123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119 |
- //===-- lib/fp_compare_impl.inc - Floating-point comparison -------*- C -*-===//
- //
- // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
- // See https://llvm.org/LICENSE.txt for license information.
- // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
- //
- //===----------------------------------------------------------------------===//
- #include "fp_lib.h"
- // GCC uses long (at least for x86_64) as the return type of the comparison
- // functions. We need to ensure that the return value is sign-extended in the
- // same way as GCC expects (since otherwise GCC-generated __builtin_isinf
- // returns true for finite 128-bit floating-point numbers).
- #ifdef __aarch64__
- // AArch64 GCC overrides libgcc_cmp_return to use int instead of long.
- typedef int CMP_RESULT;
- #elif __SIZEOF_POINTER__ == 8 && __SIZEOF_LONG__ == 4
- // LLP64 ABIs use long long instead of long.
- typedef long long CMP_RESULT;
- #elif __AVR__
- // AVR uses a single byte for the return value.
- typedef char CMP_RESULT;
- #else
- // Otherwise the comparison functions return long.
- typedef long CMP_RESULT;
- #endif
- #if !defined(__clang__) && defined(__GNUC__)
- // GCC uses a special __libgcc_cmp_return__ mode to define the return type, so
- // check that we are ABI-compatible when compiling the builtins with GCC.
- typedef int GCC_CMP_RESULT __attribute__((__mode__(__libgcc_cmp_return__)));
- _Static_assert(sizeof(GCC_CMP_RESULT) == sizeof(CMP_RESULT),
- "SOFTFP ABI not compatible with GCC");
- #endif
- enum {
- LE_LESS = -1,
- LE_EQUAL = 0,
- LE_GREATER = 1,
- LE_UNORDERED = 1,
- };
- static inline CMP_RESULT __leXf2__(fp_t a, fp_t b) {
- const srep_t aInt = toRep(a);
- const srep_t bInt = toRep(b);
- const rep_t aAbs = aInt & absMask;
- const rep_t bAbs = bInt & absMask;
- // If either a or b is NaN, they are unordered.
- if (aAbs > infRep || bAbs > infRep)
- return LE_UNORDERED;
- // If a and b are both zeros, they are equal.
- if ((aAbs | bAbs) == 0)
- return LE_EQUAL;
- // If at least one of a and b is positive, we get the same result comparing
- // a and b as signed integers as we would with a floating-point compare.
- if ((aInt & bInt) >= 0) {
- if (aInt < bInt)
- return LE_LESS;
- else if (aInt == bInt)
- return LE_EQUAL;
- else
- return LE_GREATER;
- } else {
- // Otherwise, both are negative, so we need to flip the sense of the
- // comparison to get the correct result. (This assumes a twos- or ones-
- // complement integer representation; if integers are represented in a
- // sign-magnitude representation, then this flip is incorrect).
- if (aInt > bInt)
- return LE_LESS;
- else if (aInt == bInt)
- return LE_EQUAL;
- else
- return LE_GREATER;
- }
- }
- enum {
- GE_LESS = -1,
- GE_EQUAL = 0,
- GE_GREATER = 1,
- GE_UNORDERED = -1 // Note: different from LE_UNORDERED
- };
- static inline CMP_RESULT __geXf2__(fp_t a, fp_t b) {
- const srep_t aInt = toRep(a);
- const srep_t bInt = toRep(b);
- const rep_t aAbs = aInt & absMask;
- const rep_t bAbs = bInt & absMask;
- if (aAbs > infRep || bAbs > infRep)
- return GE_UNORDERED;
- if ((aAbs | bAbs) == 0)
- return GE_EQUAL;
- if ((aInt & bInt) >= 0) {
- if (aInt < bInt)
- return GE_LESS;
- else if (aInt == bInt)
- return GE_EQUAL;
- else
- return GE_GREATER;
- } else {
- if (aInt > bInt)
- return GE_LESS;
- else if (aInt == bInt)
- return GE_EQUAL;
- else
- return GE_GREATER;
- }
- }
- static inline CMP_RESULT __unordXf2__(fp_t a, fp_t b) {
- const rep_t aAbs = toRep(a) & absMask;
- const rep_t bAbs = toRep(b) & absMask;
- return aAbs > infRep || bAbs > infRep;
- }
|