123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376 |
- package fse
- import (
- "errors"
- "fmt"
- )
- const (
- tablelogAbsoluteMax = 15
- )
- // Decompress a block of data.
- // You can provide a scratch buffer to avoid allocations.
- // If nil is provided a temporary one will be allocated.
- // It is possible, but by no way guaranteed that corrupt data will
- // return an error.
- // It is up to the caller to verify integrity of the returned data.
- // Use a predefined Scrach to set maximum acceptable output size.
- func Decompress(b []byte, s *Scratch) ([]byte, error) {
- s, err := s.prepare(b)
- if err != nil {
- return nil, err
- }
- s.Out = s.Out[:0]
- err = s.readNCount()
- if err != nil {
- return nil, err
- }
- err = s.buildDtable()
- if err != nil {
- return nil, err
- }
- err = s.decompress()
- if err != nil {
- return nil, err
- }
- return s.Out, nil
- }
- // readNCount will read the symbol distribution so decoding tables can be constructed.
- func (s *Scratch) readNCount() error {
- var (
- charnum uint16
- previous0 bool
- b = &s.br
- )
- iend := b.remain()
- if iend < 4 {
- return errors.New("input too small")
- }
- bitStream := b.Uint32()
- nbBits := uint((bitStream & 0xF) + minTablelog) // extract tableLog
- if nbBits > tablelogAbsoluteMax {
- return errors.New("tableLog too large")
- }
- bitStream >>= 4
- bitCount := uint(4)
- s.actualTableLog = uint8(nbBits)
- remaining := int32((1 << nbBits) + 1)
- threshold := int32(1 << nbBits)
- gotTotal := int32(0)
- nbBits++
- for remaining > 1 {
- if previous0 {
- n0 := charnum
- for (bitStream & 0xFFFF) == 0xFFFF {
- n0 += 24
- if b.off < iend-5 {
- b.advance(2)
- bitStream = b.Uint32() >> bitCount
- } else {
- bitStream >>= 16
- bitCount += 16
- }
- }
- for (bitStream & 3) == 3 {
- n0 += 3
- bitStream >>= 2
- bitCount += 2
- }
- n0 += uint16(bitStream & 3)
- bitCount += 2
- if n0 > maxSymbolValue {
- return errors.New("maxSymbolValue too small")
- }
- for charnum < n0 {
- s.norm[charnum&0xff] = 0
- charnum++
- }
- if b.off <= iend-7 || b.off+int(bitCount>>3) <= iend-4 {
- b.advance(bitCount >> 3)
- bitCount &= 7
- bitStream = b.Uint32() >> bitCount
- } else {
- bitStream >>= 2
- }
- }
- max := (2*(threshold) - 1) - (remaining)
- var count int32
- if (int32(bitStream) & (threshold - 1)) < max {
- count = int32(bitStream) & (threshold - 1)
- bitCount += nbBits - 1
- } else {
- count = int32(bitStream) & (2*threshold - 1)
- if count >= threshold {
- count -= max
- }
- bitCount += nbBits
- }
- count-- // extra accuracy
- if count < 0 {
- // -1 means +1
- remaining += count
- gotTotal -= count
- } else {
- remaining -= count
- gotTotal += count
- }
- s.norm[charnum&0xff] = int16(count)
- charnum++
- previous0 = count == 0
- for remaining < threshold {
- nbBits--
- threshold >>= 1
- }
- if b.off <= iend-7 || b.off+int(bitCount>>3) <= iend-4 {
- b.advance(bitCount >> 3)
- bitCount &= 7
- } else {
- bitCount -= (uint)(8 * (len(b.b) - 4 - b.off))
- b.off = len(b.b) - 4
- }
- bitStream = b.Uint32() >> (bitCount & 31)
- }
- s.symbolLen = charnum
- if s.symbolLen <= 1 {
- return fmt.Errorf("symbolLen (%d) too small", s.symbolLen)
- }
- if s.symbolLen > maxSymbolValue+1 {
- return fmt.Errorf("symbolLen (%d) too big", s.symbolLen)
- }
- if remaining != 1 {
- return fmt.Errorf("corruption detected (remaining %d != 1)", remaining)
- }
- if bitCount > 32 {
- return fmt.Errorf("corruption detected (bitCount %d > 32)", bitCount)
- }
- if gotTotal != 1<<s.actualTableLog {
- return fmt.Errorf("corruption detected (total %d != %d)", gotTotal, 1<<s.actualTableLog)
- }
- b.advance((bitCount + 7) >> 3)
- return nil
- }
- // decSymbol contains information about a state entry,
- // Including the state offset base, the output symbol and
- // the number of bits to read for the low part of the destination state.
- type decSymbol struct {
- newState uint16
- symbol uint8
- nbBits uint8
- }
- // allocDtable will allocate decoding tables if they are not big enough.
- func (s *Scratch) allocDtable() {
- tableSize := 1 << s.actualTableLog
- if cap(s.decTable) < tableSize {
- s.decTable = make([]decSymbol, tableSize)
- }
- s.decTable = s.decTable[:tableSize]
- if cap(s.ct.tableSymbol) < 256 {
- s.ct.tableSymbol = make([]byte, 256)
- }
- s.ct.tableSymbol = s.ct.tableSymbol[:256]
- if cap(s.ct.stateTable) < 256 {
- s.ct.stateTable = make([]uint16, 256)
- }
- s.ct.stateTable = s.ct.stateTable[:256]
- }
- // buildDtable will build the decoding table.
