123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988 |
- // Copyright 2009 The Go Authors. All rights reserved.
- // Copyright (c) 2015 Klaus Post
- // Use of this source code is governed by a BSD-style
- // license that can be found in the LICENSE file.
- package flate
- import (
- "encoding/binary"
- "fmt"
- "io"
- "math"
- )
- const (
- NoCompression = 0
- BestSpeed = 1
- BestCompression = 9
- DefaultCompression = -1
- // HuffmanOnly disables Lempel-Ziv match searching and only performs Huffman
- // entropy encoding. This mode is useful in compressing data that has
- // already been compressed with an LZ style algorithm (e.g. Snappy or LZ4)
- // that lacks an entropy encoder. Compression gains are achieved when
- // certain bytes in the input stream occur more frequently than others.
- //
- // Note that HuffmanOnly produces a compressed output that is
- // RFC 1951 compliant. That is, any valid DEFLATE decompressor will
- // continue to be able to decompress this output.
- HuffmanOnly = -2
- ConstantCompression = HuffmanOnly // compatibility alias.
- logWindowSize = 15
- windowSize = 1 << logWindowSize
- windowMask = windowSize - 1
- logMaxOffsetSize = 15 // Standard DEFLATE
- minMatchLength = 4 // The smallest match that the compressor looks for
- maxMatchLength = 258 // The longest match for the compressor
- minOffsetSize = 1 // The shortest offset that makes any sense
- // The maximum number of tokens we will encode at the time.
- // Smaller sizes usually creates less optimal blocks.
- // Bigger can make context switching slow.
- // We use this for levels 7-9, so we make it big.
- maxFlateBlockTokens = 1 << 15
- maxStoreBlockSize = 65535
- hashBits = 17 // After 17 performance degrades
- hashSize = 1 << hashBits
- hashMask = (1 << hashBits) - 1
- hashShift = (hashBits + minMatchLength - 1) / minMatchLength
- maxHashOffset = 1 << 28
- skipNever = math.MaxInt32
- debugDeflate = false
- )
- type compressionLevel struct {
- good, lazy, nice, chain, fastSkipHashing, level int
- }
- // Compression levels have been rebalanced from zlib deflate defaults
- // to give a bigger spread in speed and compression.
- // See https://blog.klauspost.com/rebalancing-deflate-compression-levels/
- var levels = []compressionLevel{
- {}, // 0
- // Level 1-6 uses specialized algorithm - values not used
- {0, 0, 0, 0, 0, 1},
- {0, 0, 0, 0, 0, 2},
- {0, 0, 0, 0, 0, 3},
- {0, 0, 0, 0, 0, 4},
- {0, 0, 0, 0, 0, 5},
- {0, 0, 0, 0, 0, 6},
- // Levels 7-9 use increasingly more lazy matching
- // and increasingly stringent conditions for "good enough".
- {8, 12, 16, 24, skipNever, 7},
- {16, 30, 40, 64, skipNever, 8},
- {32, 258, 258, 1024, skipNever, 9},
- }
- // advancedState contains state for the advanced levels, with bigger hash tables, etc.
- type advancedState struct {
- // deflate state
- length int
- offset int
- maxInsertIndex int
- chainHead int
- hashOffset int
- ii uint16 // position of last match, intended to overflow to reset.
- // input window: unprocessed data is window[index:windowEnd]
- index int
- hashMatch [maxMatchLength + minMatchLength]uint32
- // Input hash chains
- // hashHead[hashValue] contains the largest inputIndex with the specified hash value
- // If hashHead[hashValue] is within the current window, then
- // hashPrev[hashHead[hashValue] & windowMask] contains the previous index
- // with the same hash value.
- hashHead [hashSize]uint32
- hashPrev [windowSize]uint32
- }
- type compressor struct {
- compressionLevel
- h *huffmanEncoder
- w *huffmanBitWriter
- // compression algorithm
- fill func(*compressor, []byte) int // copy data to window
- step func(*compressor) // process window
- window []byte
- windowEnd int
- blockStart int // window index where current tokens start
- err error
- // queued output tokens
- tokens tokens
- fast fastEnc
- state *advancedState
- sync bool // requesting flush
- byteAvailable bool // if true, still need to process window[index-1].
