LegalizationArtifactCombiner.h 55 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450
  1. #pragma once
  2. #ifdef __GNUC__
  3. #pragma GCC diagnostic push
  4. #pragma GCC diagnostic ignored "-Wunused-parameter"
  5. #endif
  6. //===-- llvm/CodeGen/GlobalISel/LegalizationArtifactCombiner.h -----*- C++ -*-//
  7. //
  8. // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
  9. // See https://llvm.org/LICENSE.txt for license information.
  10. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
  11. //
  12. //===----------------------------------------------------------------------===//
  13. // This file contains some helper functions which try to cleanup artifacts
  14. // such as G_TRUNCs/G_[ZSA]EXTENDS that were created during legalization to make
  15. // the types match. This file also contains some combines of merges that happens
  16. // at the end of the legalization.
  17. //===----------------------------------------------------------------------===//
  18. #ifndef LLVM_CODEGEN_GLOBALISEL_LEGALIZATIONARTIFACTCOMBINER_H
  19. #define LLVM_CODEGEN_GLOBALISEL_LEGALIZATIONARTIFACTCOMBINER_H
  20. #include "llvm/ADT/SmallBitVector.h"
  21. #include "llvm/CodeGen/GlobalISel/GISelChangeObserver.h"
  22. #include "llvm/CodeGen/GlobalISel/GenericMachineInstrs.h"
  23. #include "llvm/CodeGen/GlobalISel/Legalizer.h"
  24. #include "llvm/CodeGen/GlobalISel/LegalizerInfo.h"
  25. #include "llvm/CodeGen/GlobalISel/MIPatternMatch.h"
  26. #include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h"
  27. #include "llvm/CodeGen/GlobalISel/Utils.h"
  28. #include "llvm/CodeGen/MachineRegisterInfo.h"
  29. #include "llvm/CodeGen/Register.h"
  30. #include "llvm/IR/Constants.h"
  31. #include "llvm/Support/Debug.h"
  32. #define DEBUG_TYPE "legalizer"
  33. namespace llvm {
  34. class LegalizationArtifactCombiner {
  35. MachineIRBuilder &Builder;
  36. MachineRegisterInfo &MRI;
  37. const LegalizerInfo &LI;
  38. static bool isArtifactCast(unsigned Opc) {
  39. switch (Opc) {
  40. case TargetOpcode::G_TRUNC:
  41. case TargetOpcode::G_SEXT:
  42. case TargetOpcode::G_ZEXT:
  43. case TargetOpcode::G_ANYEXT:
  44. return true;
  45. default:
  46. return false;
  47. }
  48. }
  49. public:
  50. LegalizationArtifactCombiner(MachineIRBuilder &B, MachineRegisterInfo &MRI,
  51. const LegalizerInfo &LI)
  52. : Builder(B), MRI(MRI), LI(LI) {}
  53. bool tryCombineAnyExt(MachineInstr &MI,
  54. SmallVectorImpl<MachineInstr *> &DeadInsts,
  55. SmallVectorImpl<Register> &UpdatedDefs,
  56. GISelObserverWrapper &Observer) {
  57. using namespace llvm::MIPatternMatch;
  58. assert(MI.getOpcode() == TargetOpcode::G_ANYEXT);
  59. Builder.setInstrAndDebugLoc(MI);
  60. Register DstReg = MI.getOperand(0).getReg();
  61. Register SrcReg = lookThroughCopyInstrs(MI.getOperand(1).getReg());
  62. // aext(trunc x) - > aext/copy/trunc x
  63. Register TruncSrc;
  64. if (mi_match(SrcReg, MRI, m_GTrunc(m_Reg(TruncSrc)))) {
  65. LLVM_DEBUG(dbgs() << ".. Combine MI: " << MI;);
  66. if (MRI.getType(DstReg) == MRI.getType(TruncSrc))
  67. replaceRegOrBuildCopy(DstReg, TruncSrc, MRI, Builder, UpdatedDefs,
  68. Observer);
  69. else
  70. Builder.buildAnyExtOrTrunc(DstReg, TruncSrc);
  71. UpdatedDefs.push_back(DstReg);
  72. markInstAndDefDead(MI, *MRI.getVRegDef(SrcReg), DeadInsts);
  73. return true;
  74. }
  75. // aext([asz]ext x) -> [asz]ext x
  76. Register ExtSrc;
  77. MachineInstr *ExtMI;
  78. if (mi_match(SrcReg, MRI,
  79. m_all_of(m_MInstr(ExtMI), m_any_of(m_GAnyExt(m_Reg(ExtSrc)),
  80. m_GSExt(m_Reg(ExtSrc)),
  81. m_GZExt(m_Reg(ExtSrc)))))) {
  82. Builder.buildInstr(ExtMI->getOpcode(), {DstReg}, {ExtSrc});
  83. UpdatedDefs.push_back(DstReg);
  84. markInstAndDefDead(MI, *ExtMI, DeadInsts);
  85. return true;
  86. }
  87. // Try to fold aext(g_constant) when the larger constant type is legal.
  88. auto *SrcMI = MRI.getVRegDef(SrcReg);
  89. if (SrcMI->getOpcode() == TargetOpcode::G_CONSTANT) {
  90. const LLT DstTy = MRI.getType(DstReg);
  91. if (isInstLegal({TargetOpcode::G_CONSTANT, {DstTy}})) {
  92. auto &CstVal = SrcMI->getOperand(1);
  93. Builder.buildConstant(
  94. DstReg, CstVal.getCImm()->getValue().sext(DstTy.getSizeInBits()));
  95. UpdatedDefs.push_back(DstReg);
  96. markInstAndDefDead(MI, *SrcMI, DeadInsts);
  97. return true;
  98. }
  99. }
  100. return tryFoldImplicitDef(MI, DeadInsts, UpdatedDefs);
  101. }
  102. bool tryCombineZExt(MachineInstr &MI,
  103. SmallVectorImpl<MachineInstr *> &DeadInsts,
  104. SmallVectorImpl<Register> &UpdatedDefs,
  105. GISelObserverWrapper &Observer) {
  106. using namespace llvm::MIPatternMatch;
  107. assert(MI.getOpcode() == TargetOpcode::G_ZEXT);
  108. Builder.setInstrAndDebugLoc(MI);
  109. Register DstReg = MI.getOperand(0).getReg();
  110. Register SrcReg = lookThroughCopyInstrs(MI.getOperand(1).getReg());
  111. // zext(trunc x) - > and (aext/copy/trunc x), mask
  112. // zext(sext x) -> and (sext x), mask
  113. Register TruncSrc;
  114. Register SextSrc;
  115. if (mi_match(SrcReg, MRI, m_GTrunc(m_Reg(TruncSrc))) ||
  116. mi_match(SrcReg, MRI, m_GSExt(m_Reg(SextSrc)))) {
  117. LLT DstTy = MRI.getType(DstReg);
  118. if (isInstUnsupported({TargetOpcode::G_AND, {DstTy}}) ||
  119. isConstantUnsupported(DstTy))
  120. return false;
  121. LLVM_DEBUG(dbgs() << ".. Combine MI: " << MI;);
  122. LLT SrcTy = MRI.getType(SrcReg);
  123. APInt MaskVal = APInt::getAllOnes(SrcTy.getScalarSizeInBits());
  124. auto Mask = Builder.buildConstant(
  125. DstTy, MaskVal.zext(DstTy.getScalarSizeInBits()));
  126. if (SextSrc && (DstTy != MRI.getType(SextSrc)))
  127. SextSrc = Builder.buildSExtOrTrunc(DstTy, SextSrc).getReg(0);
  128. if (TruncSrc && (DstTy != MRI.getType(TruncSrc)))
  129. TruncSrc = Builder.buildAnyExtOrTrunc(DstTy, TruncSrc).getReg(0);
  130. Builder.buildAnd(DstReg, SextSrc ? SextSrc : TruncSrc, Mask);
  131. markInstAndDefDead(MI, *MRI.getVRegDef(SrcReg), DeadInsts);
  132. return true;
  133. }
  134. // zext(zext x) -> (zext x)
  135. Register ZextSrc;
  136. if (mi_match(SrcReg, MRI, m_GZExt(m_Reg(ZextSrc)))) {
  137. LLVM_DEBUG(dbgs() << ".. Combine MI: " << MI);
  138. Observer.changingInstr(MI);
  139. MI.getOperand(1).setReg(ZextSrc);
  140. Observer.changedInstr(MI);
  141. UpdatedDefs.push_back(DstReg);
  142. markDefDead(MI, *MRI.getVRegDef(SrcReg), DeadInsts);
  143. return true;
  144. }
  145. // Try to fold zext(g_constant) when the larger constant type is legal.
