12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417 |
- #pragma once
- #ifdef __GNUC__
- #pragma GCC diagnostic push
- #pragma GCC diagnostic ignored "-Wunused-parameter"
- #endif
- //===- llvm/ADT/STLExtras.h - Useful STL related functions ------*- C++ -*-===//
- //
- // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
- // See https://llvm.org/LICENSE.txt for license information.
- // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
- //
- //===----------------------------------------------------------------------===//
- ///
- /// \file
- /// This file contains some templates that are useful if you are working with
- /// the STL at all.
- ///
- /// No library is required when using these functions.
- ///
- //===----------------------------------------------------------------------===//
- #ifndef LLVM_ADT_STLEXTRAS_H
- #define LLVM_ADT_STLEXTRAS_H
- #include "llvm/ADT/Hashing.h"
- #include "llvm/ADT/STLForwardCompat.h"
- #include "llvm/ADT/STLFunctionalExtras.h"
- #include "llvm/ADT/identity.h"
- #include "llvm/ADT/iterator.h"
- #include "llvm/ADT/iterator_range.h"
- #include "llvm/Config/abi-breaking.h"
- #include "llvm/Support/ErrorHandling.h"
- #include <algorithm>
- #include <cassert>
- #include <cstddef>
- #include <cstdint>
- #include <cstdlib>
- #include <functional>
- #include <initializer_list>
- #include <iterator>
- #include <limits>
- #include <memory>
- #include <optional>
- #include <tuple>
- #include <type_traits>
- #include <utility>
- #ifdef EXPENSIVE_CHECKS
- #include <random> // for std::mt19937
- #endif
- namespace llvm {
- // Only used by compiler if both template types are the same. Useful when
- // using SFINAE to test for the existence of member functions.
- template <typename T, T> struct SameType;
- namespace detail {
- template <typename RangeT>
- using IterOfRange = decltype(std::begin(std::declval<RangeT &>()));
- template <typename RangeT>
- using ValueOfRange =
- std::remove_reference_t<decltype(*std::begin(std::declval<RangeT &>()))>;
- } // end namespace detail
- //===----------------------------------------------------------------------===//
- // Extra additions to <type_traits>
- //===----------------------------------------------------------------------===//
- template <typename T> struct make_const_ptr {
- using type = std::add_pointer_t<std::add_const_t<T>>;
- };
- template <typename T> struct make_const_ref {
- using type = std::add_lvalue_reference_t<std::add_const_t<T>>;
- };
- namespace detail {
- template <class, template <class...> class Op, class... Args> struct detector {
- using value_t = std::false_type;
- };
- template <template <class...> class Op, class... Args>
- struct detector<std::void_t<Op<Args...>>, Op, Args...> {
- using value_t = std::true_type;
- };
- } // end namespace detail
- /// Detects if a given trait holds for some set of arguments 'Args'.
- /// For example, the given trait could be used to detect if a given type
- /// has a copy assignment operator:
- /// template<class T>
- /// using has_copy_assign_t = decltype(std::declval<T&>()
- /// = std::declval<const T&>());
- /// bool fooHasCopyAssign = is_detected<has_copy_assign_t, FooClass>::value;
- template <template <class...> class Op, class... Args>
- using is_detected = typename detail::detector<void, Op, Args...>::value_t;
- /// This class provides various trait information about a callable object.
- /// * To access the number of arguments: Traits::num_args
- /// * To access the type of an argument: Traits::arg_t<Index>
- /// * To access the type of the result: Traits::result_t
- template <typename T, bool isClass = std::is_class<T>::value>
- struct function_traits : public function_traits<decltype(&T::operator())> {};
- /// Overload for class function types.
- template <typename ClassType, typename ReturnType, typename... Args>
- struct function_traits<ReturnType (ClassType::*)(Args...) const, false> {
- /// The number of arguments to this function.
- enum { num_args = sizeof...(Args) };
- /// The result type of this function.
- using result_t = ReturnType;
- /// The type of an argument to this function.
- template <size_t Index>
- using arg_t = std::tuple_element_t<Index, std::tuple<Args...>>;
- };
- /// Overload for class function types.
- template <typename ClassType, typename ReturnType, typename... Args>
- struct function_traits<ReturnType (ClassType::*)(Args...), false>
- : public function_traits<ReturnType (ClassType::*)(Args...) const> {};
- /// Overload for non-class function types.
- template <typename ReturnType, typename... Args>
- struct function_traits<ReturnType (*)(Args...), false> {
- /// The number of arguments to this function.
- enum { num_args = sizeof...(Args) };
- /// The result type of this function.
- using result_t = ReturnType;
- /// The type of an argument to this function.
- template <size_t i>
- using arg_t = std::tuple_element_t<i, std::tuple<Args...>>;
- };
- template <typename ReturnType, typename... Args>
- struct function_traits<ReturnType (*const)(Args...), false>
- : public function_traits<ReturnType (*)(Args...)> {};
- /// Overload for non-class function type references.
- template <typename ReturnType, typename... Args>
- struct function_traits<ReturnType (&)(Args...), false>
- : public function_traits<ReturnType (*)(Args...)> {};
- /// traits class for checking whether type T is one of any of the given
- /// types in the variadic list.
- template <typename T, typename... Ts>
- using is_one_of = std::disjunction<std::is_same<T, Ts>...>;
- /// traits class for checking whether type T is a base class for all
- /// the given types in the variadic list.
- template <typename T, typename... Ts>
- using are_base_of = std::conjunction<std::is_base_of<T, Ts>...>;
- namespace detail {
- template <typename T, typename... Us> struct TypesAreDistinct;
- template <typename T, typename... Us>
- struct TypesAreDistinct
- : std::integral_constant<bool, !is_one_of<T, Us...>::value &&
- TypesAreDistinct<Us...>::value> {};
- template <typename T> struct TypesAreDistinct<T> : std::true_type {};
- } // namespace detail
- /// Determine if all types in Ts are distinct.
- ///
- /// Useful to statically assert when Ts is intended to describe a non-multi set
- /// of types.
- ///
- /// Expensive (currently quadratic in sizeof(Ts...)), and so should only be
- /// asserted once per instantiation of a type which requires it.
- template <typename... Ts> struct TypesAreDistinct;
- template <> struct TypesAreDistinct<> : std::true_type {};
- template <typename... Ts>
- struct TypesAreDistinct
- : std::integral_constant<bool, detail::TypesAreDistinct<Ts...>::value> {};
- /// Find the first index where a type appears in a list of types.
- ///
- /// FirstIndexOfType<T, Us...>::value is the first index of T in Us.
- ///
- /// Typically only meaningful when it is otherwise statically known that the
- /// type pack has no duplicate types. This should be guaranteed explicitly with
- /// static_assert(TypesAreDistinct<Us...>::value).
- ///
- /// It is a compile-time error to instantiate when T is not present in Us, i.e.
- /// if is_one_of<T, Us...>::value is false.
- template <typename T, typename... Us> struct FirstIndexOfType;
- template <typename T, typename U, typename... Us>
- struct FirstIndexOfType<T, U, Us...>
- : std::integral_constant<size_t, 1 + FirstIndexOfType<T, Us...>::value> {};
- template <typename T, typename... Us>
- struct FirstIndexOfType<T, T, Us...> : std::integral_constant<size_t, 0> {};
- /// Find the type at a given index in a list of types.
- ///
- /// TypeAtIndex<I, Ts...> is the type at index I in Ts.
- template <size_t I, typename... Ts>
- using TypeAtIndex = std::tuple_element_t<I, std::tuple<Ts...>>;
- /// Helper which adds two underlying types of enumeration type.
- /// Implicit conversion to a common type is accepted.
- template <typename EnumTy1, typename EnumTy2,
- typename UT1 = std::enable_if_t<std::is_enum<EnumTy1>::value,
- std::underlying_type_t<EnumTy1>>,
- typename UT2 = std::enable_if_t<std::is_enum<EnumTy2>::value,
- std::underlying_type_t<EnumTy2>>>
- constexpr auto addEnumValues(EnumTy1 LHS, EnumTy2 RHS) {
- return static_cast<UT1>(LHS) + static_cast<UT2>(RHS);
- }
- //===----------------------------------------------------------------------===//
- // Extra additions to <iterator>
- //===----------------------------------------------------------------------===//
- namespace callable_detail {
- /// Templated storage wrapper for a callable.
- ///
- /// This class is consistently default constructible, copy / move
- /// constructible / assignable.
- ///
- /// Supported callable types:
- /// - Function pointer
- /// - Function reference
- /// - Lambda
- /// - Function object
- template <typename T,
- bool = std::is_function_v<std::remove_pointer_t<remove_cvref_t<T>>>>
- class Callable {
- using value_type = std::remove_reference_t<T>;
- using reference = value_type &;
- using const_reference = value_type const &;
- std::optional<value_type> Obj;
- static_assert(!std::is_pointer_v<value_type>,
- "Pointers to non-functions are not callable.");
- public:
- Callable() = default;
- Callable(T const &O) : Obj(std::in_place, O) {}
- Callable(Callable const &Other) = default;
- Callable(Callable &&Other) = default;
- Callable &operator=(Callable const &Other) {
- Obj = std::nullopt;
- if (Other.Obj)
- Obj.emplace(*Other.Obj);
- return *this;
- }
- Callable &operator=(Callable &&Other) {
- Obj = std::nullopt;
- if (Other.Obj)
- Obj.emplace(std::move(*Other.Obj));
- return *this;
- }
- template <typename... Pn,
- std::enable_if_t<std::is_invocable_v<T, Pn...>, int> = 0>
- decltype(auto) operator()(Pn &&...Params) {
- return (*Obj)(std::forward<Pn>(Params)...);
- }
- template <typename... Pn,
- std::enable_if_t<std::is_invocable_v<T const, Pn...>, int> = 0>
- decltype(auto) operator()(Pn &&...Params) const {
- return (*Obj)(std::forward<Pn>(Params)...);
- }
- bool valid() const { return Obj != std::nullopt; }
- bool reset() { return Obj = std::nullopt; }
- operator reference() { return *Obj; }
- operator const_reference() const { return *Obj; }
- };
- // Function specialization. No need to waste extra space wrapping with a
- // std::optional.
- template <typename T> class Callable<T, true> {
- static constexpr bool IsPtr = std::is_pointer_v<remove_cvref_t<T>>;
- using StorageT = std::conditional_t<IsPtr, T, std::remove_reference_t<T> *>;
- using CastT = std::conditional_t<IsPtr, T, T &>;
- private:
- StorageT Func = nullptr;
- private:
- template <typename In> static constexpr auto convertIn(In &&I) {
- if constexpr (IsPtr) {
- // Pointer... just echo it back.
- return I;
- } else {
- // Must be a function reference. Return its address.
- return &I;
- }
- }
- public:
- Callable() = default;
- // Construct from a function pointer or reference.
- //
- // Disable this constructor for references to 'Callable' so we don't violate
- // the rule of 0.
