123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416 |
- //===-- lib/fp_lib.h - Floating-point utilities -------------------*- C -*-===//
- //
- // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
- // See https://llvm.org/LICENSE.txt for license information.
- // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
- //
- //===----------------------------------------------------------------------===//
- //
- // This file is a configuration header for soft-float routines in compiler-rt.
- // This file does not provide any part of the compiler-rt interface, but defines
- // many useful constants and utility routines that are used in the
- // implementation of the soft-float routines in compiler-rt.
- //
- // Assumes that float, double and long double correspond to the IEEE-754
- // binary32, binary64 and binary 128 types, respectively, and that integer
- // endianness matches floating point endianness on the target platform.
- //
- //===----------------------------------------------------------------------===//
- #ifndef FP_LIB_HEADER
- #define FP_LIB_HEADER
- #include "int_lib.h"
- #include "int_math.h"
- #include "int_types.h"
- #include <limits.h>
- #include <stdbool.h>
- #include <stdint.h>
- #if defined SINGLE_PRECISION
- typedef uint16_t half_rep_t;
- typedef uint32_t rep_t;
- typedef uint64_t twice_rep_t;
- typedef int32_t srep_t;
- typedef float fp_t;
- #define HALF_REP_C UINT16_C
- #define REP_C UINT32_C
- #define significandBits 23
- static __inline int rep_clz(rep_t a) { return clzsi(a); }
- // 32x32 --> 64 bit multiply
- static __inline void wideMultiply(rep_t a, rep_t b, rep_t *hi, rep_t *lo) {
- const uint64_t product = (uint64_t)a * b;
- *hi = (rep_t)(product >> 32);
- *lo = (rep_t)product;
- }
- COMPILER_RT_ABI fp_t __addsf3(fp_t a, fp_t b);
- #elif defined DOUBLE_PRECISION
- typedef uint32_t half_rep_t;
- typedef uint64_t rep_t;
- typedef int64_t srep_t;
- typedef double fp_t;
- #define HALF_REP_C UINT32_C
- #define REP_C UINT64_C
- #define significandBits 52
- static inline int rep_clz(rep_t a) { return __builtin_clzll(a); }
- #define loWord(a) (a & 0xffffffffU)
- #define hiWord(a) (a >> 32)
- // 64x64 -> 128 wide multiply for platforms that don't have such an operation;
- // many 64-bit platforms have this operation, but they tend to have hardware
- // floating-point, so we don't bother with a special case for them here.
- static __inline void wideMultiply(rep_t a, rep_t b, rep_t *hi, rep_t *lo) {
- // Each of the component 32x32 -> 64 products
- const uint64_t plolo = loWord(a) * loWord(b);
- const uint64_t plohi = loWord(a) * hiWord(b);
- const uint64_t philo = hiWord(a) * loWord(b);
- const uint64_t phihi = hiWord(a) * hiWord(b);
- // Sum terms that contribute to lo in a way that allows us to get the carry
- const uint64_t r0 = loWord(plolo);
- const uint64_t r1 = hiWord(plolo) + loWord(plohi) + loWord(philo);
- *lo = r0 + (r1 << 32);
- // Sum terms contributing to hi with the carry from lo
- *hi = hiWord(plohi) + hiWord(philo) + hiWord(r1) + phihi;
- }
- #undef loWord
- #undef hiWord
- COMPILER_RT_ABI fp_t __adddf3(fp_t a, fp_t b);
- #elif defined QUAD_PRECISION
- #if defined(CRT_HAS_F128) && defined(CRT_HAS_128BIT)
- typedef uint64_t half_rep_t;
- typedef __uint128_t rep_t;
- typedef __int128_t srep_t;
- typedef tf_float fp_t;
- #define HALF_REP_C UINT64_C
- #define REP_C (__uint128_t)
- #if defined(CRT_HAS_IEEE_TF)
- // Note: Since there is no explicit way to tell compiler the constant is a
- // 128-bit integer, we let the constant be casted to 128-bit integer
- #define significandBits 112
- #define TF_MANT_DIG (significandBits + 1)
- static __inline int rep_clz(rep_t a) {
- const union {
- __uint128_t ll;
- #if _YUGA_BIG_ENDIAN
- struct {
- uint64_t high, low;
- } s;
- #else
- struct {
- uint64_t low, high;
- } s;
- #endif
- } uu = {.ll = a};
- uint64_t word;
- uint64_t add;
- if (uu.s.high) {
- word = uu.s.high;
- add = 0;
- } else {
- word = uu.s.low;
- add = 64;
- }
- return __builtin_clzll(word) + add;
- }
- #define Word_LoMask UINT64_C(0x00000000ffffffff)
- #define Word_HiMask UINT64_C(0xffffffff00000000)
- #define Word_FullMask UINT64_C(0xffffffffffffffff)
- #define Word_1(a) (uint64_t)((a >> 96) & Word_LoMask)
- #define Word_2(a) (uint64_t)((a >> 64) & Word_LoMask)
- #define Word_3(a) (uint64_t)((a >> 32) & Word_LoMask)
- #define Word_4(a) (uint64_t)(a & Word_LoMask)
- // 128x128 -> 256 wide multiply for platforms that don't have such an operation;
- // many 64-bit platforms have this operation, but they tend to have hardware
- // floating-point, so we don't bother with a special case for them here.