  146. auto *SrcMI = MRI.getVRegDef(SrcReg);
  147. if (SrcMI->getOpcode() == TargetOpcode::G_CONSTANT) {
  148. const LLT DstTy = MRI.getType(DstReg);
  149. if (isInstLegal({TargetOpcode::G_CONSTANT, {DstTy}})) {
  150. auto &CstVal = SrcMI->getOperand(1);
  151. Builder.buildConstant(
  152. DstReg, CstVal.getCImm()->getValue().zext(DstTy.getSizeInBits()));
  153. UpdatedDefs.push_back(DstReg);
  154. markInstAndDefDead(MI, *SrcMI, DeadInsts);
  155. return true;
  156. }
  157. }
  158. return tryFoldImplicitDef(MI, DeadInsts, UpdatedDefs);
  159. }
  160. bool tryCombineSExt(MachineInstr &MI,
  161. SmallVectorImpl<MachineInstr *> &DeadInsts,
  162. SmallVectorImpl<Register> &UpdatedDefs) {
  163. using namespace llvm::MIPatternMatch;
  164. assert(MI.getOpcode() == TargetOpcode::G_SEXT);
  165. Builder.setInstrAndDebugLoc(MI);
  166. Register DstReg = MI.getOperand(0).getReg();
  167. Register SrcReg = lookThroughCopyInstrs(MI.getOperand(1).getReg());
  168. // sext(trunc x) - > (sext_inreg (aext/copy/trunc x), c)
  169. Register TruncSrc;
  170. if (mi_match(SrcReg, MRI, m_GTrunc(m_Reg(TruncSrc)))) {
  171. LLT DstTy = MRI.getType(DstReg);
  172. if (isInstUnsupported({TargetOpcode::G_SEXT_INREG, {DstTy}}))
  173. return false;
  174. LLVM_DEBUG(dbgs() << ".. Combine MI: " << MI;);
  175. LLT SrcTy = MRI.getType(SrcReg);
  176. uint64_t SizeInBits = SrcTy.getScalarSizeInBits();
  177. if (DstTy != MRI.getType(TruncSrc))
  178. TruncSrc = Builder.buildAnyExtOrTrunc(DstTy, TruncSrc).getReg(0);
  179. Builder.buildSExtInReg(DstReg, TruncSrc, SizeInBits);
  180. markInstAndDefDead(MI, *MRI.getVRegDef(SrcReg), DeadInsts);
  181. return true;
  182. }
  183. // sext(zext x) -> (zext x)
  184. // sext(sext x) -> (sext x)
  185. Register ExtSrc;
  186. MachineInstr *ExtMI;
  187. if (mi_match(SrcReg, MRI,
  188. m_all_of(m_MInstr(ExtMI), m_any_of(m_GZExt(m_Reg(ExtSrc)),
  189. m_GSExt(m_Reg(ExtSrc)))))) {
  190. LLVM_DEBUG(dbgs() << ".. Combine MI: " << MI);
  191. Builder.buildInstr(ExtMI->getOpcode(), {DstReg}, {ExtSrc});
  192. UpdatedDefs.push_back(DstReg);
  193. markInstAndDefDead(MI, *MRI.getVRegDef(SrcReg), DeadInsts);
  194. return true;
  195. }
  196. // Try to fold sext(g_constant) when the larger constant type is legal.
  197. auto *SrcMI = MRI.getVRegDef(SrcReg);
  198. if (SrcMI->getOpcode() == TargetOpcode::G_CONSTANT) {
  199. const LLT DstTy = MRI.getType(DstReg);
  200. if (isInstLegal({TargetOpcode::G_CONSTANT, {DstTy}})) {
  201. auto &CstVal = SrcMI->getOperand(1);
  202. Builder.buildConstant(
  203. DstReg, CstVal.getCImm()->getValue().sext(DstTy.getSizeInBits()));
  204. UpdatedDefs.push_back(DstReg);
  205. markInstAndDefDead(MI, *SrcMI, DeadInsts);
  206. return true;
  207. }
  208. }
  209. return tryFoldImplicitDef(MI, DeadInsts, UpdatedDefs);
  210. }
  211. bool tryCombineTrunc(MachineInstr &MI,
  212. SmallVectorImpl<MachineInstr *> &DeadInsts,
  213. SmallVectorImpl<Register> &UpdatedDefs,
  214. GISelObserverWrapper &Observer) {
  215. using namespace llvm::MIPatternMatch;
  216. assert(MI.getOpcode() == TargetOpcode::G_TRUNC);
  217. Builder.setInstr(MI);
  218. Register DstReg = MI.getOperand(0).getReg();
  219. Register SrcReg = lookThroughCopyInstrs(MI.getOperand(1).getReg());
  220. // Try to fold trunc(g_constant) when the smaller constant type is legal.
  221. auto *SrcMI = MRI.getVRegDef(SrcReg);
  222. if (SrcMI->getOpcode() == TargetOpcode::G_CONSTANT) {
  223. const LLT DstTy = MRI.getType(DstReg);
  224. if (isInstLegal({TargetOpcode::G_CONSTANT, {DstTy}})) {
  225. auto &CstVal = SrcMI->getOperand(1);
  226. Builder.buildConstant(
  227. DstReg, CstVal.getCImm()->getValue().trunc(DstTy.getSizeInBits()));
  228. UpdatedDefs.push_back(DstReg);
  229. markInstAndDefDead(MI, *SrcMI, DeadInsts);
  230. return true;
  231. }
  232. }
  233. // Try to fold trunc(merge) to directly use the source of the merge.
  234. // This gets rid of large, difficult to legalize, merges
  235. if (auto *SrcMerge = dyn_cast<GMerge>(SrcMI)) {
  236. const Register MergeSrcReg = SrcMerge->getSourceReg(0);
  237. const LLT MergeSrcTy = MRI.getType(MergeSrcReg);
  238. const LLT DstTy = MRI.getType(DstReg);
  239. // We can only fold if the types are scalar
  240. const unsigned DstSize = DstTy.getSizeInBits();
  241. const unsigned MergeSrcSize = MergeSrcTy.getSizeInBits();
  242. if (!DstTy.isScalar() || !MergeSrcTy.isScalar())
  243. return false;
  244. if (DstSize < MergeSrcSize) {
  245. // When the merge source is larger than the destination, we can just
  246. // truncate the merge source directly
  247. if (isInstUnsupported({TargetOpcode::G_TRUNC, {DstTy, MergeSrcTy}}))
  248. return false;
  249. LLVM_DEBUG(dbgs() << "Combining G_TRUNC(G_MERGE_VALUES) to G_TRUNC: "
  250. << MI);
  251. Builder.buildTrunc(DstReg, MergeSrcReg);
  252. UpdatedDefs.push_back(DstReg);
  253. } else if (DstSize == MergeSrcSize) {
  254. // If the sizes match we can simply try to replace the register
  255. LLVM_DEBUG(
  256. dbgs() << "Replacing G_TRUNC(G_MERGE_VALUES) with merge input: "
  257. << MI);
  258. replaceRegOrBuildCopy(DstReg, MergeSrcReg, MRI, Builder, UpdatedDefs,
  259. Observer);
  260. } else if (DstSize % MergeSrcSize == 0) {
  261. // If the trunc size is a multiple of the merge source size we can use
  262. // a smaller merge instead
  263. if (isInstUnsupported(
  264. {TargetOpcode::G_MERGE_VALUES, {DstTy, MergeSrcTy}}))
  265. return false;
  266. LLVM_DEBUG(
  267. dbgs() << "Combining G_TRUNC(G_MERGE_VALUES) to G_MERGE_VALUES: "
  268. << MI);
  269. const unsigned NumSrcs = DstSize / MergeSrcSize;
  270. assert(NumSrcs < SrcMI->getNumOperands() - 1 &&
  271. "trunc(merge) should require less inputs than merge");
  272. SmallVector<Register, 8> SrcRegs(NumSrcs);
  273. for (unsigned i = 0; i < NumSrcs; ++i)
  274. SrcRegs[i] = SrcMerge->getSourceReg(i);
  275. Builder.buildMergeValues(DstReg, SrcRegs);
  276. UpdatedDefs.push_back(DstReg);
  277. } else {
  278. // Unable to combine
  279. return false;
  280. }
  281. markInstAndDefDead(MI, *SrcMerge, DeadInsts);
  282. return true;
  283. }
  284. // trunc(trunc) -> trunc
  285. Register TruncSrc;
  286. if (mi_match(SrcReg, MRI, m_GTrunc(m_Reg(TruncSrc)))) {
  287. // Always combine trunc(trunc) since the eventual resulting trunc must be
  288. // legal anyway as it must be legal for all outputs of the consumer type
  289. // set.
  290. LLVM_DEBUG(dbgs() << ".. Combine G_TRUNC(G_TRUNC): " << MI);
  291. Builder.buildTrunc(DstReg, TruncSrc);
  292. UpdatedDefs.push_back(DstReg);
  293. markInstAndDefDead(MI, *MRI.getVRegDef(TruncSrc), DeadInsts);
  294. return true;
  295. }
  296. return false;
  297. }
  298. /// Try to fold G_[ASZ]EXT (G_IMPLICIT_DEF).