- }
- func (d *compressor) fillDeflate(b []byte) int {
- s := d.state
- if s.index >= 2*windowSize-(minMatchLength+maxMatchLength) {
- // shift the window by windowSize
- //copy(d.window[:], d.window[windowSize:2*windowSize])
- *(*[windowSize]byte)(d.window) = *(*[windowSize]byte)(d.window[windowSize:])
- s.index -= windowSize
- d.windowEnd -= windowSize
- if d.blockStart >= windowSize {
- d.blockStart -= windowSize
- } else {
- d.blockStart = math.MaxInt32
- }
- s.hashOffset += windowSize
- if s.hashOffset > maxHashOffset {
- delta := s.hashOffset - 1
- s.hashOffset -= delta
- s.chainHead -= delta
- // Iterate over slices instead of arrays to avoid copying
- // the entire table onto the stack (Issue #18625).
- for i, v := range s.hashPrev[:] {
- if int(v) > delta {
- s.hashPrev[i] = uint32(int(v) - delta)
- } else {
- s.hashPrev[i] = 0
- }
- }
- for i, v := range s.hashHead[:] {
- if int(v) > delta {
- s.hashHead[i] = uint32(int(v) - delta)
- } else {
- s.hashHead[i] = 0
- }
- }
- }
- }
- n := copy(d.window[d.windowEnd:], b)
- d.windowEnd += n
- return n
- }
- func (d *compressor) writeBlock(tok *tokens, index int, eof bool) error {
- if index > 0 || eof {
- var window []byte
- if d.blockStart <= index {
- window = d.window[d.blockStart:index]
- }
- d.blockStart = index
- //d.w.writeBlock(tok, eof, window)
- d.w.writeBlockDynamic(tok, eof, window, d.sync)
- return d.w.err
- }
- return nil
- }
- // writeBlockSkip writes the current block and uses the number of tokens
- // to determine if the block should be stored on no matches, or
- // only huffman encoded.
- func (d *compressor) writeBlockSkip(tok *tokens, index int, eof bool) error {
- if index > 0 || eof {
- if d.blockStart <= index {
- window := d.window[d.blockStart:index]
- // If we removed less than a 64th of all literals
- // we huffman compress the block.
- if int(tok.n) > len(window)-int(tok.n>>6) {
- d.w.writeBlockHuff(eof, window, d.sync)
- } else {
- // Write a dynamic huffman block.
- d.w.writeBlockDynamic(tok, eof, window, d.sync)
- }
- } else {
- d.w.writeBlock(tok, eof, nil)
- }
- d.blockStart = index
- return d.w.err
- }
- return nil
- }
- // fillWindow will fill the current window with the supplied
- // dictionary and calculate all hashes.
- // This is much faster than doing a full encode.
- // Should only be used after a start/reset.
- func (d *compressor) fillWindow(b []byte) {
- // Do not fill window if we are in store-only or huffman mode.
- if d.level <= 0 {
- return
- }
- if d.fast != nil {
- // encode the last data, but discard the result
- if len(b) > maxMatchOffset {
- b = b[len(b)-maxMatchOffset:]
- }
- d.fast.Encode(&d.tokens, b)
- d.tokens.Reset()
- return
- }
- s := d.state
- // If we are given too much, cut it.
- if len(b) > windowSize {
- b = b[len(b)-windowSize:]
- }
- // Add all to window.
- n := copy(d.window[d.windowEnd:], b)
- // Calculate 256 hashes at the time (more L1 cache hits)
- loops := (n + 256 - minMatchLength) / 256
- for j := 0; j < loops; j++ {
- startindex := j * 256
- end := startindex + 256 + minMatchLength - 1
- if end > n {
- end = n
- }
- tocheck := d.window[startindex:end]
- dstSize := len(tocheck) - minMatchLength + 1
- if dstSize <= 0 {
- continue
- }
- dst := s.hashMatch[:dstSize]
- bulkHash4(tocheck, dst)
- var newH uint32
- for i, val := range dst {
- di := i + startindex
- newH = val & hashMask
- // Get previous value with the same hash.
