // The default implementation returns 0 for no partial register dependency.
- return 0;
- }
- /// Return the minimum clearance before an instruction that reads an
- /// unused register.
- ///
- /// For example, AVX instructions may copy part of a register operand into
- /// the unused high bits of the destination register.
- ///
- /// vcvtsi2sdq %rax, undef %xmm0, %xmm14
- ///
- /// In the code above, vcvtsi2sdq copies %xmm0[127:64] into %xmm14 creating a
- /// false dependence on any previous write to %xmm0.
- ///
- /// This hook works similarly to getPartialRegUpdateClearance, except that it
- /// does not take an operand index. Instead sets \p OpNum to the index of the
- /// unused register.
- virtual unsigned getUndefRegClearance(const MachineInstr &MI, unsigned OpNum,
- const TargetRegisterInfo *TRI) const {
- // The default implementation returns 0 for no undef register dependency.
- return 0;
- }
- /// Insert a dependency-breaking instruction
- /// before MI to eliminate an unwanted dependency on OpNum.
- ///
- /// If it wasn't possible to avoid a def in the last N instructions before MI
- /// (see getPartialRegUpdateClearance), this hook will be called to break the
- /// unwanted dependency.
- ///
- /// On x86, an xorps instruction can be used as a dependency breaker:
- ///
- /// addps %xmm1, %xmm0
- /// movaps %xmm0, (%rax)
- /// xorps %xmm0, %xmm0
- /// cvtsi2ss %rbx, %xmm0
- ///
- /// An <imp-kill> operand should be added to MI if an instruction was
- /// inserted. This ties the instructions together in the post-ra scheduler.
- ///
- virtual void breakPartialRegDependency(MachineInstr &MI, unsigned OpNum,
- const TargetRegisterInfo *TRI) const {}
- /// Create machine specific model for scheduling.
- virtual DFAPacketizer *
- CreateTargetScheduleState(const TargetSubtargetInfo &) const {
- return nullptr;
- }
- /// Sometimes, it is possible for the target
- /// to tell, even without aliasing information, that two MIs access different
- /// memory addresses. This function returns true if two MIs access different
- /// memory addresses and false otherwise.
- ///
- /// Assumes any physical registers used to compute addresses have the same
- /// value for both instructions. (This is the most useful assumption for
- /// post-RA scheduling.)
- ///
- /// See also MachineInstr::mayAlias, which is implemented on top of this
- /// function.
- virtual bool
- areMemAccessesTriviallyDisjoint(const MachineInstr &MIa,
- const MachineInstr &MIb) const {
- assert(MIa.mayLoadOrStore() &&
- "MIa must load from or modify a memory location");
- assert(MIb.mayLoadOrStore() &&
- "MIb must load from or modify a memory location");
- return false;
- }
- /// Return the value to use for the MachineCSE's LookAheadLimit,
- /// which is a heuristic used for CSE'ing phys reg defs.
- virtual unsigned getMachineCSELookAheadLimit() const {
- // The default lookahead is small to prevent unprofitable quadratic
- // behavior.
- return 5;
- }
- /// Return the maximal number of alias checks on memory operands. For
- /// instructions with more than one memory operands, the alias check on a
- /// single MachineInstr pair has quadratic overhead and results in
- /// unacceptable performance in the worst case. The limit here is to clamp
- /// that maximal checks performed. Usually, that's the product of memory
- /// operand numbers from that pair of MachineInstr to be checked. For
- /// instance, with two MachineInstrs with 4 and 5 memory operands
- /// correspondingly, a total of 20 checks are required. With this limit set to
- /// 16, their alias check is skipped. We choose to limit the product instead
- /// of the individual instruction as targets may have special MachineInstrs
- /// with a considerably high number of memory operands, such as `ldm` in ARM.
- /// Setting this limit per MachineInstr would result in either too high
- /// overhead or too rigid restriction.
- virtual unsigned getMemOperandAACheckLimit() const { return 16; }
- /// Return an array that contains the ids of the target indices (used for the
- /// TargetIndex machine operand) and their names.
- ///
- /// MIR Serialization is able to serialize only the target indices that are
- /// defined by this method.
- virtual ArrayRef<std::pair<int, const char *>>
- getSerializableTargetIndices() const {
- return std::nullopt;
- }
- /// Decompose the machine operand's target flags into two values - the direct
- /// target flag value and any of bit flags that are applied.
- virtual std::pair<unsigned, unsigned>
- decomposeMachineOperandsTargetFlags(unsigned /*TF*/) const {
- return std::make_pair(0u, 0u);
- }
- /// Return an array that contains the direct target flag values and their
- /// names.