- static __inline void wideMultiply(rep_t a, rep_t b, rep_t *hi, rep_t *lo) {
- const uint64_t product11 = Word_1(a) * Word_1(b);
- const uint64_t product12 = Word_1(a) * Word_2(b);
- const uint64_t product13 = Word_1(a) * Word_3(b);
- const uint64_t product14 = Word_1(a) * Word_4(b);
- const uint64_t product21 = Word_2(a) * Word_1(b);
- const uint64_t product22 = Word_2(a) * Word_2(b);
- const uint64_t product23 = Word_2(a) * Word_3(b);
- const uint64_t product24 = Word_2(a) * Word_4(b);
- const uint64_t product31 = Word_3(a) * Word_1(b);
- const uint64_t product32 = Word_3(a) * Word_2(b);
- const uint64_t product33 = Word_3(a) * Word_3(b);
- const uint64_t product34 = Word_3(a) * Word_4(b);
- const uint64_t product41 = Word_4(a) * Word_1(b);
- const uint64_t product42 = Word_4(a) * Word_2(b);
- const uint64_t product43 = Word_4(a) * Word_3(b);
- const uint64_t product44 = Word_4(a) * Word_4(b);
- const __uint128_t sum0 = (__uint128_t)product44;
- const __uint128_t sum1 = (__uint128_t)product34 + (__uint128_t)product43;
- const __uint128_t sum2 =
- (__uint128_t)product24 + (__uint128_t)product33 + (__uint128_t)product42;
- const __uint128_t sum3 = (__uint128_t)product14 + (__uint128_t)product23 +
- (__uint128_t)product32 + (__uint128_t)product41;
- const __uint128_t sum4 =
- (__uint128_t)product13 + (__uint128_t)product22 + (__uint128_t)product31;
- const __uint128_t sum5 = (__uint128_t)product12 + (__uint128_t)product21;
- const __uint128_t sum6 = (__uint128_t)product11;
- const __uint128_t r0 = (sum0 & Word_FullMask) + ((sum1 & Word_LoMask) << 32);
- const __uint128_t r1 = (sum0 >> 64) + ((sum1 >> 32) & Word_FullMask) +
- (sum2 & Word_FullMask) + ((sum3 << 32) & Word_HiMask);
- *lo = r0 + (r1 << 64);
- *hi = (r1 >> 64) + (sum1 >> 96) + (sum2 >> 64) + (sum3 >> 32) + sum4 +
- (sum5 << 32) + (sum6 << 64);
- }
- #undef Word_1
- #undef Word_2
- #undef Word_3
- #undef Word_4
- #undef Word_HiMask
- #undef Word_LoMask
- #undef Word_FullMask
- #endif // defined(CRT_HAS_IEEE_TF)
- #else
- typedef long double fp_t;
- #endif // defined(CRT_HAS_F128) && defined(CRT_HAS_128BIT)
- #else
- #error SINGLE_PRECISION, DOUBLE_PRECISION or QUAD_PRECISION must be defined.