- // Our chain should point to the previous value.
- s.hashPrev[di&windowMask] = s.hashHead[newH]
- // Set the head of the hash chain to us.
- s.hashHead[newH] = uint32(di + s.hashOffset)
- }
- }
- // Update window information.
- d.windowEnd += n
- s.index = n
- }
- // Try to find a match starting at index whose length is greater than prevSize.
- // We only look at chainCount possibilities before giving up.
- // pos = s.index, prevHead = s.chainHead-s.hashOffset, prevLength=minMatchLength-1, lookahead
- func (d *compressor) findMatch(pos int, prevHead int, lookahead int) (length, offset int, ok bool) {
- minMatchLook := maxMatchLength
- if lookahead < minMatchLook {
- minMatchLook = lookahead
- }
- win := d.window[0 : pos+minMatchLook]
- // We quit when we get a match that's at least nice long
- nice := len(win) - pos
- if d.nice < nice {
- nice = d.nice
- }
- // If we've got a match that's good enough, only look in 1/4 the chain.
- tries := d.chain
- length = minMatchLength - 1
- wEnd := win[pos+length]
- wPos := win[pos:]
- minIndex := pos - windowSize
- if minIndex < 0 {
- minIndex = 0
- }
- offset = 0
- if d.chain < 100 {
- for i := prevHead; tries > 0; tries-- {
- if wEnd == win[i+length] {
- n := matchLen(win[i:i+minMatchLook], wPos)
- if n > length {
- length = n
- offset = pos - i
- ok = true
- if n >= nice {
- // The match is good enough that we don't try to find a better one.
- break
- }
- wEnd = win[pos+n]
- }
- }
- if i <= minIndex {
- // hashPrev[i & windowMask] has already been overwritten, so stop now.
- break
- }
- i = int(d.state.hashPrev[i&windowMask]) - d.state.hashOffset
- if i < minIndex {
- break
- }
- }
- return
- }
- // Minimum gain to accept a match.
- cGain := 4
- // Some like it higher (CSV), some like it lower (JSON)
- const baseCost = 3
- // Base is 4 bytes at with an additional cost.
- // Matches must be better than this.
- for i := prevHead; tries > 0; tries-- {
- if wEnd == win[i+length] {
- n := matchLen(win[i:i+minMatchLook], wPos)
- if n > length {
- // Calculate gain. Estimate
- newGain := d.h.bitLengthRaw(wPos[:n]) - int(offsetExtraBits[offsetCode(uint32(pos-i))]) - baseCost - int(lengthExtraBits[lengthCodes[(n-3)&255]])
- //fmt.Println("gain:", newGain, "prev:", cGain, "raw:", d.h.bitLengthRaw(wPos[:n]), "this-len:", n, "prev-len:", length)
- if newGain > cGain {
- length = n
- offset = pos - i
- cGain = newGain
- ok = true
- if n >= nice {
- // The match is good enough that we don't try to find a better one.
- break
- }
- wEnd = win[pos+n]
- }
- }
- }
- if i <= minIndex {
- // hashPrev[i & windowMask] has already been overwritten, so stop now.
- break
- }
- i = int(d.state.hashPrev[i&windowMask]) - d.state.hashOffset
- if i < minIndex {
- break
- }
- }
- return
- }
- func (d *compressor) writeStoredBlock(buf []byte) error {
- if d.w.writeStoredHeader(len(buf), false); d.w.err != nil {
- return d.w.err
- }
- d.w.writeBytes(buf)
- return d.w.err
- }
- // hash4 returns a hash representation of the first 4 bytes
- // of the supplied slice.
- // The caller must ensure that len(b) >= 4.
