mdb.c 286 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880788178827883788478857886788778887889789078917892789378947895789678977898789979007901790279037904790579067907790879097910791179127913791479157916791779187919792079217922792379247925792679277928792979307931793279337934793579367937793879397940794179427943794479457946794779487949795079517952795379547955795679577958795979607961796279637964796579667967796879697970797179727973797479757976797779787979798079817982798379847985798679877988798979907991799279937994799579967997799879998000800180028003800480058006800780088009801080118012801380148015801680178018801980208021802280238024802580268027802880298030803180328033803480358036803780388039804080418042804380448045804680478048804980508051805280538054805580568057805880598060806180628063806480658066806780688069807080718072807380748075807680778078807980808081808280838084808580868087808880898090809180928093809480958096809780988099810081018102810381048105810681078108810981108111811281138114811581168117811881198120812181228123812481258126812781288129813081318132813381348135813681378138813981408141814281438144814581468147814881498150815181528153815481558156815781588159816081618162816381648165816681678168816981708171817281738174817581768177817881798180818181828183818481858186818781888189819081918192819381948195819681978198819982008201820282038204820582068207820882098210821182128213821482158216821782188219822082218222822382248225822682278228822982308231823282338234823582368237823882398240824182428243824482458246824782488249825082518252825382548255825682578258825982608261826282638264826582668267826882698270827182728273827482758276827782788279828082818282828382848285828682878288828982908291829282938294829582968297829882998300830183028303830483058306830783088309831083118312831383148315831683178318831983208321832283238324832583268327832883298330833183328333833483358336833783388339834083418342834383448345834683478348834983508351835283538354835583568357835883598360836183628363836483658366836783688369837083718372837383748375837683778378837983808381838283838384838583868387838883898390839183928393839483958396839783988399840084018402840384048405840684078408840984108411841284138414841584168417841884198420842184228423842484258426842784288429843084318432843384348435843684378438843984408441844284438444844584468447844884498450845184528453845484558456845784588459846084618462846384648465846684678468846984708471847284738474847584768477847884798480848184828483848484858486848784888489849084918492849384948495849684978498849985008501850285038504850585068507850885098510851185128513851485158516851785188519852085218522852385248525852685278528852985308531853285338534853585368537853885398540854185428543854485458546854785488549855085518552855385548555855685578558855985608561856285638564856585668567856885698570857185728573857485758576857785788579858085818582858385848585858685878588858985908591859285938594859585968597859885998600860186028603860486058606860786088609861086118612861386148615861686178618861986208621862286238624862586268627862886298630863186328633863486358636863786388639864086418642864386448645864686478648864986508651865286538654865586568657865886598660866186628663866486658666866786688669867086718672867386748675867686778678867986808681868286838684868586868687868886898690869186928693869486958696869786988699870087018702870387048705870687078708870987108711871287138714871587168717871887198720872187228723872487258726872787288729873087318732873387348735873687378738873987408741874287438744874587468747874887498750875187528753875487558756875787588759876087618762876387648765876687678768876987708771877287738774877587768777877887798780878187828783878487858786878787888789879087918792879387948795879687978798879988008801880288038804880588068807880888098810881188128813881488158816881788188819882088218822882388248825882688278828882988308831883288338834883588368837883888398840884188428843884488458846884788488849885088518852885388548855885688578858885988608861886288638864886588668867886888698870887188728873887488758876887788788879888088818882888388848885888688878888888988908891889288938894889588968897889888998900890189028903890489058906890789088909891089118912891389148915891689178918891989208921892289238924892589268927892889298930893189328933893489358936893789388939894089418942894389448945894689478948894989508951895289538954895589568957895889598960896189628963896489658966896789688969897089718972897389748975897689778978897989808981898289838984898589868987898889898990899189928993899489958996899789988999900090019002900390049005900690079008900990109011901290139014901590169017901890199020902190229023902490259026902790289029903090319032903390349035903690379038903990409041904290439044904590469047904890499050905190529053905490559056905790589059906090619062906390649065906690679068906990709071907290739074907590769077907890799080908190829083908490859086908790889089909090919092909390949095909690979098909991009101910291039104910591069107910891099110911191129113911491159116911791189119912091219122912391249125912691279128912991309131913291339134913591369137913891399140914191429143914491459146914791489149915091519152915391549155915691579158915991609161916291639164916591669167916891699170917191729173917491759176917791789179918091819182918391849185918691879188918991909191919291939194919591969197919891999200920192029203920492059206920792089209921092119212921392149215921692179218921992209221922292239224922592269227922892299230923192329233923492359236923792389239924092419242924392449245924692479248924992509251925292539254925592569257925892599260926192629263926492659266926792689269927092719272927392749275927692779278927992809281928292839284928592869287928892899290929192929293929492959296929792989299930093019302930393049305930693079308930993109311931293139314931593169317931893199320932193229323932493259326932793289329933093319332933393349335933693379338933993409341934293439344934593469347934893499350935193529353935493559356935793589359936093619362936393649365936693679368936993709371937293739374937593769377937893799380938193829383938493859386938793889389939093919392939393949395939693979398939994009401940294039404940594069407940894099410941194129413941494159416941794189419942094219422942394249425942694279428942994309431943294339434943594369437943894399440944194429443944494459446944794489449945094519452945394549455945694579458945994609461946294639464946594669467946894699470947194729473947494759476947794789479948094819482948394849485948694879488948994909491949294939494949594969497949894999500950195029503950495059506950795089509951095119512951395149515951695179518951995209521952295239524952595269527952895299530953195329533953495359536953795389539954095419542954395449545954695479548954995509551955295539554955595569557955895599560956195629563956495659566956795689569957095719572957395749575957695779578957995809581958295839584958595869587958895899590959195929593959495959596959795989599960096019602960396049605960696079608960996109611961296139614961596169617961896199620962196229623962496259626962796289629963096319632963396349635963696379638963996409641964296439644964596469647964896499650965196529653965496559656965796589659966096619662966396649665966696679668966996709671967296739674967596769677967896799680968196829683968496859686968796889689969096919692969396949695969696979698969997009701970297039704970597069707970897099710971197129713971497159716971797189719972097219722972397249725972697279728972997309731973297339734973597369737973897399740974197429743974497459746974797489749975097519752975397549755975697579758975997609761976297639764976597669767976897699770977197729773977497759776977797789779978097819782978397849785978697879788978997909791979297939794979597969797979897999800980198029803980498059806980798089809981098119812981398149815981698179818981998209821982298239824982598269827982898299830983198329833983498359836983798389839984098419842984398449845984698479848984998509851985298539854985598569857985898599860986198629863986498659866986798689869987098719872987398749875987698779878987998809881988298839884988598869887988898899890989198929893989498959896989798989899990099019902990399049905990699079908990999109911991299139914991599169917991899199920992199229923992499259926992799289929993099319932993399349935993699379938993999409941994299439944994599469947994899499950995199529953995499559956995799589959996099619962996399649965996699679968996999709971997299739974997599769977997899799980998199829983998499859986998799889989999099919992999399949995999699979998999910000100011000210003100041000510006100071000810009100101001110012100131001410015100161001710018100191002010021100221002310024100251002610027100281002910030100311003210033100341003510036100371003810039100401004110042100431004410045100461004710048100491005010051100521005310054100551005610057100581005910060100611006210063100641006510066100671006810069100701007110072100731007410075100761007710078100791008010081100821008310084100851008610087100881008910090100911009210093100941009510096100971009810099101001010110102101031010410105101061010710108101091011010111101121011310114101151011610117101181011910120101211012210123101241012510126101271012810129101301013110132101331013410135101361013710138101391014010141101421014310144101451014610147101481014910150101511015210153101541015510156101571015810159101601016110162101631016410165101661016710168101691017010171101721017310174101751017610177101781017910180101811018210183101841018510186101871018810189101901019110192101931019410195101961019710198101991020010201102021020310204102051020610207102081020910210102111021210213102141021510216102171021810219102201022110222102231022410225102261022710228102291023010231102321023310234102351023610237102381023910240102411024210243102441024510246102471024810249102501025110252102531025410255102561025710258102591026010261102621026310264102651026610267102681026910270102711027210273102741027510276102771027810279102801028110282102831028410285102861028710288102891029010291102921029310294102951029610297102981029910300103011030210303103041030510306103071030810309103101031110312103131031410315103161031710318103191032010321103221032310324103251032610327103281032910330103311033210333103341033510336103371033810339103401034110342103431034410345103461034710348103491035010351103521035310354
  1. /** @file mdb.c
  2. * @brief Lightning memory-mapped database library
  3. *
  4. * A Btree-based database management library modeled loosely on the
  5. * BerkeleyDB API, but much simplified.
  6. */
  7. /*
  8. * Copyright 2011-2021 Howard Chu, Symas Corp.
  9. * All rights reserved.
  10. *
  11. * Redistribution and use in source and binary forms, with or without
  12. * modification, are permitted only as authorized by the OpenLDAP
  13. * Public License.
  14. *
  15. * A copy of this license is available in the file LICENSE in the
  16. * top-level directory of the distribution or, alternatively, at
  17. * <http://www.OpenLDAP.org/license.html>.
  18. *
  19. * This code is derived from btree.c written by Martin Hedenfalk.
  20. *
  21. * Copyright (c) 2009, 2010 Martin Hedenfalk <martin@bzero.se>
  22. *
  23. * Permission to use, copy, modify, and distribute this software for any
  24. * purpose with or without fee is hereby granted, provided that the above
  25. * copyright notice and this permission notice appear in all copies.
  26. *
  27. * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
  28. * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
  29. * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
  30. * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
  31. * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
  32. * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
  33. * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  34. */
  35. #ifndef _GNU_SOURCE
  36. #define _GNU_SOURCE 1
  37. #endif
  38. #if defined(__WIN64__)
  39. #define _FILE_OFFSET_BITS 64
  40. #endif
  41. #ifdef _WIN32
  42. #include <malloc.h>
  43. #include <windows.h>
  44. #include <wchar.h> /* get wcscpy() */
  45. /** getpid() returns int; MinGW defines pid_t but MinGW64 typedefs it
  46. * as int64 which is wrong. MSVC doesn't define it at all, so just
  47. * don't use it.