- template < // clang-format off
- typename FnPtrOrRef,
- std::enable_if_t<
- !std::is_same_v<remove_cvref_t<FnPtrOrRef>, Callable>, int
- > = 0
- > // clang-format on
- Callable(FnPtrOrRef &&F) : Func(convertIn(F)) {}
- template <typename... Pn,
- std::enable_if_t<std::is_invocable_v<T, Pn...>, int> = 0>
- decltype(auto) operator()(Pn &&...Params) const {
- return Func(std::forward<Pn>(Params)...);
- }
- bool valid() const { return Func != nullptr; }
- void reset() { Func = nullptr; }
- operator T const &() const {
- if constexpr (IsPtr) {
- // T is a pointer... just echo it back.
- return Func;
- } else {
- static_assert(std::is_reference_v<T>,
- "Expected a reference to a function.");
- // T is a function reference... dereference the stored pointer.
- return *Func;
- }
- }
- };
- } // namespace callable_detail
- namespace adl_detail {
- using std::begin;
- template <typename ContainerTy>
- decltype(auto) adl_begin(ContainerTy &&container) {
- return begin(std::forward<ContainerTy>(container));
- }
- using std::end;
- template <typename ContainerTy>
- decltype(auto) adl_end(ContainerTy &&container) {
- return end(std::forward<ContainerTy>(container));
- }
- using std::swap;
- template <typename T>
- void adl_swap(T &&lhs, T &&rhs) noexcept(noexcept(swap(std::declval<T>(),
- std::declval<T>()))) {
- swap(std::forward<T>(lhs), std::forward<T>(rhs));
- }
- } // end namespace adl_detail
- template <typename ContainerTy>
- decltype(auto) adl_begin(ContainerTy &&container) {
- return adl_detail::adl_begin(std::forward<ContainerTy>(container));
- }
- template <typename ContainerTy>
- decltype(auto) adl_end(ContainerTy &&container) {
- return adl_detail::adl_end(std::forward<ContainerTy>(container));
- }
- template <typename T>
- void adl_swap(T &&lhs, T &&rhs) noexcept(
- noexcept(adl_detail::adl_swap(std::declval<T>(), std::declval<T>()))) {
- adl_detail::adl_swap(std::forward<T>(lhs), std::forward<T>(rhs));
- }
- /// Returns true if the given container only contains a single element.
- template <typename ContainerTy> bool hasSingleElement(ContainerTy &&C) {
- auto B = std::begin(C), E = std::end(C);
- return B != E && std::next(B) == E;
- }
- /// Return a range covering \p RangeOrContainer with the first N elements
- /// excluded.
- template <typename T> auto drop_begin(T &&RangeOrContainer, size_t N = 1) {
- return make_range(std::next(adl_begin(RangeOrContainer), N),
- adl_end(RangeOrContainer));
- }
- /// Return a range covering \p RangeOrContainer with the last N elements
- /// excluded.
- template <typename T> auto drop_end(T &&RangeOrContainer, size_t N = 1) {
- return make_range(adl_begin(RangeOrContainer),
- std::prev(adl_end(RangeOrContainer), N));
- }
- // mapped_iterator - This is a simple iterator adapter that causes a function to
- // be applied whenever operator* is invoked on the iterator.
- template <typename ItTy, typename FuncTy,
- typename ReferenceTy =
- decltype(std::declval<FuncTy>()(*std::declval<ItTy>()))>
- class mapped_iterator
- : public iterator_adaptor_base<
- mapped_iterator<ItTy, FuncTy>, ItTy,
- typename std::iterator_traits<ItTy>::iterator_category,
- std::remove_reference_t<ReferenceTy>,
- typename std::iterator_traits<ItTy>::difference_type,
- std::remove_reference_t<ReferenceTy> *, ReferenceTy> {
- public:
- mapped_iterator() = default;
- mapped_iterator(ItTy U, FuncTy F)
- : mapped_iterator::iterator_adaptor_base(std::move(U)), F(std::move(F)) {}
- ItTy getCurrent() { return this->I; }
- const FuncTy &getFunction() const { return F; }
- ReferenceTy operator*() const { return F(*this->I); }
- private:
- callable_detail::Callable<FuncTy> F{};
- };
- // map_iterator - Provide a convenient way to create mapped_iterators, just like
- // make_pair is useful for creating pairs...
- template <class ItTy, class FuncTy>
- inline mapped_iterator<ItTy, FuncTy> map_iterator(ItTy I, FuncTy F) {
- return mapped_iterator<ItTy, FuncTy>(std::move(I), std::move(F));
- }
- template <class ContainerTy, class FuncTy>
- auto map_range(ContainerTy &&C, FuncTy F) {
- return make_range(map_iterator(C.begin(), F), map_iterator(C.end(), F));
- }
- /// A base type of mapped iterator, that is useful for building derived
- /// iterators that do not need/want to store the map function (as in
- /// mapped_iterator). These iterators must simply provide a `mapElement` method
- /// that defines how to map a value of the iterator to the provided reference
- /// type.
- template <typename DerivedT, typename ItTy, typename ReferenceTy>
- class mapped_iterator_base
- : public iterator_adaptor_base<
- DerivedT, ItTy,
- typename std::iterator_traits<ItTy>::iterator_category,
- std::remove_reference_t<ReferenceTy>,
- typename std::iterator_traits<ItTy>::difference_type,
- std::remove_reference_t<ReferenceTy> *, ReferenceTy> {
- public:
- using BaseT = mapped_iterator_base;
- mapped_iterator_base(ItTy U)
- : mapped_iterator_base::iterator_adaptor_base(std::move(U)) {}
- ItTy getCurrent() { return this->I; }
- ReferenceTy operator*() const {
- return static_cast<const DerivedT &>(*this).mapElement(*this->I);
- }
- };
- /// Helper to determine if type T has a member called rbegin().
- template <typename Ty> class has_rbegin_impl {
- using yes = char[1];
- using no = char[2];
- template <typename Inner>
- static yes& test(Inner *I, decltype(I->rbegin()) * = nullptr);
- template <typename>
- static no& test(...);
- public:
- static const bool value = sizeof(test<Ty>(nullptr)) == sizeof(yes);
- };
- /// Metafunction to determine if T& or T has a member called rbegin().
- template <typename Ty>
- struct has_rbegin : has_rbegin_impl<std::remove_reference_t<Ty>> {};
- // Returns an iterator_range over the given container which iterates in reverse.
- template <typename ContainerTy> auto reverse(ContainerTy &&C) {
- if constexpr (has_rbegin<ContainerTy>::value)
- return make_range(C.rbegin(), C.rend());
- else
- return make_range(std::make_reverse_iterator(std::end(C)),
- std::make_reverse_iterator(std::begin(C)));
- }
- /// An iterator adaptor that filters the elements of given inner iterators.
- ///
- /// The predicate parameter should be a callable object that accepts the wrapped
- /// iterator's reference type and returns a bool. When incrementing or
- /// decrementing the iterator, it will call the predicate on each element and
- /// skip any where it returns false.
- ///
- /// \code
- /// int A[] = { 1, 2, 3, 4 };
- /// auto R = make_filter_range(A, [](int N) { return N % 2 == 1; });
- /// // R contains { 1, 3 }.
- /// \endcode
- ///
- /// Note: filter_iterator_base implements support for forward iteration.
- /// filter_iterator_impl exists to provide support for bidirectional iteration,
- /// conditional on whether the wrapped iterator supports it.
- template <typename WrappedIteratorT, typename PredicateT, typename IterTag>
- class filter_iterator_base
- : public iterator_adaptor_base<
- filter_iterator_base<WrappedIteratorT, PredicateT, IterTag>,
- WrappedIteratorT,
- std::common_type_t<IterTag,
- typename std::iterator_traits<
- WrappedIteratorT>::iterator_category>> {
- using BaseT = typename filter_iterator_base::iterator_adaptor_base;
- protected:
- WrappedIteratorT End;
- PredicateT Pred;
- void findNextValid() {
- while (this->I != End && !Pred(*this->I))
- BaseT::operator++();
- }
- filter_iterator_base() = default;
- // Construct the iterator. The begin iterator needs to know where the end
- // is, so that it can properly stop when it gets there. The end iterator only
- // needs the predicate to support bidirectional iteration.
- filter_iterator_base(WrappedIteratorT Begin, WrappedIteratorT End,
- PredicateT Pred)
- : BaseT(Begin), End(End), Pred(Pred) {
- findNextValid();
- }
- public:
- using BaseT::operator++;
- filter_iterator_base &operator++() {
- BaseT::operator++();
- findNextValid();
- return *this;
- }
- decltype(auto) operator*() const {
- assert(BaseT::wrapped() != End && "Cannot dereference end iterator!");
- return BaseT::operator*();
- }
- decltype(auto) operator->() const {
- assert(BaseT::wrapped() != End && "Cannot dereference end iterator!");
- return BaseT::operator->();
- }
- };
- /// Specialization of filter_iterator_base for forward iteration only.
- template <typename WrappedIteratorT, typename PredicateT,
- typename IterTag = std::forward_iterator_tag>
- class filter_iterator_impl
- : public filter_iterator_base<WrappedIteratorT, PredicateT, IterTag> {
- public:
- filter_iterator_impl() = default;
- filter_iterator_impl(WrappedIteratorT Begin, WrappedIteratorT End,
- PredicateT Pred)
- : filter_iterator_impl::filter_iterator_base(Begin, End, Pred) {}
- };
- /// Specialization of filter_iterator_base for bidirectional iteration.
- template <typename WrappedIteratorT, typename PredicateT>
- class filter_iterator_impl<WrappedIteratorT, PredicateT,
- std::bidirectional_iterator_tag>
- : public filter_iterator_base<WrappedIteratorT, PredicateT,
- std::bidirectional_iterator_tag> {
- using BaseT = typename filter_iterator_impl::filter_iterator_base;
- void findPrevValid() {
- while (!this->Pred(*this->I))
- BaseT::operator--();
- }
- public:
- using BaseT::operator--;
- filter_iterator_impl() = default;
- filter_iterator_impl(WrappedIteratorT Begin, WrappedIteratorT End,
- PredicateT Pred)
- : BaseT(Begin, End, Pred) {}
- filter_iterator_impl &operator--() {
- BaseT::operator--();
- findPrevValid();
- return *this;
- }
- };
- namespace detail {
- template <bool is_bidirectional> struct fwd_or_bidi_tag_impl {
- using type = std::forward_iterator_tag;
- };
- template <> struct fwd_or_bidi_tag_impl<true> {
- using type = std::bidirectional_iterator_tag;
- };
- /// Helper which sets its type member to forward_iterator_tag if the category
- /// of \p IterT does not derive from bidirectional_iterator_tag, and to
- /// bidirectional_iterator_tag otherwise.
- template <typename IterT> struct fwd_or_bidi_tag {
- using type = typename fwd_or_bidi_tag_impl<std::is_base_of<
- std::bidirectional_iterator_tag,
- typename std::iterator_traits<IterT>::iterator_category>::value>::type;
- };
- } // namespace detail
- /// Defines filter_iterator to a suitable specialization of
- /// filter_iterator_impl, based on the underlying iterator's category.
- template <typename WrappedIteratorT, typename PredicateT>
- using filter_iterator = filter_iterator_impl<
- WrappedIteratorT, PredicateT,
- typename detail::fwd_or_bidi_tag<WrappedIteratorT>::type>;
- /// Convenience function that takes a range of elements and a predicate,
- /// and return a new filter_iterator range.