- #endif
- #if defined(SINGLE_PRECISION) || defined(DOUBLE_PRECISION) || \
- (defined(QUAD_PRECISION) && defined(CRT_HAS_TF_MODE))
- #define typeWidth (sizeof(rep_t) * CHAR_BIT)
- static __inline rep_t toRep(fp_t x) {
- const union {
- fp_t f;
- rep_t i;
- } rep = {.f = x};
- return rep.i;
- }
- static __inline fp_t fromRep(rep_t x) {
- const union {
- fp_t f;
- rep_t i;
- } rep = {.i = x};
- return rep.f;
- }
- #if !defined(QUAD_PRECISION) || defined(CRT_HAS_IEEE_TF)
- #define exponentBits (typeWidth - significandBits - 1)
- #define maxExponent ((1 << exponentBits) - 1)
- #define exponentBias (maxExponent >> 1)
- #define implicitBit (REP_C(1) << significandBits)
- #define significandMask (implicitBit - 1U)
- #define signBit (REP_C(1) << (significandBits + exponentBits))
- #define absMask (signBit - 1U)
- #define exponentMask (absMask ^ significandMask)
- #define oneRep ((rep_t)exponentBias << significandBits)
- #define infRep exponentMask
- #define quietBit (implicitBit >> 1)
- #define qnanRep (exponentMask | quietBit)
- static __inline int normalize(rep_t *significand) {
- const int shift = rep_clz(*significand) - rep_clz(implicitBit);
- *significand <<= shift;
- return 1 - shift;
- }
- static __inline void wideLeftShift(rep_t *hi, rep_t *lo, unsigned int count) {
- *hi = *hi << count | *lo >> (typeWidth - count);
- *lo = *lo << count;
- }
- static __inline void wideRightShiftWithSticky(rep_t *hi, rep_t *lo,
- unsigned int count) {
- if (count < typeWidth) {
- const bool sticky = (*lo << (typeWidth - count)) != 0;
- *lo = *hi << (typeWidth - count) | *lo >> count | sticky;
- *hi = *hi >> count;
- } else if (count < 2 * typeWidth) {
- const bool sticky = *hi << (2 * typeWidth - count) | *lo;
- *lo = *hi >> (count - typeWidth) | sticky;
- *hi = 0;
- } else {
- const bool sticky = *hi | *lo;
- *lo = sticky;
- *hi = 0;
- }
- }
- // Implements logb methods (logb, logbf, logbl) for IEEE-754. This avoids
- // pulling in a libm dependency from compiler-rt, but is not meant to replace
- // it (i.e. code calling logb() should get the one from libm, not this), hence
- // the __compiler_rt prefix.
- static __inline fp_t __compiler_rt_logbX(fp_t x) {
- rep_t rep = toRep(x);
- int exp = (rep & exponentMask) >> significandBits;
- // Abnormal cases:
- // 1) +/- inf returns +inf; NaN returns NaN
- // 2) 0.0 returns -inf
- if (exp == maxExponent) {
- if (((rep & signBit) == 0) || (x != x)) {
- return x; // NaN or +inf: return x
- } else {
- return -x; // -inf: return -x
- }
- } else if (x == 0.0) {
- // 0.0: return -inf
- return fromRep(infRep | signBit);
- }
- if (exp != 0) {
- // Normal number
- return exp - exponentBias; // Unbias exponent
- } else {
- // Subnormal number; normalize and repeat
- rep &= absMask;
- const int shift = 1 - normalize(&rep);
- exp = (rep & exponentMask) >> significandBits;
- return exp - exponentBias - shift; // Unbias exponent
- }
- }
- // Avoid using scalbn from libm. Unlike libc/libm scalbn, this function never
- // sets errno on underflow/overflow.
- static __inline fp_t __compiler_rt_scalbnX(fp_t x, int y) {
- const rep_t rep = toRep(x);
- int exp = (rep & exponentMask) >> significandBits;
- if (x == 0.0 || exp == maxExponent)
- return x; // +/- 0.0, NaN, or inf: return x
- // Normalize subnormal input.
- rep_t sig = rep & significandMask;
- if (exp == 0) {
- exp += normalize(&sig);
- sig &= ~implicitBit; // clear the implicit bit again
- }
- if (__builtin_sadd_overflow(exp, y, &exp)) {
- // Saturate the exponent, which will guarantee an underflow/overflow below.
- exp = (y >= 0) ? INT_MAX : INT_MIN;
- }
- // Return this value: [+/-] 1.sig * 2 ** (exp - exponentBias).
- const rep_t sign = rep & signBit;
- if (exp >= maxExponent) {
- // Overflow, which could produce infinity or the largest-magnitude value,
- // depending on the rounding mode.