  299. bool tryFoldImplicitDef(MachineInstr &MI,
  300. SmallVectorImpl<MachineInstr *> &DeadInsts,
  301. SmallVectorImpl<Register> &UpdatedDefs) {
  302. unsigned Opcode = MI.getOpcode();
  303. assert(Opcode == TargetOpcode::G_ANYEXT || Opcode == TargetOpcode::G_ZEXT ||
  304. Opcode == TargetOpcode::G_SEXT);
  305. if (MachineInstr *DefMI = getOpcodeDef(TargetOpcode::G_IMPLICIT_DEF,
  306. MI.getOperand(1).getReg(), MRI)) {
  307. Builder.setInstr(MI);
  308. Register DstReg = MI.getOperand(0).getReg();
  309. LLT DstTy = MRI.getType(DstReg);
  310. if (Opcode == TargetOpcode::G_ANYEXT) {
  311. // G_ANYEXT (G_IMPLICIT_DEF) -> G_IMPLICIT_DEF
  312. if (!isInstLegal({TargetOpcode::G_IMPLICIT_DEF, {DstTy}}))
  313. return false;
  314. LLVM_DEBUG(dbgs() << ".. Combine G_ANYEXT(G_IMPLICIT_DEF): " << MI;);
  315. Builder.buildInstr(TargetOpcode::G_IMPLICIT_DEF, {DstReg}, {});
  316. UpdatedDefs.push_back(DstReg);
  317. } else {
  318. // G_[SZ]EXT (G_IMPLICIT_DEF) -> G_CONSTANT 0 because the top
  319. // bits will be 0 for G_ZEXT and 0/1 for the G_SEXT.
  320. if (isConstantUnsupported(DstTy))
  321. return false;
  322. LLVM_DEBUG(dbgs() << ".. Combine G_[SZ]EXT(G_IMPLICIT_DEF): " << MI;);
  323. Builder.buildConstant(DstReg, 0);
  324. UpdatedDefs.push_back(DstReg);
  325. }
  326. markInstAndDefDead(MI, *DefMI, DeadInsts);
  327. return true;
  328. }
  329. return false;
  330. }
  331. bool tryFoldUnmergeCast(MachineInstr &MI, MachineInstr &CastMI,
  332. SmallVectorImpl<MachineInstr *> &DeadInsts,
  333. SmallVectorImpl<Register> &UpdatedDefs) {
  334. assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES);
  335. const unsigned CastOpc = CastMI.getOpcode();
  336. if (!isArtifactCast(CastOpc))
  337. return false;
  338. const unsigned NumDefs = MI.getNumOperands() - 1;
  339. const Register CastSrcReg = CastMI.getOperand(1).getReg();
  340. const LLT CastSrcTy = MRI.getType(CastSrcReg);
  341. const LLT DestTy = MRI.getType(MI.getOperand(0).getReg());
  342. const LLT SrcTy = MRI.getType(MI.getOperand(NumDefs).getReg());
  343. const unsigned CastSrcSize = CastSrcTy.getSizeInBits();
  344. const unsigned DestSize = DestTy.getSizeInBits();
  345. if (CastOpc == TargetOpcode::G_TRUNC) {
  346. if (SrcTy.isVector() && SrcTy.getScalarType() == DestTy.getScalarType()) {
  347. // %1:_(<4 x s8>) = G_TRUNC %0(<4 x s32>)
  348. // %2:_(s8), %3:_(s8), %4:_(s8), %5:_(s8) = G_UNMERGE_VALUES %1
  349. // =>
  350. // %6:_(s32), %7:_(s32), %8:_(s32), %9:_(s32) = G_UNMERGE_VALUES %0
  351. // %2:_(s8) = G_TRUNC %6
  352. // %3:_(s8) = G_TRUNC %7
  353. // %4:_(s8) = G_TRUNC %8
  354. // %5:_(s8) = G_TRUNC %9
  355. unsigned UnmergeNumElts =
  356. DestTy.isVector() ? CastSrcTy.getNumElements() / NumDefs : 1;
  357. LLT UnmergeTy = CastSrcTy.changeElementCount(
  358. ElementCount::getFixed(UnmergeNumElts));
  359. if (isInstUnsupported(
  360. {TargetOpcode::G_UNMERGE_VALUES, {UnmergeTy, CastSrcTy}}))
  361. return false;
  362. Builder.setInstr(MI);
  363. auto NewUnmerge = Builder.buildUnmerge(UnmergeTy, CastSrcReg);
  364. for (unsigned I = 0; I != NumDefs; ++I) {
  365. Register DefReg = MI.getOperand(I).getReg();
  366. UpdatedDefs.push_back(DefReg);
  367. Builder.buildTrunc(DefReg, NewUnmerge.getReg(I));
  368. }
  369. markInstAndDefDead(MI, CastMI, DeadInsts);
  370. return true;
  371. }
  372. if (CastSrcTy.isScalar() && SrcTy.isScalar() && !DestTy.isVector()) {
  373. // %1:_(s16) = G_TRUNC %0(s32)
  374. // %2:_(s8), %3:_(s8) = G_UNMERGE_VALUES %1
  375. // =>
  376. // %2:_(s8), %3:_(s8), %4:_(s8), %5:_(s8) = G_UNMERGE_VALUES %0
  377. // Unmerge(trunc) can be combined if the trunc source size is a multiple
  378. // of the unmerge destination size
  379. if (CastSrcSize % DestSize != 0)
  380. return false;
  381. // Check if the new unmerge is supported
  382. if (isInstUnsupported(
  383. {TargetOpcode::G_UNMERGE_VALUES, {DestTy, CastSrcTy}}))
  384. return false;
  385. // Gather the original destination registers and create new ones for the
  386. // unused bits
  387. const unsigned NewNumDefs = CastSrcSize / DestSize;
  388. SmallVector<Register, 8> DstRegs(NewNumDefs);
  389. for (unsigned Idx = 0; Idx < NewNumDefs; ++Idx) {
  390. if (Idx < NumDefs)
  391. DstRegs[Idx] = MI.getOperand(Idx).getReg();
  392. else
  393. DstRegs[Idx] = MRI.createGenericVirtualRegister(DestTy);
  394. }
  395. // Build new unmerge
  396. Builder.setInstr(MI);
  397. Builder.buildUnmerge(DstRegs, CastSrcReg);
  398. UpdatedDefs.append(DstRegs.begin(), DstRegs.begin() + NewNumDefs);
  399. markInstAndDefDead(MI, CastMI, DeadInsts);
  400. return true;
  401. }
  402. }
  403. // TODO: support combines with other casts as well
  404. return false;
  405. }
  406. static bool canFoldMergeOpcode(unsigned MergeOp, unsigned ConvertOp,
  407. LLT OpTy, LLT DestTy) {
  408. // Check if we found a definition that is like G_MERGE_VALUES.
  409. switch (MergeOp) {
  410. default:
  411. return false;
  412. case TargetOpcode::G_BUILD_VECTOR:
  413. case TargetOpcode::G_MERGE_VALUES:
  414. // The convert operation that we will need to insert is
  415. // going to convert the input of that type of instruction (scalar)
  416. // to the destination type (DestTy).
  417. // The conversion needs to stay in the same domain (scalar to scalar
  418. // and vector to vector), so if we were to allow to fold the merge
  419. // we would need to insert some bitcasts.
  420. // E.g.,
  421. // <2 x s16> = build_vector s16, s16
  422. // <2 x s32> = zext <2 x s16>
  423. // <2 x s16>, <2 x s16> = unmerge <2 x s32>
  424. //
  425. // As is the folding would produce:
  426. // <2 x s16> = zext s16 <-- scalar to vector
  427. // <2 x s16> = zext s16 <-- scalar to vector
  428. // Which is invalid.
  429. // Instead we would want to generate:
  430. // s32 = zext s16
  431. // <2 x s16> = bitcast s32
  432. // s32 = zext s16
  433. // <2 x s16> = bitcast s32
  434. //
  435. // That is not done yet.
  436. if (ConvertOp == 0)
  437. return true;
  438. return !DestTy.isVector() && OpTy.isVector() &&
  439. DestTy == OpTy.getElementType();
  440. case TargetOpcode::G_CONCAT_VECTORS: {
  441. if (ConvertOp == 0)
  442. return true;
  443. if (!DestTy.isVector())
  444. return false;
  445. const unsigned OpEltSize = OpTy.getElementType().getSizeInBits();
  446. // Don't handle scalarization with a cast that isn't in the same
  447. // direction as the vector cast. This could be handled, but it would
  448. // require more intermediate unmerges.
  449. if (ConvertOp == TargetOpcode::G_TRUNC)
  450. return DestTy.getSizeInBits() <= OpEltSize;
  451. return DestTy.getSizeInBits() >= OpEltSize;
  452. }
  453. }
  454. }
  455. /// Try to replace DstReg with SrcReg or build a COPY instruction
  456. /// depending on the register constraints.