- ///
- /// FIXME: Currently if RangeT && is a rvalue reference to a temporary, the
- /// lifetime of that temporary is not kept by the returned range object, and the
- /// temporary is going to be dropped on the floor after the make_iterator_range
- /// full expression that contains this function call.
- template <typename RangeT, typename PredicateT>
- iterator_range<filter_iterator<detail::IterOfRange<RangeT>, PredicateT>>
- make_filter_range(RangeT &&Range, PredicateT Pred) {
- using FilterIteratorT =
- filter_iterator<detail::IterOfRange<RangeT>, PredicateT>;
- return make_range(
- FilterIteratorT(std::begin(std::forward<RangeT>(Range)),
- std::end(std::forward<RangeT>(Range)), Pred),
- FilterIteratorT(std::end(std::forward<RangeT>(Range)),
- std::end(std::forward<RangeT>(Range)), Pred));
- }
- /// A pseudo-iterator adaptor that is designed to implement "early increment"
- /// style loops.
- ///
- /// This is *not a normal iterator* and should almost never be used directly. It
- /// is intended primarily to be used with range based for loops and some range
- /// algorithms.
- ///
- /// The iterator isn't quite an `OutputIterator` or an `InputIterator` but
- /// somewhere between them. The constraints of these iterators are:
- ///
- /// - On construction or after being incremented, it is comparable and
- /// dereferencable. It is *not* incrementable.
- /// - After being dereferenced, it is neither comparable nor dereferencable, it
- /// is only incrementable.
- ///
- /// This means you can only dereference the iterator once, and you can only
- /// increment it once between dereferences.
- template <typename WrappedIteratorT>
- class early_inc_iterator_impl
- : public iterator_adaptor_base<early_inc_iterator_impl<WrappedIteratorT>,
- WrappedIteratorT, std::input_iterator_tag> {
- using BaseT = typename early_inc_iterator_impl::iterator_adaptor_base;
- using PointerT = typename std::iterator_traits<WrappedIteratorT>::pointer;
- protected:
- #if LLVM_ENABLE_ABI_BREAKING_CHECKS
- bool IsEarlyIncremented = false;
- #endif
- public:
- early_inc_iterator_impl(WrappedIteratorT I) : BaseT(I) {}
- using BaseT::operator*;
- decltype(*std::declval<WrappedIteratorT>()) operator*() {
- #if LLVM_ENABLE_ABI_BREAKING_CHECKS
- assert(!IsEarlyIncremented && "Cannot dereference twice!");
- IsEarlyIncremented = true;
- #endif
- return *(this->I)++;
- }
- using BaseT::operator++;
- early_inc_iterator_impl &operator++() {
- #if LLVM_ENABLE_ABI_BREAKING_CHECKS
- assert(IsEarlyIncremented && "Cannot increment before dereferencing!");
- IsEarlyIncremented = false;
- #endif
- return *this;
- }
- friend bool operator==(const early_inc_iterator_impl &LHS,
- const early_inc_iterator_impl &RHS) {
- #if LLVM_ENABLE_ABI_BREAKING_CHECKS
- assert(!LHS.IsEarlyIncremented && "Cannot compare after dereferencing!");
- #endif
- return (const BaseT &)LHS == (const BaseT &)RHS;
- }
- };
- /// Make a range that does early increment to allow mutation of the underlying
- /// range without disrupting iteration.
- ///
- /// The underlying iterator will be incremented immediately after it is
- /// dereferenced, allowing deletion of the current node or insertion of nodes to
- /// not disrupt iteration provided they do not invalidate the *next* iterator --
- /// the current iterator can be invalidated.
- ///
- /// This requires a very exact pattern of use that is only really suitable to
- /// range based for loops and other range algorithms that explicitly guarantee
- /// to dereference exactly once each element, and to increment exactly once each
- /// element.
- template <typename RangeT>
- iterator_range<early_inc_iterator_impl<detail::IterOfRange<RangeT>>>
- make_early_inc_range(RangeT &&Range) {
- using EarlyIncIteratorT =
- early_inc_iterator_impl<detail::IterOfRange<RangeT>>;
- return make_range(EarlyIncIteratorT(std::begin(std::forward<RangeT>(Range))),
- EarlyIncIteratorT(std::end(std::forward<RangeT>(Range))));
- }
- // Forward declarations required by zip_shortest/zip_equal/zip_first/zip_longest
- template <typename R, typename UnaryPredicate>
- bool all_of(R &&range, UnaryPredicate P);
- template <typename R, typename UnaryPredicate>
- bool any_of(R &&range, UnaryPredicate P);
- template <typename T> bool all_equal(std::initializer_list<T> Values);
- namespace detail {
- using std::declval;
- // We have to alias this since inlining the actual type at the usage site
- // in the parameter list of iterator_facade_base<> below ICEs MSVC 2017.
- template<typename... Iters> struct ZipTupleType {
- using type = std::tuple<decltype(*declval<Iters>())...>;
- };
- template <typename ZipType, typename... Iters>
- using zip_traits = iterator_facade_base<
- ZipType,
- std::common_type_t<
- std::bidirectional_iterator_tag,
- typename std::iterator_traits<Iters>::iterator_category...>,
- // ^ TODO: Implement random access methods.
- typename ZipTupleType<Iters...>::type,
- typename std::iterator_traits<
- std::tuple_element_t<0, std::tuple<Iters...>>>::difference_type,
- // ^ FIXME: This follows boost::make_zip_iterator's assumption that all
- // inner iterators have the same difference_type. It would fail if, for
- // instance, the second field's difference_type were non-numeric while the
- // first is.
- typename ZipTupleType<Iters...>::type *,
- typename ZipTupleType<Iters...>::type>;
- template <typename ZipType, typename... Iters>
- struct zip_common : public zip_traits<ZipType, Iters...> {
- using Base = zip_traits<ZipType, Iters...>;
- using value_type = typename Base::value_type;
- std::tuple<Iters...> iterators;
- protected:
- template <size_t... Ns> value_type deref(std::index_sequence<Ns...>) const {
- return value_type(*std::get<Ns>(iterators)...);
- }
- template <size_t... Ns>
- decltype(iterators) tup_inc(std::index_sequence<Ns...>) const {
- return std::tuple<Iters...>(std::next(std::get<Ns>(iterators))...);
- }
- template <size_t... Ns>
- decltype(iterators) tup_dec(std::index_sequence<Ns...>) const {
- return std::tuple<Iters...>(std::prev(std::get<Ns>(iterators))...);
- }
- template <size_t... Ns>
- bool test_all_equals(const zip_common &other,
- std::index_sequence<Ns...>) const {
- return ((std::get<Ns>(this->iterators) == std::get<Ns>(other.iterators)) &&
- ...);
- }
- public:
- zip_common(Iters &&... ts) : iterators(std::forward<Iters>(ts)...) {}
- value_type operator*() const {
- return deref(std::index_sequence_for<Iters...>{});
- }
- ZipType &operator++() {
- iterators = tup_inc(std::index_sequence_for<Iters...>{});
- return *reinterpret_cast<ZipType *>(this);
- }
- ZipType &operator--() {
- static_assert(Base::IsBidirectional,
- "All inner iterators must be at least bidirectional.");
- iterators = tup_dec(std::index_sequence_for<Iters...>{});
- return *reinterpret_cast<ZipType *>(this);
- }
- /// Return true if all the iterator are matching `other`'s iterators.
- bool all_equals(zip_common &other) {
- return test_all_equals(other, std::index_sequence_for<Iters...>{});
- }
- };
- template <typename... Iters>
- struct zip_first : public zip_common<zip_first<Iters...>, Iters...> {
- using Base = zip_common<zip_first<Iters...>, Iters...>;
- bool operator==(const zip_first<Iters...> &other) const {
- return std::get<0>(this->iterators) == std::get<0>(other.iterators);
- }
- zip_first(Iters &&... ts) : Base(std::forward<Iters>(ts)...) {}
- };
- template <typename... Iters>
- class zip_shortest : public zip_common<zip_shortest<Iters...>, Iters...> {
- template <size_t... Ns>
- bool test(const zip_shortest<Iters...> &other,
- std::index_sequence<Ns...>) const {
- return ((std::get<Ns>(this->iterators) != std::get<Ns>(other.iterators)) &&
- ...);
- }
- public:
- using Base = zip_common<zip_shortest<Iters...>, Iters...>;
- zip_shortest(Iters &&... ts) : Base(std::forward<Iters>(ts)...) {}
- bool operator==(const zip_shortest<Iters...> &other) const {
- return !test(other, std::index_sequence_for<Iters...>{});
- }
- };
- template <template <typename...> class ItType, typename... Args> class zippy {
- public:
- using iterator = ItType<decltype(std::begin(std::declval<Args>()))...>;
- using iterator_category = typename iterator::iterator_category;
- using value_type = typename iterator::value_type;
- using difference_type = typename iterator::difference_type;
- using pointer = typename iterator::pointer;
- using reference = typename iterator::reference;
- private:
- std::tuple<Args...> ts;
- template <size_t... Ns>
- iterator begin_impl(std::index_sequence<Ns...>) const {
- return iterator(std::begin(std::get<Ns>(ts))...);
- }
- template <size_t... Ns> iterator end_impl(std::index_sequence<Ns...>) const {
- return iterator(std::end(std::get<Ns>(ts))...);
- }
- public:
- zippy(Args &&... ts_) : ts(std::forward<Args>(ts_)...) {}
- iterator begin() const {
- return begin_impl(std::index_sequence_for<Args...>{});
- }
- iterator end() const { return end_impl(std::index_sequence_for<Args...>{}); }
- };
- } // end namespace detail
- /// zip iterator for two or more iteratable types. Iteration continues until the
- /// end of the *shortest* iteratee is reached.
- template <typename T, typename U, typename... Args>
- detail::zippy<detail::zip_shortest, T, U, Args...> zip(T &&t, U &&u,
- Args &&...args) {
- return detail::zippy<detail::zip_shortest, T, U, Args...>(
- std::forward<T>(t), std::forward<U>(u), std::forward<Args>(args)...);
- }
- /// zip iterator that assumes that all iteratees have the same length.
- /// In builds with assertions on, this assumption is checked before the
- /// iteration starts.
- template <typename T, typename U, typename... Args>
- detail::zippy<detail::zip_first, T, U, Args...> zip_equal(T &&t, U &&u,
- Args &&...args) {
- assert(all_equal({std::distance(adl_begin(t), adl_end(t)),
- std::distance(adl_begin(u), adl_end(u)),
- std::distance(adl_begin(args), adl_end(args))...}) &&
- "Iteratees do not have equal length");
- return detail::zippy<detail::zip_first, T, U, Args...>(
- std::forward<T>(t), std::forward<U>(u), std::forward<Args>(args)...);
- }
- /// zip iterator that, for the sake of efficiency, assumes the first iteratee to
- /// be the shortest. Iteration continues until the end of the first iteratee is
- /// reached. In builds with assertions on, we check that the assumption about
- /// the first iteratee being the shortest holds.