- func hash4(b []byte) uint32 {
- return hash4u(binary.LittleEndian.Uint32(b), hashBits)
- }
- // hash4 returns the hash of u to fit in a hash table with h bits.
- // Preferably h should be a constant and should always be <32.
- func hash4u(u uint32, h uint8) uint32 {
- return (u * prime4bytes) >> (32 - h)
- }
- // bulkHash4 will compute hashes using the same
- // algorithm as hash4
- func bulkHash4(b []byte, dst []uint32) {
- if len(b) < 4 {
- return
- }
- hb := binary.LittleEndian.Uint32(b)
- dst[0] = hash4u(hb, hashBits)
- end := len(b) - 4 + 1
- for i := 1; i < end; i++ {
- hb = (hb >> 8) | uint32(b[i+3])<<24
- dst[i] = hash4u(hb, hashBits)
- }
- }
- func (d *compressor) initDeflate() {
- d.window = make([]byte, 2*windowSize)
- d.byteAvailable = false
- d.err = nil
- if d.state == nil {
- return
- }
- s := d.state
- s.index = 0
- s.hashOffset = 1
- s.length = minMatchLength - 1
- s.offset = 0
- s.chainHead = -1
- }
- // deflateLazy is the same as deflate, but with d.fastSkipHashing == skipNever,
- // meaning it always has lazy matching on.
- func (d *compressor) deflateLazy() {
- s := d.state
- // Sanity enables additional runtime tests.
- // It's intended to be used during development
- // to supplement the currently ad-hoc unit tests.
- const sanity = debugDeflate
- if d.windowEnd-s.index < minMatchLength+maxMatchLength && !d.sync {
- return
- }
- if d.windowEnd != s.index && d.chain > 100 {
- // Get literal huffman coder.
- if d.h == nil {
- d.h = newHuffmanEncoder(maxFlateBlockTokens)
- }
- var tmp [256]uint16
- for _, v := range d.window[s.index:d.windowEnd] {
- tmp[v]++
- }
- d.h.generate(tmp[:], 15)
- }
- s.maxInsertIndex = d.windowEnd - (minMatchLength - 1)
- for {
- if sanity && s.index > d.windowEnd {
- panic("index > windowEnd")
- }
- lookahead := d.windowEnd - s.index
- if lookahead < minMatchLength+maxMatchLength {
- if !d.sync {
- return
- }
- if sanity && s.index > d.windowEnd {
- panic("index > windowEnd")
- }
- if lookahead == 0 {
- // Flush current output block if any.
- if d.byteAvailable {
- // There is still one pending token that needs to be flushed
- d.tokens.AddLiteral(d.window[s.index-1])
- d.byteAvailable = false
- }
- if d.tokens.n > 0 {
- if d.err = d.writeBlock(&d.tokens, s.index, false); d.err != nil {
- return
- }
- d.tokens.Reset()
- }
- return
- }
- }
- if s.index < s.maxInsertIndex {
- // Update the hash
- hash := hash4(d.window[s.index:])
- ch := s.hashHead[hash]
- s.chainHead = int(ch)
- s.hashPrev[s.index&windowMask] = ch
- s.hashHead[hash] = uint32(s.index + s.hashOffset)
- }
- prevLength := s.length
- prevOffset := s.offset
- s.length = minMatchLength - 1
- s.offset = 0
- minIndex := s.index - windowSize
- if minIndex < 0 {
- minIndex = 0
- }
- if s.chainHead-s.hashOffset >= minIndex && lookahead > prevLength && prevLength < d.lazy {
- if newLength, newOffset, ok := d.findMatch(s.index, s.chainHead-s.hashOffset, lookahead); ok {
- s.length = newLength
- s.offset = newOffset
- }
- }
- if prevLength >= minMatchLength && s.length <= prevLength {
- // No better match, but check for better match at end...
- //
- // Skip forward a number of bytes.
- // Offset of 2 seems to yield best results. 3 is sometimes better.
