divtc3.c 3.4 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697
  1. // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
  2. // See https://llvm.org/LICENSE.txt for license information.
  3. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
  4. #include "../int_math.h"
  5. #include "DD.h"
  6. // Use DOUBLE_PRECISION because the soft-fp method we use is logb (on the upper
  7. // half of the long doubles), even though this file defines complex division for
  8. // 128-bit floats.
  9. #define DOUBLE_PRECISION
  10. #include "../fp_lib.h"
  11. #if !defined(CRT_INFINITY) && defined(HUGE_VAL)
  12. #define CRT_INFINITY HUGE_VAL
  13. #endif // CRT_INFINITY
  14. #define makeFinite(x) \
  15. { \
  16. (x).s.hi = crt_copysign(crt_isinf((x).s.hi) ? 1.0 : 0.0, (x).s.hi); \
  17. (x).s.lo = 0.0; \
  18. }
  19. long double _Complex __divtc3(long double a, long double b, long double c,
  20. long double d) {
  21. DD cDD = {.ld = c};
  22. DD dDD = {.ld = d};
  23. int ilogbw = 0;
  24. const double logbw =
  25. __compiler_rt_logb(__compiler_rt_fmax(crt_fabs(cDD.s.hi),
  26. crt_fabs(dDD.s.hi)));
  27. if (crt_isfinite(logbw)) {
  28. ilogbw = (int)logbw;
  29. cDD.s.hi = __compiler_rt_scalbn(cDD.s.hi, -ilogbw);
  30. cDD.s.lo = __compiler_rt_scalbn(cDD.s.lo, -ilogbw);
  31. dDD.s.hi = __compiler_rt_scalbn(dDD.s.hi, -ilogbw);
  32. dDD.s.lo = __compiler_rt_scalbn(dDD.s.lo, -ilogbw);
  33. }
  34. const long double denom =
  35. __gcc_qadd(__gcc_qmul(cDD.ld, cDD.ld), __gcc_qmul(dDD.ld, dDD.ld));
  36. const long double realNumerator =
  37. __gcc_qadd(__gcc_qmul(a, cDD.ld), __gcc_qmul(b, dDD.ld));
  38. const long double imagNumerator =
  39. __gcc_qsub(__gcc_qmul(b, cDD.ld), __gcc_qmul(a, dDD.ld));
  40. DD real = {.ld = __gcc_qdiv(realNumerator, denom)};
  41. DD imag = {.ld = __gcc_qdiv(imagNumerator, denom)};
  42. real.s.hi = __compiler_rt_scalbn(real.s.hi, -ilogbw);
  43. real.s.lo = __compiler_rt_scalbn(real.s.lo, -ilogbw);
  44. imag.s.hi = __compiler_rt_scalbn(imag.s.hi, -ilogbw);
  45. imag.s.lo = __compiler_rt_scalbn(imag.s.lo, -ilogbw);
  46. if (crt_isnan(real.s.hi) && crt_isnan(imag.s.hi)) {
  47. DD aDD = {.ld = a};
  48. DD bDD = {.ld = b};
  49. DD rDD = {.ld = denom};
  50. if ((rDD.s.hi == 0.0) && (!crt_isnan(aDD.s.hi) || !crt_isnan(bDD.s.hi))) {
  51. real.s.hi = crt_copysign(CRT_INFINITY, cDD.s.hi) * aDD.s.hi;
  52. real.s.lo = 0.0;
  53. imag.s.hi = crt_copysign(CRT_INFINITY, cDD.s.hi) * bDD.s.hi;
  54. imag.s.lo = 0.0;
  55. }
  56. else if ((crt_isinf(aDD.s.hi) || crt_isinf(bDD.s.hi)) &&
  57. crt_isfinite(cDD.s.hi) && crt_isfinite(dDD.s.hi)) {
  58. makeFinite(aDD);
  59. makeFinite(bDD);
  60. real.s.hi = CRT_INFINITY * (aDD.s.hi * cDD.s.hi + bDD.s.hi * dDD.s.hi);
  61. real.s.lo = 0.0;
  62. imag.s.hi = CRT_INFINITY * (bDD.s.hi * cDD.s.hi - aDD.s.hi * dDD.s.hi);
  63. imag.s.lo = 0.0;
  64. }
  65. else if ((crt_isinf(cDD.s.hi) || crt_isinf(dDD.s.hi)) &&
  66. crt_isfinite(aDD.s.hi) && crt_isfinite(bDD.s.hi)) {
  67. makeFinite(cDD);
  68. makeFinite(dDD);
  69. real.s.hi =
  70. crt_copysign(0.0, (aDD.s.hi * cDD.s.hi + bDD.s.hi * dDD.s.hi));
  71. real.s.lo = 0.0;
  72. imag.s.hi =
  73. crt_copysign(0.0, (bDD.s.hi * cDD.s.hi - aDD.s.hi * dDD.s.hi));
  74. imag.s.lo = 0.0;
  75. }
  76. }
  77. long double _Complex z;
  78. __real__ z = real.ld;
  79. __imag__ z = imag.ld;
  80. return z;
  81. }