- template <typename T, typename U, typename... Args>
- detail::zippy<detail::zip_first, T, U, Args...> zip_first(T &&t, U &&u,
- Args &&...args) {
- assert(std::distance(adl_begin(t), adl_end(t)) <=
- std::min({std::distance(adl_begin(u), adl_end(u)),
- std::distance(adl_begin(args), adl_end(args))...}) &&
- "First iteratee is not the shortest");
- return detail::zippy<detail::zip_first, T, U, Args...>(
- std::forward<T>(t), std::forward<U>(u), std::forward<Args>(args)...);
- }
- namespace detail {
- template <typename Iter>
- Iter next_or_end(const Iter &I, const Iter &End) {
- if (I == End)
- return End;
- return std::next(I);
- }
- template <typename Iter>
- auto deref_or_none(const Iter &I, const Iter &End) -> std::optional<
- std::remove_const_t<std::remove_reference_t<decltype(*I)>>> {
- if (I == End)
- return std::nullopt;
- return *I;
- }
- template <typename Iter> struct ZipLongestItemType {
- using type = std::optional<std::remove_const_t<
- std::remove_reference_t<decltype(*std::declval<Iter>())>>>;
- };
- template <typename... Iters> struct ZipLongestTupleType {
- using type = std::tuple<typename ZipLongestItemType<Iters>::type...>;
- };
- template <typename... Iters>
- class zip_longest_iterator
- : public iterator_facade_base<
- zip_longest_iterator<Iters...>,
- std::common_type_t<
- std::forward_iterator_tag,
- typename std::iterator_traits<Iters>::iterator_category...>,
- typename ZipLongestTupleType<Iters...>::type,
- typename std::iterator_traits<
- std::tuple_element_t<0, std::tuple<Iters...>>>::difference_type,
- typename ZipLongestTupleType<Iters...>::type *,
- typename ZipLongestTupleType<Iters...>::type> {
- public:
- using value_type = typename ZipLongestTupleType<Iters...>::type;
- private:
- std::tuple<Iters...> iterators;
- std::tuple<Iters...> end_iterators;
- template <size_t... Ns>
- bool test(const zip_longest_iterator<Iters...> &other,
- std::index_sequence<Ns...>) const {
- return ((std::get<Ns>(this->iterators) != std::get<Ns>(other.iterators)) ||
- ...);
- }
- template <size_t... Ns> value_type deref(std::index_sequence<Ns...>) const {
- return value_type(
- deref_or_none(std::get<Ns>(iterators), std::get<Ns>(end_iterators))...);
- }
- template <size_t... Ns>
- decltype(iterators) tup_inc(std::index_sequence<Ns...>) const {
- return std::tuple<Iters...>(
- next_or_end(std::get<Ns>(iterators), std::get<Ns>(end_iterators))...);
- }
- public:
- zip_longest_iterator(std::pair<Iters &&, Iters &&>... ts)
- : iterators(std::forward<Iters>(ts.first)...),
- end_iterators(std::forward<Iters>(ts.second)...) {}
- value_type operator*() const {
- return deref(std::index_sequence_for<Iters...>{});
- }
- zip_longest_iterator<Iters...> &operator++() {
- iterators = tup_inc(std::index_sequence_for<Iters...>{});
- return *this;
- }
- bool operator==(const zip_longest_iterator<Iters...> &other) const {
- return !test(other, std::index_sequence_for<Iters...>{});
- }
- };
- template <typename... Args> class zip_longest_range {
- public:
- using iterator =
- zip_longest_iterator<decltype(adl_begin(std::declval<Args>()))...>;
- using iterator_category = typename iterator::iterator_category;
- using value_type = typename iterator::value_type;
- using difference_type = typename iterator::difference_type;
- using pointer = typename iterator::pointer;
- using reference = typename iterator::reference;
- private:
- std::tuple<Args...> ts;
- template <size_t... Ns>
- iterator begin_impl(std::index_sequence<Ns...>) const {
- return iterator(std::make_pair(adl_begin(std::get<Ns>(ts)),
- adl_end(std::get<Ns>(ts)))...);
- }
- template <size_t... Ns> iterator end_impl(std::index_sequence<Ns...>) const {
- return iterator(std::make_pair(adl_end(std::get<Ns>(ts)),
- adl_end(std::get<Ns>(ts)))...);
- }
- public:
- zip_longest_range(Args &&... ts_) : ts(std::forward<Args>(ts_)...) {}
- iterator begin() const {
- return begin_impl(std::index_sequence_for<Args...>{});
- }
- iterator end() const { return end_impl(std::index_sequence_for<Args...>{}); }
- };
- } // namespace detail
- /// Iterate over two or more iterators at the same time. Iteration continues
- /// until all iterators reach the end. The std::optional only contains a value
- /// if the iterator has not reached the end.
- template <typename T, typename U, typename... Args>
- detail::zip_longest_range<T, U, Args...> zip_longest(T &&t, U &&u,
- Args &&... args) {
- return detail::zip_longest_range<T, U, Args...>(
- std::forward<T>(t), std::forward<U>(u), std::forward<Args>(args)...);
- }
- /// Iterator wrapper that concatenates sequences together.
- ///
- /// This can concatenate different iterators, even with different types, into
- /// a single iterator provided the value types of all the concatenated
- /// iterators expose `reference` and `pointer` types that can be converted to
- /// `ValueT &` and `ValueT *` respectively. It doesn't support more
- /// interesting/customized pointer or reference types.
- ///
- /// Currently this only supports forward or higher iterator categories as
- /// inputs and always exposes a forward iterator interface.
- template <typename ValueT, typename... IterTs>
- class concat_iterator
- : public iterator_facade_base<concat_iterator<ValueT, IterTs...>,
- std::forward_iterator_tag, ValueT> {
- using BaseT = typename concat_iterator::iterator_facade_base;
- /// We store both the current and end iterators for each concatenated
- /// sequence in a tuple of pairs.
- ///
- /// Note that something like iterator_range seems nice at first here, but the
- /// range properties are of little benefit and end up getting in the way
- /// because we need to do mutation on the current iterators.
- std::tuple<IterTs...> Begins;
- std::tuple<IterTs...> Ends;
- /// Attempts to increment a specific iterator.
- ///
- /// Returns true if it was able to increment the iterator. Returns false if
- /// the iterator is already at the end iterator.
- template <size_t Index> bool incrementHelper() {
- auto &Begin = std::get<Index>(Begins);
- auto &End = std::get<Index>(Ends);
- if (Begin == End)
- return false;
- ++Begin;
- return true;
- }
- /// Increments the first non-end iterator.
- ///
- /// It is an error to call this with all iterators at the end.
- template <size_t... Ns> void increment(std::index_sequence<Ns...>) {
- // Build a sequence of functions to increment each iterator if possible.
- bool (concat_iterator::*IncrementHelperFns[])() = {
- &concat_iterator::incrementHelper<Ns>...};
- // Loop over them, and stop as soon as we succeed at incrementing one.
- for (auto &IncrementHelperFn : IncrementHelperFns)
- if ((this->*IncrementHelperFn)())
- return;
- llvm_unreachable("Attempted to increment an end concat iterator!");
- }
- /// Returns null if the specified iterator is at the end. Otherwise,
- /// dereferences the iterator and returns the address of the resulting
- /// reference.
- template <size_t Index> ValueT *getHelper() const {
- auto &Begin = std::get<Index>(Begins);
- auto &End = std::get<Index>(Ends);
- if (Begin == End)
- return nullptr;
- return &*Begin;
- }
- /// Finds the first non-end iterator, dereferences, and returns the resulting
- /// reference.
- ///
- /// It is an error to call this with all iterators at the end.
- template <size_t... Ns> ValueT &get(std::index_sequence<Ns...>) const {
- // Build a sequence of functions to get from iterator if possible.
- ValueT *(concat_iterator::*GetHelperFns[])() const = {
- &concat_iterator::getHelper<Ns>...};
- // Loop over them, and return the first result we find.
- for (auto &GetHelperFn : GetHelperFns)
- if (ValueT *P = (this->*GetHelperFn)())
- return *P;
- llvm_unreachable("Attempted to get a pointer from an end concat iterator!");
- }
- public:
- /// Constructs an iterator from a sequence of ranges.
- ///
- /// We need the full range to know how to switch between each of the
- /// iterators.
- template <typename... RangeTs>
- explicit concat_iterator(RangeTs &&... Ranges)
- : Begins(std::begin(Ranges)...), Ends(std::end(Ranges)...) {}
- using BaseT::operator++;
- concat_iterator &operator++() {
- increment(std::index_sequence_for<IterTs...>());
- return *this;
- }
- ValueT &operator*() const {
- return get(std::index_sequence_for<IterTs...>());
- }
- bool operator==(const concat_iterator &RHS) const {
- return Begins == RHS.Begins && Ends == RHS.Ends;
- }
- };
- namespace detail {
- /// Helper to store a sequence of ranges being concatenated and access them.
- ///
- /// This is designed to facilitate providing actual storage when temporaries
- /// are passed into the constructor such that we can use it as part of range
- /// based for loops.
- template <typename ValueT, typename... RangeTs> class concat_range {
- public:
- using iterator =
- concat_iterator<ValueT,
- decltype(std::begin(std::declval<RangeTs &>()))...>;
- private:
- std::tuple<RangeTs...> Ranges;
- template <size_t... Ns>
- iterator begin_impl(std::index_sequence<Ns...>) {
- return iterator(std::get<Ns>(Ranges)...);
- }
- template <size_t... Ns>
- iterator begin_impl(std::index_sequence<Ns...>) const {
- return iterator(std::get<Ns>(Ranges)...);
- }
- template <size_t... Ns> iterator end_impl(std::index_sequence<Ns...>) {
- return iterator(make_range(std::end(std::get<Ns>(Ranges)),
- std::end(std::get<Ns>(Ranges)))...);
- }
- template <size_t... Ns> iterator end_impl(std::index_sequence<Ns...>) const {
- return iterator(make_range(std::end(std::get<Ns>(Ranges)),
- std::end(std::get<Ns>(Ranges)))...);
- }
- public:
- concat_range(RangeTs &&... Ranges)
- : Ranges(std::forward<RangeTs>(Ranges)...) {}
- iterator begin() {
- return begin_impl(std::index_sequence_for<RangeTs...>{});
- }
- iterator begin() const {
- return begin_impl(std::index_sequence_for<RangeTs...>{});
- }
- iterator end() {
- return end_impl(std::index_sequence_for<RangeTs...>{});
- }
- iterator end() const {
- return end_impl(std::index_sequence_for<RangeTs...>{});
- }
- };
- } // end namespace detail
- /// Concatenated range across two or more ranges.
- ///
- /// The desired value type must be explicitly specified.
- template <typename ValueT, typename... RangeTs>
- detail::concat_range<ValueT, RangeTs...> concat(RangeTs &&... Ranges) {
- static_assert(sizeof...(RangeTs) > 1,
- "Need more than one range to concatenate!");
- return detail::concat_range<ValueT, RangeTs...>(
- std::forward<RangeTs>(Ranges)...);
- }
- /// A utility class used to implement an iterator that contains some base object
- /// and an index. The iterator moves the index but keeps the base constant.