  48. */
  49. #define MDB_PID_T int
  50. #define MDB_THR_T DWORD
  51. #include <sys/types.h>
  52. #include <sys/stat.h>
  53. #ifdef __GNUC__
  54. # include <sys/param.h>
  55. #else
  56. # define LITTLE_ENDIAN 1234
  57. # define BIG_ENDIAN 4321
  58. # define BYTE_ORDER LITTLE_ENDIAN
  59. # ifndef SSIZE_MAX
  60. # define SSIZE_MAX INT_MAX
  61. # endif
  62. #endif
  63. #else
  64. #include <sys/types.h>
  65. #include <sys/stat.h>
  66. #define MDB_PID_T pid_t
  67. #define MDB_THR_T pthread_t
  68. #include <sys/param.h>
  69. #include <sys/uio.h>
  70. #include <sys/mman.h>
  71. #ifdef HAVE_SYS_FILE_H
  72. #include <sys/file.h>
  73. #endif
  74. #include <fcntl.h>
  75. #endif
  76. #if defined(__mips) && defined(__linux)
  77. /* MIPS has cache coherency issues, requires explicit cache control */
  78. #include <sys/cachectl.h>
  79. #define CACHEFLUSH(addr, bytes, cache) cacheflush(addr, bytes, cache)
  80. #else
  81. #define CACHEFLUSH(addr, bytes, cache)
  82. #endif
  83. #if defined(__linux) && !defined(MDB_FDATASYNC_WORKS)
  84. /** fdatasync is broken on ext3/ext4fs on older kernels, see
  85. * description in #mdb_env_open2 comments. You can safely
  86. * define MDB_FDATASYNC_WORKS if this code will only be run
  87. * on kernels 3.6 and newer.
  88. */
  89. #define BROKEN_FDATASYNC
  90. #endif
  91. #include <errno.h>
  92. #include <limits.h>
  93. #include <stddef.h>
  94. #include <inttypes.h>
  95. #include <stdio.h>
  96. #include <stdlib.h>
  97. #include <string.h>
  98. #include <time.h>
  99. #ifdef _MSC_VER
  100. #include <io.h>
  101. typedef SSIZE_T ssize_t;
  102. #else
  103. #include <unistd.h>
  104. #endif
  105. #if defined(__sun) || defined(ANDROID)
  106. /* Most platforms have posix_memalign, older may only have memalign */
  107. #define HAVE_MEMALIGN 1
  108. #include <malloc.h>
  109. /* On Solaris, we need the POSIX sigwait function */
  110. #if defined (__sun)
  111. # define _POSIX_PTHREAD_SEMANTICS 1
  112. #endif
  113. #endif
  114. #if !(defined(BYTE_ORDER) || defined(__BYTE_ORDER))
  115. #include <netinet/in.h>
  116. #include <resolv.h> /* defines BYTE_ORDER on HPUX and Solaris */
  117. #endif
  118. #if defined(__FreeBSD__) && defined(__FreeBSD_version) && __FreeBSD_version >= 1100110
  119. # define MDB_USE_POSIX_MUTEX 1
  120. # define MDB_USE_ROBUST 1
  121. #elif defined(__APPLE__) || defined (BSD) || defined(__FreeBSD_kernel__)
  122. # define MDB_USE_POSIX_SEM 1
  123. # define MDB_FDATASYNC fsync
  124. #elif defined(ANDROID)
  125. # define MDB_FDATASYNC fsync
  126. #endif
  127. #ifndef _WIN32
  128. #include <pthread.h>
  129. #include <signal.h>
  130. #ifdef MDB_USE_POSIX_SEM
  131. # define MDB_USE_HASH 1
  132. #include <semaphore.h>
  133. #else
  134. #define MDB_USE_POSIX_MUTEX 1
  135. #endif
  136. #endif
  137. #if defined(_WIN32) + defined(MDB_USE_POSIX_SEM) \
  138. + defined(MDB_USE_POSIX_MUTEX) != 1
  139. # error "Ambiguous shared-lock implementation"
  140. #endif
  141. #ifdef USE_VALGRIND
  142. #include <valgrind/memcheck.h>
  143. #define VGMEMP_CREATE(h,r,z) VALGRIND_CREATE_MEMPOOL(h,r,z)
  144. #define VGMEMP_ALLOC(h,a,s) VALGRIND_MEMPOOL_ALLOC(h,a,s)
  145. #define VGMEMP_FREE(h,a) VALGRIND_MEMPOOL_FREE(h,a)
  146. #define VGMEMP_DESTROY(h) VALGRIND_DESTROY_MEMPOOL(h)
  147. #define VGMEMP_DEFINED(a,s) VALGRIND_MAKE_MEM_DEFINED(a,s)
  148. #else
  149. #define VGMEMP_CREATE(h,r,z)
  150. #define VGMEMP_ALLOC(h,a,s)
  151. #define VGMEMP_FREE(h,a)
  152. #define VGMEMP_DESTROY(h)
  153. #define VGMEMP_DEFINED(a,s)
  154. #endif
  155. #ifndef BYTE_ORDER
  156. # if (defined(_LITTLE_ENDIAN) || defined(_BIG_ENDIAN)) && !(defined(_LITTLE_ENDIAN) && defined(_BIG_ENDIAN))
  157. /* Solaris just defines one or the other */
  158. # define LITTLE_ENDIAN 1234
  159. # define BIG_ENDIAN 4321
  160. # ifdef _LITTLE_ENDIAN
  161. # define BYTE_ORDER LITTLE_ENDIAN
  162. # else
  163. # define BYTE_ORDER BIG_ENDIAN
  164. # endif
  165. # else
  166. # define BYTE_ORDER __BYTE_ORDER
  167. # endif
  168. #endif
  169. #ifndef LITTLE_ENDIAN
  170. #define LITTLE_ENDIAN __LITTLE_ENDIAN
  171. #endif
  172. #ifndef BIG_ENDIAN
  173. #define BIG_ENDIAN __BIG_ENDIAN
  174. #endif
  175. #if defined(__i386) || defined(__x86_64) || defined(_M_IX86)
  176. #define MISALIGNED_OK 1
  177. #endif
  178. #include "lmdb.h"
  179. #include "midl.h"
  180. #if (BYTE_ORDER == LITTLE_ENDIAN) == (BYTE_ORDER == BIG_ENDIAN)
  181. # error "Unknown or unsupported endianness (BYTE_ORDER)"
  182. #elif (-6 & 5) || CHAR_BIT != 8 || UINT_MAX < 0xffffffff || ULONG_MAX % 0xFFFF
  183. # error "Two's complement, reasonably sized integer types, please"
  184. #endif
  185. #if (((__clang_major__ << 8) | __clang_minor__) >= 0x0302) || (((__GNUC__ << 8) | __GNUC_MINOR__) >= 0x0403)
  186. /** Mark infrequently used env functions as cold. This puts them in a separate
  187. * section, and optimizes them for size */
  188. #define ESECT __attribute__ ((cold))
  189. #else
  190. /* On older compilers, use a separate section */
  191. # ifdef __GNUC__
  192. # ifdef __APPLE__
  193. # define ESECT __attribute__ ((section("__TEXT,text_env")))
  194. # else
  195. # define ESECT __attribute__ ((section("text_env")))
  196. # endif
  197. # else
  198. # define ESECT
  199. # endif
  200. #endif
  201. #ifdef _WIN32
  202. #define CALL_CONV WINAPI
  203. #else
  204. #define CALL_CONV
  205. #endif
  206. /** @defgroup internal LMDB Internals
  207. * @{
  208. */
  209. /** @defgroup compat Compatibility Macros
  210. * A bunch of macros to minimize the amount of platform-specific ifdefs
  211. * needed throughout the rest of the code. When the features this library
  212. * needs are similar enough to POSIX to be hidden in a one-or-two line
  213. * replacement, this macro approach is used.
  214. * @{
  215. */
  216. /** Features under development */
  217. #ifndef MDB_DEVEL
  218. #define MDB_DEVEL 0
  219. #endif
  220. /** Wrapper around __func__, which is a C99 feature */
  221. #if __STDC_VERSION__ >= 199901L
  222. # define mdb_func_ __func__
  223. #elif __GNUC__ >= 2 || _MSC_VER >= 1300
  224. # define mdb_func_ __FUNCTION__
  225. #else
  226. /* If a debug message says <mdb_unknown>(), update the #if statements above */
  227. # define mdb_func_ "<mdb_unknown>"
  228. #endif
  229. /* Internal error codes, not exposed outside liblmdb */
  230. #define MDB_NO_ROOT (MDB_LAST_ERRCODE + 10)
  231. #ifdef _WIN32
  232. #define MDB_OWNERDEAD ((int) WAIT_ABANDONED)
  233. #elif defined(MDB_USE_POSIX_MUTEX) && defined(EOWNERDEAD)
  234. #define MDB_OWNERDEAD EOWNERDEAD /**< #LOCK_MUTEX0() result if dead owner */
  235. #endif
  236. #ifdef __GLIBC__
  237. #define GLIBC_VER ((__GLIBC__ << 16 )| __GLIBC_MINOR__)
  238. #endif
  239. /** Some platforms define the EOWNERDEAD error code
  240. * even though they don't support Robust Mutexes.
  241. * Compile with -DMDB_USE_ROBUST=0, or use some other
  242. * mechanism like -DMDB_USE_POSIX_SEM instead of
  243. * -DMDB_USE_POSIX_MUTEX.
  244. * (Posix semaphores are not robust.)