- const checkOff = 2
- // Check all, except full length
- if prevLength < maxMatchLength-checkOff {
- prevIndex := s.index - 1
- if prevIndex+prevLength < s.maxInsertIndex {
- end := lookahead
- if lookahead > maxMatchLength+checkOff {
- end = maxMatchLength + checkOff
- }
- end += prevIndex
- // Hash at match end.
- h := hash4(d.window[prevIndex+prevLength:])
- ch2 := int(s.hashHead[h]) - s.hashOffset - prevLength
- if prevIndex-ch2 != prevOffset && ch2 > minIndex+checkOff {
- length := matchLen(d.window[prevIndex+checkOff:end], d.window[ch2+checkOff:])
- // It seems like a pure length metric is best.
- if length > prevLength {
- prevLength = length
- prevOffset = prevIndex - ch2
- // Extend back...
- for i := checkOff - 1; i >= 0; i-- {
- if prevLength >= maxMatchLength || d.window[prevIndex+i] != d.window[ch2+i] {
- // Emit tokens we "owe"
- for j := 0; j <= i; j++ {
- d.tokens.AddLiteral(d.window[prevIndex+j])
- if d.tokens.n == maxFlateBlockTokens {
- // The block includes the current character
- if d.err = d.writeBlock(&d.tokens, s.index, false); d.err != nil {
- return
- }
- d.tokens.Reset()
- }
- s.index++
- if s.index < s.maxInsertIndex {
- h := hash4(d.window[s.index:])
- ch := s.hashHead[h]
- s.chainHead = int(ch)
- s.hashPrev[s.index&windowMask] = ch
- s.hashHead[h] = uint32(s.index + s.hashOffset)
- }
- }
- break
- } else {
- prevLength++
- }
- }
- } else if false {
- // Check one further ahead.
- // Only rarely better, disabled for now.
- prevIndex++
- h := hash4(d.window[prevIndex+prevLength:])
- ch2 := int(s.hashHead[h]) - s.hashOffset - prevLength
- if prevIndex-ch2 != prevOffset && ch2 > minIndex+checkOff {
- length := matchLen(d.window[prevIndex+checkOff:end], d.window[ch2+checkOff:])
- // It seems like a pure length metric is best.
- if length > prevLength+checkOff {
- prevLength = length
- prevOffset = prevIndex - ch2
- prevIndex--
- // Extend back...
- for i := checkOff; i >= 0; i-- {
- if prevLength >= maxMatchLength || d.window[prevIndex+i] != d.window[ch2+i-1] {
- // Emit tokens we "owe"
- for j := 0; j <= i; j++ {
- d.tokens.AddLiteral(d.window[prevIndex+j])
- if d.tokens.n == maxFlateBlockTokens {
- // The block includes the current character
- if d.err = d.writeBlock(&d.tokens, s.index, false); d.err != nil {
- return
- }
- d.tokens.Reset()
- }
- s.index++
- if s.index < s.maxInsertIndex {
- h := hash4(d.window[s.index:])
- ch := s.hashHead[h]
- s.chainHead = int(ch)
- s.hashPrev[s.index&windowMask] = ch
- s.hashHead[h] = uint32(s.index + s.hashOffset)
- }
- }
- break
- } else {
- prevLength++
- }
- }
- }
- }
- }
- }
- }
- }
- // There was a match at the previous step, and the current match is
- // not better. Output the previous match.
- d.tokens.AddMatch(uint32(prevLength-3), uint32(prevOffset-minOffsetSize))
- // Insert in the hash table all strings up to the end of the match.
- // index and index-1 are already inserted. If there is not enough
- // lookahead, the last two strings are not inserted into the hash
- // table.
- newIndex := s.index + prevLength - 1
- // Calculate missing hashes
- end := newIndex
- if end > s.maxInsertIndex {
- end = s.maxInsertIndex
- }
- end += minMatchLength - 1
- startindex := s.index + 1
- if startindex > s.maxInsertIndex {
- startindex = s.maxInsertIndex
- }
- tocheck := d.window[startindex:end]
- dstSize := len(tocheck) - minMatchLength + 1
- if dstSize > 0 {
- dst := s.hashMatch[:dstSize]
- bulkHash4(tocheck, dst)
- var newH uint32
- for i, val := range dst {
- di := i + startindex
- newH = val & hashMask
- // Get previous value with the same hash.