  457. static void replaceRegOrBuildCopy(Register DstReg, Register SrcReg,
  458. MachineRegisterInfo &MRI,
  459. MachineIRBuilder &Builder,
  460. SmallVectorImpl<Register> &UpdatedDefs,
  461. GISelChangeObserver &Observer) {
  462. if (!llvm::canReplaceReg(DstReg, SrcReg, MRI)) {
  463. Builder.buildCopy(DstReg, SrcReg);
  464. UpdatedDefs.push_back(DstReg);
  465. return;
  466. }
  467. SmallVector<MachineInstr *, 4> UseMIs;
  468. // Get the users and notify the observer before replacing.
  469. for (auto &UseMI : MRI.use_instructions(DstReg)) {
  470. UseMIs.push_back(&UseMI);
  471. Observer.changingInstr(UseMI);
  472. }
  473. // Replace the registers.
  474. MRI.replaceRegWith(DstReg, SrcReg);
  475. UpdatedDefs.push_back(SrcReg);
  476. // Notify the observer that we changed the instructions.
  477. for (auto *UseMI : UseMIs)
  478. Observer.changedInstr(*UseMI);
  479. }
  480. /// Return the operand index in \p MI that defines \p Def
  481. static unsigned getDefIndex(const MachineInstr &MI, Register SearchDef) {
  482. unsigned DefIdx = 0;
  483. for (const MachineOperand &Def : MI.defs()) {
  484. if (Def.getReg() == SearchDef)
  485. break;
  486. ++DefIdx;
  487. }
  488. return DefIdx;
  489. }
  490. /// This class provides utilities for finding source registers of specific
  491. /// bit ranges in an artifact. The routines can look through the source
  492. /// registers if they're other artifacts to try to find a non-artifact source
  493. /// of a value.
  494. class ArtifactValueFinder {
  495. MachineRegisterInfo &MRI;
  496. MachineIRBuilder &MIB;
  497. const LegalizerInfo &LI;
  498. // Stores the best register found in the current query so far.
  499. Register CurrentBest = Register();
  500. /// Given an concat_vector op \p Concat and a start bit and size, try to
  501. /// find the origin of the value defined by that start position and size.
  502. ///
  503. /// \returns a register with the requested size, or the current best
  504. /// register found during the current query.
  505. Register findValueFromConcat(GConcatVectors &Concat, unsigned StartBit,
  506. unsigned Size) {
  507. assert(Size > 0);
  508. // Find the source operand that provides the bits requested.
  509. Register Src1Reg = Concat.getSourceReg(0);
  510. unsigned SrcSize = MRI.getType(Src1Reg).getSizeInBits();
  511. // Operand index of the source that provides the start of the bit range.
  512. unsigned StartSrcIdx = (StartBit / SrcSize) + 1;
  513. // Offset into the source at which the bit range starts.
  514. unsigned InRegOffset = StartBit % SrcSize;
  515. // Check that the bits don't span multiple sources.
  516. // FIXME: we might be able return multiple sources? Or create an
  517. // appropriate concat to make it fit.
  518. if (InRegOffset + Size > SrcSize)
  519. return CurrentBest;
  520. Register SrcReg = Concat.getReg(StartSrcIdx);
  521. if (InRegOffset == 0 && Size == SrcSize) {
  522. CurrentBest = SrcReg;
  523. return findValueFromDefImpl(SrcReg, 0, Size);
  524. }
  525. return findValueFromDefImpl(SrcReg, InRegOffset, Size);
  526. }
  527. /// Given an build_vector op \p BV and a start bit and size, try to find
  528. /// the origin of the value defined by that start position and size.
  529. ///
  530. /// \returns a register with the requested size, or the current best
  531. /// register found during the current query.
  532. Register findValueFromBuildVector(GBuildVector &BV, unsigned StartBit,
  533. unsigned Size) {
  534. assert(Size > 0);
  535. // Find the source operand that provides the bits requested.
  536. Register Src1Reg = BV.getSourceReg(0);
  537. unsigned SrcSize = MRI.getType(Src1Reg).getSizeInBits();
  538. // Operand index of the source that provides the start of the bit range.
  539. unsigned StartSrcIdx = (StartBit / SrcSize) + 1;
  540. // Offset into the source at which the bit range starts.
  541. unsigned InRegOffset = StartBit % SrcSize;
  542. if (InRegOffset != 0)
  543. return CurrentBest; // Give up, bits don't start at a scalar source.
  544. if (Size < SrcSize)
  545. return CurrentBest; // Scalar source is too large for requested bits.
  546. // If the bits cover multiple sources evenly, then create a new
  547. // build_vector to synthesize the required size, if that's been requested.
  548. if (Size > SrcSize) {
  549. if (Size % SrcSize > 0)
  550. return CurrentBest; // Isn't covered exactly by sources.
  551. unsigned NumSrcsUsed = Size / SrcSize;
  552. // If we're requesting all of the sources, just return this def.
  553. if (NumSrcsUsed == BV.getNumSources())
  554. return BV.getReg(0);
  555. LLT SrcTy = MRI.getType(Src1Reg);
  556. LLT NewBVTy = LLT::fixed_vector(NumSrcsUsed, SrcTy);
  557. // Check if the resulting build vector would be legal.
  558. LegalizeActionStep ActionStep =
  559. LI.getAction({TargetOpcode::G_BUILD_VECTOR, {NewBVTy, SrcTy}});
  560. if (ActionStep.Action != LegalizeActions::Legal)
  561. return CurrentBest;
  562. SmallVector<Register> NewSrcs;
  563. for (unsigned SrcIdx = StartSrcIdx; SrcIdx < StartSrcIdx + NumSrcsUsed;
  564. ++SrcIdx)
  565. NewSrcs.push_back(BV.getReg(SrcIdx));
  566. MIB.setInstrAndDebugLoc(BV);
  567. return MIB.buildBuildVector(NewBVTy, NewSrcs).getReg(0);
  568. }
  569. // A single source is requested, just return it.
  570. return BV.getReg(StartSrcIdx);
  571. }
  572. /// Given an G_INSERT op \p MI and a start bit and size, try to find
  573. /// the origin of the value defined by that start position and size.
  574. ///
  575. /// \returns a register with the requested size, or the current best
  576. /// register found during the current query.
  577. Register findValueFromInsert(MachineInstr &MI, unsigned StartBit,
  578. unsigned Size) {
  579. assert(MI.getOpcode() == TargetOpcode::G_INSERT);
  580. assert(Size > 0);
  581. Register ContainerSrcReg = MI.getOperand(1).getReg();
  582. Register InsertedReg = MI.getOperand(2).getReg();
  583. LLT InsertedRegTy = MRI.getType(InsertedReg);
  584. unsigned InsertOffset = MI.getOperand(3).getImm();
  585. // There are 4 possible container/insertreg + requested bit-range layouts
  586. // that the instruction and query could be representing.
  587. // For: %_ = G_INSERT %CONTAINER, %INS, InsOff (abbrev. to 'IO')
  588. // and a start bit 'SB', with size S, giving an end bit 'EB', we could
  589. // have...
  590. // Scenario A:
  591. // --------------------------
  592. // | INS | CONTAINER |
  593. // --------------------------
  594. // | |
  595. // SB EB
  596. //
  597. // Scenario B:
  598. // --------------------------
  599. // | INS | CONTAINER |
  600. // --------------------------
  601. // | |
  602. // SB EB
  603. //
  604. // Scenario C:
  605. // --------------------------
  606. // | CONTAINER | INS |
  607. // --------------------------
  608. // | |
  609. // SB EB
  610. //
  611. // Scenario D:
  612. // --------------------------
  613. // | CONTAINER | INS |
  614. // --------------------------
  615. // | |
  616. // SB EB
  617. //
  618. // So therefore, A and D are requesting data from the INS operand, while
  619. // B and C are requesting from the container operand.
  620. unsigned InsertedEndBit = InsertOffset + InsertedRegTy.getSizeInBits();
  621. unsigned EndBit = StartBit + Size;
  622. unsigned NewStartBit;
  623. Register SrcRegToUse;
  624. if (EndBit <= InsertOffset || InsertedEndBit <= StartBit) {
  625. SrcRegToUse = ContainerSrcReg;
  626. NewStartBit = StartBit;
  627. return findValueFromDefImpl(SrcRegToUse, NewStartBit, Size);
  628. }
  629. if (InsertOffset <= StartBit && EndBit <= InsertedEndBit) {
  630. SrcRegToUse = InsertedReg;
  631. NewStartBit = StartBit - InsertOffset;
  632. if (NewStartBit == 0 &&
  633. Size == MRI.getType(SrcRegToUse).getSizeInBits())
  634. CurrentBest = SrcRegToUse;
  635. return findValueFromDefImpl(SrcRegToUse, NewStartBit, Size);
  636. }
  637. // The bit range spans both the inserted and container regions.
  638. return Register();
  639. }
  640. /// Internal implementation for findValueFromDef(). findValueFromDef()
  641. /// initializes some data like the CurrentBest register, which this method
  642. /// and its callees rely upon.