- template <typename DerivedT, typename BaseT, typename T,
- typename PointerT = T *, typename ReferenceT = T &>
- class indexed_accessor_iterator
- : public llvm::iterator_facade_base<DerivedT,
- std::random_access_iterator_tag, T,
- std::ptrdiff_t, PointerT, ReferenceT> {
- public:
- ptrdiff_t operator-(const indexed_accessor_iterator &rhs) const {
- assert(base == rhs.base && "incompatible iterators");
- return index - rhs.index;
- }
- bool operator==(const indexed_accessor_iterator &rhs) const {
- return base == rhs.base && index == rhs.index;
- }
- bool operator<(const indexed_accessor_iterator &rhs) const {
- assert(base == rhs.base && "incompatible iterators");
- return index < rhs.index;
- }
- DerivedT &operator+=(ptrdiff_t offset) {
- this->index += offset;
- return static_cast<DerivedT &>(*this);
- }
- DerivedT &operator-=(ptrdiff_t offset) {
- this->index -= offset;
- return static_cast<DerivedT &>(*this);
- }
- /// Returns the current index of the iterator.
- ptrdiff_t getIndex() const { return index; }
- /// Returns the current base of the iterator.
- const BaseT &getBase() const { return base; }
- protected:
- indexed_accessor_iterator(BaseT base, ptrdiff_t index)
- : base(base), index(index) {}
- BaseT base;
- ptrdiff_t index;
- };
- namespace detail {
- /// The class represents the base of a range of indexed_accessor_iterators. It
- /// provides support for many different range functionalities, e.g.
- /// drop_front/slice/etc.. Derived range classes must implement the following
- /// static methods:
- /// * ReferenceT dereference_iterator(const BaseT &base, ptrdiff_t index)
- /// - Dereference an iterator pointing to the base object at the given
- /// index.
- /// * BaseT offset_base(const BaseT &base, ptrdiff_t index)
- /// - Return a new base that is offset from the provide base by 'index'
- /// elements.
- template <typename DerivedT, typename BaseT, typename T,
- typename PointerT = T *, typename ReferenceT = T &>
- class indexed_accessor_range_base {
- public:
- using RangeBaseT = indexed_accessor_range_base;
- /// An iterator element of this range.
- class iterator : public indexed_accessor_iterator<iterator, BaseT, T,
- PointerT, ReferenceT> {
- public:
- // Index into this iterator, invoking a static method on the derived type.
- ReferenceT operator*() const {
- return DerivedT::dereference_iterator(this->getBase(), this->getIndex());
- }
- private:
- iterator(BaseT owner, ptrdiff_t curIndex)
- : iterator::indexed_accessor_iterator(owner, curIndex) {}
- /// Allow access to the constructor.
- friend indexed_accessor_range_base<DerivedT, BaseT, T, PointerT,
- ReferenceT>;
- };
- indexed_accessor_range_base(iterator begin, iterator end)
- : base(offset_base(begin.getBase(), begin.getIndex())),
- count(end.getIndex() - begin.getIndex()) {}
- indexed_accessor_range_base(const iterator_range<iterator> &range)
- : indexed_accessor_range_base(range.begin(), range.end()) {}
- indexed_accessor_range_base(BaseT base, ptrdiff_t count)
- : base(base), count(count) {}
- iterator begin() const { return iterator(base, 0); }
- iterator end() const { return iterator(base, count); }
- ReferenceT operator[](size_t Index) const {
- assert(Index < size() && "invalid index for value range");
- return DerivedT::dereference_iterator(base, static_cast<ptrdiff_t>(Index));
- }
- ReferenceT front() const {
- assert(!empty() && "expected non-empty range");
- return (*this)[0];
- }
- ReferenceT back() const {
- assert(!empty() && "expected non-empty range");
- return (*this)[size() - 1];
- }
- /// Compare this range with another.
- template <typename OtherT>
- friend bool operator==(const indexed_accessor_range_base &lhs,
- const OtherT &rhs) {
- return std::equal(lhs.begin(), lhs.end(), rhs.begin(), rhs.end());
- }
- template <typename OtherT>
- friend bool operator!=(const indexed_accessor_range_base &lhs,
- const OtherT &rhs) {
- return !(lhs == rhs);
- }
- /// Return the size of this range.
- size_t size() const { return count; }
- /// Return if the range is empty.
- bool empty() const { return size() == 0; }
- /// Drop the first N elements, and keep M elements.
- DerivedT slice(size_t n, size_t m) const {
- assert(n + m <= size() && "invalid size specifiers");
- return DerivedT(offset_base(base, n), m);
- }
- /// Drop the first n elements.
- DerivedT drop_front(size_t n = 1) const {
- assert(size() >= n && "Dropping more elements than exist");
- return slice(n, size() - n);
- }
- /// Drop the last n elements.
- DerivedT drop_back(size_t n = 1) const {
- assert(size() >= n && "Dropping more elements than exist");
- return DerivedT(base, size() - n);
- }
- /// Take the first n elements.
- DerivedT take_front(size_t n = 1) const {
- return n < size() ? drop_back(size() - n)
- : static_cast<const DerivedT &>(*this);
- }
- /// Take the last n elements.
- DerivedT take_back(size_t n = 1) const {
- return n < size() ? drop_front(size() - n)
- : static_cast<const DerivedT &>(*this);
- }
- /// Allow conversion to any type accepting an iterator_range.
- template <typename RangeT, typename = std::enable_if_t<std::is_constructible<
- RangeT, iterator_range<iterator>>::value>>
- operator RangeT() const {
- return RangeT(iterator_range<iterator>(*this));
- }
- /// Returns the base of this range.
- const BaseT &getBase() const { return base; }
- private:
- /// Offset the given base by the given amount.
- static BaseT offset_base(const BaseT &base, size_t n) {
- return n == 0 ? base : DerivedT::offset_base(base, n);
- }
- protected:
- indexed_accessor_range_base(const indexed_accessor_range_base &) = default;
- indexed_accessor_range_base(indexed_accessor_range_base &&) = default;
- indexed_accessor_range_base &
- operator=(const indexed_accessor_range_base &) = default;
- /// The base that owns the provided range of values.
- BaseT base;
- /// The size from the owning range.
- ptrdiff_t count;
- };
- } // end namespace detail
- /// This class provides an implementation of a range of
- /// indexed_accessor_iterators where the base is not indexable. Ranges with
- /// bases that are offsetable should derive from indexed_accessor_range_base
- /// instead. Derived range classes are expected to implement the following
- /// static method:
- /// * ReferenceT dereference(const BaseT &base, ptrdiff_t index)
- /// - Dereference an iterator pointing to a parent base at the given index.
- template <typename DerivedT, typename BaseT, typename T,
- typename PointerT = T *, typename ReferenceT = T &>
- class indexed_accessor_range
- : public detail::indexed_accessor_range_base<
- DerivedT, std::pair<BaseT, ptrdiff_t>, T, PointerT, ReferenceT> {
- public:
- indexed_accessor_range(BaseT base, ptrdiff_t startIndex, ptrdiff_t count)
- : detail::indexed_accessor_range_base<
- DerivedT, std::pair<BaseT, ptrdiff_t>, T, PointerT, ReferenceT>(
- std::make_pair(base, startIndex), count) {}
- using detail::indexed_accessor_range_base<
- DerivedT, std::pair<BaseT, ptrdiff_t>, T, PointerT,
- ReferenceT>::indexed_accessor_range_base;
- /// Returns the current base of the range.
- const BaseT &getBase() const { return this->base.first; }
- /// Returns the current start index of the range.
- ptrdiff_t getStartIndex() const { return this->base.second; }
- /// See `detail::indexed_accessor_range_base` for details.
- static std::pair<BaseT, ptrdiff_t>
- offset_base(const std::pair<BaseT, ptrdiff_t> &base, ptrdiff_t index) {
- // We encode the internal base as a pair of the derived base and a start
- // index into the derived base.
- return std::make_pair(base.first, base.second + index);
- }
- /// See `detail::indexed_accessor_range_base` for details.
- static ReferenceT
- dereference_iterator(const std::pair<BaseT, ptrdiff_t> &base,
- ptrdiff_t index) {
- return DerivedT::dereference(base.first, base.second + index);
- }
- };
- namespace detail {
- /// Return a reference to the first or second member of a reference. Otherwise,
- /// return a copy of the member of a temporary.
- ///
- /// When passing a range whose iterators return values instead of references,
- /// the reference must be dropped from `decltype((elt.first))`, which will
- /// always be a reference, to avoid returning a reference to a temporary.
- template <typename EltTy, typename FirstTy> class first_or_second_type {
- public:
- using type = std::conditional_t<std::is_reference<EltTy>::value, FirstTy,
- std::remove_reference_t<FirstTy>>;
- };
- } // end namespace detail
- /// Given a container of pairs, return a range over the first elements.
- template <typename ContainerTy> auto make_first_range(ContainerTy &&c) {
- using EltTy = decltype((*std::begin(c)));
- return llvm::map_range(std::forward<ContainerTy>(c),
- [](EltTy elt) -> typename detail::first_or_second_type<
- EltTy, decltype((elt.first))>::type {
- return elt.first;
- });
- }
- /// Given a container of pairs, return a range over the second elements.
- template <typename ContainerTy> auto make_second_range(ContainerTy &&c) {
- return llvm::map_range(
- std::forward<ContainerTy>(c),
- [](decltype((*std::begin(c))) elt) -> decltype((elt.second)) {
- return elt.second;
- });
- }
- //===----------------------------------------------------------------------===//
- // Extra additions to <utility>
- //===----------------------------------------------------------------------===//
- /// Function object to check whether the first component of a std::pair
- /// compares less than the first component of another std::pair.
- struct less_first {
- template <typename T> bool operator()(const T &lhs, const T &rhs) const {
- return std::less<>()(lhs.first, rhs.first);
- }
- };
- /// Function object to check whether the second component of a std::pair
- /// compares less than the second component of another std::pair.
- struct less_second {
- template <typename T> bool operator()(const T &lhs, const T &rhs) const {
- return std::less<>()(lhs.second, rhs.second);
- }
- };
- /// \brief Function object to apply a binary function to the first component of
- /// a std::pair.
- template<typename FuncTy>
- struct on_first {
- FuncTy func;
- template <typename T>
- decltype(auto) operator()(const T &lhs, const T &rhs) const {
- return func(lhs.first, rhs.first);
- }
- };
- /// Utility type to build an inheritance chain that makes it easy to rank
- /// overload candidates.
- template <int N> struct rank : rank<N - 1> {};
- template <> struct rank<0> {};
- /// traits class for checking whether type T is one of any of the given
- /// types in the variadic list.
- template <typename T, typename... Ts>
- using is_one_of = std::disjunction<std::is_same<T, Ts>...>;
- /// traits class for checking whether type T is a base class for all
- /// the given types in the variadic list.
