123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478 |
- #pragma once
- #ifdef __GNUC__
- #pragma GCC diagnostic push
- #pragma GCC diagnostic ignored "-Wunused-parameter"
- #endif
- //===- BasicTTIImpl.h -------------------------------------------*- C++ -*-===//
- //
- // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
- // See https://llvm.org/LICENSE.txt for license information.
- // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
- //
- //===----------------------------------------------------------------------===//
- //
- /// \file
- /// This file provides a helper that implements much of the TTI interface in
- /// terms of the target-independent code generator and TargetLowering
- /// interfaces.
- //
- //===----------------------------------------------------------------------===//
- #ifndef LLVM_CODEGEN_BASICTTIIMPL_H
- #define LLVM_CODEGEN_BASICTTIIMPL_H
- #include "llvm/ADT/APInt.h"
- #include "llvm/ADT/ArrayRef.h"
- #include "llvm/ADT/BitVector.h"
- #include "llvm/ADT/SmallPtrSet.h"
- #include "llvm/ADT/SmallVector.h"
- #include "llvm/Analysis/LoopInfo.h"
- #include "llvm/Analysis/OptimizationRemarkEmitter.h"
- #include "llvm/Analysis/TargetTransformInfo.h"
- #include "llvm/Analysis/TargetTransformInfoImpl.h"
- #include "llvm/CodeGen/ISDOpcodes.h"
- #include "llvm/CodeGen/TargetLowering.h"
- #include "llvm/CodeGen/TargetSubtargetInfo.h"
- #include "llvm/CodeGen/ValueTypes.h"
- #include "llvm/IR/BasicBlock.h"
- #include "llvm/IR/Constant.h"
- #include "llvm/IR/Constants.h"
- #include "llvm/IR/DataLayout.h"
- #include "llvm/IR/DerivedTypes.h"
- #include "llvm/IR/InstrTypes.h"
- #include "llvm/IR/Instruction.h"
- #include "llvm/IR/Instructions.h"
- #include "llvm/IR/Intrinsics.h"
- #include "llvm/IR/Operator.h"
- #include "llvm/IR/Type.h"
- #include "llvm/IR/Value.h"
- #include "llvm/Support/Casting.h"
- #include "llvm/Support/CommandLine.h"
- #include "llvm/Support/ErrorHandling.h"
- #include "llvm/Support/MachineValueType.h"
- #include "llvm/Support/MathExtras.h"
- #include "llvm/Target/TargetMachine.h"
- #include "llvm/Target/TargetOptions.h"
- #include <algorithm>
- #include <cassert>
- #include <cstdint>
- #include <limits>
- #include <optional>
- #include <utility>
- namespace llvm {
- class Function;
- class GlobalValue;
- class LLVMContext;
- class ScalarEvolution;
- class SCEV;
- class TargetMachine;
- extern cl::opt<unsigned> PartialUnrollingThreshold;
- /// Base class which can be used to help build a TTI implementation.
- ///
- /// This class provides as much implementation of the TTI interface as is
- /// possible using the target independent parts of the code generator.
- ///
- /// In order to subclass it, your class must implement a getST() method to
- /// return the subtarget, and a getTLI() method to return the target lowering.
- /// We need these methods implemented in the derived class so that this class
- /// doesn't have to duplicate storage for them.
- template <typename T>
- class BasicTTIImplBase : public TargetTransformInfoImplCRTPBase<T> {
- private:
- using BaseT = TargetTransformInfoImplCRTPBase<T>;
- using TTI = TargetTransformInfo;
- /// Helper function to access this as a T.
- T *thisT() { return static_cast<T *>(this); }
- /// Estimate a cost of Broadcast as an extract and sequence of insert
- /// operations.
- InstructionCost getBroadcastShuffleOverhead(FixedVectorType *VTy,
- TTI::TargetCostKind CostKind) {
- InstructionCost Cost = 0;
- // Broadcast cost is equal to the cost of extracting the zero'th element
- // plus the cost of inserting it into every element of the result vector.
- Cost += thisT()->getVectorInstrCost(Instruction::ExtractElement, VTy,
- CostKind, 0, nullptr, nullptr);
- for (int i = 0, e = VTy->getNumElements(); i < e; ++i) {
- Cost += thisT()->getVectorInstrCost(Instruction::InsertElement, VTy,
- CostKind, i, nullptr, nullptr);
- }
- return Cost;
- }
- /// Estimate a cost of shuffle as a sequence of extract and insert
- /// operations.
- InstructionCost getPermuteShuffleOverhead(FixedVectorType *VTy,
- TTI::TargetCostKind CostKind) {
- InstructionCost Cost = 0;
- // Shuffle cost is equal to the cost of extracting element from its argument
- // plus the cost of inserting them onto the result vector.
- // e.g. <4 x float> has a mask of <0,5,2,7> i.e we need to extract from
- // index 0 of first vector, index 1 of second vector,index 2 of first
- // vector and finally index 3 of second vector and insert them at index
- // <0,1,2,3> of result vector.
- for (int i = 0, e = VTy->getNumElements(); i < e; ++i) {
- Cost += thisT()->getVectorInstrCost(Instruction::InsertElement, VTy,
- CostKind, i, nullptr, nullptr);
- Cost += thisT()->getVectorInstrCost(Instruction::ExtractElement, VTy,
- CostKind, i, nullptr, nullptr);
- }
- return Cost;
- }
- /// Estimate a cost of subvector extraction as a sequence of extract and
- /// insert operations.
- InstructionCost getExtractSubvectorOverhead(VectorType *VTy,
- TTI::TargetCostKind CostKind,
- int Index,
- FixedVectorType *SubVTy) {
- assert(VTy && SubVTy &&
- "Can only extract subvectors from vectors");
- int NumSubElts = SubVTy->getNumElements();
- assert((!isa<FixedVectorType>(VTy) ||
- (Index + NumSubElts) <=
- (int)cast<FixedVectorType>(VTy)->getNumElements()) &&
- "SK_ExtractSubvector index out of range");
- InstructionCost Cost = 0;
- // Subvector extraction cost is equal to the cost of extracting element from
- // the source type plus the cost of inserting them into the result vector
- // type.
- for (int i = 0; i != NumSubElts; ++i) {
- Cost +=
- thisT()->getVectorInstrCost(Instruction::ExtractElement, VTy,
- CostKind, i + Index, nullptr, nullptr);
- Cost += thisT()->getVectorInstrCost(Instruction::InsertElement, SubVTy,
- CostKind, i, nullptr, nullptr);
- }
- return Cost;
- }
- /// Estimate a cost of subvector insertion as a sequence of extract and
- /// insert operations.
- InstructionCost getInsertSubvectorOverhead(VectorType *VTy,
- TTI::TargetCostKind CostKind,
- int Index,
- FixedVectorType *SubVTy) {
- assert(VTy && SubVTy &&
- "Can only insert subvectors into vectors");
- int NumSubElts = SubVTy->getNumElements();
- assert((!isa<FixedVectorType>(VTy) ||
- (Index + NumSubElts) <=
- (int)cast<FixedVectorType>(VTy)->getNumElements()) &&
- "SK_InsertSubvector index out of range");
- InstructionCost Cost = 0;
- // Subvector insertion cost is equal to the cost of extracting element from
- // the source type plus the cost of inserting them into the result vector
- // type.
- for (int i = 0; i != NumSubElts; ++i) {
- Cost += thisT()->getVectorInstrCost(Instruction::ExtractElement, SubVTy,
- CostKind, i, nullptr, nullptr);
- Cost +=
- thisT()->getVectorInstrCost(Instruction::InsertElement, VTy, CostKind,
- i + Index, nullptr, nullptr);
- }
- return Cost;
- }
- /// Local query method delegates up to T which *must* implement this!
- const TargetSubtargetInfo *getST() const {
- return static_cast<const T *>(this)->getST();
- }
- /// Local query method delegates up to T which *must* implement this!
- const TargetLoweringBase *getTLI() const {
- return static_cast<const T *>(this)->getTLI();
- }
- static ISD::MemIndexedMode getISDIndexedMode(TTI::MemIndexedMode M) {
- switch (M) {
- case TTI::MIM_Unindexed:
- return ISD::UNINDEXED;
- case TTI::MIM_PreInc:
- return ISD::PRE_INC;
- case TTI::MIM_PreDec:
- return ISD::PRE_DEC;
- case TTI::MIM_PostInc:
- return ISD::POST_INC;
- case TTI::MIM_PostDec:
- return ISD::POST_DEC;
- }
- llvm_unreachable("Unexpected MemIndexedMode");
- }
- InstructionCost getCommonMaskedMemoryOpCost(unsigned Opcode, Type *DataTy,
- Align Alignment,
- bool VariableMask,
- bool IsGatherScatter,
- TTI::TargetCostKind CostKind) {
- // We cannot scalarize scalable vectors, so return Invalid.
- if (isa<ScalableVectorType>(DataTy))
- return InstructionCost::getInvalid();
- auto *VT = cast<FixedVectorType>(DataTy);
- // Assume the target does not have support for gather/scatter operations
- // and provide a rough estimate.
- //
- // First, compute the cost of the individual memory operations.
- InstructionCost AddrExtractCost =
- IsGatherScatter
- ? getVectorInstrCost(Instruction::ExtractElement,
- FixedVectorType::get(
- PointerType::get(VT->getElementType(), 0),
- VT->getNumElements()),
- CostKind, -1, nullptr, nullptr)
- : 0;
- InstructionCost LoadCost =
- VT->getNumElements() *
- (AddrExtractCost +
- getMemoryOpCost(Opcode, VT->getElementType(), Alignment, 0, CostKind));
- // Next, compute the cost of packing the result in a vector.
- InstructionCost PackingCost =
- getScalarizationOverhead(VT, Opcode != Instruction::Store,
- Opcode == Instruction::Store, CostKind);
- InstructionCost ConditionalCost = 0;
- if (VariableMask) {
- // Compute the cost of conditionally executing the memory operations with
- // variable masks. This includes extracting the individual conditions, a
- // branches and PHIs to combine the results.
- // NOTE: Estimating the cost of conditionally executing the memory
- // operations accurately is quite difficult and the current solution
- // provides a very rough estimate only.
- ConditionalCost =
- VT->getNumElements() *
- (getVectorInstrCost(
- Instruction::ExtractElement,
- FixedVectorType::get(Type::getInt1Ty(DataTy->getContext()),
- VT->getNumElements()),
- CostKind, -1, nullptr, nullptr) +
- getCFInstrCost(Instruction::Br, CostKind) +
- getCFInstrCost(Instruction::PHI, CostKind));
- }
- return LoadCost + PackingCost + ConditionalCost;
- }
- protected:
- explicit BasicTTIImplBase(const TargetMachine *TM, const DataLayout &DL)
- : BaseT(DL) {}
- virtual ~BasicTTIImplBase() = default;
- using TargetTransformInfoImplBase::DL;
- public:
- /// \name Scalar TTI Implementations
- /// @{
- bool allowsMisalignedMemoryAccesses(LLVMContext &Context, unsigned BitWidth,
- unsigned AddressSpace, Align Alignment,
- unsigned *Fast) const {
- EVT E = EVT::getIntegerVT(Context, BitWidth);
- return getTLI()->allowsMisalignedMemoryAccesses(
- E, AddressSpace, Alignment, MachineMemOperand::MONone, Fast);
- }
- bool hasBranchDivergence() { return false; }
- bool useGPUDivergenceAnalysis() { return false; }
- bool isSourceOfDivergence(const Value *V) { return false; }
- bool isAlwaysUniform(const Value *V) { return false; }
- unsigned getFlatAddressSpace() {
- // Return an invalid address space.