  643. Register findValueFromDefImpl(Register DefReg, unsigned StartBit,
  644. unsigned Size) {
  645. std::optional<DefinitionAndSourceRegister> DefSrcReg =
  646. getDefSrcRegIgnoringCopies(DefReg, MRI);
  647. MachineInstr *Def = DefSrcReg->MI;
  648. DefReg = DefSrcReg->Reg;
  649. // If the instruction has a single def, then simply delegate the search.
  650. // For unmerge however with multiple defs, we need to compute the offset
  651. // into the source of the unmerge.
  652. switch (Def->getOpcode()) {
  653. case TargetOpcode::G_CONCAT_VECTORS:
  654. return findValueFromConcat(cast<GConcatVectors>(*Def), StartBit, Size);
  655. case TargetOpcode::G_UNMERGE_VALUES: {
  656. unsigned DefStartBit = 0;
  657. unsigned DefSize = MRI.getType(DefReg).getSizeInBits();
  658. for (const auto &MO : Def->defs()) {
  659. if (MO.getReg() == DefReg)
  660. break;
  661. DefStartBit += DefSize;
  662. }
  663. Register SrcReg = Def->getOperand(Def->getNumOperands() - 1).getReg();
  664. Register SrcOriginReg =
  665. findValueFromDefImpl(SrcReg, StartBit + DefStartBit, Size);
  666. if (SrcOriginReg)
  667. return SrcOriginReg;
  668. // Failed to find a further value. If the StartBit and Size perfectly
  669. // covered the requested DefReg, return that since it's better than
  670. // nothing.
  671. if (StartBit == 0 && Size == DefSize)
  672. return DefReg;
  673. return CurrentBest;
  674. }
  675. case TargetOpcode::G_BUILD_VECTOR:
  676. return findValueFromBuildVector(cast<GBuildVector>(*Def), StartBit,
  677. Size);
  678. case TargetOpcode::G_INSERT:
  679. return findValueFromInsert(*Def, StartBit, Size);
  680. default:
  681. return CurrentBest;
  682. }
  683. }
  684. public:
  685. ArtifactValueFinder(MachineRegisterInfo &Mri, MachineIRBuilder &Builder,
  686. const LegalizerInfo &Info)
  687. : MRI(Mri), MIB(Builder), LI(Info) {}
  688. /// Try to find a source of the value defined in the def \p DefReg, starting
  689. /// at position \p StartBit with size \p Size.
  690. /// \returns a register with the requested size, or an empty Register if no
  691. /// better value could be found.
  692. Register findValueFromDef(Register DefReg, unsigned StartBit,
  693. unsigned Size) {
  694. CurrentBest = Register();
  695. Register FoundReg = findValueFromDefImpl(DefReg, StartBit, Size);
  696. return FoundReg != DefReg ? FoundReg : Register();
  697. }
  698. /// Try to combine the defs of an unmerge \p MI by attempting to find
  699. /// values that provides the bits for each def reg.
  700. /// \returns true if all the defs of the unmerge have been made dead.
  701. bool tryCombineUnmergeDefs(GUnmerge &MI, GISelChangeObserver &Observer,
  702. SmallVectorImpl<Register> &UpdatedDefs) {
  703. unsigned NumDefs = MI.getNumDefs();
  704. LLT DestTy = MRI.getType(MI.getReg(0));
  705. SmallBitVector DeadDefs(NumDefs);
  706. for (unsigned DefIdx = 0; DefIdx < NumDefs; ++DefIdx) {
  707. Register DefReg = MI.getReg(DefIdx);
  708. if (MRI.use_nodbg_empty(DefReg)) {
  709. DeadDefs[DefIdx] = true;
  710. continue;
  711. }
  712. Register FoundVal = findValueFromDef(DefReg, 0, DestTy.getSizeInBits());
  713. if (!FoundVal)
  714. continue;
  715. if (MRI.getType(FoundVal) != DestTy)
  716. continue;
  717. replaceRegOrBuildCopy(DefReg, FoundVal, MRI, MIB, UpdatedDefs,
  718. Observer);
  719. // We only want to replace the uses, not the def of the old reg.
  720. Observer.changingInstr(MI);
  721. MI.getOperand(DefIdx).setReg(DefReg);
  722. Observer.changedInstr(MI);
  723. DeadDefs[DefIdx] = true;
  724. }
  725. return DeadDefs.all();
  726. }
  727. GUnmerge *findUnmergeThatDefinesReg(Register Reg, unsigned Size,
  728. unsigned &DefOperandIdx) {
  729. if (Register Def = findValueFromDefImpl(Reg, 0, Size)) {
  730. if (auto *Unmerge = dyn_cast<GUnmerge>(MRI.getVRegDef(Def))) {
  731. DefOperandIdx = Unmerge->findRegisterDefOperandIdx(Def);
  732. return Unmerge;
  733. }
  734. }
  735. return nullptr;
  736. }
  737. // Check if sequence of elements from merge-like instruction is defined by
  738. // another sequence of elements defined by unmerge. Most often this is the
  739. // same sequence. Search for elements using findValueFromDefImpl.
  740. bool isSequenceFromUnmerge(GMergeLikeInstr &MI, unsigned MergeStartIdx,
  741. GUnmerge *Unmerge, unsigned UnmergeIdxStart,
  742. unsigned NumElts, unsigned EltSize) {
  743. assert(MergeStartIdx + NumElts <= MI.getNumSources());
  744. for (unsigned i = MergeStartIdx; i < MergeStartIdx + NumElts; ++i) {
  745. unsigned EltUnmergeIdx;
  746. GUnmerge *EltUnmerge = findUnmergeThatDefinesReg(
  747. MI.getSourceReg(i), EltSize, EltUnmergeIdx);
  748. // Check if source i comes from the same Unmerge.
  749. if (!EltUnmerge || EltUnmerge != Unmerge)
  750. return false;
  751. // Check that source i's def has same index in sequence in Unmerge.
  752. if (i - MergeStartIdx != EltUnmergeIdx - UnmergeIdxStart)
  753. return false;
  754. }
  755. return true;
  756. }
  757. bool tryCombineMergeLike(GMergeLikeInstr &MI,
  758. SmallVectorImpl<MachineInstr *> &DeadInsts,
  759. SmallVectorImpl<Register> &UpdatedDefs,
  760. GISelChangeObserver &Observer) {
  761. Register Elt0 = MI.getSourceReg(0);
  762. LLT EltTy = MRI.getType(Elt0);
  763. unsigned EltSize = EltTy.getSizeInBits();
  764. unsigned Elt0UnmergeIdx;
  765. // Search for unmerge that will be candidate for combine.
  766. auto *Unmerge = findUnmergeThatDefinesReg(Elt0, EltSize, Elt0UnmergeIdx);
  767. if (!Unmerge)
  768. return false;
  769. unsigned NumMIElts = MI.getNumSources();
  770. Register Dst = MI.getReg(0);
  771. LLT DstTy = MRI.getType(Dst);
  772. Register UnmergeSrc = Unmerge->getSourceReg();
  773. LLT UnmergeSrcTy = MRI.getType(UnmergeSrc);
  774. // Recognize copy of UnmergeSrc to Dst.
  775. // Unmerge UnmergeSrc and reassemble it using merge-like opcode into Dst.
  776. //
  777. // %0:_(EltTy), %1, ... = G_UNMERGE_VALUES %UnmergeSrc:_(Ty)
  778. // %Dst:_(Ty) = G_merge_like_opcode %0:_(EltTy), %1, ...
  779. //
  780. // %Dst:_(Ty) = COPY %UnmergeSrc:_(Ty)
  781. if ((DstTy == UnmergeSrcTy) && (Elt0UnmergeIdx == 0)) {
  782. if (!isSequenceFromUnmerge(MI, 0, Unmerge, 0, NumMIElts, EltSize))
  783. return false;
  784. replaceRegOrBuildCopy(Dst, UnmergeSrc, MRI, MIB, UpdatedDefs, Observer);
  785. DeadInsts.push_back(&MI);
  786. return true;
  787. }
  788. // Recognize UnmergeSrc that can be unmerged to DstTy directly.
  789. // Types have to be either both vector or both non-vector types.
  790. // Merge-like opcodes are combined one at the time. First one creates new
  791. // unmerge, following should use the same unmerge (builder performs CSE).
  792. //
  793. // %0:_(EltTy), %1, %2, %3 = G_UNMERGE_VALUES %UnmergeSrc:_(UnmergeSrcTy)
  794. // %Dst:_(DstTy) = G_merge_like_opcode %0:_(EltTy), %1
  795. // %AnotherDst:_(DstTy) = G_merge_like_opcode %2:_(EltTy), %3
  796. //
  797. // %Dst:_(DstTy), %AnotherDst = G_UNMERGE_VALUES %UnmergeSrc
  798. if ((DstTy.isVector() == UnmergeSrcTy.isVector()) &&
  799. (Elt0UnmergeIdx % NumMIElts == 0) &&
  800. getCoverTy(UnmergeSrcTy, DstTy) == UnmergeSrcTy) {
  801. if (!isSequenceFromUnmerge(MI, 0, Unmerge, Elt0UnmergeIdx, NumMIElts,
  802. EltSize))
  803. return false;
  804. MIB.setInstrAndDebugLoc(MI);
  805. auto NewUnmerge = MIB.buildUnmerge(DstTy, Unmerge->getSourceReg());
  806. unsigned DstIdx = (Elt0UnmergeIdx * EltSize) / DstTy.getSizeInBits();
  807. replaceRegOrBuildCopy(Dst, NewUnmerge.getReg(DstIdx), MRI, MIB,
  808. UpdatedDefs, Observer);
  809. DeadInsts.push_back(&MI);
  810. return true;
  811. }
  812. // Recognize when multiple unmerged sources with UnmergeSrcTy type
  813. // can be merged into Dst with DstTy type directly.