- return fromRep(sign | ((rep_t)(maxExponent - 1) << significandBits)) * 2.0f;
- } else if (exp <= 0) {
- // Subnormal or underflow. Use floating-point multiply to handle truncation
- // correctly.
- fp_t tmp = fromRep(sign | (REP_C(1) << significandBits) | sig);
- exp += exponentBias - 1;
- if (exp < 1)
- exp = 1;
- tmp *= fromRep((rep_t)exp << significandBits);
- return tmp;
- } else
- return fromRep(sign | ((rep_t)exp << significandBits) | sig);
- }
- #endif // !defined(QUAD_PRECISION) || defined(CRT_HAS_IEEE_TF)
- // Avoid using fmax from libm.
- static __inline fp_t __compiler_rt_fmaxX(fp_t x, fp_t y) {
- // If either argument is NaN, return the other argument. If both are NaN,
- // arbitrarily return the second one. Otherwise, if both arguments are +/-0,
- // arbitrarily return the first one.
- return (crt_isnan(x) || x < y) ? y : x;
- }
- #endif
- #if defined(SINGLE_PRECISION)
- static __inline fp_t __compiler_rt_logbf(fp_t x) {
- return __compiler_rt_logbX(x);
- }
- static __inline fp_t __compiler_rt_scalbnf(fp_t x, int y) {
- return __compiler_rt_scalbnX(x, y);
- }
- static __inline fp_t __compiler_rt_fmaxf(fp_t x, fp_t y) {
- #if defined(__aarch64__)
- // Use __builtin_fmaxf which turns into an fmaxnm instruction on AArch64.
- return __builtin_fmaxf(x, y);
- #else
- // __builtin_fmaxf frequently turns into a libm call, so inline the function.
- return __compiler_rt_fmaxX(x, y);
- #endif
- }
- #elif defined(DOUBLE_PRECISION)
- static __inline fp_t __compiler_rt_logb(fp_t x) {
- return __compiler_rt_logbX(x);
- }
- static __inline fp_t __compiler_rt_scalbn(fp_t x, int y) {
- return __compiler_rt_scalbnX(x, y);
- }
- static __inline fp_t __compiler_rt_fmax(fp_t x, fp_t y) {
- #if defined(__aarch64__)
- // Use __builtin_fmax which turns into an fmaxnm instruction on AArch64.
- return __builtin_fmax(x, y);
- #else
- // __builtin_fmax frequently turns into a libm call, so inline the function.
- return __compiler_rt_fmaxX(x, y);
- #endif
- }
- #elif defined(QUAD_PRECISION) && defined(CRT_HAS_TF_MODE)
- // The generic implementation only works for ieee754 floating point. For other
- // floating point types, continue to rely on the libm implementation for now.
- #if defined(CRT_HAS_IEEE_TF)
- static __inline tf_float __compiler_rt_logbtf(tf_float x) {
- return __compiler_rt_logbX(x);
- }
- static __inline tf_float __compiler_rt_scalbntf(tf_float x, int y) {
- return __compiler_rt_scalbnX(x, y);
- }
- static __inline tf_float __compiler_rt_fmaxtf(tf_float x, tf_float y) {
- return __compiler_rt_fmaxX(x, y);
- }
- #define __compiler_rt_logbl __compiler_rt_logbtf
- #define __compiler_rt_scalbnl __compiler_rt_scalbntf
- #define __compiler_rt_fmaxl __compiler_rt_fmaxtf
- #define crt_fabstf crt_fabsf128
- #define crt_copysigntf crt_copysignf128
- #elif defined(CRT_LDBL_128BIT)
- static __inline tf_float __compiler_rt_logbtf(tf_float x) {
- return crt_logbl(x);
- }
- static __inline tf_float __compiler_rt_scalbntf(tf_float x, int y) {
- return crt_scalbnl(x, y);
- }
- static __inline tf_float __compiler_rt_fmaxtf(tf_float x, tf_float y) {
- return crt_fmaxl(x, y);
- }
- #define __compiler_rt_logbl crt_logbl
- #define __compiler_rt_scalbnl crt_scalbnl
- #define __compiler_rt_fmaxl crt_fmaxl
- #define crt_fabstf crt_fabsl
- #define crt_copysigntf crt_copysignl
- #else
- #error Unsupported TF mode type
- #endif
- #endif // *_PRECISION
- #endif // FP_LIB_HEADER
|