- return -1;
- }
- bool collectFlatAddressOperands(SmallVectorImpl<int> &OpIndexes,
- Intrinsic::ID IID) const {
- return false;
- }
- bool isNoopAddrSpaceCast(unsigned FromAS, unsigned ToAS) const {
- return getTLI()->getTargetMachine().isNoopAddrSpaceCast(FromAS, ToAS);
- }
- unsigned getAssumedAddrSpace(const Value *V) const {
- return getTLI()->getTargetMachine().getAssumedAddrSpace(V);
- }
- bool isSingleThreaded() const {
- return getTLI()->getTargetMachine().Options.ThreadModel ==
- ThreadModel::Single;
- }
- std::pair<const Value *, unsigned>
- getPredicatedAddrSpace(const Value *V) const {
- return getTLI()->getTargetMachine().getPredicatedAddrSpace(V);
- }
- Value *rewriteIntrinsicWithAddressSpace(IntrinsicInst *II, Value *OldV,
- Value *NewV) const {
- return nullptr;
- }
- bool isLegalAddImmediate(int64_t imm) {
- return getTLI()->isLegalAddImmediate(imm);
- }
- bool isLegalICmpImmediate(int64_t imm) {
- return getTLI()->isLegalICmpImmediate(imm);
- }
- bool isLegalAddressingMode(Type *Ty, GlobalValue *BaseGV, int64_t BaseOffset,
- bool HasBaseReg, int64_t Scale,
- unsigned AddrSpace, Instruction *I = nullptr) {
- TargetLoweringBase::AddrMode AM;
- AM.BaseGV = BaseGV;
- AM.BaseOffs = BaseOffset;
- AM.HasBaseReg = HasBaseReg;
- AM.Scale = Scale;
- return getTLI()->isLegalAddressingMode(DL, AM, Ty, AddrSpace, I);
- }
- unsigned getStoreMinimumVF(unsigned VF, Type *ScalarMemTy,
- Type *ScalarValTy) const {
- auto &&IsSupportedByTarget = [this, ScalarMemTy, ScalarValTy](unsigned VF) {
- auto *SrcTy = FixedVectorType::get(ScalarMemTy, VF / 2);
- EVT VT = getTLI()->getValueType(DL, SrcTy);
- if (getTLI()->isOperationLegal(ISD::STORE, VT) ||
- getTLI()->isOperationCustom(ISD::STORE, VT))
- return true;
- EVT ValVT =
- getTLI()->getValueType(DL, FixedVectorType::get(ScalarValTy, VF / 2));
- EVT LegalizedVT =
- getTLI()->getTypeToTransformTo(ScalarMemTy->getContext(), VT);
- return getTLI()->isTruncStoreLegal(LegalizedVT, ValVT);
- };
- while (VF > 2 && IsSupportedByTarget(VF))
- VF /= 2;
- return VF;
- }
- bool isIndexedLoadLegal(TTI::MemIndexedMode M, Type *Ty,
- const DataLayout &DL) const {
- EVT VT = getTLI()->getValueType(DL, Ty);
- return getTLI()->isIndexedLoadLegal(getISDIndexedMode(M), VT);
- }
- bool isIndexedStoreLegal(TTI::MemIndexedMode M, Type *Ty,
- const DataLayout &DL) const {
- EVT VT = getTLI()->getValueType(DL, Ty);
- return getTLI()->isIndexedStoreLegal(getISDIndexedMode(M), VT);
- }
- bool isLSRCostLess(TTI::LSRCost C1, TTI::LSRCost C2) {
- return TargetTransformInfoImplBase::isLSRCostLess(C1, C2);
- }
- bool isNumRegsMajorCostOfLSR() {
- return TargetTransformInfoImplBase::isNumRegsMajorCostOfLSR();
- }
- bool isProfitableLSRChainElement(Instruction *I) {
- return TargetTransformInfoImplBase::isProfitableLSRChainElement(I);
- }
- InstructionCost getScalingFactorCost(Type *Ty, GlobalValue *BaseGV,
- int64_t BaseOffset, bool HasBaseReg,
- int64_t Scale, unsigned AddrSpace) {
- TargetLoweringBase::AddrMode AM;
- AM.BaseGV = BaseGV;
- AM.BaseOffs = BaseOffset;
- AM.HasBaseReg = HasBaseReg;
- AM.Scale = Scale;
- if (getTLI()->isLegalAddressingMode(DL, AM, Ty, AddrSpace))
- return 0;
- return -1;
- }
- bool isTruncateFree(Type *Ty1, Type *Ty2) {
- return getTLI()->isTruncateFree(Ty1, Ty2);
- }
- bool isProfitableToHoist(Instruction *I) {
- return getTLI()->isProfitableToHoist(I);
- }
- bool useAA() const { return getST()->useAA(); }
- bool isTypeLegal(Type *Ty) {
- EVT VT = getTLI()->getValueType(DL, Ty);
- return getTLI()->isTypeLegal(VT);
- }
- unsigned getRegUsageForType(Type *Ty) {
- EVT ETy = getTLI()->getValueType(DL, Ty);
- return getTLI()->getNumRegisters(Ty->getContext(), ETy);
- }
- InstructionCost getGEPCost(Type *PointeeType, const Value *Ptr,
- ArrayRef<const Value *> Operands,
- TTI::TargetCostKind CostKind) {
- return BaseT::getGEPCost(PointeeType, Ptr, Operands, CostKind);
- }
- unsigned getEstimatedNumberOfCaseClusters(const SwitchInst &SI,
- unsigned &JumpTableSize,
- ProfileSummaryInfo *PSI,
- BlockFrequencyInfo *BFI) {
- /// Try to find the estimated number of clusters. Note that the number of
- /// clusters identified in this function could be different from the actual
- /// numbers found in lowering. This function ignore switches that are
- /// lowered with a mix of jump table / bit test / BTree. This function was
- /// initially intended to be used when estimating the cost of switch in
- /// inline cost heuristic, but it's a generic cost model to be used in other
- /// places (e.g., in loop unrolling).
- unsigned N = SI.getNumCases();
- const TargetLoweringBase *TLI = getTLI();
- const DataLayout &DL = this->getDataLayout();
- JumpTableSize = 0;
- bool IsJTAllowed = TLI->areJTsAllowed(SI.getParent()->getParent());
- // Early exit if both a jump table and bit test are not allowed.
- if (N < 1 || (!IsJTAllowed && DL.getIndexSizeInBits(0u) < N))
- return N;
- APInt MaxCaseVal = SI.case_begin()->getCaseValue()->getValue();
- APInt MinCaseVal = MaxCaseVal;
- for (auto CI : SI.cases()) {
- const APInt &CaseVal = CI.getCaseValue()->getValue();
- if (CaseVal.sgt(MaxCaseVal))
- MaxCaseVal = CaseVal;
- if (CaseVal.slt(MinCaseVal))
- MinCaseVal = CaseVal;
- }
- // Check if suitable for a bit test
- if (N <= DL.getIndexSizeInBits(0u)) {
- SmallPtrSet<const BasicBlock *, 4> Dests;
- for (auto I : SI.cases())
- Dests.insert(I.getCaseSuccessor());
- if (TLI->isSuitableForBitTests(Dests.size(), N, MinCaseVal, MaxCaseVal,
- DL))
- return 1;
- }
- // Check if suitable for a jump table.
- if (IsJTAllowed) {
- if (N < 2 || N < TLI->getMinimumJumpTableEntries())
- return N;
- uint64_t Range =
- (MaxCaseVal - MinCaseVal)
- .getLimitedValue(std::numeric_limits<uint64_t>::max() - 1) + 1;
- // Check whether a range of clusters is dense enough for a jump table
- if (TLI->isSuitableForJumpTable(&SI, N, Range, PSI, BFI)) {
- JumpTableSize = Range;
- return 1;
- }
- }
- return N;
- }
- bool shouldBuildLookupTables() {
- const TargetLoweringBase *TLI = getTLI();
- return TLI->isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) ||
- TLI->isOperationLegalOrCustom(ISD::BRIND, MVT::Other);
- }
- bool shouldBuildRelLookupTables() const {
- const TargetMachine &TM = getTLI()->getTargetMachine();
- // If non-PIC mode, do not generate a relative lookup table.
- if (!TM.isPositionIndependent())
- return false;
- /// Relative lookup table entries consist of 32-bit offsets.
- /// Do not generate relative lookup tables for large code models
- /// in 64-bit achitectures where 32-bit offsets might not be enough.
- if (TM.getCodeModel() == CodeModel::Medium ||
- TM.getCodeModel() == CodeModel::Large)
- return false;
- Triple TargetTriple = TM.getTargetTriple();
- if (!TargetTriple.isArch64Bit())
- return false;
- // TODO: Triggers issues on aarch64 on darwin, so temporarily disable it
- // there.
- if (TargetTriple.getArch() == Triple::aarch64 && TargetTriple.isOSDarwin())
- return false;
- return true;
- }
- bool haveFastSqrt(Type *Ty) {
- const TargetLoweringBase *TLI = getTLI();
- EVT VT = TLI->getValueType(DL, Ty);
- return TLI->isTypeLegal(VT) &&
- TLI->isOperationLegalOrCustom(ISD::FSQRT, VT);
- }
- bool isFCmpOrdCheaperThanFCmpZero(Type *Ty) {
- return true;
- }
- InstructionCost getFPOpCost(Type *Ty) {
- // Check whether FADD is available, as a proxy for floating-point in
- // general.
- const TargetLoweringBase *TLI = getTLI();
- EVT VT = TLI->getValueType(DL, Ty);
- if (TLI->isOperationLegalOrCustomOrPromote(ISD::FADD, VT))
- return TargetTransformInfo::TCC_Basic;
- return TargetTransformInfo::TCC_Expensive;
- }
- unsigned getInliningThresholdMultiplier() { return 1; }
- unsigned adjustInliningThreshold(const CallBase *CB) { return 0; }
- int getInlinerVectorBonusPercent() { return 150; }
- void getUnrollingPreferences(Loop *L, ScalarEvolution &SE,
- TTI::UnrollingPreferences &UP,
- OptimizationRemarkEmitter *ORE) {
- // This unrolling functionality is target independent, but to provide some
- // motivation for its intended use, for x86:
- // According to the Intel 64 and IA-32 Architectures Optimization Reference
- // Manual, Intel Core models and later have a loop stream detector (and
- // associated uop queue) that can benefit from partial unrolling.
- // The relevant requirements are:
- // - The loop must have no more than 4 (8 for Nehalem and later) branches
- // taken, and none of them may be calls.
- // - The loop can have no more than 18 (28 for Nehalem and later) uops.
- // According to the Software Optimization Guide for AMD Family 15h
- // Processors, models 30h-4fh (Steamroller and later) have a loop predictor
- // and loop buffer which can benefit from partial unrolling.
- // The relevant requirements are:
- // - The loop must have fewer than 16 branches
- // - The loop must have less than 40 uops in all executed loop branches
- // The number of taken branches in a loop is hard to estimate here, and
- // benchmarking has revealed that it is better not to be conservative when
- // estimating the branch count. As a result, we'll ignore the branch limits
- // until someone finds a case where it matters in practice.
- unsigned MaxOps;
- const TargetSubtargetInfo *ST = getST();
- if (PartialUnrollingThreshold.getNumOccurrences() > 0)
- MaxOps = PartialUnrollingThreshold;
- else if (ST->getSchedModel().LoopMicroOpBufferSize > 0)
- MaxOps = ST->getSchedModel().LoopMicroOpBufferSize;
- else
- return;
- // Scan the loop: don't unroll loops with calls.
- for (BasicBlock *BB : L->blocks()) {
- for (Instruction &I : *BB) {
- if (isa<CallInst>(I) || isa<InvokeInst>(I)) {
- if (const Function *F = cast<CallBase>(I).getCalledFunction()) {
- if (!thisT()->isLoweredToCall(F))
- continue;
- }
- if (ORE) {
- ORE->emit([&]() {
- return OptimizationRemark("TTI", "DontUnroll", L->getStartLoc(),
- L->getHeader())
- << "advising against unrolling the loop because it "
- "contains a "
- << ore::NV("Call", &I);
- });
- }
- return;
- }
- }
- }
- // Enable runtime and partial unrolling up to the specified size.
- // Enable using trip count upper bound to unroll loops.
- UP.Partial = UP.Runtime = UP.UpperBound = true;
- UP.PartialThreshold = MaxOps;
- // Avoid unrolling when optimizing for size.
- UP.OptSizeThreshold = 0;
- UP.PartialOptSizeThreshold = 0;
- // Set number of instructions optimized when "back edge"
- // becomes "fall through" to default value of 2.
- UP.BEInsns = 2;
- }
- void getPeelingPreferences(Loop *L, ScalarEvolution &SE,
- TTI::PeelingPreferences &PP) {
- PP.PeelCount = 0;
- PP.AllowPeeling = true;
- PP.AllowLoopNestsPeeling = false;
- PP.PeelProfiledIterations = true;
- }
- bool isHardwareLoopProfitable(Loop *L, ScalarEvolution &SE,
- AssumptionCache &AC,
- TargetLibraryInfo *LibInfo,
- HardwareLoopInfo &HWLoopInfo) {
- return BaseT::isHardwareLoopProfitable(L, SE, AC, LibInfo, HWLoopInfo);
- }
- bool preferPredicateOverEpilogue(Loop *L, LoopInfo *LI, ScalarEvolution &SE,
- AssumptionCache &AC, TargetLibraryInfo *TLI,
- DominatorTree *DT,
- LoopVectorizationLegality *LVL,
- InterleavedAccessInfo *IAI) {
- return BaseT::preferPredicateOverEpilogue(L, LI, SE, AC, TLI, DT, LVL, IAI);
- }
- PredicationStyle emitGetActiveLaneMask() {
- return BaseT::emitGetActiveLaneMask();
- }
- std::optional<Instruction *> instCombineIntrinsic(InstCombiner &IC,
- IntrinsicInst &II) {
- return BaseT::instCombineIntrinsic(IC, II);
- }
- std::optional<Value *>
- simplifyDemandedUseBitsIntrinsic(InstCombiner &IC, IntrinsicInst &II,
- APInt DemandedMask, KnownBits &Known,
- bool &KnownBitsComputed) {
- return BaseT::simplifyDemandedUseBitsIntrinsic(IC, II, DemandedMask, Known,
- KnownBitsComputed);
- }
- std::optional<Value *> simplifyDemandedVectorEltsIntrinsic(
- InstCombiner &IC, IntrinsicInst &II, APInt DemandedElts, APInt &UndefElts,
- APInt &UndefElts2, APInt &UndefElts3,
- std::function<void(Instruction *, unsigned, APInt, APInt &)>
- SimplifyAndSetOp) {
- return BaseT::simplifyDemandedVectorEltsIntrinsic(
- IC, II, DemandedElts, UndefElts, UndefElts2, UndefElts3,
- SimplifyAndSetOp);
- }
- virtual std::optional<unsigned>
- getCacheSize(TargetTransformInfo::CacheLevel Level) const {
- return std::optional<unsigned>(
- getST()->getCacheSize(static_cast<unsigned>(Level)));
- }
- virtual std::optional<unsigned>
- getCacheAssociativity(TargetTransformInfo::CacheLevel Level) const {
- std::optional<unsigned> TargetResult =
- getST()->getCacheAssociativity(static_cast<unsigned>(Level));
- if (TargetResult)
- return TargetResult;
- return BaseT::getCacheAssociativity(Level);
- }
- virtual unsigned getCacheLineSize() const {
- return getST()->getCacheLineSize();
- }
- virtual unsigned getPrefetchDistance() const {
- return getST()->getPrefetchDistance();
- }
- virtual unsigned getMinPrefetchStride(unsigned NumMemAccesses,
- unsigned NumStridedMemAccesses,
- unsigned NumPrefetches,
- bool HasCall) const {
- return getST()->getMinPrefetchStride(NumMemAccesses, NumStridedMemAccesses,
- NumPrefetches, HasCall);
- }
- virtual unsigned getMaxPrefetchIterationsAhead() const {
- return getST()->getMaxPrefetchIterationsAhead();
- }
- virtual bool enableWritePrefetching() const {
- return getST()->enableWritePrefetching();
- }
- virtual bool shouldPrefetchAddressSpace(unsigned AS) const {
- return getST()->shouldPrefetchAddressSpace(AS);
- }
- /// @}
- /// \name Vector TTI Implementations
- /// @{
- TypeSize getRegisterBitWidth(TargetTransformInfo::RegisterKind K) const {
- return TypeSize::getFixed(32);
- }
- std::optional<unsigned> getMaxVScale() const { return std::nullopt; }
- std::optional<unsigned> getVScaleForTuning() const { return std::nullopt; }
- /// Estimate the overhead of scalarizing an instruction. Insert and Extract
- /// are set if the demanded result elements need to be inserted and/or
- /// extracted from vectors.