  814. // Types have to be either both vector or both non-vector types.
  815. // %0:_(EltTy), %1 = G_UNMERGE_VALUES %UnmergeSrc:_(UnmergeSrcTy)
  816. // %2:_(EltTy), %3 = G_UNMERGE_VALUES %AnotherUnmergeSrc:_(UnmergeSrcTy)
  817. // %Dst:_(DstTy) = G_merge_like_opcode %0:_(EltTy), %1, %2, %3
  818. //
  819. // %Dst:_(DstTy) = G_merge_like_opcode %UnmergeSrc, %AnotherUnmergeSrc
  820. if ((DstTy.isVector() == UnmergeSrcTy.isVector()) &&
  821. getCoverTy(DstTy, UnmergeSrcTy) == DstTy) {
  822. SmallVector<Register, 4> ConcatSources;
  823. unsigned NumElts = Unmerge->getNumDefs();
  824. for (unsigned i = 0; i < MI.getNumSources(); i += NumElts) {
  825. unsigned EltUnmergeIdx;
  826. auto *UnmergeI = findUnmergeThatDefinesReg(MI.getSourceReg(i),
  827. EltSize, EltUnmergeIdx);
  828. // All unmerges have to be the same size.
  829. if ((!UnmergeI) || (UnmergeI->getNumDefs() != NumElts) ||
  830. (EltUnmergeIdx != 0))
  831. return false;
  832. if (!isSequenceFromUnmerge(MI, i, UnmergeI, 0, NumElts, EltSize))
  833. return false;
  834. ConcatSources.push_back(UnmergeI->getSourceReg());
  835. }
  836. MIB.setInstrAndDebugLoc(MI);
  837. MIB.buildMergeLikeInstr(Dst, ConcatSources);
  838. DeadInsts.push_back(&MI);
  839. return true;
  840. }
  841. return false;
  842. }
  843. };
  844. bool tryCombineUnmergeValues(GUnmerge &MI,
  845. SmallVectorImpl<MachineInstr *> &DeadInsts,
  846. SmallVectorImpl<Register> &UpdatedDefs,
  847. GISelChangeObserver &Observer) {
  848. unsigned NumDefs = MI.getNumDefs();
  849. Register SrcReg = MI.getSourceReg();
  850. MachineInstr *SrcDef = getDefIgnoringCopies(SrcReg, MRI);
  851. if (!SrcDef)
  852. return false;
  853. LLT OpTy = MRI.getType(SrcReg);
  854. LLT DestTy = MRI.getType(MI.getReg(0));
  855. unsigned SrcDefIdx = getDefIndex(*SrcDef, SrcReg);
  856. Builder.setInstrAndDebugLoc(MI);
  857. ArtifactValueFinder Finder(MRI, Builder, LI);
  858. if (Finder.tryCombineUnmergeDefs(MI, Observer, UpdatedDefs)) {
  859. markInstAndDefDead(MI, *SrcDef, DeadInsts, SrcDefIdx);
  860. return true;
  861. }
  862. if (auto *SrcUnmerge = dyn_cast<GUnmerge>(SrcDef)) {
  863. // %0:_(<4 x s16>) = G_FOO
  864. // %1:_(<2 x s16>), %2:_(<2 x s16>) = G_UNMERGE_VALUES %0
  865. // %3:_(s16), %4:_(s16) = G_UNMERGE_VALUES %1
  866. //
  867. // %3:_(s16), %4:_(s16), %5:_(s16), %6:_(s16) = G_UNMERGE_VALUES %0
  868. Register SrcUnmergeSrc = SrcUnmerge->getSourceReg();
  869. LLT SrcUnmergeSrcTy = MRI.getType(SrcUnmergeSrc);
  870. // If we need to decrease the number of vector elements in the result type
  871. // of an unmerge, this would involve the creation of an equivalent unmerge
  872. // to copy back to the original result registers.
  873. LegalizeActionStep ActionStep = LI.getAction(
  874. {TargetOpcode::G_UNMERGE_VALUES, {OpTy, SrcUnmergeSrcTy}});
  875. switch (ActionStep.Action) {
  876. case LegalizeActions::Lower:
  877. case LegalizeActions::Unsupported:
  878. break;
  879. case LegalizeActions::FewerElements:
  880. case LegalizeActions::NarrowScalar:
  881. if (ActionStep.TypeIdx == 1)
  882. return false;
  883. break;
  884. default:
  885. return false;
  886. }
  887. auto NewUnmerge = Builder.buildUnmerge(DestTy, SrcUnmergeSrc);
  888. // TODO: Should we try to process out the other defs now? If the other
  889. // defs of the source unmerge are also unmerged, we end up with a separate
  890. // unmerge for each one.
  891. for (unsigned I = 0; I != NumDefs; ++I) {
  892. Register Def = MI.getReg(I);
  893. replaceRegOrBuildCopy(Def, NewUnmerge.getReg(SrcDefIdx * NumDefs + I),
  894. MRI, Builder, UpdatedDefs, Observer);
  895. }
  896. markInstAndDefDead(MI, *SrcUnmerge, DeadInsts, SrcDefIdx);
  897. return true;
  898. }
  899. MachineInstr *MergeI = SrcDef;
  900. unsigned ConvertOp = 0;
  901. // Handle intermediate conversions
  902. unsigned SrcOp = SrcDef->getOpcode();
  903. if (isArtifactCast(SrcOp)) {
  904. ConvertOp = SrcOp;
  905. MergeI = getDefIgnoringCopies(SrcDef->getOperand(1).getReg(), MRI);
  906. }
  907. if (!MergeI || !canFoldMergeOpcode(MergeI->getOpcode(),
  908. ConvertOp, OpTy, DestTy)) {
  909. // We might have a chance to combine later by trying to combine
  910. // unmerge(cast) first
  911. return tryFoldUnmergeCast(MI, *SrcDef, DeadInsts, UpdatedDefs);
  912. }
  913. const unsigned NumMergeRegs = MergeI->getNumOperands() - 1;
  914. if (NumMergeRegs < NumDefs) {
  915. if (NumDefs % NumMergeRegs != 0)
  916. return false;
  917. Builder.setInstr(MI);
  918. // Transform to UNMERGEs, for example
  919. // %1 = G_MERGE_VALUES %4, %5
  920. // %9, %10, %11, %12 = G_UNMERGE_VALUES %1
  921. // to
  922. // %9, %10 = G_UNMERGE_VALUES %4
  923. // %11, %12 = G_UNMERGE_VALUES %5
  924. const unsigned NewNumDefs = NumDefs / NumMergeRegs;
  925. for (unsigned Idx = 0; Idx < NumMergeRegs; ++Idx) {
  926. SmallVector<Register, 8> DstRegs;
  927. for (unsigned j = 0, DefIdx = Idx * NewNumDefs; j < NewNumDefs;
  928. ++j, ++DefIdx)
  929. DstRegs.push_back(MI.getReg(DefIdx));
  930. if (ConvertOp) {
  931. LLT MergeSrcTy = MRI.getType(MergeI->getOperand(1).getReg());
  932. // This is a vector that is being split and casted. Extract to the
  933. // element type, and do the conversion on the scalars (or smaller
  934. // vectors).
  935. LLT MergeEltTy = MergeSrcTy.divide(NewNumDefs);
  936. // Handle split to smaller vectors, with conversions.