  245. */
  246. #ifndef MDB_USE_ROBUST
  247. /* Android currently lacks Robust Mutex support. So does glibc < 2.4. */
  248. # if defined(MDB_USE_POSIX_MUTEX) && (defined(ANDROID) || \
  249. (defined(__GLIBC__) && GLIBC_VER < 0x020004))
  250. # define MDB_USE_ROBUST 0
  251. # else
  252. # define MDB_USE_ROBUST 1
  253. # endif
  254. #endif /* !MDB_USE_ROBUST */
  255. #if defined(MDB_USE_POSIX_MUTEX) && (MDB_USE_ROBUST)
  256. /* glibc < 2.12 only provided _np API */
  257. # if (defined(__GLIBC__) && GLIBC_VER < 0x02000c) || \
  258. (defined(PTHREAD_MUTEX_ROBUST_NP) && !defined(PTHREAD_MUTEX_ROBUST))
  259. # define PTHREAD_MUTEX_ROBUST PTHREAD_MUTEX_ROBUST_NP
  260. # define pthread_mutexattr_setrobust(attr, flag) pthread_mutexattr_setrobust_np(attr, flag)
  261. # define pthread_mutex_consistent(mutex) pthread_mutex_consistent_np(mutex)
  262. # endif
  263. #endif /* MDB_USE_POSIX_MUTEX && MDB_USE_ROBUST */
  264. #if defined(MDB_OWNERDEAD) && (MDB_USE_ROBUST)
  265. #define MDB_ROBUST_SUPPORTED 1
  266. #endif
  267. #ifdef _WIN32
  268. #define MDB_USE_HASH 1
  269. #define MDB_PIDLOCK 0
  270. #define THREAD_RET DWORD
  271. #define pthread_t HANDLE
  272. #define pthread_mutex_t HANDLE
  273. #define pthread_cond_t HANDLE
  274. typedef HANDLE mdb_mutex_t, mdb_mutexref_t;
  275. #define pthread_key_t DWORD
  276. #define pthread_self() GetCurrentThreadId()
  277. #define pthread_key_create(x,y) \
  278. ((*(x) = TlsAlloc()) == TLS_OUT_OF_INDEXES ? ErrCode() : 0)
  279. #define pthread_key_delete(x) TlsFree(x)
  280. #define pthread_getspecific(x) TlsGetValue(x)
  281. #define pthread_setspecific(x,y) (TlsSetValue(x,y) ? 0 : ErrCode())
  282. #define pthread_mutex_unlock(x) ReleaseMutex(*x)
  283. #define pthread_mutex_lock(x) WaitForSingleObject(*x, INFINITE)
  284. #define pthread_cond_signal(x) SetEvent(*x)
  285. #define pthread_cond_wait(cond,mutex) do{SignalObjectAndWait(*mutex, *cond, INFINITE, FALSE); WaitForSingleObject(*mutex, INFINITE);}while(0)
  286. #define THREAD_CREATE(thr,start,arg) \
  287. (((thr) = CreateThread(NULL, 0, start, arg, 0, NULL)) ? 0 : ErrCode())
  288. #define THREAD_FINISH(thr) \
  289. (WaitForSingleObject(thr, INFINITE) ? ErrCode() : 0)
  290. #define LOCK_MUTEX0(mutex) WaitForSingleObject(mutex, INFINITE)
  291. #define UNLOCK_MUTEX(mutex) ReleaseMutex(mutex)
  292. #define mdb_mutex_consistent(mutex) 0
  293. #define getpid() GetCurrentProcessId()
  294. #define MDB_FDATASYNC(fd) (!FlushFileBuffers(fd))
  295. #define MDB_MSYNC(addr,len,flags) (!FlushViewOfFile(addr,len))
  296. #define ErrCode() GetLastError()
  297. #define GET_PAGESIZE(x) {SYSTEM_INFO si; GetSystemInfo(&si); (x) = si.dwPageSize;}
  298. #define close(fd) (CloseHandle(fd) ? 0 : -1)
  299. #define munmap(ptr,len) UnmapViewOfFile(ptr)
  300. #ifdef PROCESS_QUERY_LIMITED_INFORMATION
  301. #define MDB_PROCESS_QUERY_LIMITED_INFORMATION PROCESS_QUERY_LIMITED_INFORMATION
  302. #else
  303. #define MDB_PROCESS_QUERY_LIMITED_INFORMATION 0x1000
  304. #endif
  305. #define Z "I"
  306. #else
  307. #define THREAD_RET void *
  308. #define THREAD_CREATE(thr,start,arg) pthread_create(&thr,NULL,start,arg)
  309. #define THREAD_FINISH(thr) pthread_join(thr,NULL)
  310. #define Z "z" /**< printf format modifier for size_t */
  311. /** For MDB_LOCK_FORMAT: True if readers take a pid lock in the lockfile */
  312. #define MDB_PIDLOCK 1
  313. #ifdef MDB_USE_POSIX_SEM
  314. typedef sem_t *mdb_mutex_t, *mdb_mutexref_t;
  315. #define LOCK_MUTEX0(mutex) mdb_sem_wait(mutex)
  316. #define UNLOCK_MUTEX(mutex) sem_post(mutex)
  317. static int
  318. mdb_sem_wait(sem_t *sem)
  319. {
  320. int rc;
  321. while ((rc = sem_wait(sem)) && (rc = errno) == EINTR) ;
  322. return rc;
  323. }
  324. #else /* MDB_USE_POSIX_MUTEX: */
  325. /** Shared mutex/semaphore as the original is stored.
  326. *
  327. * Not for copies. Instead it can be assigned to an #mdb_mutexref_t.
  328. * When mdb_mutexref_t is a pointer and mdb_mutex_t is not, then it
  329. * is array[size 1] so it can be assigned to the pointer.
  330. */
  331. typedef pthread_mutex_t mdb_mutex_t[1];
  332. /** Reference to an #mdb_mutex_t */
  333. typedef pthread_mutex_t *mdb_mutexref_t;
  334. /** Lock the reader or writer mutex.
  335. * Returns 0 or a code to give #mdb_mutex_failed(), as in #LOCK_MUTEX().
  336. */
  337. #define LOCK_MUTEX0(mutex) pthread_mutex_lock(mutex)
  338. /** Unlock the reader or writer mutex.
  339. */
  340. #define UNLOCK_MUTEX(mutex) pthread_mutex_unlock(mutex)
  341. /** Mark mutex-protected data as repaired, after death of previous owner.
  342. */
  343. #define mdb_mutex_consistent(mutex) pthread_mutex_consistent(mutex)
  344. #endif /* MDB_USE_POSIX_SEM */
  345. /** Get the error code for the last failed system function.
  346. */
  347. #define ErrCode() errno
  348. /** An abstraction for a file handle.
  349. * On POSIX systems file handles are small integers. On Windows
  350. * they're opaque pointers.
  351. */
  352. #define HANDLE int
  353. /** A value for an invalid file handle.
  354. * Mainly used to initialize file variables and signify that they are
  355. * unused.
  356. */
  357. #define INVALID_HANDLE_VALUE (-1)
  358. /** Get the size of a memory page for the system.
  359. * This is the basic size that the platform's memory manager uses, and is
  360. * fundamental to the use of memory-mapped files.
  361. */
  362. #define GET_PAGESIZE(x) ((x) = sysconf(_SC_PAGE_SIZE))
  363. #endif
  364. #if defined(_WIN32) || defined(MDB_USE_POSIX_SEM)
  365. #define MNAME_LEN 32
  366. #else
  367. #define MNAME_LEN (sizeof(pthread_mutex_t))
  368. #endif
  369. /** @} */
  370. #ifdef MDB_ROBUST_SUPPORTED
  371. /** Lock mutex, handle any error, set rc = result.
  372. * Return 0 on success, nonzero (not rc) on error.
  373. */
  374. #define LOCK_MUTEX(rc, env, mutex) \
  375. (((rc) = LOCK_MUTEX0(mutex)) && \
  376. ((rc) = mdb_mutex_failed(env, mutex, rc)))
  377. static int mdb_mutex_failed(MDB_env *env, mdb_mutexref_t mutex, int rc);
  378. #else
  379. #define LOCK_MUTEX(rc, env, mutex) ((rc) = LOCK_MUTEX0(mutex))
  380. #define mdb_mutex_failed(env, mutex, rc) (rc)
  381. #endif
  382. #ifndef _WIN32
  383. /** A flag for opening a file and requesting synchronous data writes.
  384. * This is only used when writing a meta page. It's not strictly needed;
  385. * we could just do a normal write and then immediately perform a flush.
  386. * But if this flag is available it saves us an extra system call.
  387. *
  388. * @note If O_DSYNC is undefined but exists in /usr/include,
  389. * preferably set some compiler flag to get the definition.
  390. */
  391. #ifndef MDB_DSYNC
  392. # ifdef O_DSYNC
  393. # define MDB_DSYNC O_DSYNC
  394. # else
  395. # define MDB_DSYNC O_SYNC
  396. # endif
  397. #endif
  398. #endif
  399. /** Function for flushing the data of a file. Define this to fsync
  400. * if fdatasync() is not supported.
  401. */
  402. #ifndef MDB_FDATASYNC
  403. # define MDB_FDATASYNC fdatasync
  404. #endif
  405. #ifndef MDB_MSYNC
  406. # define MDB_MSYNC(addr,len,flags) msync(addr,len,flags)
  407. #endif
  408. #ifndef MS_SYNC
  409. #define MS_SYNC 1
  410. #endif
  411. #ifndef MS_ASYNC
  412. #define MS_ASYNC 0
  413. #endif
  414. /** A page number in the database.
  415. * Note that 64 bit page numbers are overkill, since pages themselves
  416. * already represent 12-13 bits of addressable memory, and the OS will
  417. * always limit applications to a maximum of 63 bits of address space.
  418. *
  419. * @note In the #MDB_node structure, we only store 48 bits of this value,
  420. * which thus limits us to only 60 bits of addressable data.
  421. */
  422. typedef MDB_ID pgno_t;
  423. /** A transaction ID.
  424. * See struct MDB_txn.mt_txnid for details.
  425. */
  426. typedef MDB_ID txnid_t;
  427. /** @defgroup debug Debug Macros
  428. * @{
  429. */
  430. #ifndef MDB_DEBUG
  431. /** Enable debug output. Needs variable argument macros (a C99 feature).
  432. * Set this to 1 for copious tracing. Set to 2 to add dumps of all IDLs
  433. * read from and written to the database (used for free space management).
  434. */
  435. #define MDB_DEBUG 0
  436. #endif
  437. #if MDB_DEBUG
  438. static int mdb_debug;
  439. static txnid_t mdb_debug_start;
  440. /** Print a debug message with printf formatting.