- InstructionCost getScalarizationOverhead(VectorType *InTy,
- const APInt &DemandedElts,
- bool Insert, bool Extract,
- TTI::TargetCostKind CostKind) {
- /// FIXME: a bitfield is not a reasonable abstraction for talking about
- /// which elements are needed from a scalable vector
- if (isa<ScalableVectorType>(InTy))
- return InstructionCost::getInvalid();
- auto *Ty = cast<FixedVectorType>(InTy);
- assert(DemandedElts.getBitWidth() == Ty->getNumElements() &&
- "Vector size mismatch");
- InstructionCost Cost = 0;
- for (int i = 0, e = Ty->getNumElements(); i < e; ++i) {
- if (!DemandedElts[i])
- continue;
- if (Insert)
- Cost += thisT()->getVectorInstrCost(Instruction::InsertElement, Ty,
- CostKind, i, nullptr, nullptr);
- if (Extract)
- Cost += thisT()->getVectorInstrCost(Instruction::ExtractElement, Ty,
- CostKind, i, nullptr, nullptr);
- }
- return Cost;
- }
- /// Helper wrapper for the DemandedElts variant of getScalarizationOverhead.
- InstructionCost getScalarizationOverhead(VectorType *InTy, bool Insert,
- bool Extract,
- TTI::TargetCostKind CostKind) {
- if (isa<ScalableVectorType>(InTy))
- return InstructionCost::getInvalid();
- auto *Ty = cast<FixedVectorType>(InTy);
- APInt DemandedElts = APInt::getAllOnes(Ty->getNumElements());
- return thisT()->getScalarizationOverhead(Ty, DemandedElts, Insert, Extract,
- CostKind);
- }
- /// Estimate the overhead of scalarizing an instructions unique
- /// non-constant operands. The (potentially vector) types to use for each of
- /// argument are passes via Tys.
- InstructionCost
- getOperandsScalarizationOverhead(ArrayRef<const Value *> Args,
- ArrayRef<Type *> Tys,
- TTI::TargetCostKind CostKind) {
- assert(Args.size() == Tys.size() && "Expected matching Args and Tys");
- InstructionCost Cost = 0;
- SmallPtrSet<const Value*, 4> UniqueOperands;
- for (int I = 0, E = Args.size(); I != E; I++) {
- // Disregard things like metadata arguments.
- const Value *A = Args[I];
- Type *Ty = Tys[I];
- if (!Ty->isIntOrIntVectorTy() && !Ty->isFPOrFPVectorTy() &&
- !Ty->isPtrOrPtrVectorTy())
- continue;
- if (!isa<Constant>(A) && UniqueOperands.insert(A).second) {
- if (auto *VecTy = dyn_cast<VectorType>(Ty))
- Cost += getScalarizationOverhead(VecTy, /*Insert*/ false,
- /*Extract*/ true, CostKind);
- }
- }
- return Cost;
- }
- /// Estimate the overhead of scalarizing the inputs and outputs of an
- /// instruction, with return type RetTy and arguments Args of type Tys. If
- /// Args are unknown (empty), then the cost associated with one argument is
- /// added as a heuristic.
- InstructionCost getScalarizationOverhead(VectorType *RetTy,
- ArrayRef<const Value *> Args,
- ArrayRef<Type *> Tys,
- TTI::TargetCostKind CostKind) {
- InstructionCost Cost = getScalarizationOverhead(
- RetTy, /*Insert*/ true, /*Extract*/ false, CostKind);
- if (!Args.empty())
- Cost += getOperandsScalarizationOverhead(Args, Tys, CostKind);
- else
- // When no information on arguments is provided, we add the cost
- // associated with one argument as a heuristic.
- Cost += getScalarizationOverhead(RetTy, /*Insert*/ false,
- /*Extract*/ true, CostKind);
- return Cost;
- }
- /// Estimate the cost of type-legalization and the legalized type.
- std::pair<InstructionCost, MVT> getTypeLegalizationCost(Type *Ty) const {
- LLVMContext &C = Ty->getContext();
- EVT MTy = getTLI()->getValueType(DL, Ty);
- InstructionCost Cost = 1;
- // We keep legalizing the type until we find a legal kind. We assume that
- // the only operation that costs anything is the split. After splitting
- // we need to handle two types.
- while (true) {
- TargetLoweringBase::LegalizeKind LK = getTLI()->getTypeConversion(C, MTy);
- if (LK.first == TargetLoweringBase::TypeScalarizeScalableVector) {
- // Ensure we return a sensible simple VT here, since many callers of
- // this function require it.
- MVT VT = MTy.isSimple() ? MTy.getSimpleVT() : MVT::i64;
- return std::make_pair(InstructionCost::getInvalid(), VT);
- }
- if (LK.first == TargetLoweringBase::TypeLegal)
- return std::make_pair(Cost, MTy.getSimpleVT());
- if (LK.first == TargetLoweringBase::TypeSplitVector ||
- LK.first == TargetLoweringBase::TypeExpandInteger)
- Cost *= 2;
- // Do not loop with f128 type.
- if (MTy == LK.second)
- return std::make_pair(Cost, MTy.getSimpleVT());
- // Keep legalizing the type.
- MTy = LK.second;
- }
- }
- unsigned getMaxInterleaveFactor(unsigned VF) { return 1; }
- InstructionCost getArithmeticInstrCost(
- unsigned Opcode, Type *Ty, TTI::TargetCostKind CostKind,
- TTI::OperandValueInfo Opd1Info = {TTI::OK_AnyValue, TTI::OP_None},
- TTI::OperandValueInfo Opd2Info = {TTI::OK_AnyValue, TTI::OP_None},
- ArrayRef<const Value *> Args = ArrayRef<const Value *>(),
- const Instruction *CxtI = nullptr) {
- // Check if any of the operands are vector operands.
- const TargetLoweringBase *TLI = getTLI();
- int ISD = TLI->InstructionOpcodeToISD(Opcode);
- assert(ISD && "Invalid opcode");
- // TODO: Handle more cost kinds.
- if (CostKind != TTI::TCK_RecipThroughput)
- return BaseT::getArithmeticInstrCost(Opcode, Ty, CostKind,
- Opd1Info, Opd2Info,
- Args, CxtI);
- std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(Ty);
- bool IsFloat = Ty->isFPOrFPVectorTy();
- // Assume that floating point arithmetic operations cost twice as much as
- // integer operations.
- InstructionCost OpCost = (IsFloat ? 2 : 1);
- if (TLI->isOperationLegalOrPromote(ISD, LT.second)) {
- // The operation is legal. Assume it costs 1.
- // TODO: Once we have extract/insert subvector cost we need to use them.
- return LT.first * OpCost;
- }
- if (!TLI->isOperationExpand(ISD, LT.second)) {
- // If the operation is custom lowered, then assume that the code is twice
- // as expensive.
- return LT.first * 2 * OpCost;
- }
- // An 'Expand' of URem and SRem is special because it may default
- // to expanding the operation into a sequence of sub-operations
- // i.e. X % Y -> X-(X/Y)*Y.
- if (ISD == ISD::UREM || ISD == ISD::SREM) {
- bool IsSigned = ISD == ISD::SREM;
- if (TLI->isOperationLegalOrCustom(IsSigned ? ISD::SDIVREM : ISD::UDIVREM,
- LT.second) ||
- TLI->isOperationLegalOrCustom(IsSigned ? ISD::SDIV : ISD::UDIV,
- LT.second)) {
- unsigned DivOpc = IsSigned ? Instruction::SDiv : Instruction::UDiv;
- InstructionCost DivCost = thisT()->getArithmeticInstrCost(
- DivOpc, Ty, CostKind, Opd1Info, Opd2Info);
- InstructionCost MulCost =
- thisT()->getArithmeticInstrCost(Instruction::Mul, Ty, CostKind);
- InstructionCost SubCost =
- thisT()->getArithmeticInstrCost(Instruction::Sub, Ty, CostKind);
- return DivCost + MulCost + SubCost;
- }
- }
- // We cannot scalarize scalable vectors, so return Invalid.
- if (isa<ScalableVectorType>(Ty))
- return InstructionCost::getInvalid();
- // Else, assume that we need to scalarize this op.
- // TODO: If one of the types get legalized by splitting, handle this
- // similarly to what getCastInstrCost() does.
- if (auto *VTy = dyn_cast<FixedVectorType>(Ty)) {
- InstructionCost Cost = thisT()->getArithmeticInstrCost(
- Opcode, VTy->getScalarType(), CostKind, Opd1Info, Opd2Info,
- Args, CxtI);
- // Return the cost of multiple scalar invocation plus the cost of
- // inserting and extracting the values.
- SmallVector<Type *> Tys(Args.size(), Ty);
- return getScalarizationOverhead(VTy, Args, Tys, CostKind) +
- VTy->getNumElements() * Cost;
- }
- // We don't know anything about this scalar instruction.
- return OpCost;
- }
- TTI::ShuffleKind improveShuffleKindFromMask(TTI::ShuffleKind Kind,
- ArrayRef<int> Mask) const {
- int Limit = Mask.size() * 2;
- if (Mask.empty() ||
- // Extra check required by isSingleSourceMaskImpl function (called by
- // ShuffleVectorInst::isSingleSourceMask).
- any_of(Mask, [Limit](int I) { return I >= Limit; }))
- return Kind;
- int Index;
- switch (Kind) {
- case TTI::SK_PermuteSingleSrc:
- if (ShuffleVectorInst::isReverseMask(Mask))
- return TTI::SK_Reverse;
- if (ShuffleVectorInst::isZeroEltSplatMask(Mask))
- return TTI::SK_Broadcast;
- break;
- case TTI::SK_PermuteTwoSrc:
- if (ShuffleVectorInst::isSelectMask(Mask))
- return TTI::SK_Select;
- if (ShuffleVectorInst::isTransposeMask(Mask))
- return TTI::SK_Transpose;
- if (ShuffleVectorInst::isSpliceMask(Mask, Index))
- return TTI::SK_Splice;
- break;
- case TTI::SK_Select:
- case TTI::SK_Reverse:
- case TTI::SK_Broadcast:
- case TTI::SK_Transpose:
- case TTI::SK_InsertSubvector:
- case TTI::SK_ExtractSubvector:
- case TTI::SK_Splice:
- break;
- }
- return Kind;
- }
- InstructionCost getShuffleCost(TTI::ShuffleKind Kind, VectorType *Tp,
- ArrayRef<int> Mask,
- TTI::TargetCostKind CostKind, int Index,
- VectorType *SubTp,
- ArrayRef<const Value *> Args = std::nullopt) {
- switch (improveShuffleKindFromMask(Kind, Mask)) {
- case TTI::SK_Broadcast:
- if (auto *FVT = dyn_cast<FixedVectorType>(Tp))
- return getBroadcastShuffleOverhead(FVT, CostKind);
- return InstructionCost::getInvalid();
- case TTI::SK_Select:
- case TTI::SK_Splice:
- case TTI::SK_Reverse:
- case TTI::SK_Transpose:
- case TTI::SK_PermuteSingleSrc:
- case TTI::SK_PermuteTwoSrc:
- if (auto *FVT = dyn_cast<FixedVectorType>(Tp))
- return getPermuteShuffleOverhead(FVT, CostKind);
- return InstructionCost::getInvalid();
- case TTI::SK_ExtractSubvector:
- return getExtractSubvectorOverhead(Tp, CostKind, Index,
- cast<FixedVectorType>(SubTp));
- case TTI::SK_InsertSubvector:
- return getInsertSubvectorOverhead(Tp, CostKind, Index,
- cast<FixedVectorType>(SubTp));
- }
- llvm_unreachable("Unknown TTI::ShuffleKind");
- }
- InstructionCost getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src,
- TTI::CastContextHint CCH,
- TTI::TargetCostKind CostKind,
- const Instruction *I = nullptr) {
- if (BaseT::getCastInstrCost(Opcode, Dst, Src, CCH, CostKind, I) == 0)
- return 0;
- const TargetLoweringBase *TLI = getTLI();
- int ISD = TLI->InstructionOpcodeToISD(Opcode);
- assert(ISD && "Invalid opcode");
- std::pair<InstructionCost, MVT> SrcLT = getTypeLegalizationCost(Src);
- std::pair<InstructionCost, MVT> DstLT = getTypeLegalizationCost(Dst);
- TypeSize SrcSize = SrcLT.second.getSizeInBits();
- TypeSize DstSize = DstLT.second.getSizeInBits();
- bool IntOrPtrSrc = Src->isIntegerTy() || Src->isPointerTy();
- bool IntOrPtrDst = Dst->isIntegerTy() || Dst->isPointerTy();
- switch (Opcode) {
- default:
- break;
- case Instruction::Trunc:
- // Check for NOOP conversions.