- func (s *Scratch) buildDtable() error {
- tableSize := uint32(1 << s.actualTableLog)
- highThreshold := tableSize - 1
- s.allocDtable()
- symbolNext := s.ct.stateTable[:256]
- // Init, lay down lowprob symbols
- s.zeroBits = false
- {
- largeLimit := int16(1 << (s.actualTableLog - 1))
- for i, v := range s.norm[:s.symbolLen] {
- if v == -1 {
- s.decTable[highThreshold].symbol = uint8(i)
- highThreshold--
- symbolNext[i] = 1
- } else {
- if v >= largeLimit {
- s.zeroBits = true
- }
- symbolNext[i] = uint16(v)
- }
- }
- }
- // Spread symbols
- {
- tableMask := tableSize - 1
- step := tableStep(tableSize)
- position := uint32(0)
- for ss, v := range s.norm[:s.symbolLen] {
- for i := 0; i < int(v); i++ {
- s.decTable[position].symbol = uint8(ss)
- position = (position + step) & tableMask
- for position > highThreshold {
- // lowprob area
- position = (position + step) & tableMask
- }
- }
- }
- if position != 0 {
- // position must reach all cells once, otherwise normalizedCounter is incorrect
- return errors.New("corrupted input (position != 0)")
- }
- }
- // Build Decoding table
- {
- tableSize := uint16(1 << s.actualTableLog)
- for u, v := range s.decTable {
- symbol := v.symbol
- nextState := symbolNext[symbol]
- symbolNext[symbol] = nextState + 1
- nBits := s.actualTableLog - byte(highBits(uint32(nextState)))
- s.decTable[u].nbBits = nBits
- newState := (nextState << nBits) - tableSize
- if newState >= tableSize {
- return fmt.Errorf("newState (%d) outside table size (%d)", newState, tableSize)
- }
- if newState == uint16(u) && nBits == 0 {
- // Seems weird that this is possible with nbits > 0.
- return fmt.Errorf("newState (%d) == oldState (%d) and no bits", newState, u)
- }
- s.decTable[u].newState = newState
- }
- }
- return nil
- }
- // decompress will decompress the bitstream.
- // If the buffer is over-read an error is returned.
- func (s *Scratch) decompress() error {
- br := &s.bits
- if err := br.init(s.br.unread()); err != nil {
- return err
- }
- var s1, s2 decoder
- // Initialize and decode first state and symbol.
- s1.init(br, s.decTable, s.actualTableLog)
- s2.init(br, s.decTable, s.actualTableLog)
- // Use temp table to avoid bound checks/append penalty.
- var tmp = s.ct.tableSymbol[:256]
- var off uint8
- // Main part
- if !s.zeroBits {
- for br.off >= 8 {
- br.fillFast()
- tmp[off+0] = s1.nextFast()
- tmp[off+1] = s2.nextFast()
- br.fillFast()
- tmp[off+2] = s1.nextFast()
- tmp[off+3] = s2.nextFast()
- off += 4
- // When off is 0, we have overflowed and should write.
- if off == 0 {
- s.Out = append(s.Out, tmp...)
- if len(s.Out) >= s.DecompressLimit {
- return fmt.Errorf("output size (%d) > DecompressLimit (%d)", len(s.Out), s.DecompressLimit)
- }
- }
- }
- } else {
- for br.off >= 8 {
- br.fillFast()
- tmp[off+0] = s1.next()
- tmp[off+1] = s2.next()
- br.fillFast()
- tmp[off+2] = s1.next()
- tmp[off+3] = s2.next()
- off += 4
- if off == 0 {
- s.Out = append(s.Out, tmp...)
- // When off is 0, we have overflowed and should write.
- if len(s.Out) >= s.DecompressLimit {
- return fmt.Errorf("output size (%d) > DecompressLimit (%d)", len(s.Out), s.DecompressLimit)
- }
- }
- }
- }
- s.Out = append(s.Out, tmp[:off]...)
- // Final bits, a bit more expensive check
- for {
- if s1.finished() {
- s.Out = append(s.Out, s1.final(), s2.final())
- break
- }
- br.fill()
- s.Out = append(s.Out, s1.next())
- if s2.finished() {
- s.Out = append(s.Out, s2.final(), s1.final())
- break
- }
- s.Out = append(s.Out, s2.next())
- if len(s.Out) >= s.DecompressLimit {
- return fmt.Errorf("output size (%d) > DecompressLimit (%d)", len(s.Out), s.DecompressLimit)
- }
- }
- return br.close()
- }
- // decoder keeps track of the current state and updates it from the bitstream.
- type decoder struct {
- state uint16
- br *bitReader
- dt []decSymbol
- }
- // init will initialize the decoder and read the first state from the stream.
- func (d *decoder) init(in *bitReader, dt []decSymbol, tableLog uint8) {
- d.dt = dt
- d.br = in
- d.state = in.getBits(tableLog)
- }
- // next returns the next symbol and sets the next state.
- // At least tablelog bits must be available in the bit reader.
- func (d *decoder) next() uint8 {
- n := &d.dt[d.state]
- lowBits := d.br.getBits(n.nbBits)
- d.state = n.newState + lowBits
- return n.symbol
- }
- // finished returns true if all bits have been read from the bitstream
- // and the next state would require reading bits from the input.
- func (d *decoder) finished() bool {
- return d.br.finished() && d.dt[d.state].nbBits > 0
- }
- // final returns the current state symbol without decoding the next.
- func (d *decoder) final() uint8 {
- return d.dt[d.state].symbol
- }
- // nextFast returns the next symbol and sets the next state.
- // This can only be used if no symbols are 0 bits.
- // At least tablelog bits must be available in the bit reader.
- func (d *decoder) nextFast() uint8 {
- n := d.dt[d.state]
- lowBits := d.br.getBitsFast(n.nbBits)
- d.state = n.newState + lowBits
- return n.symbol
- }
|