  441. * Requires double parenthesis around 2 or more args.
  442. */
  443. # define DPRINTF(args) ((void) ((mdb_debug) && DPRINTF0 args))
  444. # define DPRINTF0(fmt, ...) \
  445. fprintf(stderr, "%s:%d " fmt "\n", mdb_func_, __LINE__, __VA_ARGS__)
  446. #else
  447. # define DPRINTF(args) ((void) 0)
  448. #endif
  449. /** Print a debug string.
  450. * The string is printed literally, with no format processing.
  451. */
  452. #define DPUTS(arg) DPRINTF(("%s", arg))
  453. /** Debugging output value of a cursor DBI: Negative in a sub-cursor. */
  454. #define DDBI(mc) \
  455. (((mc)->mc_flags & C_SUB) ? -(int)(mc)->mc_dbi : (int)(mc)->mc_dbi)
  456. /** @} */
  457. /** @brief The maximum size of a database page.
  458. *
  459. * It is 32k or 64k, since value-PAGEBASE must fit in
  460. * #MDB_page.%mp_upper.
  461. *
  462. * LMDB will use database pages < OS pages if needed.
  463. * That causes more I/O in write transactions: The OS must
  464. * know (read) the whole page before writing a partial page.
  465. *
  466. * Note that we don't currently support Huge pages. On Linux,
  467. * regular data files cannot use Huge pages, and in general
  468. * Huge pages aren't actually pageable. We rely on the OS
  469. * demand-pager to read our data and page it out when memory
  470. * pressure from other processes is high. So until OSs have
  471. * actual paging support for Huge pages, they're not viable.
  472. */
  473. #define MAX_PAGESIZE (PAGEBASE ? 0x10000 : 0x8000)
  474. /** The minimum number of keys required in a database page.
  475. * Setting this to a larger value will place a smaller bound on the
  476. * maximum size of a data item. Data items larger than this size will
  477. * be pushed into overflow pages instead of being stored directly in
  478. * the B-tree node. This value used to default to 4. With a page size
  479. * of 4096 bytes that meant that any item larger than 1024 bytes would
  480. * go into an overflow page. That also meant that on average 2-3KB of
  481. * each overflow page was wasted space. The value cannot be lower than
  482. * 2 because then there would no longer be a tree structure. With this
  483. * value, items larger than 2KB will go into overflow pages, and on
  484. * average only 1KB will be wasted.
  485. */
  486. #define MDB_MINKEYS 2
  487. /** A stamp that identifies a file as an LMDB file.
  488. * There's nothing special about this value other than that it is easily
  489. * recognizable, and it will reflect any byte order mismatches.
  490. */
  491. #define MDB_MAGIC 0xBEEFC0DE
  492. /** The version number for a database's datafile format. */
  493. #define MDB_DATA_VERSION ((MDB_DEVEL) ? 999 : 1)
  494. /** The version number for a database's lockfile format. */
  495. #define MDB_LOCK_VERSION 1
  496. /** @brief The max size of a key we can write, or 0 for computed max.
  497. *
  498. * This macro should normally be left alone or set to 0.
  499. * Note that a database with big keys or dupsort data cannot be
  500. * reliably modified by a liblmdb which uses a smaller max.
  501. * The default is 511 for backwards compat, or 0 when #MDB_DEVEL.
  502. *
  503. * Other values are allowed, for backwards compat. However:
  504. * A value bigger than the computed max can break if you do not
  505. * know what you are doing, and liblmdb <= 0.9.10 can break when
  506. * modifying a DB with keys/dupsort data bigger than its max.
  507. *
  508. * Data items in an #MDB_DUPSORT database are also limited to
  509. * this size, since they're actually keys of a sub-DB. Keys and
  510. * #MDB_DUPSORT data items must fit on a node in a regular page.
  511. */
  512. #ifndef MDB_MAXKEYSIZE
  513. #define MDB_MAXKEYSIZE ((MDB_DEVEL) ? 0 : 511)
  514. #endif
  515. /** The maximum size of a key we can write to the environment. */
  516. #if MDB_MAXKEYSIZE
  517. #define ENV_MAXKEY(env) (MDB_MAXKEYSIZE)
  518. #else
  519. #define ENV_MAXKEY(env) ((env)->me_maxkey)
  520. #endif
  521. /** @brief The maximum size of a data item.
  522. *
  523. * We only store a 32 bit value for node sizes.
  524. */
  525. #define MAXDATASIZE 0xffffffffUL
  526. #if MDB_DEBUG
  527. /** Key size which fits in a #DKBUF.
  528. * @ingroup debug
  529. */
  530. #define DKBUF_MAXKEYSIZE ((MDB_MAXKEYSIZE) > 0 ? (MDB_MAXKEYSIZE) : 511)
  531. /** A key buffer.
  532. * @ingroup debug
  533. * This is used for printing a hex dump of a key's contents.
  534. */
  535. #define DKBUF char kbuf[DKBUF_MAXKEYSIZE*2+1]
  536. /** Display a key in hex.
  537. * @ingroup debug
  538. * Invoke a function to display a key in hex.
  539. */
  540. #define DKEY(x) mdb_dkey(x, kbuf)
  541. #else
  542. #define DKBUF
  543. #define DKEY(x) 0
  544. #endif
  545. /** An invalid page number.
  546. * Mainly used to denote an empty tree.
  547. */
  548. #define P_INVALID (~(pgno_t)0)
  549. /** Test if the flags \b f are set in a flag word \b w. */
  550. #define F_ISSET(w, f) (((w) & (f)) == (f))
  551. /** Round \b n up to an even number. */
  552. #define EVEN(n) (((n) + 1U) & -2) /* sign-extending -2 to match n+1U */
  553. /** Used for offsets within a single page.
  554. * Since memory pages are typically 4 or 8KB in size, 12-13 bits,
  555. * this is plenty.
  556. */
  557. typedef uint16_t indx_t;
  558. /** Default size of memory map.
  559. * This is certainly too small for any actual applications. Apps should always set
  560. * the size explicitly using #mdb_env_set_mapsize().
  561. */
  562. #define DEFAULT_MAPSIZE 1048576
  563. /** @defgroup readers Reader Lock Table
  564. * Readers don't acquire any locks for their data access. Instead, they
  565. * simply record their transaction ID in the reader table. The reader
  566. * mutex is needed just to find an empty slot in the reader table. The
  567. * slot's address is saved in thread-specific data so that subsequent read
  568. * transactions started by the same thread need no further locking to proceed.
  569. *
  570. * If #MDB_NOTLS is set, the slot address is not saved in thread-specific data.
  571. *
  572. * No reader table is used if the database is on a read-only filesystem, or
  573. * if #MDB_NOLOCK is set.
  574. *
  575. * Since the database uses multi-version concurrency control, readers don't
  576. * actually need any locking. This table is used to keep track of which
  577. * readers are using data from which old transactions, so that we'll know
  578. * when a particular old transaction is no longer in use. Old transactions
  579. * that have discarded any data pages can then have those pages reclaimed
  580. * for use by a later write transaction.
  581. *
  582. * The lock table is constructed such that reader slots are aligned with the
  583. * processor's cache line size. Any slot is only ever used by one thread.
  584. * This alignment guarantees that there will be no contention or cache
  585. * thrashing as threads update their own slot info, and also eliminates
  586. * any need for locking when accessing a slot.
  587. *
  588. * A writer thread will scan every slot in the table to determine the oldest
  589. * outstanding reader transaction. Any freed pages older than this will be
  590. * reclaimed by the writer. The writer doesn't use any locks when scanning
  591. * this table. This means that there's no guarantee that the writer will
  592. * see the most up-to-date reader info, but that's not required for correct
  593. * operation - all we need is to know the upper bound on the oldest reader,
  594. * we don't care at all about the newest reader. So the only consequence of
  595. * reading stale information here is that old pages might hang around a
  596. * while longer before being reclaimed. That's actually good anyway, because
  597. * the longer we delay reclaiming old pages, the more likely it is that a
  598. * string of contiguous pages can be found after coalescing old pages from
  599. * many old transactions together.
  600. * @{
  601. */
  602. /** Number of slots in the reader table.
  603. * This value was chosen somewhat arbitrarily. 126 readers plus a
  604. * couple mutexes fit exactly into 8KB on my development machine.
  605. * Applications should set the table size using #mdb_env_set_maxreaders().
  606. */
  607. #define DEFAULT_READERS 126
  608. /** The size of a CPU cache line in bytes. We want our lock structures
  609. * aligned to this size to avoid false cache line sharing in the
  610. * lock table.
  611. * This value works for most CPUs. For Itanium this should be 128.
  612. */
  613. #ifndef CACHELINE
  614. #define CACHELINE 64
  615. #endif
  616. /** The information we store in a single slot of the reader table.
  617. * In addition to a transaction ID, we also record the process and
  618. * thread ID that owns a slot, so that we can detect stale information,
  619. * e.g. threads or processes that went away without cleaning up.
  620. * @note We currently don't check for stale records. We simply re-init
  621. * the table when we know that we're the only process opening the
  622. * lock file.
  623. */
  624. typedef struct MDB_rxbody {
  625. /** Current Transaction ID when this transaction began, or (txnid_t)-1.
  626. * Multiple readers that start at the same time will probably have the
  627. * same ID here. Again, it's not important to exclude them from
  628. * anything; all we need to know is which version of the DB they
  629. * started from so we can avoid overwriting any data used in that
  630. * particular version.
  631. */
  632. volatile txnid_t mrb_txnid;
  633. /** The process ID of the process owning this reader txn. */
  634. volatile MDB_PID_T mrb_pid;
  635. /** The thread ID of the thread owning this txn. */
  636. volatile MDB_THR_T mrb_tid;
  637. } MDB_rxbody;
  638. /** The actual reader record, with cacheline padding. */
  639. typedef struct MDB_reader {
  640. union {
  641. MDB_rxbody mrx;
  642. /** shorthand for mrb_txnid */
  643. #define mr_txnid mru.mrx.mrb_txnid
  644. #define mr_pid mru.mrx.mrb_pid
  645. #define mr_tid mru.mrx.mrb_tid
  646. /** cache line alignment */
  647. char pad[(sizeof(MDB_rxbody)+CACHELINE-1) & ~(CACHELINE-1)];
  648. } mru;
  649. } MDB_reader;
  650. /** The header for the reader table.