- template <typename T, typename... Ts>
- using are_base_of = std::conjunction<std::is_base_of<T, Ts>...>;
- namespace detail {
- template <typename... Ts> struct Visitor;
- template <typename HeadT, typename... TailTs>
- struct Visitor<HeadT, TailTs...> : remove_cvref_t<HeadT>, Visitor<TailTs...> {
- explicit constexpr Visitor(HeadT &&Head, TailTs &&...Tail)
- : remove_cvref_t<HeadT>(std::forward<HeadT>(Head)),
- Visitor<TailTs...>(std::forward<TailTs>(Tail)...) {}
- using remove_cvref_t<HeadT>::operator();
- using Visitor<TailTs...>::operator();
- };
- template <typename HeadT> struct Visitor<HeadT> : remove_cvref_t<HeadT> {
- explicit constexpr Visitor(HeadT &&Head)
- : remove_cvref_t<HeadT>(std::forward<HeadT>(Head)) {}
- using remove_cvref_t<HeadT>::operator();
- };
- } // namespace detail
- /// Returns an opaquely-typed Callable object whose operator() overload set is
- /// the sum of the operator() overload sets of each CallableT in CallableTs.
- ///
- /// The type of the returned object derives from each CallableT in CallableTs.
- /// The returned object is constructed by invoking the appropriate copy or move
- /// constructor of each CallableT, as selected by overload resolution on the
- /// corresponding argument to makeVisitor.
- ///
- /// Example:
- ///
- /// \code
- /// auto visitor = makeVisitor([](auto) { return "unhandled type"; },
- /// [](int i) { return "int"; },
- /// [](std::string s) { return "str"; });
- /// auto a = visitor(42); // `a` is now "int".
- /// auto b = visitor("foo"); // `b` is now "str".
- /// auto c = visitor(3.14f); // `c` is now "unhandled type".
- /// \endcode
- ///
- /// Example of making a visitor with a lambda which captures a move-only type:
- ///
- /// \code
- /// std::unique_ptr<FooHandler> FH = /* ... */;
- /// auto visitor = makeVisitor(
- /// [FH{std::move(FH)}](Foo F) { return FH->handle(F); },
- /// [](int i) { return i; },
- /// [](std::string s) { return atoi(s); });
- /// \endcode
- template <typename... CallableTs>
- constexpr decltype(auto) makeVisitor(CallableTs &&...Callables) {
- return detail::Visitor<CallableTs...>(std::forward<CallableTs>(Callables)...);
- }
- //===----------------------------------------------------------------------===//
- // Extra additions to <algorithm>
- //===----------------------------------------------------------------------===//
- // We have a copy here so that LLVM behaves the same when using different
- // standard libraries.
- template <class Iterator, class RNG>
- void shuffle(Iterator first, Iterator last, RNG &&g) {
- // It would be better to use a std::uniform_int_distribution,
- // but that would be stdlib dependent.
- typedef
- typename std::iterator_traits<Iterator>::difference_type difference_type;
- for (auto size = last - first; size > 1; ++first, (void)--size) {
- difference_type offset = g() % size;
- // Avoid self-assignment due to incorrect assertions in libstdc++
- // containers (https://gcc.gnu.org/bugzilla/show_bug.cgi?id=85828).
- if (offset != difference_type(0))
- std::iter_swap(first, first + offset);
- }
- }
- /// Adapt std::less<T> for array_pod_sort.
- template<typename T>
- inline int array_pod_sort_comparator(const void *P1, const void *P2) {
- if (std::less<T>()(*reinterpret_cast<const T*>(P1),
- *reinterpret_cast<const T*>(P2)))
- return -1;
- if (std::less<T>()(*reinterpret_cast<const T*>(P2),
- *reinterpret_cast<const T*>(P1)))
- return 1;
- return 0;
- }
- /// get_array_pod_sort_comparator - This is an internal helper function used to
- /// get type deduction of T right.
- template<typename T>
- inline int (*get_array_pod_sort_comparator(const T &))
- (const void*, const void*) {
- return array_pod_sort_comparator<T>;
- }
- #ifdef EXPENSIVE_CHECKS
- namespace detail {
- inline unsigned presortShuffleEntropy() {
- static unsigned Result(std::random_device{}());
- return Result;
- }
- template <class IteratorTy>
- inline void presortShuffle(IteratorTy Start, IteratorTy End) {
- std::mt19937 Generator(presortShuffleEntropy());
- llvm::shuffle(Start, End, Generator);
- }
- } // end namespace detail
- #endif
- /// array_pod_sort - This sorts an array with the specified start and end
- /// extent. This is just like std::sort, except that it calls qsort instead of
- /// using an inlined template. qsort is slightly slower than std::sort, but
- /// most sorts are not performance critical in LLVM and std::sort has to be
- /// template instantiated for each type, leading to significant measured code
- /// bloat. This function should generally be used instead of std::sort where
- /// possible.
- ///
- /// This function assumes that you have simple POD-like types that can be
- /// compared with std::less and can be moved with memcpy. If this isn't true,
- /// you should use std::sort.
- ///
- /// NOTE: If qsort_r were portable, we could allow a custom comparator and
- /// default to std::less.
- template<class IteratorTy>
- inline void array_pod_sort(IteratorTy Start, IteratorTy End) {
- // Don't inefficiently call qsort with one element or trigger undefined
- // behavior with an empty sequence.
- auto NElts = End - Start;
- if (NElts <= 1) return;
- #ifdef EXPENSIVE_CHECKS
- detail::presortShuffle<IteratorTy>(Start, End);
- #endif
- qsort(&*Start, NElts, sizeof(*Start), get_array_pod_sort_comparator(*Start));
- }
- template <class IteratorTy>
- inline void array_pod_sort(
- IteratorTy Start, IteratorTy End,
- int (*Compare)(
- const typename std::iterator_traits<IteratorTy>::value_type *,
- const typename std::iterator_traits<IteratorTy>::value_type *)) {
- // Don't inefficiently call qsort with one element or trigger undefined
- // behavior with an empty sequence.
- auto NElts = End - Start;
- if (NElts <= 1) return;
- #ifdef EXPENSIVE_CHECKS
- detail::presortShuffle<IteratorTy>(Start, End);
- #endif
- qsort(&*Start, NElts, sizeof(*Start),
- reinterpret_cast<int (*)(const void *, const void *)>(Compare));
- }
- namespace detail {
- template <typename T>
- // We can use qsort if the iterator type is a pointer and the underlying value
- // is trivially copyable.
- using sort_trivially_copyable = std::conjunction<
- std::is_pointer<T>,
- std::is_trivially_copyable<typename std::iterator_traits<T>::value_type>>;
- } // namespace detail
- // Provide wrappers to std::sort which shuffle the elements before sorting
- // to help uncover non-deterministic behavior (PR35135).
- template <typename IteratorTy>
- inline void sort(IteratorTy Start, IteratorTy End) {
- if constexpr (detail::sort_trivially_copyable<IteratorTy>::value) {
- // Forward trivially copyable types to array_pod_sort. This avoids a large
- // amount of code bloat for a minor performance hit.
- array_pod_sort(Start, End);
- } else {
- #ifdef EXPENSIVE_CHECKS
- detail::presortShuffle<IteratorTy>(Start, End);
- #endif
- std::sort(Start, End);
- }
- }
- template <typename Container> inline void sort(Container &&C) {
- llvm::sort(adl_begin(C), adl_end(C));
- }
- template <typename IteratorTy, typename Compare>
- inline void sort(IteratorTy Start, IteratorTy End, Compare Comp) {
- #ifdef EXPENSIVE_CHECKS
- detail::presortShuffle<IteratorTy>(Start, End);
- #endif
- std::sort(Start, End, Comp);
- }
- template <typename Container, typename Compare>
- inline void sort(Container &&C, Compare Comp) {
- llvm::sort(adl_begin(C), adl_end(C), Comp);
- }
- /// Get the size of a range. This is a wrapper function around std::distance
- /// which is only enabled when the operation is O(1).
- template <typename R>
- auto size(R &&Range,
- std::enable_if_t<
- std::is_base_of<std::random_access_iterator_tag,
- typename std::iterator_traits<decltype(
- Range.begin())>::iterator_category>::value,
- void> * = nullptr) {
- return std::distance(Range.begin(), Range.end());
- }
- /// Provide wrappers to std::for_each which take ranges instead of having to
- /// pass begin/end explicitly.
- template <typename R, typename UnaryFunction>
- UnaryFunction for_each(R &&Range, UnaryFunction F) {
- return std::for_each(adl_begin(Range), adl_end(Range), F);
- }
- /// Provide wrappers to std::all_of which take ranges instead of having to pass
- /// begin/end explicitly.
- template <typename R, typename UnaryPredicate>
- bool all_of(R &&Range, UnaryPredicate P) {
- return std::all_of(adl_begin(Range), adl_end(Range), P);
- }
- /// Provide wrappers to std::any_of which take ranges instead of having to pass
- /// begin/end explicitly.
- template <typename R, typename UnaryPredicate>
- bool any_of(R &&Range, UnaryPredicate P) {
- return std::any_of(adl_begin(Range), adl_end(Range), P);
- }
- /// Provide wrappers to std::none_of which take ranges instead of having to pass
- /// begin/end explicitly.
- template <typename R, typename UnaryPredicate>
- bool none_of(R &&Range, UnaryPredicate P) {
- return std::none_of(adl_begin(Range), adl_end(Range), P);
- }
- /// Provide wrappers to std::find which take ranges instead of having to pass
- /// begin/end explicitly.
- template <typename R, typename T> auto find(R &&Range, const T &Val) {
- return std::find(adl_begin(Range), adl_end(Range), Val);
- }
- /// Provide wrappers to std::find_if which take ranges instead of having to pass
- /// begin/end explicitly.
- template <typename R, typename UnaryPredicate>
- auto find_if(R &&Range, UnaryPredicate P) {
- return std::find_if(adl_begin(Range), adl_end(Range), P);
- }
- template <typename R, typename UnaryPredicate>
- auto find_if_not(R &&Range, UnaryPredicate P) {
- return std::find_if_not(adl_begin(Range), adl_end(Range), P);
- }
- /// Provide wrappers to std::remove_if which take ranges instead of having to
- /// pass begin/end explicitly.
- template <typename R, typename UnaryPredicate>
- auto remove_if(R &&Range, UnaryPredicate P) {
- return std::remove_if(adl_begin(Range), adl_end(Range), P);
- }
- /// Provide wrappers to std::copy_if which take ranges instead of having to
- /// pass begin/end explicitly.
- template <typename R, typename OutputIt, typename UnaryPredicate>
- OutputIt copy_if(R &&Range, OutputIt Out, UnaryPredicate P) {
- return std::copy_if(adl_begin(Range), adl_end(Range), Out, P);
- }
- /// Return the single value in \p Range that satisfies
- /// \p P(<member of \p Range> *, AllowRepeats)->T * returning nullptr
- /// when no values or multiple values were found.
- /// When \p AllowRepeats is true, multiple values that compare equal
- /// are allowed.