  937. // %2(<8 x s8>) = G_CONCAT_VECTORS %0(<4 x s8>), %1(<4 x s8>)
  938. // %3(<8 x s16>) = G_SEXT %2
  939. // %4(<2 x s16>), %5(<2 x s16>), %6(<2 x s16>), %7(<2 x s16>) = G_UNMERGE_VALUES %3
  940. //
  941. // =>
  942. //
  943. // %8(<2 x s8>), %9(<2 x s8>) = G_UNMERGE_VALUES %0
  944. // %10(<2 x s8>), %11(<2 x s8>) = G_UNMERGE_VALUES %1
  945. // %4(<2 x s16>) = G_SEXT %8
  946. // %5(<2 x s16>) = G_SEXT %9
  947. // %6(<2 x s16>) = G_SEXT %10
  948. // %7(<2 x s16>)= G_SEXT %11
  949. SmallVector<Register, 4> TmpRegs(NewNumDefs);
  950. for (unsigned k = 0; k < NewNumDefs; ++k)
  951. TmpRegs[k] = MRI.createGenericVirtualRegister(MergeEltTy);
  952. Builder.buildUnmerge(TmpRegs, MergeI->getOperand(Idx + 1).getReg());
  953. for (unsigned k = 0; k < NewNumDefs; ++k)
  954. Builder.buildInstr(ConvertOp, {DstRegs[k]}, {TmpRegs[k]});
  955. } else {
  956. Builder.buildUnmerge(DstRegs, MergeI->getOperand(Idx + 1).getReg());
  957. }
  958. UpdatedDefs.append(DstRegs.begin(), DstRegs.end());
  959. }
  960. } else if (NumMergeRegs > NumDefs) {
  961. if (ConvertOp != 0 || NumMergeRegs % NumDefs != 0)
  962. return false;
  963. Builder.setInstr(MI);
  964. // Transform to MERGEs
  965. // %6 = G_MERGE_VALUES %17, %18, %19, %20
  966. // %7, %8 = G_UNMERGE_VALUES %6
  967. // to
  968. // %7 = G_MERGE_VALUES %17, %18
  969. // %8 = G_MERGE_VALUES %19, %20
  970. const unsigned NumRegs = NumMergeRegs / NumDefs;
  971. for (unsigned DefIdx = 0; DefIdx < NumDefs; ++DefIdx) {
  972. SmallVector<Register, 8> Regs;
  973. for (unsigned j = 0, Idx = NumRegs * DefIdx + 1; j < NumRegs;
  974. ++j, ++Idx)
  975. Regs.push_back(MergeI->getOperand(Idx).getReg());
  976. Register DefReg = MI.getReg(DefIdx);
  977. Builder.buildMergeLikeInstr(DefReg, Regs);
  978. UpdatedDefs.push_back(DefReg);
  979. }
  980. } else {
  981. LLT MergeSrcTy = MRI.getType(MergeI->getOperand(1).getReg());
  982. if (!ConvertOp && DestTy != MergeSrcTy)
  983. ConvertOp = TargetOpcode::G_BITCAST;
  984. if (ConvertOp) {
  985. Builder.setInstr(MI);
  986. for (unsigned Idx = 0; Idx < NumDefs; ++Idx) {
  987. Register DefReg = MI.getOperand(Idx).getReg();
  988. Register MergeSrc = MergeI->getOperand(Idx + 1).getReg();
  989. if (!MRI.use_empty(DefReg)) {
  990. Builder.buildInstr(ConvertOp, {DefReg}, {MergeSrc});
  991. UpdatedDefs.push_back(DefReg);
  992. }
  993. }
  994. markInstAndDefDead(MI, *MergeI, DeadInsts);
  995. return true;
  996. }
  997. assert(DestTy == MergeSrcTy &&
  998. "Bitcast and the other kinds of conversions should "
  999. "have happened earlier");
  1000. Builder.setInstr(MI);
  1001. for (unsigned Idx = 0; Idx < NumDefs; ++Idx) {
  1002. Register DstReg = MI.getOperand(Idx).getReg();
  1003. Register SrcReg = MergeI->getOperand(Idx + 1).getReg();
  1004. replaceRegOrBuildCopy(DstReg, SrcReg, MRI, Builder, UpdatedDefs,
  1005. Observer);
  1006. }
  1007. }
  1008. markInstAndDefDead(MI, *MergeI, DeadInsts);
  1009. return true;
  1010. }
  1011. bool tryCombineExtract(MachineInstr &MI,
  1012. SmallVectorImpl<MachineInstr *> &DeadInsts,
  1013. SmallVectorImpl<Register> &UpdatedDefs) {
  1014. assert(MI.getOpcode() == TargetOpcode::G_EXTRACT);
  1015. // Try to use the source registers from a G_MERGE_VALUES
  1016. //
  1017. // %2 = G_MERGE_VALUES %0, %1
  1018. // %3 = G_EXTRACT %2, N
  1019. // =>
  1020. //
  1021. // for N < %2.getSizeInBits() / 2
  1022. // %3 = G_EXTRACT %0, N
  1023. //
  1024. // for N >= %2.getSizeInBits() / 2
  1025. // %3 = G_EXTRACT %1, (N - %0.getSizeInBits()
  1026. Register SrcReg = lookThroughCopyInstrs(MI.getOperand(1).getReg());
  1027. MachineInstr *MergeI = MRI.getVRegDef(SrcReg);
  1028. if (!MergeI || !isa<GMergeLikeInstr>(MergeI))
  1029. return false;
  1030. Register DstReg = MI.getOperand(0).getReg();
  1031. LLT DstTy = MRI.getType(DstReg);
  1032. LLT SrcTy = MRI.getType(SrcReg);
  1033. // TODO: Do we need to check if the resulting extract is supported?
  1034. unsigned ExtractDstSize = DstTy.getSizeInBits();
  1035. unsigned Offset = MI.getOperand(2).getImm();
  1036. unsigned NumMergeSrcs = MergeI->getNumOperands() - 1;
  1037. unsigned MergeSrcSize = SrcTy.getSizeInBits() / NumMergeSrcs;
  1038. unsigned MergeSrcIdx = Offset / MergeSrcSize;
  1039. // Compute the offset of the last bit the extract needs.
  1040. unsigned EndMergeSrcIdx = (Offset + ExtractDstSize - 1) / MergeSrcSize;
  1041. // Can't handle the case where the extract spans multiple inputs.
  1042. if (MergeSrcIdx != EndMergeSrcIdx)
  1043. return false;
  1044. // TODO: We could modify MI in place in most cases.
  1045. Builder.setInstr(MI);
  1046. Builder.buildExtract(DstReg, MergeI->getOperand(MergeSrcIdx + 1).getReg(),
  1047. Offset - MergeSrcIdx * MergeSrcSize);
  1048. UpdatedDefs.push_back(DstReg);
  1049. markInstAndDefDead(MI, *MergeI, DeadInsts);
  1050. return true;
  1051. }
  1052. /// Try to combine away MI.
  1053. /// Returns true if it combined away the MI.
  1054. /// Adds instructions that are dead as a result of the combine
  1055. /// into DeadInsts, which can include MI.
  1056. bool tryCombineInstruction(MachineInstr &MI,
  1057. SmallVectorImpl<MachineInstr *> &DeadInsts,
  1058. GISelObserverWrapper &WrapperObserver) {
  1059. ArtifactValueFinder Finder(MRI, Builder, LI);
  1060. // This might be a recursive call, and we might have DeadInsts already
  1061. // populated. To avoid bad things happening later with multiple vreg defs
  1062. // etc, process the dead instructions now if any.
  1063. if (!DeadInsts.empty())
  1064. deleteMarkedDeadInsts(DeadInsts, WrapperObserver);
  1065. // Put here every vreg that was redefined in such a way that it's at least
  1066. // possible that one (or more) of its users (immediate or COPY-separated)
  1067. // could become artifact combinable with the new definition (or the
  1068. // instruction reachable from it through a chain of copies if any).
  1069. SmallVector<Register, 4> UpdatedDefs;
  1070. bool Changed = false;
  1071. switch (MI.getOpcode()) {
  1072. default:
  1073. return false;
  1074. case TargetOpcode::G_ANYEXT:
  1075. Changed = tryCombineAnyExt(MI, DeadInsts, UpdatedDefs, WrapperObserver);
  1076. break;
  1077. case TargetOpcode::G_ZEXT:
  1078. Changed = tryCombineZExt(MI, DeadInsts, UpdatedDefs, WrapperObserver);
  1079. break;
  1080. case TargetOpcode::G_SEXT:
  1081. Changed = tryCombineSExt(MI, DeadInsts, UpdatedDefs);
  1082. break;
  1083. case TargetOpcode::G_UNMERGE_VALUES:
  1084. Changed = tryCombineUnmergeValues(cast<GUnmerge>(MI), DeadInsts,
  1085. UpdatedDefs, WrapperObserver);
  1086. break;
  1087. case TargetOpcode::G_MERGE_VALUES:
  1088. case TargetOpcode::G_BUILD_VECTOR:
  1089. case TargetOpcode::G_CONCAT_VECTORS:
  1090. // If any of the users of this merge are an unmerge, then add them to the
  1091. // artifact worklist in case there's folding that can be done looking up.
  1092. for (MachineInstr &U : MRI.use_instructions(MI.getOperand(0).getReg())) {
  1093. if (U.getOpcode() == TargetOpcode::G_UNMERGE_VALUES ||
  1094. U.getOpcode() == TargetOpcode::G_TRUNC) {
  1095. UpdatedDefs.push_back(MI.getOperand(0).getReg());
  1096. break;
  1097. }
  1098. }
  1099. Changed = Finder.tryCombineMergeLike(cast<GMergeLikeInstr>(MI), DeadInsts,
  1100. UpdatedDefs, WrapperObserver);
  1101. break;
  1102. case TargetOpcode::G_EXTRACT:
  1103. Changed = tryCombineExtract(MI, DeadInsts, UpdatedDefs);
  1104. break;
  1105. case TargetOpcode::G_TRUNC:
  1106. Changed = tryCombineTrunc(MI, DeadInsts, UpdatedDefs, WrapperObserver);
  1107. if (!Changed) {
  1108. // Try to combine truncates away even if they are legal. As all artifact
  1109. // combines at the moment look only "up" the def-use chains, we achieve
  1110. // that by throwing truncates' users (with look through copies) into the
  1111. // ArtifactList again.