- if (TLI->isTruncateFree(SrcLT.second, DstLT.second))
- return 0;
- [[fallthrough]];
- case Instruction::BitCast:
- // Bitcast between types that are legalized to the same type are free and
- // assume int to/from ptr of the same size is also free.
- if (SrcLT.first == DstLT.first && IntOrPtrSrc == IntOrPtrDst &&
- SrcSize == DstSize)
- return 0;
- break;
- case Instruction::FPExt:
- if (I && getTLI()->isExtFree(I))
- return 0;
- break;
- case Instruction::ZExt:
- if (TLI->isZExtFree(SrcLT.second, DstLT.second))
- return 0;
- [[fallthrough]];
- case Instruction::SExt:
- if (I && getTLI()->isExtFree(I))
- return 0;
- // If this is a zext/sext of a load, return 0 if the corresponding
- // extending load exists on target and the result type is legal.
- if (CCH == TTI::CastContextHint::Normal) {
- EVT ExtVT = EVT::getEVT(Dst);
- EVT LoadVT = EVT::getEVT(Src);
- unsigned LType =
- ((Opcode == Instruction::ZExt) ? ISD::ZEXTLOAD : ISD::SEXTLOAD);
- if (DstLT.first == SrcLT.first &&
- TLI->isLoadExtLegal(LType, ExtVT, LoadVT))
- return 0;
- }
- break;
- case Instruction::AddrSpaceCast:
- if (TLI->isFreeAddrSpaceCast(Src->getPointerAddressSpace(),
- Dst->getPointerAddressSpace()))
- return 0;
- break;
- }
- auto *SrcVTy = dyn_cast<VectorType>(Src);
- auto *DstVTy = dyn_cast<VectorType>(Dst);
- // If the cast is marked as legal (or promote) then assume low cost.
- if (SrcLT.first == DstLT.first &&
- TLI->isOperationLegalOrPromote(ISD, DstLT.second))
- return SrcLT.first;
- // Handle scalar conversions.
- if (!SrcVTy && !DstVTy) {
- // Just check the op cost. If the operation is legal then assume it costs
- // 1.
- if (!TLI->isOperationExpand(ISD, DstLT.second))
- return 1;
- // Assume that illegal scalar instruction are expensive.
- return 4;
- }
- // Check vector-to-vector casts.
- if (DstVTy && SrcVTy) {
- // If the cast is between same-sized registers, then the check is simple.
- if (SrcLT.first == DstLT.first && SrcSize == DstSize) {
- // Assume that Zext is done using AND.
- if (Opcode == Instruction::ZExt)
- return SrcLT.first;
- // Assume that sext is done using SHL and SRA.
- if (Opcode == Instruction::SExt)
- return SrcLT.first * 2;
- // Just check the op cost. If the operation is legal then assume it
- // costs
- // 1 and multiply by the type-legalization overhead.
- if (!TLI->isOperationExpand(ISD, DstLT.second))
- return SrcLT.first * 1;
- }
- // If we are legalizing by splitting, query the concrete TTI for the cost
- // of casting the original vector twice. We also need to factor in the
- // cost of the split itself. Count that as 1, to be consistent with
- // getTypeLegalizationCost().
- bool SplitSrc =
- TLI->getTypeAction(Src->getContext(), TLI->getValueType(DL, Src)) ==
- TargetLowering::TypeSplitVector;
- bool SplitDst =
- TLI->getTypeAction(Dst->getContext(), TLI->getValueType(DL, Dst)) ==
- TargetLowering::TypeSplitVector;
- if ((SplitSrc || SplitDst) && SrcVTy->getElementCount().isVector() &&
- DstVTy->getElementCount().isVector()) {
- Type *SplitDstTy = VectorType::getHalfElementsVectorType(DstVTy);
- Type *SplitSrcTy = VectorType::getHalfElementsVectorType(SrcVTy);
- T *TTI = static_cast<T *>(this);
- // If both types need to be split then the split is free.
- InstructionCost SplitCost =
- (!SplitSrc || !SplitDst) ? TTI->getVectorSplitCost() : 0;
- return SplitCost +
- (2 * TTI->getCastInstrCost(Opcode, SplitDstTy, SplitSrcTy, CCH,
- CostKind, I));
- }
- // Scalarization cost is Invalid, can't assume any num elements.
- if (isa<ScalableVectorType>(DstVTy))
- return InstructionCost::getInvalid();
- // In other cases where the source or destination are illegal, assume
- // the operation will get scalarized.
- unsigned Num = cast<FixedVectorType>(DstVTy)->getNumElements();
- InstructionCost Cost = thisT()->getCastInstrCost(
- Opcode, Dst->getScalarType(), Src->getScalarType(), CCH, CostKind, I);
- // Return the cost of multiple scalar invocation plus the cost of
- // inserting and extracting the values.
- return getScalarizationOverhead(DstVTy, /*Insert*/ true, /*Extract*/ true,
- CostKind) +
- Num * Cost;
- }
- // We already handled vector-to-vector and scalar-to-scalar conversions.
- // This
- // is where we handle bitcast between vectors and scalars. We need to assume
- // that the conversion is scalarized in one way or another.
- if (Opcode == Instruction::BitCast) {
- // Illegal bitcasts are done by storing and loading from a stack slot.
- return (SrcVTy ? getScalarizationOverhead(SrcVTy, /*Insert*/ false,
- /*Extract*/ true, CostKind)
- : 0) +
- (DstVTy ? getScalarizationOverhead(DstVTy, /*Insert*/ true,
- /*Extract*/ false, CostKind)
- : 0);
- }
- llvm_unreachable("Unhandled cast");
- }
- InstructionCost getExtractWithExtendCost(unsigned Opcode, Type *Dst,
- VectorType *VecTy, unsigned Index) {
- TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
- return thisT()->getVectorInstrCost(Instruction::ExtractElement, VecTy,
- CostKind, Index, nullptr, nullptr) +
- thisT()->getCastInstrCost(Opcode, Dst, VecTy->getElementType(),
- TTI::CastContextHint::None, CostKind);
- }
- InstructionCost getCFInstrCost(unsigned Opcode, TTI::TargetCostKind CostKind,
- const Instruction *I = nullptr) {
- return BaseT::getCFInstrCost(Opcode, CostKind, I);
- }
- InstructionCost getCmpSelInstrCost(unsigned Opcode, Type *ValTy, Type *CondTy,
- CmpInst::Predicate VecPred,
- TTI::TargetCostKind CostKind,
- const Instruction *I = nullptr) {
- const TargetLoweringBase *TLI = getTLI();
- int ISD = TLI->InstructionOpcodeToISD(Opcode);
- assert(ISD && "Invalid opcode");
- // TODO: Handle other cost kinds.
- if (CostKind != TTI::TCK_RecipThroughput)
- return BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy, VecPred, CostKind,
- I);
- // Selects on vectors are actually vector selects.
- if (ISD == ISD::SELECT) {
- assert(CondTy && "CondTy must exist");
- if (CondTy->isVectorTy())
- ISD = ISD::VSELECT;
- }
- std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(ValTy);
- if (!(ValTy->isVectorTy() && !LT.second.isVector()) &&
- !TLI->isOperationExpand(ISD, LT.second)) {
- // The operation is legal. Assume it costs 1. Multiply
- // by the type-legalization overhead.
- return LT.first * 1;
- }
- // Otherwise, assume that the cast is scalarized.
- // TODO: If one of the types get legalized by splitting, handle this
- // similarly to what getCastInstrCost() does.
- if (auto *ValVTy = dyn_cast<VectorType>(ValTy)) {
- if (isa<ScalableVectorType>(ValTy))
- return InstructionCost::getInvalid();
- unsigned Num = cast<FixedVectorType>(ValVTy)->getNumElements();
- if (CondTy)
- CondTy = CondTy->getScalarType();
- InstructionCost Cost = thisT()->getCmpSelInstrCost(
- Opcode, ValVTy->getScalarType(), CondTy, VecPred, CostKind, I);
- // Return the cost of multiple scalar invocation plus the cost of
- // inserting and extracting the values.
- return getScalarizationOverhead(ValVTy, /*Insert*/ true,
- /*Extract*/ false, CostKind) +
- Num * Cost;
- }
- // Unknown scalar opcode.
- return 1;
- }
- InstructionCost getVectorInstrCost(unsigned Opcode, Type *Val,
- TTI::TargetCostKind CostKind,
- unsigned Index, Value *Op0, Value *Op1) {
- return getRegUsageForType(Val->getScalarType());
- }
- InstructionCost getVectorInstrCost(const Instruction &I, Type *Val,
- TTI::TargetCostKind CostKind,
- unsigned Index) {
- Value *Op0 = nullptr;
- Value *Op1 = nullptr;
- if (auto *IE = dyn_cast<InsertElementInst>(&I)) {
- Op0 = IE->getOperand(0);
- Op1 = IE->getOperand(1);
- }
- return thisT()->getVectorInstrCost(I.getOpcode(), Val, CostKind, Index, Op0,
- Op1);
- }
- InstructionCost getReplicationShuffleCost(Type *EltTy, int ReplicationFactor,
- int VF,
- const APInt &DemandedDstElts,
- TTI::TargetCostKind CostKind) {
- assert(DemandedDstElts.getBitWidth() == (unsigned)VF * ReplicationFactor &&
- "Unexpected size of DemandedDstElts.");
- InstructionCost Cost;
- auto *SrcVT = FixedVectorType::get(EltTy, VF);
- auto *ReplicatedVT = FixedVectorType::get(EltTy, VF * ReplicationFactor);
- // The Mask shuffling cost is extract all the elements of the Mask
- // and insert each of them Factor times into the wide vector:
- //
- // E.g. an interleaved group with factor 3:
- // %mask = icmp ult <8 x i32> %vec1, %vec2
- // %interleaved.mask = shufflevector <8 x i1> %mask, <8 x i1> undef,
- // <24 x i32> <0,0,0,1,1,1,2,2,2,3,3,3,4,4,4,5,5,5,6,6,6,7,7,7>
- // The cost is estimated as extract all mask elements from the <8xi1> mask
- // vector and insert them factor times into the <24xi1> shuffled mask
- // vector.
- APInt DemandedSrcElts = APIntOps::ScaleBitMask(DemandedDstElts, VF);
- Cost += thisT()->getScalarizationOverhead(SrcVT, DemandedSrcElts,
- /*Insert*/ false,
- /*Extract*/ true, CostKind);
- Cost += thisT()->getScalarizationOverhead(ReplicatedVT, DemandedDstElts,
- /*Insert*/ true,
- /*Extract*/ false, CostKind);
- return Cost;
- }
- InstructionCost
- getMemoryOpCost(unsigned Opcode, Type *Src, MaybeAlign Alignment,
- unsigned AddressSpace, TTI::TargetCostKind CostKind,
- TTI::OperandValueInfo OpInfo = {TTI::OK_AnyValue, TTI::OP_None},
- const Instruction *I = nullptr) {
- assert(!Src->isVoidTy() && "Invalid type");
- // Assume types, such as structs, are expensive.
- if (getTLI()->getValueType(DL, Src, true) == MVT::Other)
- return 4;
- std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(Src);
- // Assuming that all loads of legal types cost 1.
- InstructionCost Cost = LT.first;
- if (CostKind != TTI::TCK_RecipThroughput)
- return Cost;
- const DataLayout &DL = this->getDataLayout();
- if (Src->isVectorTy() &&
- // In practice it's not currently possible to have a change in lane
- // length for extending loads or truncating stores so both types should
- // have the same scalable property.
- TypeSize::isKnownLT(DL.getTypeStoreSizeInBits(Src),
- LT.second.getSizeInBits())) {
- // This is a vector load that legalizes to a larger type than the vector
- // itself. Unless the corresponding extending load or truncating store is
- // legal, then this will scalarize.
- TargetLowering::LegalizeAction LA = TargetLowering::Expand;
- EVT MemVT = getTLI()->getValueType(DL, Src);
- if (Opcode == Instruction::Store)
- LA = getTLI()->getTruncStoreAction(LT.second, MemVT);
- else
- LA = getTLI()->getLoadExtAction(ISD::EXTLOAD, LT.second, MemVT);
- if (LA != TargetLowering::Legal && LA != TargetLowering::Custom) {
- // This is a vector load/store for some illegal type that is scalarized.
- // We must account for the cost of building or decomposing the vector.