- ///
- /// MIR Serialization is able to serialize only the target flags that are
- /// defined by this method.
- virtual ArrayRef<std::pair<unsigned, const char *>>
- getSerializableDirectMachineOperandTargetFlags() const {
- return std::nullopt;
- }
- /// Return an array that contains the bitmask target flag values and their
- /// names.
- ///
- /// MIR Serialization is able to serialize only the target flags that are
- /// defined by this method.
- virtual ArrayRef<std::pair<unsigned, const char *>>
- getSerializableBitmaskMachineOperandTargetFlags() const {
- return std::nullopt;
- }
- /// Return an array that contains the MMO target flag values and their
- /// names.
- ///
- /// MIR Serialization is able to serialize only the MMO target flags that are
- /// defined by this method.
- virtual ArrayRef<std::pair<MachineMemOperand::Flags, const char *>>
- getSerializableMachineMemOperandTargetFlags() const {
- return std::nullopt;
- }
- /// Determines whether \p Inst is a tail call instruction. Override this
- /// method on targets that do not properly set MCID::Return and MCID::Call on
- /// tail call instructions."
- virtual bool isTailCall(const MachineInstr &Inst) const {
- return Inst.isReturn() && Inst.isCall();
- }
- /// True if the instruction is bound to the top of its basic block and no
- /// other instructions shall be inserted before it. This can be implemented
- /// to prevent register allocator to insert spills before such instructions.
- virtual bool isBasicBlockPrologue(const MachineInstr &MI) const {
- return false;
- }
- /// During PHI eleimination lets target to make necessary checks and
- /// insert the copy to the PHI destination register in a target specific
- /// manner.
- virtual MachineInstr *createPHIDestinationCopy(
- MachineBasicBlock &MBB, MachineBasicBlock::iterator InsPt,
- const DebugLoc &DL, Register Src, Register Dst) const {
- return BuildMI(MBB, InsPt, DL, get(TargetOpcode::COPY), Dst)
- .addReg(Src);
- }
- /// During PHI eleimination lets target to make necessary checks and
- /// insert the copy to the PHI destination register in a target specific
- /// manner.
- virtual MachineInstr *createPHISourceCopy(MachineBasicBlock &MBB,
- MachineBasicBlock::iterator InsPt,
- const DebugLoc &DL, Register Src,
- unsigned SrcSubReg,
- Register Dst) const {
- return BuildMI(MBB, InsPt, DL, get(TargetOpcode::COPY), Dst)
- .addReg(Src, 0, SrcSubReg);
- }
- /// Returns a \p outliner::OutlinedFunction struct containing target-specific
- /// information for a set of outlining candidates.
- virtual outliner::OutlinedFunction getOutliningCandidateInfo(
- std::vector<outliner::Candidate> &RepeatedSequenceLocs) const {
- llvm_unreachable(
- "Target didn't implement TargetInstrInfo::getOutliningCandidateInfo!");
- }
- /// Optional target hook to create the LLVM IR attributes for the outlined
- /// function. If overridden, the overriding function must call the default
- /// implementation.
- virtual void mergeOutliningCandidateAttributes(
- Function &F, std::vector<outliner::Candidate> &Candidates) const;
- /// Returns how or if \p MI should be outlined.
- virtual outliner::InstrType
- getOutliningType(MachineBasicBlock::iterator &MIT, unsigned Flags) const {
- llvm_unreachable(
- "Target didn't implement TargetInstrInfo::getOutliningType!");
- }
- /// Optional target hook that returns true if \p MBB is safe to outline from,
- /// and returns any target-specific information in \p Flags.
- virtual bool isMBBSafeToOutlineFrom(MachineBasicBlock &MBB,
- unsigned &Flags) const;
- /// Insert a custom frame for outlined functions.
- virtual void buildOutlinedFrame(MachineBasicBlock &MBB, MachineFunction &MF,
- const outliner::OutlinedFunction &OF) const {
- llvm_unreachable(
- "Target didn't implement TargetInstrInfo::buildOutlinedFrame!");
- }
- /// Insert a call to an outlined function into the program.
- /// Returns an iterator to the spot where we inserted the call. This must be
- /// implemented by the target.
- virtual MachineBasicBlock::iterator
- insertOutlinedCall(Module &M, MachineBasicBlock &MBB,
- MachineBasicBlock::iterator &It, MachineFunction &MF,
- outliner::Candidate &C) const {
- llvm_unreachable(
- "Target didn't implement TargetInstrInfo::insertOutlinedCall!");
- }
- /// Return true if the function can safely be outlined from.