- // Our chain should point to the previous value.
- s.hashPrev[di&windowMask] = s.hashHead[newH]
- // Set the head of the hash chain to us.
- s.hashHead[newH] = uint32(di + s.hashOffset)
- }
- }
- s.index = newIndex
- d.byteAvailable = false
- s.length = minMatchLength - 1
- if d.tokens.n == maxFlateBlockTokens {
- // The block includes the current character
- if d.err = d.writeBlock(&d.tokens, s.index, false); d.err != nil {
- return
- }
- d.tokens.Reset()
- }
- s.ii = 0
- } else {
- // Reset, if we got a match this run.
- if s.length >= minMatchLength {
- s.ii = 0
- }
- // We have a byte waiting. Emit it.
- if d.byteAvailable {
- s.ii++
- d.tokens.AddLiteral(d.window[s.index-1])
- if d.tokens.n == maxFlateBlockTokens {
- if d.err = d.writeBlock(&d.tokens, s.index, false); d.err != nil {
- return
- }
- d.tokens.Reset()
- }
- s.index++
- // If we have a long run of no matches, skip additional bytes
- // Resets when s.ii overflows after 64KB.
- if n := int(s.ii) - d.chain; n > 0 {
- n = 1 + int(n>>6)
- for j := 0; j < n; j++ {
- if s.index >= d.windowEnd-1 {
- break
- }
- d.tokens.AddLiteral(d.window[s.index-1])
- if d.tokens.n == maxFlateBlockTokens {
- if d.err = d.writeBlock(&d.tokens, s.index, false); d.err != nil {
- return
- }
- d.tokens.Reset()
- }
- // Index...
- if s.index < s.maxInsertIndex {
- h := hash4(d.window[s.index:])
- ch := s.hashHead[h]
- s.chainHead = int(ch)
- s.hashPrev[s.index&windowMask] = ch
- s.hashHead[h] = uint32(s.index + s.hashOffset)
- }
- s.index++
- }
- // Flush last byte
- d.tokens.AddLiteral(d.window[s.index-1])
- d.byteAvailable = false
- // s.length = minMatchLength - 1 // not needed, since s.ii is reset above, so it should never be > minMatchLength
- if d.tokens.n == maxFlateBlockTokens {
- if d.err = d.writeBlock(&d.tokens, s.index, false); d.err != nil {
- return
- }
- d.tokens.Reset()
- }
- }
- } else {
- s.index++
- d.byteAvailable = true
- }
- }
- }
- }
- func (d *compressor) store() {
- if d.windowEnd > 0 && (d.windowEnd == maxStoreBlockSize || d.sync) {
- d.err = d.writeStoredBlock(d.window[:d.windowEnd])
- d.windowEnd = 0
- }
- }
- // fillWindow will fill the buffer with data for huffman-only compression.
- // The number of bytes copied is returned.
- func (d *compressor) fillBlock(b []byte) int {
- n := copy(d.window[d.windowEnd:], b)
- d.windowEnd += n
- return n
- }
- // storeHuff will compress and store the currently added data,
- // if enough has been accumulated or we at the end of the stream.
- // Any error that occurred will be in d.err
- func (d *compressor) storeHuff() {
- if d.windowEnd < len(d.window) && !d.sync || d.windowEnd == 0 {
- return
- }
- d.w.writeBlockHuff(false, d.window[:d.windowEnd], d.sync)
- d.err = d.w.err
- d.windowEnd = 0
- }
- // storeFast will compress and store the currently added data,
- // if enough has been accumulated or we at the end of the stream.
- // Any error that occurred will be in d.err
- func (d *compressor) storeFast() {
- // We only compress if we have maxStoreBlockSize.
- if d.windowEnd < len(d.window) {
- if !d.sync {
- return
- }
- // Handle extremely small sizes.