- Cost += getScalarizationOverhead(
- cast<VectorType>(Src), Opcode != Instruction::Store,
- Opcode == Instruction::Store, CostKind);
- }
- }
- return Cost;
- }
- InstructionCost getMaskedMemoryOpCost(unsigned Opcode, Type *DataTy,
- Align Alignment, unsigned AddressSpace,
- TTI::TargetCostKind CostKind) {
- return getCommonMaskedMemoryOpCost(Opcode, DataTy, Alignment, true, false,
- CostKind);
- }
- InstructionCost getGatherScatterOpCost(unsigned Opcode, Type *DataTy,
- const Value *Ptr, bool VariableMask,
- Align Alignment,
- TTI::TargetCostKind CostKind,
- const Instruction *I = nullptr) {
- return getCommonMaskedMemoryOpCost(Opcode, DataTy, Alignment, VariableMask,
- true, CostKind);
- }
- InstructionCost getInterleavedMemoryOpCost(
- unsigned Opcode, Type *VecTy, unsigned Factor, ArrayRef<unsigned> Indices,
- Align Alignment, unsigned AddressSpace, TTI::TargetCostKind CostKind,
- bool UseMaskForCond = false, bool UseMaskForGaps = false) {
- // We cannot scalarize scalable vectors, so return Invalid.
- if (isa<ScalableVectorType>(VecTy))
- return InstructionCost::getInvalid();
- auto *VT = cast<FixedVectorType>(VecTy);
- unsigned NumElts = VT->getNumElements();
- assert(Factor > 1 && NumElts % Factor == 0 && "Invalid interleave factor");
- unsigned NumSubElts = NumElts / Factor;
- auto *SubVT = FixedVectorType::get(VT->getElementType(), NumSubElts);
- // Firstly, the cost of load/store operation.
- InstructionCost Cost;
- if (UseMaskForCond || UseMaskForGaps)
- Cost = thisT()->getMaskedMemoryOpCost(Opcode, VecTy, Alignment,
- AddressSpace, CostKind);
- else
- Cost = thisT()->getMemoryOpCost(Opcode, VecTy, Alignment, AddressSpace,
- CostKind);
- // Legalize the vector type, and get the legalized and unlegalized type
- // sizes.
- MVT VecTyLT = getTypeLegalizationCost(VecTy).second;
- unsigned VecTySize = thisT()->getDataLayout().getTypeStoreSize(VecTy);
- unsigned VecTyLTSize = VecTyLT.getStoreSize();
- // Scale the cost of the memory operation by the fraction of legalized
- // instructions that will actually be used. We shouldn't account for the
- // cost of dead instructions since they will be removed.
- //
- // E.g., An interleaved load of factor 8:
- // %vec = load <16 x i64>, <16 x i64>* %ptr
- // %v0 = shufflevector %vec, undef, <0, 8>
- //
- // If <16 x i64> is legalized to 8 v2i64 loads, only 2 of the loads will be
- // used (those corresponding to elements [0:1] and [8:9] of the unlegalized
- // type). The other loads are unused.
- //
- // TODO: Note that legalization can turn masked loads/stores into unmasked
- // (legalized) loads/stores. This can be reflected in the cost.
- if (Cost.isValid() && VecTySize > VecTyLTSize) {
- // The number of loads of a legal type it will take to represent a load
- // of the unlegalized vector type.
- unsigned NumLegalInsts = divideCeil(VecTySize, VecTyLTSize);
- // The number of elements of the unlegalized type that correspond to a
- // single legal instruction.
- unsigned NumEltsPerLegalInst = divideCeil(NumElts, NumLegalInsts);
- // Determine which legal instructions will be used.
- BitVector UsedInsts(NumLegalInsts, false);
- for (unsigned Index : Indices)
- for (unsigned Elt = 0; Elt < NumSubElts; ++Elt)
- UsedInsts.set((Index + Elt * Factor) / NumEltsPerLegalInst);
- // Scale the cost of the load by the fraction of legal instructions that
- // will be used.
- Cost = divideCeil(UsedInsts.count() * *Cost.getValue(), NumLegalInsts);
- }
- // Then plus the cost of interleave operation.
- assert(Indices.size() <= Factor &&
- "Interleaved memory op has too many members");
- const APInt DemandedAllSubElts = APInt::getAllOnes(NumSubElts);
- const APInt DemandedAllResultElts = APInt::getAllOnes(NumElts);
- APInt DemandedLoadStoreElts = APInt::getZero(NumElts);
- for (unsigned Index : Indices) {
- assert(Index < Factor && "Invalid index for interleaved memory op");
- for (unsigned Elm = 0; Elm < NumSubElts; Elm++)
- DemandedLoadStoreElts.setBit(Index + Elm * Factor);
- }
- if (Opcode == Instruction::Load) {
- // The interleave cost is similar to extract sub vectors' elements
- // from the wide vector, and insert them into sub vectors.
- //
- // E.g. An interleaved load of factor 2 (with one member of index 0):
- // %vec = load <8 x i32>, <8 x i32>* %ptr
- // %v0 = shuffle %vec, undef, <0, 2, 4, 6> ; Index 0
- // The cost is estimated as extract elements at 0, 2, 4, 6 from the
- // <8 x i32> vector and insert them into a <4 x i32> vector.
- InstructionCost InsSubCost = thisT()->getScalarizationOverhead(
- SubVT, DemandedAllSubElts,
- /*Insert*/ true, /*Extract*/ false, CostKind);
- Cost += Indices.size() * InsSubCost;
- Cost += thisT()->getScalarizationOverhead(VT, DemandedLoadStoreElts,
- /*Insert*/ false,
- /*Extract*/ true, CostKind);
- } else {
- // The interleave cost is extract elements from sub vectors, and
- // insert them into the wide vector.
- //
- // E.g. An interleaved store of factor 3 with 2 members at indices 0,1:
- // (using VF=4):
- // %v0_v1 = shuffle %v0, %v1, <0,4,undef,1,5,undef,2,6,undef,3,7,undef>
- // %gaps.mask = <true, true, false, true, true, false,
- // true, true, false, true, true, false>
- // call llvm.masked.store <12 x i32> %v0_v1, <12 x i32>* %ptr,
- // i32 Align, <12 x i1> %gaps.mask
- // The cost is estimated as extract all elements (of actual members,
- // excluding gaps) from both <4 x i32> vectors and insert into the <12 x
- // i32> vector.
- InstructionCost ExtSubCost = thisT()->getScalarizationOverhead(
- SubVT, DemandedAllSubElts,
- /*Insert*/ false, /*Extract*/ true, CostKind);
- Cost += ExtSubCost * Indices.size();
- Cost += thisT()->getScalarizationOverhead(VT, DemandedLoadStoreElts,
- /*Insert*/ true,
- /*Extract*/ false, CostKind);
- }
- if (!UseMaskForCond)
- return Cost;
- Type *I8Type = Type::getInt8Ty(VT->getContext());
- Cost += thisT()->getReplicationShuffleCost(
- I8Type, Factor, NumSubElts,
- UseMaskForGaps ? DemandedLoadStoreElts : DemandedAllResultElts,
- CostKind);
- // The Gaps mask is invariant and created outside the loop, therefore the
- // cost of creating it is not accounted for here. However if we have both
- // a MaskForGaps and some other mask that guards the execution of the
- // memory access, we need to account for the cost of And-ing the two masks
- // inside the loop.
- if (UseMaskForGaps) {
- auto *MaskVT = FixedVectorType::get(I8Type, NumElts);
- Cost += thisT()->getArithmeticInstrCost(BinaryOperator::And, MaskVT,
- CostKind);
- }
- return Cost;
- }
- /// Get intrinsic cost based on arguments.
- InstructionCost getIntrinsicInstrCost(const IntrinsicCostAttributes &ICA,
- TTI::TargetCostKind CostKind) {
- // Check for generically free intrinsics.
- if (BaseT::getIntrinsicInstrCost(ICA, CostKind) == 0)
- return 0;
- // Assume that target intrinsics are cheap.
- Intrinsic::ID IID = ICA.getID();
- if (Function::isTargetIntrinsic(IID))
- return TargetTransformInfo::TCC_Basic;
- if (ICA.isTypeBasedOnly())
- return getTypeBasedIntrinsicInstrCost(ICA, CostKind);
- Type *RetTy = ICA.getReturnType();
- ElementCount RetVF =
- (RetTy->isVectorTy() ? cast<VectorType>(RetTy)->getElementCount()
- : ElementCount::getFixed(1));
- const IntrinsicInst *I = ICA.getInst();
- const SmallVectorImpl<const Value *> &Args = ICA.getArgs();
- FastMathFlags FMF = ICA.getFlags();
- switch (IID) {
- default:
- break;
- case Intrinsic::powi:
- if (auto *RHSC = dyn_cast<ConstantInt>(Args[1])) {
- bool ShouldOptForSize = I->getParent()->getParent()->hasOptSize();
- if (getTLI()->isBeneficialToExpandPowI(RHSC->getSExtValue(),
- ShouldOptForSize)) {
- // The cost is modeled on the expansion performed by ExpandPowI in
- // SelectionDAGBuilder.
- APInt Exponent = RHSC->getValue().abs();
- unsigned ActiveBits = Exponent.getActiveBits();
- unsigned PopCount = Exponent.countPopulation();
- InstructionCost Cost = (ActiveBits + PopCount - 2) *
- thisT()->getArithmeticInstrCost(
- Instruction::FMul, RetTy, CostKind);
- if (RHSC->getSExtValue() < 0)
- Cost += thisT()->getArithmeticInstrCost(Instruction::FDiv, RetTy,
- CostKind);
- return Cost;
- }
- }
- break;
- case Intrinsic::cttz:
- // FIXME: If necessary, this should go in target-specific overrides.
- if (RetVF.isScalar() && getTLI()->isCheapToSpeculateCttz(RetTy))
- return TargetTransformInfo::TCC_Basic;
- break;
- case Intrinsic::ctlz:
- // FIXME: If necessary, this should go in target-specific overrides.
- if (RetVF.isScalar() && getTLI()->isCheapToSpeculateCtlz(RetTy))
- return TargetTransformInfo::TCC_Basic;
- break;
- case Intrinsic::memcpy:
- return thisT()->getMemcpyCost(ICA.getInst());
- case Intrinsic::masked_scatter: {
- const Value *Mask = Args[3];
- bool VarMask = !isa<Constant>(Mask);
- Align Alignment = cast<ConstantInt>(Args[2])->getAlignValue();
- return thisT()->getGatherScatterOpCost(Instruction::Store,
- ICA.getArgTypes()[0], Args[1],
- VarMask, Alignment, CostKind, I);
- }
- case Intrinsic::masked_gather: {
- const Value *Mask = Args[2];
- bool VarMask = !isa<Constant>(Mask);
- Align Alignment = cast<ConstantInt>(Args[1])->getAlignValue();
- return thisT()->getGatherScatterOpCost(Instruction::Load, RetTy, Args[0],
- VarMask, Alignment, CostKind, I);
- }
- case Intrinsic::experimental_stepvector: {
- if (isa<ScalableVectorType>(RetTy))
- return BaseT::getIntrinsicInstrCost(ICA, CostKind);
- // The cost of materialising a constant integer vector.
- return TargetTransformInfo::TCC_Basic;
- }
- case Intrinsic::vector_extract: {
- // FIXME: Handle case where a scalable vector is extracted from a scalable
- // vector
- if (isa<ScalableVectorType>(RetTy))
- return BaseT::getIntrinsicInstrCost(ICA, CostKind);
- unsigned Index = cast<ConstantInt>(Args[1])->getZExtValue();
- return thisT()->getShuffleCost(
- TTI::SK_ExtractSubvector, cast<VectorType>(Args[0]->getType()),
- std::nullopt, CostKind, Index, cast<VectorType>(RetTy));
- }
- case Intrinsic::vector_insert: {
- // FIXME: Handle case where a scalable vector is inserted into a scalable
- // vector
- if (isa<ScalableVectorType>(Args[1]->getType()))
- return BaseT::getIntrinsicInstrCost(ICA, CostKind);
- unsigned Index = cast<ConstantInt>(Args[2])->getZExtValue();
- return thisT()->getShuffleCost(
- TTI::SK_InsertSubvector, cast<VectorType>(Args[0]->getType()),
- std::nullopt, CostKind, Index, cast<VectorType>(Args[1]->getType()));
- }
- case Intrinsic::experimental_vector_reverse: {
- return thisT()->getShuffleCost(
- TTI::SK_Reverse, cast<VectorType>(Args[0]->getType()), std::nullopt,
- CostKind, 0, cast<VectorType>(RetTy));
- }
- case Intrinsic::experimental_vector_splice: {
- unsigned Index = cast<ConstantInt>(Args[2])->getZExtValue();
- return thisT()->getShuffleCost(
- TTI::SK_Splice, cast<VectorType>(Args[0]->getType()), std::nullopt,
- CostKind, Index, cast<VectorType>(RetTy));
- }
- case Intrinsic::vector_reduce_add:
- case Intrinsic::vector_reduce_mul:
- case Intrinsic::vector_reduce_and:
- case Intrinsic::vector_reduce_or:
- case Intrinsic::vector_reduce_xor:
- case Intrinsic::vector_reduce_smax:
- case Intrinsic::vector_reduce_smin:
- case Intrinsic::vector_reduce_fmax:
- case Intrinsic::vector_reduce_fmin:
- case Intrinsic::vector_reduce_umax:
- case Intrinsic::vector_reduce_umin: {
- IntrinsicCostAttributes Attrs(IID, RetTy, Args[0]->getType(), FMF, I, 1);
- return getTypeBasedIntrinsicInstrCost(Attrs, CostKind);
- }
- case Intrinsic::vector_reduce_fadd:
- case Intrinsic::vector_reduce_fmul: {
- IntrinsicCostAttributes Attrs(
- IID, RetTy, {Args[0]->getType(), Args[1]->getType()}, FMF, I, 1);
- return getTypeBasedIntrinsicInstrCost(Attrs, CostKind);
- }
- case Intrinsic::fshl:
- case Intrinsic::fshr: {
- const Value *X = Args[0];
- const Value *Y = Args[1];
- const Value *Z = Args[2];
- const TTI::OperandValueInfo OpInfoX = TTI::getOperandInfo(X);
- const TTI::OperandValueInfo OpInfoY = TTI::getOperandInfo(Y);
- const TTI::OperandValueInfo OpInfoZ = TTI::getOperandInfo(Z);
- const TTI::OperandValueInfo OpInfoBW =
- {TTI::OK_UniformConstantValue,
- isPowerOf2_32(RetTy->getScalarSizeInBits()) ? TTI::OP_PowerOf2
- : TTI::OP_None};
- // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW)))
- // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW))
- InstructionCost Cost = 0;
- Cost +=
- thisT()->getArithmeticInstrCost(BinaryOperator::Or, RetTy, CostKind);
- Cost +=
- thisT()->getArithmeticInstrCost(BinaryOperator::Sub, RetTy, CostKind);
- Cost += thisT()->getArithmeticInstrCost(
- BinaryOperator::Shl, RetTy, CostKind, OpInfoX,
- {OpInfoZ.Kind, TTI::OP_None});
- Cost += thisT()->getArithmeticInstrCost(
- BinaryOperator::LShr, RetTy, CostKind, OpInfoY,
- {OpInfoZ.Kind, TTI::OP_None});
- // Non-constant shift amounts requires a modulo.