  651. * The table resides in a memory-mapped file. (This is a different file
  652. * than is used for the main database.)
  653. *
  654. * For POSIX the actual mutexes reside in the shared memory of this
  655. * mapped file. On Windows, mutexes are named objects allocated by the
  656. * kernel; we store the mutex names in this mapped file so that other
  657. * processes can grab them. This same approach is also used on
  658. * MacOSX/Darwin (using named semaphores) since MacOSX doesn't support
  659. * process-shared POSIX mutexes. For these cases where a named object
  660. * is used, the object name is derived from a 64 bit FNV hash of the
  661. * environment pathname. As such, naming collisions are extremely
  662. * unlikely. If a collision occurs, the results are unpredictable.
  663. */
  664. typedef struct MDB_txbody {
  665. /** Stamp identifying this as an LMDB file. It must be set
  666. * to #MDB_MAGIC. */
  667. uint32_t mtb_magic;
  668. /** Format of this lock file. Must be set to #MDB_LOCK_FORMAT. */
  669. uint32_t mtb_format;
  670. #if defined(_WIN32) || defined(MDB_USE_POSIX_SEM)
  671. char mtb_rmname[MNAME_LEN];
  672. #else
  673. /** Mutex protecting access to this table.
  674. * This is the reader table lock used with LOCK_MUTEX().
  675. */
  676. mdb_mutex_t mtb_rmutex;
  677. #endif
  678. /** The ID of the last transaction committed to the database.
  679. * This is recorded here only for convenience; the value can always
  680. * be determined by reading the main database meta pages.
  681. */
  682. volatile txnid_t mtb_txnid;
  683. /** The number of slots that have been used in the reader table.
  684. * This always records the maximum count, it is not decremented
  685. * when readers release their slots.
  686. */
  687. volatile unsigned mtb_numreaders;
  688. } MDB_txbody;
  689. /** The actual reader table definition. */
  690. typedef struct MDB_txninfo {
  691. union {
  692. MDB_txbody mtb;
  693. #define mti_magic mt1.mtb.mtb_magic
  694. #define mti_format mt1.mtb.mtb_format
  695. #define mti_rmutex mt1.mtb.mtb_rmutex
  696. #define mti_rmname mt1.mtb.mtb_rmname
  697. #define mti_txnid mt1.mtb.mtb_txnid
  698. #define mti_numreaders mt1.mtb.mtb_numreaders
  699. char pad[(sizeof(MDB_txbody)+CACHELINE-1) & ~(CACHELINE-1)];
  700. } mt1;
  701. union {
  702. #if defined(_WIN32) || defined(MDB_USE_POSIX_SEM)
  703. char mt2_wmname[MNAME_LEN];
  704. #define mti_wmname mt2.mt2_wmname
  705. #else
  706. mdb_mutex_t mt2_wmutex;
  707. #define mti_wmutex mt2.mt2_wmutex
  708. #endif
  709. char pad[(MNAME_LEN+CACHELINE-1) & ~(CACHELINE-1)];
  710. } mt2;
  711. MDB_reader mti_readers[1];
  712. } MDB_txninfo;
  713. /** Lockfile format signature: version, features and field layout */
  714. #define MDB_LOCK_FORMAT \
  715. ((uint32_t) \
  716. ((MDB_LOCK_VERSION) \
  717. /* Flags which describe functionality */ \
  718. + (((MDB_PIDLOCK) != 0) << 16)))
  719. /** @} */
  720. /** Common header for all page types. The page type depends on #mp_flags.
  721. *
  722. * #P_BRANCH and #P_LEAF pages have unsorted '#MDB_node's at the end, with
  723. * sorted #mp_ptrs[] entries referring to them. Exception: #P_LEAF2 pages
  724. * omit mp_ptrs and pack sorted #MDB_DUPFIXED values after the page header.
  725. *
  726. * #P_OVERFLOW records occupy one or more contiguous pages where only the
  727. * first has a page header. They hold the real data of #F_BIGDATA nodes.
  728. *
  729. * #P_SUBP sub-pages are small leaf "pages" with duplicate data.
  730. * A node with flag #F_DUPDATA but not #F_SUBDATA contains a sub-page.
  731. * (Duplicate data can also go in sub-databases, which use normal pages.)
  732. *
  733. * #P_META pages contain #MDB_meta, the start point of an LMDB snapshot.
  734. *
  735. * Each non-metapage up to #MDB_meta.%mm_last_pg is reachable exactly once
  736. * in the snapshot: Either used by a database or listed in a freeDB record.
  737. */
  738. typedef struct MDB_page {
  739. #define mp_pgno mp_p.p_pgno
  740. #define mp_next mp_p.p_next
  741. union {
  742. pgno_t p_pgno; /**< page number */
  743. struct MDB_page *p_next; /**< for in-memory list of freed pages */
  744. } mp_p;
  745. uint16_t mp_pad; /**< key size if this is a LEAF2 page */
  746. /** @defgroup mdb_page Page Flags
  747. * @ingroup internal
  748. * Flags for the page headers.
  749. * @{
  750. */
  751. #define P_BRANCH 0x01 /**< branch page */
  752. #define P_LEAF 0x02 /**< leaf page */
  753. #define P_OVERFLOW 0x04 /**< overflow page */
  754. #define P_META 0x08 /**< meta page */
  755. #define P_DIRTY 0x10 /**< dirty page, also set for #P_SUBP pages */
  756. #define P_LEAF2 0x20 /**< for #MDB_DUPFIXED records */
  757. #define P_SUBP 0x40 /**< for #MDB_DUPSORT sub-pages */
  758. #define P_LOOSE 0x4000 /**< page was dirtied then freed, can be reused */
  759. #define P_KEEP 0x8000 /**< leave this page alone during spill */
  760. /** @} */
  761. uint16_t mp_flags; /**< @ref mdb_page */
  762. #define mp_lower mp_pb.pb.pb_lower
  763. #define mp_upper mp_pb.pb.pb_upper
  764. #define mp_pages mp_pb.pb_pages
  765. union {
  766. struct {
  767. indx_t pb_lower; /**< lower bound of free space */
  768. indx_t pb_upper; /**< upper bound of free space */
  769. } pb;
  770. uint32_t pb_pages; /**< number of overflow pages */
  771. } mp_pb;
  772. indx_t mp_ptrs[0]; /**< dynamic size */
  773. } MDB_page;
  774. /** Alternate page header, for 2-byte aligned access */
  775. typedef struct MDB_page2 {
  776. uint16_t mp2_p[sizeof(pgno_t)/2];
  777. uint16_t mp2_pad;
  778. uint16_t mp2_flags;
  779. indx_t mp2_lower;
  780. indx_t mp2_upper;
  781. indx_t mp2_ptrs[0];
  782. } MDB_page2;
  783. #define MP_PGNO(p) (((MDB_page2 *)(void *)(p))->mp2_p)
  784. #define MP_PAD(p) (((MDB_page2 *)(void *)(p))->mp2_pad)
  785. #define MP_FLAGS(p) (((MDB_page2 *)(void *)(p))->mp2_flags)
  786. #define MP_LOWER(p) (((MDB_page2 *)(void *)(p))->mp2_lower)
  787. #define MP_UPPER(p) (((MDB_page2 *)(void *)(p))->mp2_upper)
  788. #define MP_PTRS(p) (((MDB_page2 *)(void *)(p))->mp2_ptrs)
  789. /** Size of the page header, excluding dynamic data at the end */
  790. #define PAGEHDRSZ ((unsigned) offsetof(MDB_page, mp_ptrs))
  791. /** Address of first usable data byte in a page, after the header */
  792. #define METADATA(p) ((void *)((char *)(p) + PAGEHDRSZ))
  793. /** ITS#7713, change PAGEBASE to handle 65536 byte pages */
  794. #define PAGEBASE ((MDB_DEVEL) ? PAGEHDRSZ : 0)
  795. /** Number of nodes on a page */
  796. #define NUMKEYS(p) ((MP_LOWER(p) - (PAGEHDRSZ-PAGEBASE)) >> 1)
  797. /** The amount of space remaining in the page */
  798. #define SIZELEFT(p) (indx_t)(MP_UPPER(p) - MP_LOWER(p))
  799. /** The percentage of space used in the page, in tenths of a percent. */
  800. #define PAGEFILL(env, p) (1000L * ((env)->me_psize - PAGEHDRSZ - SIZELEFT(p)) / \
  801. ((env)->me_psize - PAGEHDRSZ))
  802. /** The minimum page fill factor, in tenths of a percent.
  803. * Pages emptier than this are candidates for merging.
  804. */
  805. #define FILL_THRESHOLD 250
  806. /** Test if a page is a leaf page */
  807. #define IS_LEAF(p) F_ISSET(MP_FLAGS(p), P_LEAF)
  808. /** Test if a page is a LEAF2 page */
  809. #define IS_LEAF2(p) F_ISSET(MP_FLAGS(p), P_LEAF2)
  810. /** Test if a page is a branch page */
  811. #define IS_BRANCH(p) F_ISSET(MP_FLAGS(p), P_BRANCH)
  812. /** Test if a page is an overflow page */
  813. #define IS_OVERFLOW(p) F_ISSET(MP_FLAGS(p), P_OVERFLOW)
  814. /** Test if a page is a sub page */
  815. #define IS_SUBP(p) F_ISSET(MP_FLAGS(p), P_SUBP)
  816. /** The number of overflow pages needed to store the given size. */
  817. #define OVPAGES(size, psize) ((PAGEHDRSZ-1 + (size)) / (psize) + 1)
  818. /** Link in #MDB_txn.%mt_loose_pgs list.
  819. * Kept outside the page header, which is needed when reusing the page.
  820. */
  821. #define NEXT_LOOSE_PAGE(p) (*(MDB_page **)((p) + 2))
  822. /** Header for a single key/data pair within a page.