- template <typename T, typename R, typename Predicate>
- T *find_singleton(R &&Range, Predicate P, bool AllowRepeats = false) {
- T *RC = nullptr;
- for (auto *A : Range) {
- if (T *PRC = P(A, AllowRepeats)) {
- if (RC) {
- if (!AllowRepeats || PRC != RC)
- return nullptr;
- } else
- RC = PRC;
- }
- }
- return RC;
- }
- /// Return a pair consisting of the single value in \p Range that satisfies
- /// \p P(<member of \p Range> *, AllowRepeats)->std::pair<T*, bool> returning
- /// nullptr when no values or multiple values were found, and a bool indicating
- /// whether multiple values were found to cause the nullptr.
- /// When \p AllowRepeats is true, multiple values that compare equal are
- /// allowed. The predicate \p P returns a pair<T *, bool> where T is the
- /// singleton while the bool indicates whether multiples have already been
- /// found. It is expected that first will be nullptr when second is true.
- /// This allows using find_singleton_nested within the predicate \P.
- template <typename T, typename R, typename Predicate>
- std::pair<T *, bool> find_singleton_nested(R &&Range, Predicate P,
- bool AllowRepeats = false) {
- T *RC = nullptr;
- for (auto *A : Range) {
- std::pair<T *, bool> PRC = P(A, AllowRepeats);
- if (PRC.second) {
- assert(PRC.first == nullptr &&
- "Inconsistent return values in find_singleton_nested.");
- return PRC;
- }
- if (PRC.first) {
- if (RC) {
- if (!AllowRepeats || PRC.first != RC)
- return {nullptr, true};
- } else
- RC = PRC.first;
- }
- }
- return {RC, false};
- }
- template <typename R, typename OutputIt>
- OutputIt copy(R &&Range, OutputIt Out) {
- return std::copy(adl_begin(Range), adl_end(Range), Out);
- }
- /// Provide wrappers to std::replace_copy_if which take ranges instead of having
- /// to pass begin/end explicitly.
- template <typename R, typename OutputIt, typename UnaryPredicate, typename T>
- OutputIt replace_copy_if(R &&Range, OutputIt Out, UnaryPredicate P,
- const T &NewValue) {
- return std::replace_copy_if(adl_begin(Range), adl_end(Range), Out, P,
- NewValue);
- }
- /// Provide wrappers to std::replace_copy which take ranges instead of having to
- /// pass begin/end explicitly.
- template <typename R, typename OutputIt, typename T>
- OutputIt replace_copy(R &&Range, OutputIt Out, const T &OldValue,
- const T &NewValue) {
- return std::replace_copy(adl_begin(Range), adl_end(Range), Out, OldValue,
- NewValue);
- }
- /// Provide wrappers to std::move which take ranges instead of having to
- /// pass begin/end explicitly.
- template <typename R, typename OutputIt>
- OutputIt move(R &&Range, OutputIt Out) {
- return std::move(adl_begin(Range), adl_end(Range), Out);
- }
- /// Wrapper function around std::find to detect if an element exists
- /// in a container.
- template <typename R, typename E>
- bool is_contained(R &&Range, const E &Element) {
- return std::find(adl_begin(Range), adl_end(Range), Element) != adl_end(Range);
- }
- template <typename T>
- constexpr bool is_contained(std::initializer_list<T> Set, T Value) {
- // TODO: Use std::find when we switch to C++20.
- for (T V : Set)
- if (V == Value)
- return true;
- return false;
- }
- /// Wrapper function around std::is_sorted to check if elements in a range \p R
- /// are sorted with respect to a comparator \p C.
- template <typename R, typename Compare> bool is_sorted(R &&Range, Compare C) {
- return std::is_sorted(adl_begin(Range), adl_end(Range), C);
- }
- /// Wrapper function around std::is_sorted to check if elements in a range \p R
- /// are sorted in non-descending order.
- template <typename R> bool is_sorted(R &&Range) {
- return std::is_sorted(adl_begin(Range), adl_end(Range));
- }
- /// Wrapper function around std::count to count the number of times an element
- /// \p Element occurs in the given range \p Range.
- template <typename R, typename E> auto count(R &&Range, const E &Element) {
- return std::count(adl_begin(Range), adl_end(Range), Element);
- }
- /// Wrapper function around std::count_if to count the number of times an
- /// element satisfying a given predicate occurs in a range.
- template <typename R, typename UnaryPredicate>
- auto count_if(R &&Range, UnaryPredicate P) {
- return std::count_if(adl_begin(Range), adl_end(Range), P);
- }
- /// Wrapper function around std::transform to apply a function to a range and
- /// store the result elsewhere.
- template <typename R, typename OutputIt, typename UnaryFunction>
- OutputIt transform(R &&Range, OutputIt d_first, UnaryFunction F) {
- return std::transform(adl_begin(Range), adl_end(Range), d_first, F);
- }
- /// Provide wrappers to std::partition which take ranges instead of having to
- /// pass begin/end explicitly.
- template <typename R, typename UnaryPredicate>
- auto partition(R &&Range, UnaryPredicate P) {
- return std::partition(adl_begin(Range), adl_end(Range), P);
- }
- /// Provide wrappers to std::lower_bound which take ranges instead of having to
- /// pass begin/end explicitly.
- template <typename R, typename T> auto lower_bound(R &&Range, T &&Value) {
- return std::lower_bound(adl_begin(Range), adl_end(Range),
- std::forward<T>(Value));
- }
- template <typename R, typename T, typename Compare>
- auto lower_bound(R &&Range, T &&Value, Compare C) {
- return std::lower_bound(adl_begin(Range), adl_end(Range),
- std::forward<T>(Value), C);
- }
- /// Provide wrappers to std::upper_bound which take ranges instead of having to
- /// pass begin/end explicitly.
- template <typename R, typename T> auto upper_bound(R &&Range, T &&Value) {
- return std::upper_bound(adl_begin(Range), adl_end(Range),
- std::forward<T>(Value));
- }
- template <typename R, typename T, typename Compare>
- auto upper_bound(R &&Range, T &&Value, Compare C) {
- return std::upper_bound(adl_begin(Range), adl_end(Range),
- std::forward<T>(Value), C);
- }
- template <typename R>
- void stable_sort(R &&Range) {
- std::stable_sort(adl_begin(Range), adl_end(Range));
- }
- template <typename R, typename Compare>
- void stable_sort(R &&Range, Compare C) {
- std::stable_sort(adl_begin(Range), adl_end(Range), C);
- }
- /// Binary search for the first iterator in a range where a predicate is false.
- /// Requires that C is always true below some limit, and always false above it.
- template <typename R, typename Predicate,
- typename Val = decltype(*adl_begin(std::declval<R>()))>
- auto partition_point(R &&Range, Predicate P) {
- return std::partition_point(adl_begin(Range), adl_end(Range), P);
- }
- template<typename Range, typename Predicate>
- auto unique(Range &&R, Predicate P) {
- return std::unique(adl_begin(R), adl_end(R), P);
- }
- /// Wrapper function around std::equal to detect if pair-wise elements between
- /// two ranges are the same.
- template <typename L, typename R> bool equal(L &&LRange, R &&RRange) {
- return std::equal(adl_begin(LRange), adl_end(LRange), adl_begin(RRange),
- adl_end(RRange));
- }
- /// Returns true if all elements in Range are equal or when the Range is empty.
- template <typename R> bool all_equal(R &&Range) {
- auto Begin = adl_begin(Range);
- auto End = adl_end(Range);
- return Begin == End || std::equal(Begin + 1, End, Begin);
- }
- /// Returns true if all Values in the initializer lists are equal or the list
- // is empty.
- template <typename T> bool all_equal(std::initializer_list<T> Values) {
- return all_equal<std::initializer_list<T>>(std::move(Values));
- }
- /// Provide a container algorithm similar to C++ Library Fundamentals v2's
- /// `erase_if` which is equivalent to:
- ///
- /// C.erase(remove_if(C, pred), C.end());
- ///
- /// This version works for any container with an erase method call accepting
- /// two iterators.
- template <typename Container, typename UnaryPredicate>
- void erase_if(Container &C, UnaryPredicate P) {
- C.erase(remove_if(C, P), C.end());
- }
- /// Wrapper function to remove a value from a container:
- ///
- /// C.erase(remove(C.begin(), C.end(), V), C.end());
- template <typename Container, typename ValueType>
- void erase_value(Container &C, ValueType V) {
- C.erase(std::remove(C.begin(), C.end(), V), C.end());
- }
- /// Wrapper function to append a range to a container.
- ///
- /// C.insert(C.end(), R.begin(), R.end());
- template <typename Container, typename Range>
- inline void append_range(Container &C, Range &&R) {
- C.insert(C.end(), R.begin(), R.end());
- }
- /// Given a sequence container Cont, replace the range [ContIt, ContEnd) with
- /// the range [ValIt, ValEnd) (which is not from the same container).
- template<typename Container, typename RandomAccessIterator>
- void replace(Container &Cont, typename Container::iterator ContIt,
- typename Container::iterator ContEnd, RandomAccessIterator ValIt,
- RandomAccessIterator ValEnd) {
- while (true) {
- if (ValIt == ValEnd) {
- Cont.erase(ContIt, ContEnd);
- return;
- } else if (ContIt == ContEnd) {
- Cont.insert(ContIt, ValIt, ValEnd);
- return;
- }
- *ContIt++ = *ValIt++;
- }
- }
- /// Given a sequence container Cont, replace the range [ContIt, ContEnd) with
- /// the range R.
- template<typename Container, typename Range = std::initializer_list<
- typename Container::value_type>>
- void replace(Container &Cont, typename Container::iterator ContIt,
- typename Container::iterator ContEnd, Range R) {
- replace(Cont, ContIt, ContEnd, R.begin(), R.end());
- }
- /// An STL-style algorithm similar to std::for_each that applies a second
- /// functor between every pair of elements.
- ///
- /// This provides the control flow logic to, for example, print a
- /// comma-separated list:
- /// \code
- /// interleave(names.begin(), names.end(),
- /// [&](StringRef name) { os << name; },
- /// [&] { os << ", "; });
- /// \endcode
- template <typename ForwardIterator, typename UnaryFunctor,
- typename NullaryFunctor,
- typename = std::enable_if_t<
- !std::is_constructible<StringRef, UnaryFunctor>::value &&
- !std::is_constructible<StringRef, NullaryFunctor>::value>>
- inline void interleave(ForwardIterator begin, ForwardIterator end,
- UnaryFunctor each_fn, NullaryFunctor between_fn) {
- if (begin == end)
- return;
- each_fn(*begin);
- ++begin;
- for (; begin != end; ++begin) {
- between_fn();
- each_fn(*begin);
- }
- }
- template <typename Container, typename UnaryFunctor, typename NullaryFunctor,
- typename = std::enable_if_t<
- !std::is_constructible<StringRef, UnaryFunctor>::value &&
- !std::is_constructible<StringRef, NullaryFunctor>::value>>
- inline void interleave(const Container &c, UnaryFunctor each_fn,
- NullaryFunctor between_fn) {
- interleave(c.begin(), c.end(), each_fn, between_fn);
- }
- /// Overload of interleave for the common case of string separator.