- if (!OpInfoZ.isConstant())
- Cost += thisT()->getArithmeticInstrCost(BinaryOperator::URem, RetTy,
- CostKind, OpInfoZ, OpInfoBW);
- // For non-rotates (X != Y) we must add shift-by-zero handling costs.
- if (X != Y) {
- Type *CondTy = RetTy->getWithNewBitWidth(1);
- Cost +=
- thisT()->getCmpSelInstrCost(BinaryOperator::ICmp, RetTy, CondTy,
- CmpInst::ICMP_EQ, CostKind);
- Cost +=
- thisT()->getCmpSelInstrCost(BinaryOperator::Select, RetTy, CondTy,
- CmpInst::ICMP_EQ, CostKind);
- }
- return Cost;
- }
- case Intrinsic::get_active_lane_mask: {
- EVT ResVT = getTLI()->getValueType(DL, RetTy, true);
- EVT ArgType = getTLI()->getValueType(DL, ICA.getArgTypes()[0], true);
- // If we're not expanding the intrinsic then we assume this is cheap
- // to implement.
- if (!getTLI()->shouldExpandGetActiveLaneMask(ResVT, ArgType)) {
- return getTypeLegalizationCost(RetTy).first;
- }
- // Create the expanded types that will be used to calculate the uadd_sat
- // operation.
- Type *ExpRetTy = VectorType::get(
- ICA.getArgTypes()[0], cast<VectorType>(RetTy)->getElementCount());
- IntrinsicCostAttributes Attrs(Intrinsic::uadd_sat, ExpRetTy, {}, FMF);
- InstructionCost Cost =
- thisT()->getTypeBasedIntrinsicInstrCost(Attrs, CostKind);
- Cost += thisT()->getCmpSelInstrCost(BinaryOperator::ICmp, ExpRetTy, RetTy,
- CmpInst::ICMP_ULT, CostKind);
- return Cost;
- }
- }
- // Assume that we need to scalarize this intrinsic.
- // Compute the scalarization overhead based on Args for a vector
- // intrinsic.
- InstructionCost ScalarizationCost = InstructionCost::getInvalid();
- if (RetVF.isVector() && !RetVF.isScalable()) {
- ScalarizationCost = 0;
- if (!RetTy->isVoidTy())
- ScalarizationCost += getScalarizationOverhead(
- cast<VectorType>(RetTy),
- /*Insert*/ true, /*Extract*/ false, CostKind);
- ScalarizationCost +=
- getOperandsScalarizationOverhead(Args, ICA.getArgTypes(), CostKind);
- }
- IntrinsicCostAttributes Attrs(IID, RetTy, ICA.getArgTypes(), FMF, I,
- ScalarizationCost);
- return thisT()->getTypeBasedIntrinsicInstrCost(Attrs, CostKind);
- }
- /// Get intrinsic cost based on argument types.
- /// If ScalarizationCostPassed is std::numeric_limits<unsigned>::max(), the
- /// cost of scalarizing the arguments and the return value will be computed
- /// based on types.
- InstructionCost
- getTypeBasedIntrinsicInstrCost(const IntrinsicCostAttributes &ICA,
- TTI::TargetCostKind CostKind) {
- Intrinsic::ID IID = ICA.getID();
- Type *RetTy = ICA.getReturnType();
- const SmallVectorImpl<Type *> &Tys = ICA.getArgTypes();
- FastMathFlags FMF = ICA.getFlags();
- InstructionCost ScalarizationCostPassed = ICA.getScalarizationCost();
- bool SkipScalarizationCost = ICA.skipScalarizationCost();
- VectorType *VecOpTy = nullptr;
- if (!Tys.empty()) {
- // The vector reduction operand is operand 0 except for fadd/fmul.
- // Their operand 0 is a scalar start value, so the vector op is operand 1.
- unsigned VecTyIndex = 0;
- if (IID == Intrinsic::vector_reduce_fadd ||
- IID == Intrinsic::vector_reduce_fmul)
- VecTyIndex = 1;
- assert(Tys.size() > VecTyIndex && "Unexpected IntrinsicCostAttributes");
- VecOpTy = dyn_cast<VectorType>(Tys[VecTyIndex]);
- }
- // Library call cost - other than size, make it expensive.
- unsigned SingleCallCost = CostKind == TTI::TCK_CodeSize ? 1 : 10;
- unsigned ISD = 0;
- switch (IID) {
- default: {
- // Scalable vectors cannot be scalarized, so return Invalid.
- if (isa<ScalableVectorType>(RetTy) || any_of(Tys, [](const Type *Ty) {
- return isa<ScalableVectorType>(Ty);
- }))
- return InstructionCost::getInvalid();
- // Assume that we need to scalarize this intrinsic.
- InstructionCost ScalarizationCost =
- SkipScalarizationCost ? ScalarizationCostPassed : 0;
- unsigned ScalarCalls = 1;
- Type *ScalarRetTy = RetTy;
- if (auto *RetVTy = dyn_cast<VectorType>(RetTy)) {
- if (!SkipScalarizationCost)
- ScalarizationCost = getScalarizationOverhead(
- RetVTy, /*Insert*/ true, /*Extract*/ false, CostKind);
- ScalarCalls = std::max(ScalarCalls,
- cast<FixedVectorType>(RetVTy)->getNumElements());
- ScalarRetTy = RetTy->getScalarType();
- }
- SmallVector<Type *, 4> ScalarTys;
- for (unsigned i = 0, ie = Tys.size(); i != ie; ++i) {
- Type *Ty = Tys[i];
- if (auto *VTy = dyn_cast<VectorType>(Ty)) {
- if (!SkipScalarizationCost)
- ScalarizationCost += getScalarizationOverhead(
- VTy, /*Insert*/ false, /*Extract*/ true, CostKind);
- ScalarCalls = std::max(ScalarCalls,
- cast<FixedVectorType>(VTy)->getNumElements());
- Ty = Ty->getScalarType();
- }
- ScalarTys.push_back(Ty);
- }
- if (ScalarCalls == 1)
- return 1; // Return cost of a scalar intrinsic. Assume it to be cheap.
- IntrinsicCostAttributes ScalarAttrs(IID, ScalarRetTy, ScalarTys, FMF);
- InstructionCost ScalarCost =
- thisT()->getIntrinsicInstrCost(ScalarAttrs, CostKind);
- return ScalarCalls * ScalarCost + ScalarizationCost;
- }
- // Look for intrinsics that can be lowered directly or turned into a scalar
- // intrinsic call.
- case Intrinsic::sqrt:
- ISD = ISD::FSQRT;
- break;
- case Intrinsic::sin:
- ISD = ISD::FSIN;
- break;
- case Intrinsic::cos:
- ISD = ISD::FCOS;
- break;
- case Intrinsic::exp:
- ISD = ISD::FEXP;
- break;
- case Intrinsic::exp2:
- ISD = ISD::FEXP2;
- break;
- case Intrinsic::log:
- ISD = ISD::FLOG;
- break;
- case Intrinsic::log10:
- ISD = ISD::FLOG10;
- break;
- case Intrinsic::log2:
- ISD = ISD::FLOG2;
- break;
- case Intrinsic::fabs:
- ISD = ISD::FABS;
- break;
- case Intrinsic::canonicalize:
- ISD = ISD::FCANONICALIZE;
- break;
- case Intrinsic::minnum:
- ISD = ISD::FMINNUM;
- break;
- case Intrinsic::maxnum:
- ISD = ISD::FMAXNUM;
- break;
- case Intrinsic::minimum:
- ISD = ISD::FMINIMUM;
- break;
- case Intrinsic::maximum:
- ISD = ISD::FMAXIMUM;
- break;
- case Intrinsic::copysign:
- ISD = ISD::FCOPYSIGN;
- break;
- case Intrinsic::floor:
- ISD = ISD::FFLOOR;
- break;
- case Intrinsic::ceil:
- ISD = ISD::FCEIL;
- break;
- case Intrinsic::trunc:
- ISD = ISD::FTRUNC;
- break;
- case Intrinsic::nearbyint:
- ISD = ISD::FNEARBYINT;
- break;
- case Intrinsic::rint:
- ISD = ISD::FRINT;
- break;
- case Intrinsic::round:
- ISD = ISD::FROUND;
- break;
- case Intrinsic::roundeven:
- ISD = ISD::FROUNDEVEN;
- break;
- case Intrinsic::pow:
- ISD = ISD::FPOW;
- break;
- case Intrinsic::fma:
- ISD = ISD::FMA;
- break;
- case Intrinsic::fmuladd:
- ISD = ISD::FMA;
- break;
- case Intrinsic::experimental_constrained_fmuladd:
- ISD = ISD::STRICT_FMA;
- break;
- // FIXME: We should return 0 whenever getIntrinsicCost == TCC_Free.
- case Intrinsic::lifetime_start:
- case Intrinsic::lifetime_end:
- case Intrinsic::sideeffect:
- case Intrinsic::pseudoprobe:
- case Intrinsic::arithmetic_fence:
- return 0;
- case Intrinsic::masked_store: {
- Type *Ty = Tys[0];
- Align TyAlign = thisT()->DL.getABITypeAlign(Ty);
- return thisT()->getMaskedMemoryOpCost(Instruction::Store, Ty, TyAlign, 0,
- CostKind);
- }
- case Intrinsic::masked_load: {
- Type *Ty = RetTy;
- Align TyAlign = thisT()->DL.getABITypeAlign(Ty);
- return thisT()->getMaskedMemoryOpCost(Instruction::Load, Ty, TyAlign, 0,
- CostKind);
- }
- case Intrinsic::vector_reduce_add:
- return thisT()->getArithmeticReductionCost(Instruction::Add, VecOpTy,
- std::nullopt, CostKind);
- case Intrinsic::vector_reduce_mul:
- return thisT()->getArithmeticReductionCost(Instruction::Mul, VecOpTy,
- std::nullopt, CostKind);
- case Intrinsic::vector_reduce_and:
- return thisT()->getArithmeticReductionCost(Instruction::And, VecOpTy,
- std::nullopt, CostKind);
- case Intrinsic::vector_reduce_or:
- return thisT()->getArithmeticReductionCost(Instruction::Or, VecOpTy,
- std::nullopt, CostKind);
- case Intrinsic::vector_reduce_xor:
- return thisT()->getArithmeticReductionCost(Instruction::Xor, VecOpTy,
- std::nullopt, CostKind);
- case Intrinsic::vector_reduce_fadd:
- return thisT()->getArithmeticReductionCost(Instruction::FAdd, VecOpTy,
- FMF, CostKind);
- case Intrinsic::vector_reduce_fmul:
- return thisT()->getArithmeticReductionCost(Instruction::FMul, VecOpTy,
- FMF, CostKind);
- case Intrinsic::vector_reduce_smax:
- case Intrinsic::vector_reduce_smin:
- case Intrinsic::vector_reduce_fmax:
- case Intrinsic::vector_reduce_fmin:
- return thisT()->getMinMaxReductionCost(
- VecOpTy, cast<VectorType>(CmpInst::makeCmpResultType(VecOpTy)),
- /*IsUnsigned=*/false, CostKind);
- case Intrinsic::vector_reduce_umax:
- case Intrinsic::vector_reduce_umin:
- return thisT()->getMinMaxReductionCost(
- VecOpTy, cast<VectorType>(CmpInst::makeCmpResultType(VecOpTy)),
- /*IsUnsigned=*/true, CostKind);
- case Intrinsic::abs: {
- // abs(X) = select(icmp(X,0),X,sub(0,X))
- Type *CondTy = RetTy->getWithNewBitWidth(1);
- CmpInst::Predicate Pred = CmpInst::ICMP_SGT;
- InstructionCost Cost = 0;
- Cost += thisT()->getCmpSelInstrCost(BinaryOperator::ICmp, RetTy, CondTy,
- Pred, CostKind);
- Cost += thisT()->getCmpSelInstrCost(BinaryOperator::Select, RetTy, CondTy,
- Pred, CostKind);
- // TODO: Should we add an OperandValueProperties::OP_Zero property?