  1112. UpdatedDefs.push_back(MI.getOperand(0).getReg());
  1113. }
  1114. break;
  1115. }
  1116. // If the main loop through the ArtifactList found at least one combinable
  1117. // pair of artifacts, not only combine it away (as done above), but also
  1118. // follow the def-use chain from there to combine everything that can be
  1119. // combined within this def-use chain of artifacts.
  1120. while (!UpdatedDefs.empty()) {
  1121. Register NewDef = UpdatedDefs.pop_back_val();
  1122. assert(NewDef.isVirtual() && "Unexpected redefinition of a physreg");
  1123. for (MachineInstr &Use : MRI.use_instructions(NewDef)) {
  1124. switch (Use.getOpcode()) {
  1125. // Keep this list in sync with the list of all artifact combines.
  1126. case TargetOpcode::G_ANYEXT:
  1127. case TargetOpcode::G_ZEXT:
  1128. case TargetOpcode::G_SEXT:
  1129. case TargetOpcode::G_UNMERGE_VALUES:
  1130. case TargetOpcode::G_EXTRACT:
  1131. case TargetOpcode::G_TRUNC:
  1132. case TargetOpcode::G_BUILD_VECTOR:
  1133. // Adding Use to ArtifactList.
  1134. WrapperObserver.changedInstr(Use);
  1135. break;
  1136. case TargetOpcode::COPY: {
  1137. Register Copy = Use.getOperand(0).getReg();
  1138. if (Copy.isVirtual())
  1139. UpdatedDefs.push_back(Copy);
  1140. break;
  1141. }
  1142. default:
  1143. // If we do not have an artifact combine for the opcode, there is no
  1144. // point in adding it to the ArtifactList as nothing interesting will
  1145. // be done to it anyway.
  1146. break;
  1147. }
  1148. }
  1149. }
  1150. return Changed;
  1151. }
  1152. private:
  1153. static Register getArtifactSrcReg(const MachineInstr &MI) {
  1154. switch (MI.getOpcode()) {
  1155. case TargetOpcode::COPY:
  1156. case TargetOpcode::G_TRUNC:
  1157. case TargetOpcode::G_ZEXT:
  1158. case TargetOpcode::G_ANYEXT:
  1159. case TargetOpcode::G_SEXT:
  1160. case TargetOpcode::G_EXTRACT:
  1161. return MI.getOperand(1).getReg();
  1162. case TargetOpcode::G_UNMERGE_VALUES:
  1163. return MI.getOperand(MI.getNumOperands() - 1).getReg();
  1164. default:
  1165. llvm_unreachable("Not a legalization artifact happen");
  1166. }
  1167. }
  1168. /// Mark a def of one of MI's original operands, DefMI, as dead if changing MI
  1169. /// (either by killing it or changing operands) results in DefMI being dead
  1170. /// too. In-between COPYs or artifact-casts are also collected if they are
  1171. /// dead.
  1172. /// MI is not marked dead.
  1173. void markDefDead(MachineInstr &MI, MachineInstr &DefMI,
  1174. SmallVectorImpl<MachineInstr *> &DeadInsts,
  1175. unsigned DefIdx = 0) {
  1176. // Collect all the copy instructions that are made dead, due to deleting
  1177. // this instruction. Collect all of them until the Trunc(DefMI).
  1178. // Eg,
  1179. // %1(s1) = G_TRUNC %0(s32)
  1180. // %2(s1) = COPY %1(s1)
  1181. // %3(s1) = COPY %2(s1)
  1182. // %4(s32) = G_ANYEXT %3(s1)
  1183. // In this case, we would have replaced %4 with a copy of %0,
  1184. // and as a result, %3, %2, %1 are dead.
  1185. MachineInstr *PrevMI = &MI;
  1186. while (PrevMI != &DefMI) {
  1187. Register PrevRegSrc = getArtifactSrcReg(*PrevMI);
  1188. MachineInstr *TmpDef = MRI.getVRegDef(PrevRegSrc);
  1189. if (MRI.hasOneUse(PrevRegSrc)) {
  1190. if (TmpDef != &DefMI) {
  1191. assert((TmpDef->getOpcode() == TargetOpcode::COPY ||
  1192. isArtifactCast(TmpDef->getOpcode())) &&
  1193. "Expecting copy or artifact cast here");
  1194. DeadInsts.push_back(TmpDef);
  1195. }
  1196. } else
  1197. break;
  1198. PrevMI = TmpDef;
  1199. }
  1200. if (PrevMI == &DefMI) {
  1201. unsigned I = 0;
  1202. bool IsDead = true;
  1203. for (MachineOperand &Def : DefMI.defs()) {
  1204. if (I != DefIdx) {
  1205. if (!MRI.use_empty(Def.getReg())) {
  1206. IsDead = false;
  1207. break;
  1208. }
  1209. } else {
  1210. if (!MRI.hasOneUse(DefMI.getOperand(DefIdx).getReg()))
  1211. break;
  1212. }
  1213. ++I;
  1214. }
  1215. if (IsDead)
  1216. DeadInsts.push_back(&DefMI);
  1217. }
  1218. }
  1219. /// Mark MI as dead. If a def of one of MI's operands, DefMI, would also be
  1220. /// dead due to MI being killed, then mark DefMI as dead too.
  1221. /// Some of the combines (extends(trunc)), try to walk through redundant
  1222. /// copies in between the extends and the truncs, and this attempts to collect
  1223. /// the in between copies if they're dead.
  1224. void markInstAndDefDead(MachineInstr &MI, MachineInstr &DefMI,
  1225. SmallVectorImpl<MachineInstr *> &DeadInsts,
  1226. unsigned DefIdx = 0) {
  1227. DeadInsts.push_back(&MI);
  1228. markDefDead(MI, DefMI, DeadInsts, DefIdx);
  1229. }
  1230. /// Erase the dead instructions in the list and call the observer hooks.
  1231. /// Normally the Legalizer will deal with erasing instructions that have been
  1232. /// marked dead. However, for the trunc(ext(x)) cases we can end up trying to
  1233. /// process instructions which have been marked dead, but otherwise break the
  1234. /// MIR by introducing multiple vreg defs. For those cases, allow the combines
  1235. /// to explicitly delete the instructions before we run into trouble.
  1236. void deleteMarkedDeadInsts(SmallVectorImpl<MachineInstr *> &DeadInsts,
  1237. GISelObserverWrapper &WrapperObserver) {
  1238. for (auto *DeadMI : DeadInsts) {
  1239. LLVM_DEBUG(dbgs() << *DeadMI << "Is dead, eagerly deleting\n");
  1240. WrapperObserver.erasingInstr(*DeadMI);
  1241. DeadMI->eraseFromParent();
  1242. }
  1243. DeadInsts.clear();
  1244. }
  1245. /// Checks if the target legalizer info has specified anything about the
  1246. /// instruction, or if unsupported.
  1247. bool isInstUnsupported(const LegalityQuery &Query) const {
  1248. using namespace LegalizeActions;
  1249. auto Step = LI.getAction(Query);
  1250. return Step.Action == Unsupported || Step.Action == NotFound;
  1251. }
  1252. bool isInstLegal(const LegalityQuery &Query) const {
  1253. return LI.getAction(Query).Action == LegalizeActions::Legal;
  1254. }
  1255. bool isConstantUnsupported(LLT Ty) const {
  1256. if (!Ty.isVector())
  1257. return isInstUnsupported({TargetOpcode::G_CONSTANT, {Ty}});
  1258. LLT EltTy = Ty.getElementType();
  1259. return isInstUnsupported({TargetOpcode::G_CONSTANT, {EltTy}}) ||
  1260. isInstUnsupported({TargetOpcode::G_BUILD_VECTOR, {Ty, EltTy}});
  1261. }
  1262. /// Looks through copy instructions and returns the actual
  1263. /// source register.
  1264. Register lookThroughCopyInstrs(Register Reg) {
  1265. using namespace llvm::MIPatternMatch;
  1266. Register TmpReg;
  1267. while (mi_match(Reg, MRI, m_Copy(m_Reg(TmpReg)))) {
  1268. if (MRI.getType(TmpReg).isValid())
  1269. Reg = TmpReg;
  1270. else
  1271. break;
  1272. }
  1273. return Reg;
  1274. }
  1275. };
  1276. } // namespace llvm
  1277. #endif // LLVM_CODEGEN_GLOBALISEL_LEGALIZATIONARTIFACTCOMBINER_H
  1278. #ifdef __GNUC__
  1279. #pragma GCC diagnostic pop
  1280. #endif