  823. * Used in pages of type #P_BRANCH and #P_LEAF without #P_LEAF2.
  824. * We guarantee 2-byte alignment for 'MDB_node's.
  825. *
  826. * #mn_lo and #mn_hi are used for data size on leaf nodes, and for child
  827. * pgno on branch nodes. On 64 bit platforms, #mn_flags is also used
  828. * for pgno. (Branch nodes have no flags). Lo and hi are in host byte
  829. * order in case some accesses can be optimized to 32-bit word access.
  830. *
  831. * Leaf node flags describe node contents. #F_BIGDATA says the node's
  832. * data part is the page number of an overflow page with actual data.
  833. * #F_DUPDATA and #F_SUBDATA can be combined giving duplicate data in
  834. * a sub-page/sub-database, and named databases (just #F_SUBDATA).
  835. */
  836. typedef struct MDB_node {
  837. /** part of data size or pgno
  838. * @{ */
  839. #if BYTE_ORDER == LITTLE_ENDIAN
  840. unsigned short mn_lo, mn_hi;
  841. #else
  842. unsigned short mn_hi, mn_lo;
  843. #endif
  844. /** @} */
  845. /** @defgroup mdb_node Node Flags
  846. * @ingroup internal
  847. * Flags for node headers.
  848. * @{
  849. */
  850. #define F_BIGDATA 0x01 /**< data put on overflow page */
  851. #define F_SUBDATA 0x02 /**< data is a sub-database */
  852. #define F_DUPDATA 0x04 /**< data has duplicates */
  853. /** valid flags for #mdb_node_add() */
  854. #define NODE_ADD_FLAGS (F_DUPDATA|F_SUBDATA|MDB_RESERVE|MDB_APPEND)
  855. /** @} */
  856. unsigned short mn_flags; /**< @ref mdb_node */
  857. unsigned short mn_ksize; /**< key size */
  858. char mn_data[1]; /**< key and data are appended here */
  859. } MDB_node;
  860. /** Size of the node header, excluding dynamic data at the end */
  861. #define NODESIZE offsetof(MDB_node, mn_data)
  862. /** Bit position of top word in page number, for shifting mn_flags */
  863. #define PGNO_TOPWORD ((pgno_t)-1 > 0xffffffffu ? 32 : 0)
  864. /** Size of a node in a branch page with a given key.
  865. * This is just the node header plus the key, there is no data.
  866. */
  867. #define INDXSIZE(k) (NODESIZE + ((k) == NULL ? 0 : (k)->mv_size))
  868. /** Size of a node in a leaf page with a given key and data.
  869. * This is node header plus key plus data size.
  870. */
  871. #define LEAFSIZE(k, d) (NODESIZE + (k)->mv_size + (d)->mv_size)
  872. /** Address of node \b i in page \b p */
  873. #define NODEPTR(p, i) ((MDB_node *)((char *)(p) + MP_PTRS(p)[i] + PAGEBASE))
  874. /** Address of the key for the node */
  875. #define NODEKEY(node) (void *)((node)->mn_data)
  876. /** Address of the data for a node */
  877. #define NODEDATA(node) (void *)((char *)(node)->mn_data + (node)->mn_ksize)
  878. /** Get the page number pointed to by a branch node */
  879. #define NODEPGNO(node) \
  880. ((node)->mn_lo | ((pgno_t) (node)->mn_hi << 16) | \
  881. (PGNO_TOPWORD ? ((pgno_t) (node)->mn_flags << PGNO_TOPWORD) : 0))
  882. /** Set the page number in a branch node */
  883. #define SETPGNO(node,pgno) do { \
  884. (node)->mn_lo = (pgno) & 0xffff; (node)->mn_hi = (pgno) >> 16; \
  885. if (PGNO_TOPWORD) (node)->mn_flags = (pgno) >> PGNO_TOPWORD; } while(0)
  886. /** Get the size of the data in a leaf node */
  887. #define NODEDSZ(node) ((node)->mn_lo | ((unsigned)(node)->mn_hi << 16))
  888. /** Set the size of the data for a leaf node */
  889. #define SETDSZ(node,size) do { \
  890. (node)->mn_lo = (size) & 0xffff; (node)->mn_hi = (size) >> 16;} while(0)
  891. /** The size of a key in a node */
  892. #define NODEKSZ(node) ((node)->mn_ksize)
  893. /** Copy a page number from src to dst */
  894. #ifdef MISALIGNED_OK
  895. #define COPY_PGNO(dst,src) dst = src
  896. #undef MP_PGNO
  897. #define MP_PGNO(p) ((p)->mp_pgno)
  898. #else
  899. #if SIZE_MAX > 4294967295UL
  900. #define COPY_PGNO(dst,src) do { \
  901. unsigned short *s, *d; \
  902. s = (unsigned short *)&(src); \
  903. d = (unsigned short *)&(dst); \
  904. *d++ = *s++; \
  905. *d++ = *s++; \
  906. *d++ = *s++; \
  907. *d = *s; \
  908. } while (0)
  909. #else
  910. #define COPY_PGNO(dst,src) do { \
  911. unsigned short *s, *d; \
  912. s = (unsigned short *)&(src); \
  913. d = (unsigned short *)&(dst); \
  914. *d++ = *s++; \
  915. *d = *s; \
  916. } while (0)
  917. #endif
  918. #endif
  919. /** The address of a key in a LEAF2 page.
  920. * LEAF2 pages are used for #MDB_DUPFIXED sorted-duplicate sub-DBs.
  921. * There are no node headers, keys are stored contiguously.
  922. */
  923. #define LEAF2KEY(p, i, ks) ((char *)(p) + PAGEHDRSZ + ((i)*(ks)))
  924. /** Set the \b node's key into \b keyptr, if requested. */
  925. #define MDB_GET_KEY(node, keyptr) { if ((keyptr) != NULL) { \
  926. (keyptr)->mv_size = NODEKSZ(node); (keyptr)->mv_data = NODEKEY(node); } }
  927. /** Set the \b node's key into \b key. */
  928. #define MDB_GET_KEY2(node, key) { key.mv_size = NODEKSZ(node); key.mv_data = NODEKEY(node); }
  929. /** Information about a single database in the environment. */
  930. typedef struct MDB_db {
  931. uint32_t md_pad; /**< also ksize for LEAF2 pages */
  932. uint16_t md_flags; /**< @ref mdb_dbi_open */
  933. uint16_t md_depth; /**< depth of this tree */
  934. pgno_t md_branch_pages; /**< number of internal pages */
  935. pgno_t md_leaf_pages; /**< number of leaf pages */
  936. pgno_t md_overflow_pages; /**< number of overflow pages */
  937. size_t md_entries; /**< number of data items */
  938. pgno_t md_root; /**< the root page of this tree */
  939. } MDB_db;
  940. #define MDB_VALID 0x8000 /**< DB handle is valid, for me_dbflags */
  941. #define PERSISTENT_FLAGS (0xffff & ~(MDB_VALID))
  942. /** #mdb_dbi_open() flags */
  943. #define VALID_FLAGS (MDB_REVERSEKEY|MDB_DUPSORT|MDB_INTEGERKEY|MDB_DUPFIXED|\
  944. MDB_INTEGERDUP|MDB_REVERSEDUP|MDB_CREATE)
  945. /** Handle for the DB used to track free pages. */
  946. #define FREE_DBI 0
  947. /** Handle for the default DB. */
  948. #define MAIN_DBI 1
  949. /** Number of DBs in metapage (free and main) - also hardcoded elsewhere */
  950. #define CORE_DBS 2
  951. /** Number of meta pages - also hardcoded elsewhere */
  952. #define NUM_METAS 2
  953. /** Meta page content.
  954. * A meta page is the start point for accessing a database snapshot.
  955. * Pages 0-1 are meta pages. Transaction N writes meta page #(N % 2).
  956. */
  957. typedef struct MDB_meta {
  958. /** Stamp identifying this as an LMDB file. It must be set
  959. * to #MDB_MAGIC. */
  960. uint32_t mm_magic;
  961. /** Version number of this file. Must be set to #MDB_DATA_VERSION. */
  962. uint32_t mm_version;
  963. void *mm_address; /**< address for fixed mapping */
  964. size_t mm_mapsize; /**< size of mmap region */
  965. MDB_db mm_dbs[CORE_DBS]; /**< first is free space, 2nd is main db */
  966. /** The size of pages used in this DB */
  967. #define mm_psize mm_dbs[FREE_DBI].md_pad
  968. /** Any persistent environment flags. @ref mdb_env */
  969. #define mm_flags mm_dbs[FREE_DBI].md_flags
  970. /** Last used page in the datafile.
  971. * Actually the file may be shorter if the freeDB lists the final pages.
  972. */
  973. pgno_t mm_last_pg;
  974. volatile txnid_t mm_txnid; /**< txnid that committed this page */
  975. } MDB_meta;
  976. /** Buffer for a stack-allocated meta page.
  977. * The members define size and alignment, and silence type
  978. * aliasing warnings. They are not used directly; that could
  979. * mean incorrectly using several union members in parallel.
  980. */
  981. typedef union MDB_metabuf {
  982. MDB_page mb_page;
  983. struct {
  984. char mm_pad[PAGEHDRSZ];
  985. MDB_meta mm_meta;
  986. } mb_metabuf;
  987. } MDB_metabuf;
  988. /** Auxiliary DB info.
  989. * The information here is mostly static/read-only. There is
  990. * only a single copy of this record in the environment.
  991. */
  992. typedef struct MDB_dbx {
  993. MDB_val md_name; /**< name of the database */
  994. MDB_cmp_func *md_cmp; /**< function for comparing keys */
  995. MDB_cmp_func *md_dcmp; /**< function for comparing data items */
  996. MDB_rel_func *md_rel; /**< user relocate function */
  997. void *md_relctx; /**< user-provided context for md_rel */
  998. } MDB_dbx;
  999. /** A database transaction.
  1000. * Every operation requires a transaction handle.