- Cost += thisT()->getArithmeticInstrCost(
- BinaryOperator::Sub, RetTy, CostKind, {TTI::OK_UniformConstantValue, TTI::OP_None});
- return Cost;
- }
- case Intrinsic::smax:
- case Intrinsic::smin:
- case Intrinsic::umax:
- case Intrinsic::umin: {
- // minmax(X,Y) = select(icmp(X,Y),X,Y)
- Type *CondTy = RetTy->getWithNewBitWidth(1);
- bool IsUnsigned = IID == Intrinsic::umax || IID == Intrinsic::umin;
- CmpInst::Predicate Pred =
- IsUnsigned ? CmpInst::ICMP_UGT : CmpInst::ICMP_SGT;
- InstructionCost Cost = 0;
- Cost += thisT()->getCmpSelInstrCost(BinaryOperator::ICmp, RetTy, CondTy,
- Pred, CostKind);
- Cost += thisT()->getCmpSelInstrCost(BinaryOperator::Select, RetTy, CondTy,
- Pred, CostKind);
- return Cost;
- }
- case Intrinsic::sadd_sat:
- case Intrinsic::ssub_sat: {
- Type *CondTy = RetTy->getWithNewBitWidth(1);
- Type *OpTy = StructType::create({RetTy, CondTy});
- Intrinsic::ID OverflowOp = IID == Intrinsic::sadd_sat
- ? Intrinsic::sadd_with_overflow
- : Intrinsic::ssub_with_overflow;
- CmpInst::Predicate Pred = CmpInst::ICMP_SGT;
- // SatMax -> Overflow && SumDiff < 0
- // SatMin -> Overflow && SumDiff >= 0
- InstructionCost Cost = 0;
- IntrinsicCostAttributes Attrs(OverflowOp, OpTy, {RetTy, RetTy}, FMF,
- nullptr, ScalarizationCostPassed);
- Cost += thisT()->getIntrinsicInstrCost(Attrs, CostKind);
- Cost += thisT()->getCmpSelInstrCost(BinaryOperator::ICmp, RetTy, CondTy,
- Pred, CostKind);
- Cost += 2 * thisT()->getCmpSelInstrCost(BinaryOperator::Select, RetTy,
- CondTy, Pred, CostKind);
- return Cost;
- }
- case Intrinsic::uadd_sat:
- case Intrinsic::usub_sat: {
- Type *CondTy = RetTy->getWithNewBitWidth(1);
- Type *OpTy = StructType::create({RetTy, CondTy});
- Intrinsic::ID OverflowOp = IID == Intrinsic::uadd_sat
- ? Intrinsic::uadd_with_overflow
- : Intrinsic::usub_with_overflow;
- InstructionCost Cost = 0;
- IntrinsicCostAttributes Attrs(OverflowOp, OpTy, {RetTy, RetTy}, FMF,
- nullptr, ScalarizationCostPassed);
- Cost += thisT()->getIntrinsicInstrCost(Attrs, CostKind);
- Cost +=
- thisT()->getCmpSelInstrCost(BinaryOperator::Select, RetTy, CondTy,
- CmpInst::BAD_ICMP_PREDICATE, CostKind);
- return Cost;
- }
- case Intrinsic::smul_fix:
- case Intrinsic::umul_fix: {
- unsigned ExtSize = RetTy->getScalarSizeInBits() * 2;
- Type *ExtTy = RetTy->getWithNewBitWidth(ExtSize);
- unsigned ExtOp =
- IID == Intrinsic::smul_fix ? Instruction::SExt : Instruction::ZExt;
- TTI::CastContextHint CCH = TTI::CastContextHint::None;
- InstructionCost Cost = 0;
- Cost += 2 * thisT()->getCastInstrCost(ExtOp, ExtTy, RetTy, CCH, CostKind);
- Cost +=
- thisT()->getArithmeticInstrCost(Instruction::Mul, ExtTy, CostKind);
- Cost += 2 * thisT()->getCastInstrCost(Instruction::Trunc, RetTy, ExtTy,
- CCH, CostKind);
- Cost += thisT()->getArithmeticInstrCost(Instruction::LShr, RetTy,
- CostKind,
- {TTI::OK_AnyValue, TTI::OP_None},
- {TTI::OK_UniformConstantValue, TTI::OP_None});
- Cost += thisT()->getArithmeticInstrCost(Instruction::Shl, RetTy, CostKind,
- {TTI::OK_AnyValue, TTI::OP_None},
- {TTI::OK_UniformConstantValue, TTI::OP_None});
- Cost += thisT()->getArithmeticInstrCost(Instruction::Or, RetTy, CostKind);
- return Cost;
- }
- case Intrinsic::sadd_with_overflow:
- case Intrinsic::ssub_with_overflow: {
- Type *SumTy = RetTy->getContainedType(0);
- Type *OverflowTy = RetTy->getContainedType(1);
- unsigned Opcode = IID == Intrinsic::sadd_with_overflow
- ? BinaryOperator::Add
- : BinaryOperator::Sub;
- // Add:
- // Overflow -> (Result < LHS) ^ (RHS < 0)
- // Sub:
- // Overflow -> (Result < LHS) ^ (RHS > 0)
- InstructionCost Cost = 0;
- Cost += thisT()->getArithmeticInstrCost(Opcode, SumTy, CostKind);
- Cost += 2 * thisT()->getCmpSelInstrCost(
- Instruction::ICmp, SumTy, OverflowTy,
- CmpInst::ICMP_SGT, CostKind);
- Cost += thisT()->getArithmeticInstrCost(BinaryOperator::Xor, OverflowTy,
- CostKind);
- return Cost;
- }
- case Intrinsic::uadd_with_overflow:
- case Intrinsic::usub_with_overflow: {
- Type *SumTy = RetTy->getContainedType(0);
- Type *OverflowTy = RetTy->getContainedType(1);
- unsigned Opcode = IID == Intrinsic::uadd_with_overflow
- ? BinaryOperator::Add
- : BinaryOperator::Sub;
- CmpInst::Predicate Pred = IID == Intrinsic::uadd_with_overflow
- ? CmpInst::ICMP_ULT
- : CmpInst::ICMP_UGT;
- InstructionCost Cost = 0;
- Cost += thisT()->getArithmeticInstrCost(Opcode, SumTy, CostKind);
- Cost +=
- thisT()->getCmpSelInstrCost(BinaryOperator::ICmp, SumTy, OverflowTy,
- Pred, CostKind);
- return Cost;
- }
- case Intrinsic::smul_with_overflow:
- case Intrinsic::umul_with_overflow: {
- Type *MulTy = RetTy->getContainedType(0);
- Type *OverflowTy = RetTy->getContainedType(1);
- unsigned ExtSize = MulTy->getScalarSizeInBits() * 2;
- Type *ExtTy = MulTy->getWithNewBitWidth(ExtSize);
- bool IsSigned = IID == Intrinsic::smul_with_overflow;
- unsigned ExtOp = IsSigned ? Instruction::SExt : Instruction::ZExt;
- TTI::CastContextHint CCH = TTI::CastContextHint::None;
- InstructionCost Cost = 0;
- Cost += 2 * thisT()->getCastInstrCost(ExtOp, ExtTy, MulTy, CCH, CostKind);
- Cost +=
- thisT()->getArithmeticInstrCost(Instruction::Mul, ExtTy, CostKind);
- Cost += 2 * thisT()->getCastInstrCost(Instruction::Trunc, MulTy, ExtTy,
- CCH, CostKind);
- Cost += thisT()->getArithmeticInstrCost(Instruction::LShr, ExtTy,
- CostKind,
- {TTI::OK_AnyValue, TTI::OP_None},
- {TTI::OK_UniformConstantValue, TTI::OP_None});
- if (IsSigned)
- Cost += thisT()->getArithmeticInstrCost(Instruction::AShr, MulTy,
- CostKind,
- {TTI::OK_AnyValue, TTI::OP_None},
- {TTI::OK_UniformConstantValue, TTI::OP_None});
- Cost += thisT()->getCmpSelInstrCost(
- BinaryOperator::ICmp, MulTy, OverflowTy, CmpInst::ICMP_NE, CostKind);
- return Cost;
- }
- case Intrinsic::fptosi_sat:
- case Intrinsic::fptoui_sat: {
- if (Tys.empty())
- break;
- Type *FromTy = Tys[0];
- bool IsSigned = IID == Intrinsic::fptosi_sat;
- InstructionCost Cost = 0;
- IntrinsicCostAttributes Attrs1(Intrinsic::minnum, FromTy,
- {FromTy, FromTy});
- Cost += thisT()->getIntrinsicInstrCost(Attrs1, CostKind);
- IntrinsicCostAttributes Attrs2(Intrinsic::maxnum, FromTy,
- {FromTy, FromTy});
- Cost += thisT()->getIntrinsicInstrCost(Attrs2, CostKind);
- Cost += thisT()->getCastInstrCost(
- IsSigned ? Instruction::FPToSI : Instruction::FPToUI, RetTy, FromTy,
- TTI::CastContextHint::None, CostKind);
- if (IsSigned) {
- Type *CondTy = RetTy->getWithNewBitWidth(1);
- Cost += thisT()->getCmpSelInstrCost(
- BinaryOperator::FCmp, FromTy, CondTy, CmpInst::FCMP_UNO, CostKind);
- Cost += thisT()->getCmpSelInstrCost(
- BinaryOperator::Select, RetTy, CondTy, CmpInst::FCMP_UNO, CostKind);
- }
- return Cost;
- }
- case Intrinsic::ctpop:
- ISD = ISD::CTPOP;
- // In case of legalization use TCC_Expensive. This is cheaper than a
- // library call but still not a cheap instruction.
- SingleCallCost = TargetTransformInfo::TCC_Expensive;
- break;
- case Intrinsic::ctlz:
- ISD = ISD::CTLZ;
- break;
- case Intrinsic::cttz:
- ISD = ISD::CTTZ;
- break;
- case Intrinsic::bswap:
- ISD = ISD::BSWAP;
- break;
- case Intrinsic::bitreverse:
- ISD = ISD::BITREVERSE;
- break;
- }
- const TargetLoweringBase *TLI = getTLI();
- std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(RetTy);
- if (TLI->isOperationLegalOrPromote(ISD, LT.second)) {
- if (IID == Intrinsic::fabs && LT.second.isFloatingPoint() &&
- TLI->isFAbsFree(LT.second)) {
- return 0;
- }
- // The operation is legal. Assume it costs 1.
- // If the type is split to multiple registers, assume that there is some
- // overhead to this.
- // TODO: Once we have extract/insert subvector cost we need to use them.
- if (LT.first > 1)
- return (LT.first * 2);
- else
- return (LT.first * 1);
- } else if (!TLI->isOperationExpand(ISD, LT.second)) {
- // If the operation is custom lowered then assume
- // that the code is twice as expensive.
- return (LT.first * 2);
- }
- // If we can't lower fmuladd into an FMA estimate the cost as a floating
- // point mul followed by an add.
- if (IID == Intrinsic::fmuladd)
- return thisT()->getArithmeticInstrCost(BinaryOperator::FMul, RetTy,
- CostKind) +
- thisT()->getArithmeticInstrCost(BinaryOperator::FAdd, RetTy,
- CostKind);
- if (IID == Intrinsic::experimental_constrained_fmuladd) {
- IntrinsicCostAttributes FMulAttrs(
- Intrinsic::experimental_constrained_fmul, RetTy, Tys);
- IntrinsicCostAttributes FAddAttrs(
- Intrinsic::experimental_constrained_fadd, RetTy, Tys);
- return thisT()->getIntrinsicInstrCost(FMulAttrs, CostKind) +
- thisT()->getIntrinsicInstrCost(FAddAttrs, CostKind);
- }
- // Else, assume that we need to scalarize this intrinsic. For math builtins
- // this will emit a costly libcall, adding call overhead and spills. Make it
- // very expensive.
- if (auto *RetVTy = dyn_cast<VectorType>(RetTy)) {
- // Scalable vectors cannot be scalarized, so return Invalid.
- if (isa<ScalableVectorType>(RetTy) || any_of(Tys, [](const Type *Ty) {
- return isa<ScalableVectorType>(Ty);
- }))
- return InstructionCost::getInvalid();
- InstructionCost ScalarizationCost =
- SkipScalarizationCost
- ? ScalarizationCostPassed
- : getScalarizationOverhead(RetVTy, /*Insert*/ true,
- /*Extract*/ false, CostKind);
- unsigned ScalarCalls = cast<FixedVectorType>(RetVTy)->getNumElements();
- SmallVector<Type *, 4> ScalarTys;
- for (unsigned i = 0, ie = Tys.size(); i != ie; ++i) {
- Type *Ty = Tys[i];
- if (Ty->isVectorTy())
- Ty = Ty->getScalarType();
- ScalarTys.push_back(Ty);
- }
- IntrinsicCostAttributes Attrs(IID, RetTy->getScalarType(), ScalarTys, FMF);
- InstructionCost ScalarCost =
- thisT()->getIntrinsicInstrCost(Attrs, CostKind);
- for (unsigned i = 0, ie = Tys.size(); i != ie; ++i) {
- if (auto *VTy = dyn_cast<VectorType>(Tys[i])) {
- if (!ICA.skipScalarizationCost())
- ScalarizationCost += getScalarizationOverhead(
- VTy, /*Insert*/ false, /*Extract*/ true, CostKind);
- ScalarCalls = std::max(ScalarCalls,
- cast<FixedVectorType>(VTy)->getNumElements());
- }
- }
- return ScalarCalls * ScalarCost + ScalarizationCost;
- }
- // This is going to be turned into a library call, make it expensive.