- if d.windowEnd < 128 {
- if d.windowEnd == 0 {
- return
- }
- if d.windowEnd <= 32 {
- d.err = d.writeStoredBlock(d.window[:d.windowEnd])
- } else {
- d.w.writeBlockHuff(false, d.window[:d.windowEnd], true)
- d.err = d.w.err
- }
- d.tokens.Reset()
- d.windowEnd = 0
- d.fast.Reset()
- return
- }
- }
- d.fast.Encode(&d.tokens, d.window[:d.windowEnd])
- // If we made zero matches, store the block as is.
- if d.tokens.n == 0 {
- d.err = d.writeStoredBlock(d.window[:d.windowEnd])
- // If we removed less than 1/16th, huffman compress the block.
- } else if int(d.tokens.n) > d.windowEnd-(d.windowEnd>>4) {
- d.w.writeBlockHuff(false, d.window[:d.windowEnd], d.sync)
- d.err = d.w.err
- } else {
- d.w.writeBlockDynamic(&d.tokens, false, d.window[:d.windowEnd], d.sync)
- d.err = d.w.err
- }
- d.tokens.Reset()
- d.windowEnd = 0
- }
- // write will add input byte to the stream.
- // Unless an error occurs all bytes will be consumed.
- func (d *compressor) write(b []byte) (n int, err error) {
- if d.err != nil {
- return 0, d.err
- }
- n = len(b)
- for len(b) > 0 {
- if d.windowEnd == len(d.window) || d.sync {
- d.step(d)
- }
- b = b[d.fill(d, b):]
- if d.err != nil {
- return 0, d.err
- }
- }
- return n, d.err
- }
- func (d *compressor) syncFlush() error {
- d.sync = true
- if d.err != nil {
- return d.err
- }
- d.step(d)
- if d.err == nil {
- d.w.writeStoredHeader(0, false)
- d.w.flush()
- d.err = d.w.err
- }
- d.sync = false
- return d.err
- }
- func (d *compressor) init(w io.Writer, level int) (err error) {
- d.w = newHuffmanBitWriter(w)
- switch {
- case level == NoCompression:
- d.window = make([]byte, maxStoreBlockSize)
- d.fill = (*compressor).fillBlock
- d.step = (*compressor).store
- case level == ConstantCompression:
- d.w.logNewTablePenalty = 10
- d.window = make([]byte, 32<<10)
- d.fill = (*compressor).fillBlock
- d.step = (*compressor).storeHuff
- case level == DefaultCompression:
- level = 5
- fallthrough
- case level >= 1 && level <= 6:
- d.w.logNewTablePenalty = 7
- d.fast = newFastEnc(level)
- d.window = make([]byte, maxStoreBlockSize)
- d.fill = (*compressor).fillBlock
- d.step = (*compressor).storeFast
- case 7 <= level && level <= 9:
- d.w.logNewTablePenalty = 8
- d.state = &advancedState{}
- d.compressionLevel = levels[level]
- d.initDeflate()
- d.fill = (*compressor).fillDeflate
- d.step = (*compressor).deflateLazy
- default:
- return fmt.Errorf("flate: invalid compression level %d: want value in range [-2, 9]", level)
- }
- d.level = level
- return nil
- }
- // reset the state of the compressor.
- func (d *compressor) reset(w io.Writer) {
- d.w.reset(w)
- d.sync = false
- d.err = nil
- // We only need to reset a few things for Snappy.
- if d.fast != nil {
- d.fast.Reset()
- d.windowEnd = 0
- d.tokens.Reset()
- return
- }
- switch d.compressionLevel.chain {
- case 0:
- // level was NoCompression or ConstantCompresssion.