  1001. */
  1002. struct MDB_txn {
  1003. MDB_txn *mt_parent; /**< parent of a nested txn */
  1004. /** Nested txn under this txn, set together with flag #MDB_TXN_HAS_CHILD */
  1005. MDB_txn *mt_child;
  1006. pgno_t mt_next_pgno; /**< next unallocated page */
  1007. /** The ID of this transaction. IDs are integers incrementing from 1.
  1008. * Only committed write transactions increment the ID. If a transaction
  1009. * aborts, the ID may be re-used by the next writer.
  1010. */
  1011. txnid_t mt_txnid;
  1012. MDB_env *mt_env; /**< the DB environment */
  1013. /** The list of pages that became unused during this transaction.
  1014. */
  1015. MDB_IDL mt_free_pgs;
  1016. /** The list of loose pages that became unused and may be reused
  1017. * in this transaction, linked through #NEXT_LOOSE_PAGE(page).
  1018. */
  1019. MDB_page *mt_loose_pgs;
  1020. /** Number of loose pages (#mt_loose_pgs) */
  1021. int mt_loose_count;
  1022. /** The sorted list of dirty pages we temporarily wrote to disk
  1023. * because the dirty list was full. page numbers in here are
  1024. * shifted left by 1, deleted slots have the LSB set.
  1025. */
  1026. MDB_IDL mt_spill_pgs;
  1027. union {
  1028. /** For write txns: Modified pages. Sorted when not MDB_WRITEMAP. */
  1029. MDB_ID2L dirty_list;
  1030. /** For read txns: This thread/txn's reader table slot, or NULL. */
  1031. MDB_reader *reader;
  1032. } mt_u;
  1033. /** Array of records for each DB known in the environment. */
  1034. MDB_dbx *mt_dbxs;
  1035. /** Array of MDB_db records for each known DB */
  1036. MDB_db *mt_dbs;
  1037. /** Array of sequence numbers for each DB handle */
  1038. unsigned int *mt_dbiseqs;
  1039. /** @defgroup mt_dbflag Transaction DB Flags
  1040. * @ingroup internal
  1041. * @{
  1042. */
  1043. #define DB_DIRTY 0x01 /**< DB was written in this txn */
  1044. #define DB_STALE 0x02 /**< Named-DB record is older than txnID */
  1045. #define DB_NEW 0x04 /**< Named-DB handle opened in this txn */
  1046. #define DB_VALID 0x08 /**< DB handle is valid, see also #MDB_VALID */
  1047. #define DB_USRVALID 0x10 /**< As #DB_VALID, but not set for #FREE_DBI */
  1048. #define DB_DUPDATA 0x20 /**< DB is #MDB_DUPSORT data */
  1049. /** @} */
  1050. /** In write txns, array of cursors for each DB */
  1051. MDB_cursor **mt_cursors;
  1052. /** Array of flags for each DB */
  1053. unsigned char *mt_dbflags;
  1054. /** Number of DB records in use, or 0 when the txn is finished.
  1055. * This number only ever increments until the txn finishes; we
  1056. * don't decrement it when individual DB handles are closed.
  1057. */
  1058. MDB_dbi mt_numdbs;
  1059. /** @defgroup mdb_txn Transaction Flags
  1060. * @ingroup internal
  1061. * @{
  1062. */
  1063. /** #mdb_txn_begin() flags */
  1064. #define MDB_TXN_BEGIN_FLAGS MDB_RDONLY
  1065. #define MDB_TXN_RDONLY MDB_RDONLY /**< read-only transaction */
  1066. /* internal txn flags */
  1067. #define MDB_TXN_WRITEMAP MDB_WRITEMAP /**< copy of #MDB_env flag in writers */
  1068. #define MDB_TXN_FINISHED 0x01 /**< txn is finished or never began */
  1069. #define MDB_TXN_ERROR 0x02 /**< txn is unusable after an error */
  1070. #define MDB_TXN_DIRTY 0x04 /**< must write, even if dirty list is empty */
  1071. #define MDB_TXN_SPILLS 0x08 /**< txn or a parent has spilled pages */
  1072. #define MDB_TXN_HAS_CHILD 0x10 /**< txn has an #MDB_txn.%mt_child */
  1073. /** most operations on the txn are currently illegal */
  1074. #define MDB_TXN_BLOCKED (MDB_TXN_FINISHED|MDB_TXN_ERROR|MDB_TXN_HAS_CHILD)
  1075. /** @} */
  1076. unsigned int mt_flags; /**< @ref mdb_txn */
  1077. /** #dirty_list room: Array size - \#dirty pages visible to this txn.
  1078. * Includes ancestor txns' dirty pages not hidden by other txns'
  1079. * dirty/spilled pages. Thus commit(nested txn) has room to merge
  1080. * dirty_list into mt_parent after freeing hidden mt_parent pages.
  1081. */
  1082. unsigned int mt_dirty_room;
  1083. };
  1084. /** Enough space for 2^32 nodes with minimum of 2 keys per node. I.e., plenty.
  1085. * At 4 keys per node, enough for 2^64 nodes, so there's probably no need to
  1086. * raise this on a 64 bit machine.
  1087. */
  1088. #define CURSOR_STACK 32
  1089. struct MDB_xcursor;
  1090. /** Cursors are used for all DB operations.
  1091. * A cursor holds a path of (page pointer, key index) from the DB
  1092. * root to a position in the DB, plus other state. #MDB_DUPSORT
  1093. * cursors include an xcursor to the current data item. Write txns
  1094. * track their cursors and keep them up to date when data moves.
  1095. * Exception: An xcursor's pointer to a #P_SUBP page can be stale.
  1096. * (A node with #F_DUPDATA but no #F_SUBDATA contains a subpage).
  1097. */
  1098. struct MDB_cursor {
  1099. /** Next cursor on this DB in this txn */
  1100. MDB_cursor *mc_next;
  1101. /** Backup of the original cursor if this cursor is a shadow */
  1102. MDB_cursor *mc_backup;
  1103. /** Context used for databases with #MDB_DUPSORT, otherwise NULL */
  1104. struct MDB_xcursor *mc_xcursor;
  1105. /** The transaction that owns this cursor */
  1106. MDB_txn *mc_txn;
  1107. /** The database handle this cursor operates on */
  1108. MDB_dbi mc_dbi;
  1109. /** The database record for this cursor */
  1110. MDB_db *mc_db;
  1111. /** The database auxiliary record for this cursor */
  1112. MDB_dbx *mc_dbx;
  1113. /** The @ref mt_dbflag for this database */
  1114. unsigned char *mc_dbflag;
  1115. unsigned short mc_snum; /**< number of pushed pages */
  1116. unsigned short mc_top; /**< index of top page, normally mc_snum-1 */
  1117. /** @defgroup mdb_cursor Cursor Flags
  1118. * @ingroup internal
  1119. * Cursor state flags.
  1120. * @{
  1121. */
  1122. #define C_INITIALIZED 0x01 /**< cursor has been initialized and is valid */
  1123. #define C_EOF 0x02 /**< No more data */
  1124. #define C_SUB 0x04 /**< Cursor is a sub-cursor */
  1125. #define C_DEL 0x08 /**< last op was a cursor_del */
  1126. #define C_UNTRACK 0x40 /**< Un-track cursor when closing */
  1127. /** @} */
  1128. unsigned int mc_flags; /**< @ref mdb_cursor */
  1129. MDB_page *mc_pg[CURSOR_STACK]; /**< stack of pushed pages */
  1130. indx_t mc_ki[CURSOR_STACK]; /**< stack of page indices */
  1131. };
  1132. /** Context for sorted-dup records.
  1133. * We could have gone to a fully recursive design, with arbitrarily
  1134. * deep nesting of sub-databases. But for now we only handle these
  1135. * levels - main DB, optional sub-DB, sorted-duplicate DB.
  1136. */
  1137. typedef struct MDB_xcursor {
  1138. /** A sub-cursor for traversing the Dup DB */
  1139. MDB_cursor mx_cursor;
  1140. /** The database record for this Dup DB */
  1141. MDB_db mx_db;
  1142. /** The auxiliary DB record for this Dup DB */
  1143. MDB_dbx mx_dbx;
  1144. /** The @ref mt_dbflag for this Dup DB */
  1145. unsigned char mx_dbflag;
  1146. } MDB_xcursor;
  1147. /** Check if there is an inited xcursor */
  1148. #define XCURSOR_INITED(mc) \
  1149. ((mc)->mc_xcursor && ((mc)->mc_xcursor->mx_cursor.mc_flags & C_INITIALIZED))
  1150. /** Update the xcursor's sub-page pointer, if any, in \b mc. Needed
  1151. * when the node which contains the sub-page may have moved. Called
  1152. * with leaf page \b mp = mc->mc_pg[\b top].