- /// A function \p MF is considered safe for outlining if an outlined function
- /// produced from instructions in F will produce a program which produces the
- /// same output for any set of given inputs.
- virtual bool isFunctionSafeToOutlineFrom(MachineFunction &MF,
- bool OutlineFromLinkOnceODRs) const {
- llvm_unreachable("Target didn't implement "
- "TargetInstrInfo::isFunctionSafeToOutlineFrom!");
- }
- /// Return true if the function should be outlined from by default.
- virtual bool shouldOutlineFromFunctionByDefault(MachineFunction &MF) const {
- return false;
- }
- /// Produce the expression describing the \p MI loading a value into
- /// the physical register \p Reg. This hook should only be used with
- /// \p MIs belonging to VReg-less functions.
- virtual std::optional<ParamLoadedValue>
- describeLoadedValue(const MachineInstr &MI, Register Reg) const;
- /// Given the generic extension instruction \p ExtMI, returns true if this
- /// extension is a likely candidate for being folded into an another
- /// instruction.
- virtual bool isExtendLikelyToBeFolded(MachineInstr &ExtMI,
- MachineRegisterInfo &MRI) const {
- return false;
- }
- /// Return MIR formatter to format/parse MIR operands. Target can override
- /// this virtual function and return target specific MIR formatter.
- virtual const MIRFormatter *getMIRFormatter() const {
- if (!Formatter.get())
- Formatter = std::make_unique<MIRFormatter>();
- return Formatter.get();
- }
- /// Returns the target-specific default value for tail duplication.
- /// This value will be used if the tail-dup-placement-threshold argument is
- /// not provided.
- virtual unsigned getTailDuplicateSize(CodeGenOpt::Level OptLevel) const {
- return OptLevel >= CodeGenOpt::Aggressive ? 4 : 2;
- }
- /// Returns the callee operand from the given \p MI.
- virtual const MachineOperand &getCalleeOperand(const MachineInstr &MI) const {
- return MI.getOperand(0);
- }
- /// Return the uniformity behavior of the given instruction.
- virtual InstructionUniformity
- getInstructionUniformity(const MachineInstr &MI) const {
- return InstructionUniformity::Default;
- }
- /// Returns true if the given \p MI defines a TargetIndex operand that can be
- /// tracked by their offset, can have values, and can have debug info
- /// associated with it. If so, sets \p Index and \p Offset of the target index
- /// operand.
- virtual bool isExplicitTargetIndexDef(const MachineInstr &MI, int &Index,
- int64_t &Offset) const {
- return false;
- }
- private:
- mutable std::unique_ptr<MIRFormatter> Formatter;
- unsigned CallFrameSetupOpcode, CallFrameDestroyOpcode;
- unsigned CatchRetOpcode;
- unsigned ReturnOpcode;
- };
- /// Provide DenseMapInfo for TargetInstrInfo::RegSubRegPair.
- template <> struct DenseMapInfo<TargetInstrInfo::RegSubRegPair> {
- using RegInfo = DenseMapInfo<unsigned>;
- static inline TargetInstrInfo::RegSubRegPair getEmptyKey() {
- return TargetInstrInfo::RegSubRegPair(RegInfo::getEmptyKey(),
- RegInfo::getEmptyKey());
- }
- static inline TargetInstrInfo::RegSubRegPair getTombstoneKey() {
- return TargetInstrInfo::RegSubRegPair(RegInfo::getTombstoneKey(),
- RegInfo::getTombstoneKey());
- }
- /// Reuse getHashValue implementation from
- /// std::pair<unsigned, unsigned>.
- static unsigned getHashValue(const TargetInstrInfo::RegSubRegPair &Val) {
- std::pair<unsigned, unsigned> PairVal = std::make_pair(Val.Reg, Val.SubReg);
- return DenseMapInfo<std::pair<unsigned, unsigned>>::getHashValue(PairVal);
- }
- static bool isEqual(const TargetInstrInfo::RegSubRegPair &LHS,
- const TargetInstrInfo::RegSubRegPair &RHS) {
- return RegInfo::isEqual(LHS.Reg, RHS.Reg) &&
- RegInfo::isEqual(LHS.SubReg, RHS.SubReg);
- }
- };
- } // end namespace llvm
- #endif // LLVM_CODEGEN_TARGETINSTRINFO_H
- #ifdef __GNUC__
- #pragma GCC diagnostic pop
- #endif
|