- d.windowEnd = 0
- default:
- s := d.state
- s.chainHead = -1
- for i := range s.hashHead {
- s.hashHead[i] = 0
- }
- for i := range s.hashPrev {
- s.hashPrev[i] = 0
- }
- s.hashOffset = 1
- s.index, d.windowEnd = 0, 0
- d.blockStart, d.byteAvailable = 0, false
- d.tokens.Reset()
- s.length = minMatchLength - 1
- s.offset = 0
- s.ii = 0
- s.maxInsertIndex = 0
- }
- }
- func (d *compressor) close() error {
- if d.err != nil {
- return d.err
- }
- d.sync = true
- d.step(d)
- if d.err != nil {
- return d.err
- }
- if d.w.writeStoredHeader(0, true); d.w.err != nil {
- return d.w.err
- }
- d.w.flush()
- d.w.reset(nil)
- return d.w.err
- }
- // NewWriter returns a new Writer compressing data at the given level.
- // Following zlib, levels range from 1 (BestSpeed) to 9 (BestCompression);
- // higher levels typically run slower but compress more.
- // Level 0 (NoCompression) does not attempt any compression; it only adds the
- // necessary DEFLATE framing.
- // Level -1 (DefaultCompression) uses the default compression level.
- // Level -2 (ConstantCompression) will use Huffman compression only, giving
- // a very fast compression for all types of input, but sacrificing considerable
- // compression efficiency.
- //
- // If level is in the range [-2, 9] then the error returned will be nil.
- // Otherwise the error returned will be non-nil.
- func NewWriter(w io.Writer, level int) (*Writer, error) {
- var dw Writer
- if err := dw.d.init(w, level); err != nil {
- return nil, err
- }
- return &dw, nil
- }
- // NewWriterDict is like NewWriter but initializes the new
- // Writer with a preset dictionary. The returned Writer behaves
- // as if the dictionary had been written to it without producing
- // any compressed output. The compressed data written to w
- // can only be decompressed by a Reader initialized with the
- // same dictionary.
- func NewWriterDict(w io.Writer, level int, dict []byte) (*Writer, error) {
- zw, err := NewWriter(w, level)
- if err != nil {
- return nil, err
- }
- zw.d.fillWindow(dict)
- zw.dict = append(zw.dict, dict...) // duplicate dictionary for Reset method.
- return zw, err
- }
- // A Writer takes data written to it and writes the compressed
- // form of that data to an underlying writer (see NewWriter).
- type Writer struct {
- d compressor
- dict []byte
- }
- // Write writes data to w, which will eventually write the
- // compressed form of data to its underlying writer.
- func (w *Writer) Write(data []byte) (n int, err error) {
- return w.d.write(data)
- }
- // Flush flushes any pending data to the underlying writer.
- // It is useful mainly in compressed network protocols, to ensure that
- // a remote reader has enough data to reconstruct a packet.
- // Flush does not return until the data has been written.
- // Calling Flush when there is no pending data still causes the Writer
- // to emit a sync marker of at least 4 bytes.
- // If the underlying writer returns an error, Flush returns that error.
- //
- // In the terminology of the zlib library, Flush is equivalent to Z_SYNC_FLUSH.
- func (w *Writer) Flush() error {
- // For more about flushing:
- // http://www.bolet.org/~pornin/deflate-flush.html
- return w.d.syncFlush()
- }
- // Close flushes and closes the writer.
- func (w *Writer) Close() error {
- return w.d.close()
- }
- // Reset discards the writer's state and makes it equivalent to
- // the result of NewWriter or NewWriterDict called with dst
- // and w's level and dictionary.
- func (w *Writer) Reset(dst io.Writer) {
- if len(w.dict) > 0 {
- // w was created with NewWriterDict
- w.d.reset(dst)
- if dst != nil {
- w.d.fillWindow(w.dict)
- }
- } else {
- // w was created with NewWriter
- w.d.reset(dst)
- }
- }
- // ResetDict discards the writer's state and makes it equivalent to
- // the result of NewWriter or NewWriterDict called with dst
- // and w's level, but sets a specific dictionary.
- func (w *Writer) ResetDict(dst io.Writer, dict []byte) {
- w.dict = dict
- w.d.reset(dst)
- w.d.fillWindow(w.dict)
- }
|