- return SingleCallCost;
- }
- /// Compute a cost of the given call instruction.
- ///
- /// Compute the cost of calling function F with return type RetTy and
- /// argument types Tys. F might be nullptr, in this case the cost of an
- /// arbitrary call with the specified signature will be returned.
- /// This is used, for instance, when we estimate call of a vector
- /// counterpart of the given function.
- /// \param F Called function, might be nullptr.
- /// \param RetTy Return value types.
- /// \param Tys Argument types.
- /// \returns The cost of Call instruction.
- InstructionCost getCallInstrCost(Function *F, Type *RetTy,
- ArrayRef<Type *> Tys,
- TTI::TargetCostKind CostKind) {
- return 10;
- }
- unsigned getNumberOfParts(Type *Tp) {
- std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(Tp);
- return LT.first.isValid() ? *LT.first.getValue() : 0;
- }
- InstructionCost getAddressComputationCost(Type *Ty, ScalarEvolution *,
- const SCEV *) {
- return 0;
- }
- /// Try to calculate arithmetic and shuffle op costs for reduction intrinsics.
- /// We're assuming that reduction operation are performing the following way:
- ///
- /// %val1 = shufflevector<n x t> %val, <n x t> %undef,
- /// <n x i32> <i32 n/2, i32 n/2 + 1, ..., i32 n, i32 undef, ..., i32 undef>
- /// \----------------v-------------/ \----------v------------/
- /// n/2 elements n/2 elements
- /// %red1 = op <n x t> %val, <n x t> val1
- /// After this operation we have a vector %red1 where only the first n/2
- /// elements are meaningful, the second n/2 elements are undefined and can be
- /// dropped. All other operations are actually working with the vector of
- /// length n/2, not n, though the real vector length is still n.
- /// %val2 = shufflevector<n x t> %red1, <n x t> %undef,
- /// <n x i32> <i32 n/4, i32 n/4 + 1, ..., i32 n/2, i32 undef, ..., i32 undef>
- /// \----------------v-------------/ \----------v------------/
- /// n/4 elements 3*n/4 elements
- /// %red2 = op <n x t> %red1, <n x t> val2 - working with the vector of
- /// length n/2, the resulting vector has length n/4 etc.
- ///
- /// The cost model should take into account that the actual length of the
- /// vector is reduced on each iteration.
- InstructionCost getTreeReductionCost(unsigned Opcode, VectorType *Ty,
- TTI::TargetCostKind CostKind) {
- // Targets must implement a default value for the scalable case, since
- // we don't know how many lanes the vector has.
- if (isa<ScalableVectorType>(Ty))
- return InstructionCost::getInvalid();
- Type *ScalarTy = Ty->getElementType();
- unsigned NumVecElts = cast<FixedVectorType>(Ty)->getNumElements();
- if ((Opcode == Instruction::Or || Opcode == Instruction::And) &&
- ScalarTy == IntegerType::getInt1Ty(Ty->getContext()) &&
- NumVecElts >= 2) {
- // Or reduction for i1 is represented as:
- // %val = bitcast <ReduxWidth x i1> to iReduxWidth
- // %res = cmp ne iReduxWidth %val, 0
- // And reduction for i1 is represented as:
- // %val = bitcast <ReduxWidth x i1> to iReduxWidth
- // %res = cmp eq iReduxWidth %val, 11111
- Type *ValTy = IntegerType::get(Ty->getContext(), NumVecElts);
- return thisT()->getCastInstrCost(Instruction::BitCast, ValTy, Ty,
- TTI::CastContextHint::None, CostKind) +
- thisT()->getCmpSelInstrCost(Instruction::ICmp, ValTy,
- CmpInst::makeCmpResultType(ValTy),
- CmpInst::BAD_ICMP_PREDICATE, CostKind);
- }
- unsigned NumReduxLevels = Log2_32(NumVecElts);
- InstructionCost ArithCost = 0;
- InstructionCost ShuffleCost = 0;
- std::pair<InstructionCost, MVT> LT = thisT()->getTypeLegalizationCost(Ty);
- unsigned LongVectorCount = 0;
- unsigned MVTLen =
- LT.second.isVector() ? LT.second.getVectorNumElements() : 1;
- while (NumVecElts > MVTLen) {
- NumVecElts /= 2;
- VectorType *SubTy = FixedVectorType::get(ScalarTy, NumVecElts);
- ShuffleCost +=
- thisT()->getShuffleCost(TTI::SK_ExtractSubvector, Ty, std::nullopt,
- CostKind, NumVecElts, SubTy);
- ArithCost += thisT()->getArithmeticInstrCost(Opcode, SubTy, CostKind);
- Ty = SubTy;
- ++LongVectorCount;
- }
- NumReduxLevels -= LongVectorCount;
- // The minimal length of the vector is limited by the real length of vector
- // operations performed on the current platform. That's why several final
- // reduction operations are performed on the vectors with the same
- // architecture-dependent length.
- // By default reductions need one shuffle per reduction level.
- ShuffleCost +=
- NumReduxLevels * thisT()->getShuffleCost(TTI::SK_PermuteSingleSrc, Ty,
- std::nullopt, CostKind, 0, Ty);
- ArithCost +=
- NumReduxLevels * thisT()->getArithmeticInstrCost(Opcode, Ty, CostKind);
- return ShuffleCost + ArithCost +
- thisT()->getVectorInstrCost(Instruction::ExtractElement, Ty,
- CostKind, 0, nullptr, nullptr);
- }
- /// Try to calculate the cost of performing strict (in-order) reductions,
- /// which involves doing a sequence of floating point additions in lane
- /// order, starting with an initial value. For example, consider a scalar
- /// initial value 'InitVal' of type float and a vector of type <4 x float>:
- ///
- /// Vector = <float %v0, float %v1, float %v2, float %v3>
- ///
- /// %add1 = %InitVal + %v0
- /// %add2 = %add1 + %v1
- /// %add3 = %add2 + %v2
- /// %add4 = %add3 + %v3
- ///
- /// As a simple estimate we can say the cost of such a reduction is 4 times
- /// the cost of a scalar FP addition. We can only estimate the costs for
- /// fixed-width vectors here because for scalable vectors we do not know the
- /// runtime number of operations.
- InstructionCost getOrderedReductionCost(unsigned Opcode, VectorType *Ty,
- TTI::TargetCostKind CostKind) {
- // Targets must implement a default value for the scalable case, since
- // we don't know how many lanes the vector has.
- if (isa<ScalableVectorType>(Ty))
- return InstructionCost::getInvalid();
- auto *VTy = cast<FixedVectorType>(Ty);
- InstructionCost ExtractCost = getScalarizationOverhead(
- VTy, /*Insert=*/false, /*Extract=*/true, CostKind);
- InstructionCost ArithCost = thisT()->getArithmeticInstrCost(
- Opcode, VTy->getElementType(), CostKind);
- ArithCost *= VTy->getNumElements();
- return ExtractCost + ArithCost;
- }
- InstructionCost getArithmeticReductionCost(unsigned Opcode, VectorType *Ty,
- std::optional<FastMathFlags> FMF,
- TTI::TargetCostKind CostKind) {
- if (TTI::requiresOrderedReduction(FMF))
- return getOrderedReductionCost(Opcode, Ty, CostKind);
- return getTreeReductionCost(Opcode, Ty, CostKind);
- }
- /// Try to calculate op costs for min/max reduction operations.
- /// \param CondTy Conditional type for the Select instruction.
- InstructionCost getMinMaxReductionCost(VectorType *Ty, VectorType *CondTy,
- bool IsUnsigned,
- TTI::TargetCostKind CostKind) {
- // Targets must implement a default value for the scalable case, since
- // we don't know how many lanes the vector has.
- if (isa<ScalableVectorType>(Ty))
- return InstructionCost::getInvalid();
- Type *ScalarTy = Ty->getElementType();
- Type *ScalarCondTy = CondTy->getElementType();
- unsigned NumVecElts = cast<FixedVectorType>(Ty)->getNumElements();
- unsigned NumReduxLevels = Log2_32(NumVecElts);
- unsigned CmpOpcode;
- if (Ty->isFPOrFPVectorTy()) {
- CmpOpcode = Instruction::FCmp;
- } else {
- assert(Ty->isIntOrIntVectorTy() &&
- "expecting floating point or integer type for min/max reduction");
- CmpOpcode = Instruction::ICmp;
- }
- InstructionCost MinMaxCost = 0;
- InstructionCost ShuffleCost = 0;
- std::pair<InstructionCost, MVT> LT = thisT()->getTypeLegalizationCost(Ty);
- unsigned LongVectorCount = 0;
- unsigned MVTLen =
- LT.second.isVector() ? LT.second.getVectorNumElements() : 1;
- while (NumVecElts > MVTLen) {
- NumVecElts /= 2;
- auto *SubTy = FixedVectorType::get(ScalarTy, NumVecElts);
- CondTy = FixedVectorType::get(ScalarCondTy, NumVecElts);
- ShuffleCost +=
- thisT()->getShuffleCost(TTI::SK_ExtractSubvector, Ty, std::nullopt,
- CostKind, NumVecElts, SubTy);
- MinMaxCost +=
- thisT()->getCmpSelInstrCost(CmpOpcode, SubTy, CondTy,
- CmpInst::BAD_ICMP_PREDICATE, CostKind) +
- thisT()->getCmpSelInstrCost(Instruction::Select, SubTy, CondTy,
- CmpInst::BAD_ICMP_PREDICATE, CostKind);
- Ty = SubTy;
- ++LongVectorCount;
- }
- NumReduxLevels -= LongVectorCount;
- // The minimal length of the vector is limited by the real length of vector
- // operations performed on the current platform. That's why several final
- // reduction opertions are perfomed on the vectors with the same
- // architecture-dependent length.
- ShuffleCost +=
- NumReduxLevels * thisT()->getShuffleCost(TTI::SK_PermuteSingleSrc, Ty,
- std::nullopt, CostKind, 0, Ty);
- MinMaxCost +=
- NumReduxLevels *
- (thisT()->getCmpSelInstrCost(CmpOpcode, Ty, CondTy,
- CmpInst::BAD_ICMP_PREDICATE, CostKind) +
- thisT()->getCmpSelInstrCost(Instruction::Select, Ty, CondTy,
- CmpInst::BAD_ICMP_PREDICATE, CostKind));
- // The last min/max should be in vector registers and we counted it above.
- // So just need a single extractelement.
- return ShuffleCost + MinMaxCost +
- thisT()->getVectorInstrCost(Instruction::ExtractElement, Ty,
- CostKind, 0, nullptr, nullptr);
- }
- InstructionCost getExtendedReductionCost(unsigned Opcode, bool IsUnsigned,
- Type *ResTy, VectorType *Ty,
- std::optional<FastMathFlags> FMF,
- TTI::TargetCostKind CostKind) {
- // Without any native support, this is equivalent to the cost of
- // vecreduce.opcode(ext(Ty A)).
- VectorType *ExtTy = VectorType::get(ResTy, Ty);
- InstructionCost RedCost =
- thisT()->getArithmeticReductionCost(Opcode, ExtTy, FMF, CostKind);
- InstructionCost ExtCost = thisT()->getCastInstrCost(
- IsUnsigned ? Instruction::ZExt : Instruction::SExt, ExtTy, Ty,
- TTI::CastContextHint::None, CostKind);
- return RedCost + ExtCost;
- }
- InstructionCost getMulAccReductionCost(bool IsUnsigned, Type *ResTy,
- VectorType *Ty,
- TTI::TargetCostKind CostKind) {
- // Without any native support, this is equivalent to the cost of
- // vecreduce.add(mul(ext(Ty A), ext(Ty B))) or
- // vecreduce.add(mul(A, B)).
- VectorType *ExtTy = VectorType::get(ResTy, Ty);
- InstructionCost RedCost = thisT()->getArithmeticReductionCost(
- Instruction::Add, ExtTy, std::nullopt, CostKind);
- InstructionCost ExtCost = thisT()->getCastInstrCost(
- IsUnsigned ? Instruction::ZExt : Instruction::SExt, ExtTy, Ty,
- TTI::CastContextHint::None, CostKind);
- InstructionCost MulCost =
- thisT()->getArithmeticInstrCost(Instruction::Mul, ExtTy, CostKind);
- return RedCost + MulCost + 2 * ExtCost;
- }
- InstructionCost getVectorSplitCost() { return 1; }
- /// @}
- };
- /// Concrete BasicTTIImpl that can be used if no further customization
- /// is needed.
- class BasicTTIImpl : public BasicTTIImplBase<BasicTTIImpl> {
- using BaseT = BasicTTIImplBase<BasicTTIImpl>;
- friend class BasicTTIImplBase<BasicTTIImpl>;
- const TargetSubtargetInfo *ST;
- const TargetLoweringBase *TLI;
- const TargetSubtargetInfo *getST() const { return ST; }
- const TargetLoweringBase *getTLI() const { return TLI; }
- public:
- explicit BasicTTIImpl(const TargetMachine *TM, const Function &F);
- };
- } // end namespace llvm
- #endif // LLVM_CODEGEN_BASICTTIIMPL_H
- #ifdef __GNUC__
- #pragma GCC diagnostic pop
- #endif
|