- template <typename Container, typename UnaryFunctor, typename StreamT,
- typename T = detail::ValueOfRange<Container>>
- inline void interleave(const Container &c, StreamT &os, UnaryFunctor each_fn,
- const StringRef &separator) {
- interleave(c.begin(), c.end(), each_fn, [&] { os << separator; });
- }
- template <typename Container, typename StreamT,
- typename T = detail::ValueOfRange<Container>>
- inline void interleave(const Container &c, StreamT &os,
- const StringRef &separator) {
- interleave(
- c, os, [&](const T &a) { os << a; }, separator);
- }
- template <typename Container, typename UnaryFunctor, typename StreamT,
- typename T = detail::ValueOfRange<Container>>
- inline void interleaveComma(const Container &c, StreamT &os,
- UnaryFunctor each_fn) {
- interleave(c, os, each_fn, ", ");
- }
- template <typename Container, typename StreamT,
- typename T = detail::ValueOfRange<Container>>
- inline void interleaveComma(const Container &c, StreamT &os) {
- interleaveComma(c, os, [&](const T &a) { os << a; });
- }
- //===----------------------------------------------------------------------===//
- // Extra additions to <memory>
- //===----------------------------------------------------------------------===//
- struct FreeDeleter {
- void operator()(void* v) {
- ::free(v);
- }
- };
- template<typename First, typename Second>
- struct pair_hash {
- size_t operator()(const std::pair<First, Second> &P) const {
- return std::hash<First>()(P.first) * 31 + std::hash<Second>()(P.second);
- }
- };
- /// Binary functor that adapts to any other binary functor after dereferencing
- /// operands.
- template <typename T> struct deref {
- T func;
- // Could be further improved to cope with non-derivable functors and
- // non-binary functors (should be a variadic template member function
- // operator()).
- template <typename A, typename B> auto operator()(A &lhs, B &rhs) const {
- assert(lhs);
- assert(rhs);
- return func(*lhs, *rhs);
- }
- };
- namespace detail {
- template <typename R> class enumerator_iter;
- template <typename R> struct result_pair {
- using value_reference =
- typename std::iterator_traits<IterOfRange<R>>::reference;
- friend class enumerator_iter<R>;
- result_pair() = default;
- result_pair(std::size_t Index, IterOfRange<R> Iter)
- : Index(Index), Iter(Iter) {}
- result_pair(const result_pair<R> &Other)
- : Index(Other.Index), Iter(Other.Iter) {}
- result_pair &operator=(const result_pair &Other) {
- Index = Other.Index;
- Iter = Other.Iter;
- return *this;
- }
- std::size_t index() const { return Index; }
- value_reference value() const { return *Iter; }
- private:
- std::size_t Index = std::numeric_limits<std::size_t>::max();
- IterOfRange<R> Iter;
- };
- template <std::size_t i, typename R>
- decltype(auto) get(const result_pair<R> &Pair) {
- static_assert(i < 2);
- if constexpr (i == 0) {
- return Pair.index();
- } else {
- return Pair.value();
- }
- }
- template <typename R>
- class enumerator_iter
- : public iterator_facade_base<enumerator_iter<R>, std::forward_iterator_tag,
- const result_pair<R>> {
- using result_type = result_pair<R>;
- public:
- explicit enumerator_iter(IterOfRange<R> EndIter)
- : Result(std::numeric_limits<size_t>::max(), EndIter) {}
- enumerator_iter(std::size_t Index, IterOfRange<R> Iter)
- : Result(Index, Iter) {}
- const result_type &operator*() const { return Result; }
- enumerator_iter &operator++() {
- assert(Result.Index != std::numeric_limits<size_t>::max());
- ++Result.Iter;
- ++Result.Index;
- return *this;
- }
- bool operator==(const enumerator_iter &RHS) const {
- // Don't compare indices here, only iterators. It's possible for an end
- // iterator to have different indices depending on whether it was created
- // by calling std::end() versus incrementing a valid iterator.
- return Result.Iter == RHS.Result.Iter;
- }
- enumerator_iter(const enumerator_iter &Other) : Result(Other.Result) {}
- enumerator_iter &operator=(const enumerator_iter &Other) {
- Result = Other.Result;
- return *this;
- }
- private:
- result_type Result;
- };
- template <typename R> class enumerator {
- public:
- explicit enumerator(R &&Range) : TheRange(std::forward<R>(Range)) {}
- enumerator_iter<R> begin() {
- return enumerator_iter<R>(0, std::begin(TheRange));
- }
- enumerator_iter<R> begin() const {
- return enumerator_iter<R>(0, std::begin(TheRange));
- }
- enumerator_iter<R> end() {
- return enumerator_iter<R>(std::end(TheRange));
- }
- enumerator_iter<R> end() const {
- return enumerator_iter<R>(std::end(TheRange));
- }
- private:
- R TheRange;
- };
- } // end namespace detail
- /// Given an input range, returns a new range whose values are are pair (A,B)
- /// such that A is the 0-based index of the item in the sequence, and B is
- /// the value from the original sequence. Example:
- ///
- /// std::vector<char> Items = {'A', 'B', 'C', 'D'};
- /// for (auto X : enumerate(Items)) {
- /// printf("Item %d - %c\n", X.index(), X.value());
- /// }
- ///
- /// or using structured bindings:
- ///
- /// for (auto [Index, Value] : enumerate(Items)) {
- /// printf("Item %d - %c\n", Index, Value);
- /// }
- ///
- /// Output:
- /// Item 0 - A
- /// Item 1 - B
- /// Item 2 - C
- /// Item 3 - D
- ///
- template <typename R> detail::enumerator<R> enumerate(R &&TheRange) {
- return detail::enumerator<R>(std::forward<R>(TheRange));
- }
- namespace detail {
- template <typename Predicate, typename... Args>
- bool all_of_zip_predicate_first(Predicate &&P, Args &&...args) {
- auto z = zip(args...);
- auto it = z.begin();
- auto end = z.end();
- while (it != end) {
- if (!std::apply([&](auto &&...args) { return P(args...); }, *it))
- return false;
- ++it;
- }
- return it.all_equals(end);
- }
- // Just an adaptor to switch the order of argument and have the predicate before
- // the zipped inputs.
- template <typename... ArgsThenPredicate, size_t... InputIndexes>
- bool all_of_zip_predicate_last(
- std::tuple<ArgsThenPredicate...> argsThenPredicate,
- std::index_sequence<InputIndexes...>) {
- auto constexpr OutputIndex =
- std::tuple_size<decltype(argsThenPredicate)>::value - 1;
- return all_of_zip_predicate_first(std::get<OutputIndex>(argsThenPredicate),
- std::get<InputIndexes>(argsThenPredicate)...);
- }
- } // end namespace detail
- /// Compare two zipped ranges using the provided predicate (as last argument).
- /// Return true if all elements satisfy the predicate and false otherwise.
- // Return false if the zipped iterator aren't all at end (size mismatch).
- template <typename... ArgsAndPredicate>
- bool all_of_zip(ArgsAndPredicate &&...argsAndPredicate) {
- return detail::all_of_zip_predicate_last(
- std::forward_as_tuple(argsAndPredicate...),
- std::make_index_sequence<sizeof...(argsAndPredicate) - 1>{});
- }
- /// Return true if the sequence [Begin, End) has exactly N items. Runs in O(N)
- /// time. Not meant for use with random-access iterators.
- /// Can optionally take a predicate to filter lazily some items.
- template <typename IterTy,
- typename Pred = bool (*)(const decltype(*std::declval<IterTy>()) &)>
- bool hasNItems(
- IterTy &&Begin, IterTy &&End, unsigned N,
- Pred &&ShouldBeCounted =
- [](const decltype(*std::declval<IterTy>()) &) { return true; },
- std::enable_if_t<
- !std::is_base_of<std::random_access_iterator_tag,
- typename std::iterator_traits<std::remove_reference_t<
- decltype(Begin)>>::iterator_category>::value,
- void> * = nullptr) {
- for (; N; ++Begin) {
- if (Begin == End)
- return false; // Too few.
- N -= ShouldBeCounted(*Begin);
- }
- for (; Begin != End; ++Begin)
- if (ShouldBeCounted(*Begin))
- return false; // Too many.
- return true;
- }
- /// Return true if the sequence [Begin, End) has N or more items. Runs in O(N)
- /// time. Not meant for use with random-access iterators.
- /// Can optionally take a predicate to lazily filter some items.
- template <typename IterTy,
- typename Pred = bool (*)(const decltype(*std::declval<IterTy>()) &)>
- bool hasNItemsOrMore(
- IterTy &&Begin, IterTy &&End, unsigned N,
- Pred &&ShouldBeCounted =
- [](const decltype(*std::declval<IterTy>()) &) { return true; },
- std::enable_if_t<
- !std::is_base_of<std::random_access_iterator_tag,
- typename std::iterator_traits<std::remove_reference_t<
- decltype(Begin)>>::iterator_category>::value,
- void> * = nullptr) {
- for (; N; ++Begin) {
- if (Begin == End)
- return false; // Too few.
- N -= ShouldBeCounted(*Begin);
- }
- return true;
- }
- /// Returns true if the sequence [Begin, End) has N or less items. Can
- /// optionally take a predicate to lazily filter some items.
- template <typename IterTy,
- typename Pred = bool (*)(const decltype(*std::declval<IterTy>()) &)>
- bool hasNItemsOrLess(
- IterTy &&Begin, IterTy &&End, unsigned N,
- Pred &&ShouldBeCounted = [](const decltype(*std::declval<IterTy>()) &) {
- return true;
- }) {
- assert(N != std::numeric_limits<unsigned>::max());
- return !hasNItemsOrMore(Begin, End, N + 1, ShouldBeCounted);
- }
- /// Returns true if the given container has exactly N items
- template <typename ContainerTy> bool hasNItems(ContainerTy &&C, unsigned N) {
- return hasNItems(std::begin(C), std::end(C), N);
- }
- /// Returns true if the given container has N or more items
- template <typename ContainerTy>
- bool hasNItemsOrMore(ContainerTy &&C, unsigned N) {
- return hasNItemsOrMore(std::begin(C), std::end(C), N);
- }
- /// Returns true if the given container has N or less items
- template <typename ContainerTy>
- bool hasNItemsOrLess(ContainerTy &&C, unsigned N) {
- return hasNItemsOrLess(std::begin(C), std::end(C), N);
- }
- /// Returns a raw pointer that represents the same address as the argument.
- ///
- /// This implementation can be removed once we move to C++20 where it's defined
- /// as std::to_address().
- ///
- /// The std::pointer_traits<>::to_address(p) variations of these overloads has
- /// not been implemented.
- template <class Ptr> auto to_address(const Ptr &P) { return P.operator->(); }
- template <class T> constexpr T *to_address(T *P) { return P; }
- } // end namespace llvm
- namespace std {
- template <typename R>
- struct tuple_size<llvm::detail::result_pair<R>>
- : std::integral_constant<std::size_t, 2> {};
- template <std::size_t i, typename R>
- struct tuple_element<i, llvm::detail::result_pair<R>>
- : std::conditional<i == 0, std::size_t,
- typename llvm::detail::result_pair<R>::value_reference> {
- };
- } // namespace std
- #endif // LLVM_ADT_STLEXTRAS_H
- #ifdef __GNUC__
- #pragma GCC diagnostic pop
- #endif
|