  1153. */
  1154. #define XCURSOR_REFRESH(mc, top, mp) do { \
  1155. MDB_page *xr_pg = (mp); \
  1156. MDB_node *xr_node; \
  1157. if (!XCURSOR_INITED(mc) || (mc)->mc_ki[top] >= NUMKEYS(xr_pg)) break; \
  1158. xr_node = NODEPTR(xr_pg, (mc)->mc_ki[top]); \
  1159. if ((xr_node->mn_flags & (F_DUPDATA|F_SUBDATA)) == F_DUPDATA) \
  1160. (mc)->mc_xcursor->mx_cursor.mc_pg[0] = NODEDATA(xr_node); \
  1161. } while (0)
  1162. /** State of FreeDB old pages, stored in the MDB_env */
  1163. typedef struct MDB_pgstate {
  1164. pgno_t *mf_pghead; /**< Reclaimed freeDB pages, or NULL before use */
  1165. txnid_t mf_pglast; /**< ID of last used record, or 0 if !mf_pghead */
  1166. } MDB_pgstate;
  1167. /** The database environment. */
  1168. struct MDB_env {
  1169. HANDLE me_fd; /**< The main data file */
  1170. HANDLE me_lfd; /**< The lock file */
  1171. HANDLE me_mfd; /**< For writing and syncing the meta pages */
  1172. /** Failed to update the meta page. Probably an I/O error. */
  1173. #define MDB_FATAL_ERROR 0x80000000U
  1174. /** Some fields are initialized. */
  1175. #define MDB_ENV_ACTIVE 0x20000000U
  1176. /** me_txkey is set */
  1177. #define MDB_ENV_TXKEY 0x10000000U
  1178. /** fdatasync is unreliable */
  1179. #define MDB_FSYNCONLY 0x08000000U
  1180. uint32_t me_flags; /**< @ref mdb_env */
  1181. unsigned int me_psize; /**< DB page size, inited from me_os_psize */
  1182. unsigned int me_os_psize; /**< OS page size, from #GET_PAGESIZE */
  1183. unsigned int me_maxreaders; /**< size of the reader table */
  1184. /** Max #MDB_txninfo.%mti_numreaders of interest to #mdb_env_close() */
  1185. volatile int me_close_readers;
  1186. MDB_dbi me_numdbs; /**< number of DBs opened */
  1187. MDB_dbi me_maxdbs; /**< size of the DB table */
  1188. MDB_PID_T me_pid; /**< process ID of this env */
  1189. char *me_path; /**< path to the DB files */
  1190. char *me_map; /**< the memory map of the data file */
  1191. MDB_txninfo *me_txns; /**< the memory map of the lock file or NULL */
  1192. MDB_meta *me_metas[NUM_METAS]; /**< pointers to the two meta pages */
  1193. void *me_pbuf; /**< scratch area for DUPSORT put() */
  1194. MDB_txn *me_txn; /**< current write transaction */
  1195. MDB_txn *me_txn0; /**< prealloc'd write transaction */
  1196. size_t me_mapsize; /**< size of the data memory map */
  1197. off_t me_size; /**< current file size */
  1198. pgno_t me_maxpg; /**< me_mapsize / me_psize */
  1199. MDB_dbx *me_dbxs; /**< array of static DB info */
  1200. uint16_t *me_dbflags; /**< array of flags from MDB_db.md_flags */
  1201. unsigned int *me_dbiseqs; /**< array of dbi sequence numbers */
  1202. pthread_key_t me_txkey; /**< thread-key for readers */
  1203. txnid_t me_pgoldest; /**< ID of oldest reader last time we looked */
  1204. MDB_pgstate me_pgstate; /**< state of old pages from freeDB */
  1205. # define me_pglast me_pgstate.mf_pglast
  1206. # define me_pghead me_pgstate.mf_pghead
  1207. MDB_page *me_dpages; /**< list of malloc'd blocks for re-use */
  1208. /** IDL of pages that became unused in a write txn */
  1209. MDB_IDL me_free_pgs;
  1210. /** ID2L of pages written during a write txn. Length MDB_IDL_UM_SIZE. */
  1211. MDB_ID2L me_dirty_list;
  1212. /** Max number of freelist items that can fit in a single overflow page */
  1213. int me_maxfree_1pg;
  1214. /** Max size of a node on a page */
  1215. unsigned int me_nodemax;
  1216. #if !(MDB_MAXKEYSIZE)
  1217. unsigned int me_maxkey; /**< max size of a key */
  1218. #endif
  1219. int me_live_reader; /**< have liveness lock in reader table */
  1220. #ifdef _WIN32
  1221. int me_pidquery; /**< Used in OpenProcess */
  1222. #endif
  1223. #ifdef MDB_USE_POSIX_MUTEX /* Posix mutexes reside in shared mem */
  1224. # define me_rmutex me_txns->mti_rmutex /**< Shared reader lock */
  1225. # define me_wmutex me_txns->mti_wmutex /**< Shared writer lock */
  1226. #else
  1227. mdb_mutex_t me_rmutex;
  1228. mdb_mutex_t me_wmutex;
  1229. #endif
  1230. void *me_userctx; /**< User-settable context */
  1231. MDB_assert_func *me_assert_func; /**< Callback for assertion failures */
  1232. };
  1233. /** Nested transaction */
  1234. typedef struct MDB_ntxn {
  1235. MDB_txn mnt_txn; /**< the transaction */
  1236. MDB_pgstate mnt_pgstate; /**< parent transaction's saved freestate */
  1237. } MDB_ntxn;
  1238. /** max number of pages to commit in one writev() call */
  1239. #define MDB_COMMIT_PAGES 64
  1240. #if defined(IOV_MAX) && IOV_MAX < MDB_COMMIT_PAGES
  1241. #undef MDB_COMMIT_PAGES
  1242. #define MDB_COMMIT_PAGES IOV_MAX
  1243. #endif
  1244. /** max bytes to write in one call */
  1245. #define MAX_WRITE (0x40000000U >> (sizeof(ssize_t) == 4))
  1246. /** Check \b txn and \b dbi arguments to a function */
  1247. #define TXN_DBI_EXIST(txn, dbi, validity) \
  1248. ((txn) && (dbi)<(txn)->mt_numdbs && ((txn)->mt_dbflags[dbi] & (validity)))
  1249. /** Check for misused \b dbi handles */
  1250. #define TXN_DBI_CHANGED(txn, dbi) \
  1251. ((txn)->mt_dbiseqs[dbi] != (txn)->mt_env->me_dbiseqs[dbi])
  1252. static int mdb_page_alloc(MDB_cursor *mc, int num, MDB_page **mp);
  1253. static int mdb_page_new(MDB_cursor *mc, uint32_t flags, int num, MDB_page **mp);
  1254. static int mdb_page_touch(MDB_cursor *mc);
  1255. #define MDB_END_NAMES {"committed", "empty-commit", "abort", "reset", \
  1256. "reset-tmp", "fail-begin", "fail-beginchild"}
  1257. enum {
  1258. /* mdb_txn_end operation number, for logging */
  1259. MDB_END_COMMITTED, MDB_END_EMPTY_COMMIT, MDB_END_ABORT, MDB_END_RESET,
  1260. MDB_END_RESET_TMP, MDB_END_FAIL_BEGIN, MDB_END_FAIL_BEGINCHILD
  1261. };
  1262. #define MDB_END_OPMASK 0x0F /**< mask for #mdb_txn_end() operation number */
  1263. #define MDB_END_UPDATE 0x10 /**< update env state (DBIs) */
  1264. #define MDB_END_FREE 0x20 /**< free txn unless it is #MDB_env.%me_txn0 */
  1265. #define MDB_END_SLOT MDB_NOTLS /**< release any reader slot if #MDB_NOTLS */
  1266. static void mdb_txn_end(MDB_txn *txn, unsigned mode);
  1267. static int mdb_page_get(MDB_cursor *mc, pgno_t pgno, MDB_page **mp, int *lvl);
  1268. static int mdb_page_search_root(MDB_cursor *mc,
  1269. MDB_val *key, int modify);
  1270. #define MDB_PS_MODIFY 1
  1271. #define MDB_PS_ROOTONLY 2
  1272. #define MDB_PS_FIRST 4
  1273. #define MDB_PS_LAST 8
  1274. static int mdb_page_search(MDB_cursor *mc,
  1275. MDB_val *key, int flags);
  1276. static int mdb_page_merge(MDB_cursor *csrc, MDB_cursor *cdst);
  1277. #define MDB_SPLIT_REPLACE MDB_APPENDDUP /**< newkey is not new */
  1278. static int mdb_page_split(MDB_cursor *mc, MDB_val *newkey, MDB_val *newdata,
  1279. pgno_t newpgno, unsigned int nflags);
  1280. static int mdb_env_read_header(MDB_env *env, MDB_meta *meta);
  1281. static MDB_meta *mdb_env_pick_meta(const MDB_env *env);
  1282. static int mdb_env_write_meta(MDB_txn *txn);
  1283. #if defined(MDB_USE_POSIX_MUTEX) && !defined(MDB_ROBUST_SUPPORTED) /* Drop unused excl arg */
  1284. # define mdb_env_close0(env, excl) mdb_env_close1(env)
  1285. #endif
  1286. static void mdb_env_close0(MDB_env *env, int excl);
  1287. static MDB_node *mdb_node_search(MDB_cursor *mc, MDB_val *key, int *exactp);
  1288. static int mdb_node_add(MDB_cursor *mc, indx_t indx,
  1289. MDB_val *key, MDB_val *data, pgno_t pgno, unsigned int flags);
  1290. static void mdb_node_del(MDB_cursor *mc, int ksize);
  1291. static void mdb_node_shrink(MDB_page *mp, indx_t indx);
  1292. static int mdb_node_move(MDB_cursor *csrc, MDB_cursor *cdst, int fromleft);
  1293. static int mdb_node_read(MDB_cursor *mc, MDB_node *leaf, MDB_val *data);
  1294. static size_t mdb_leaf_size(MDB_env *env, MDB_val *key, MDB_val *data);
  1295. static size_t mdb_branch_size(MDB_env *env, MDB_val *key);
  1296. static int mdb_rebalance(MDB_cursor *mc);
  1297. static int mdb_update_key(MDB_cursor *mc, MDB_val *key);
  1298. static void mdb_cursor_pop(MDB_cursor *mc);
  1299. static int mdb_cursor_push(MDB_cursor *mc, MDB_page *mp);
  1300. static int mdb_cursor_del0(MDB_cursor *mc);
  1301. static int mdb_del0(MDB_txn *txn, MDB_dbi dbi, MDB_val *key, MDB_val *data, unsigned flags);
  1302. static int mdb_cursor_sibling(MDB_cursor *mc, int move_right);
  1303. static int mdb_cursor_next(MDB_cursor *mc, MDB_val *key, MDB_val *data, MDB_cursor_op op);
  1304. static int mdb_cursor_prev(MDB_cursor *mc, MDB_val *key, MDB_val *data, MDB_cursor_op op);
  1305. static int mdb_cursor_set(MDB_cursor *mc, MDB_val *key, MDB_val *data, MDB_cursor_op op,
  1306. int *exactp);
  1307. static int mdb_cursor_first(MDB_cursor *mc, MDB_val *key, MDB_val *data);
  1308. static int mdb_cursor_last(MDB_cursor *mc, MDB_val *key, MDB_val *data);
  1309. static void mdb_cursor_init(MDB_cursor *mc, MDB_txn *txn, MDB_dbi dbi, MDB_xcursor *mx);
  1310. static void mdb_xcursor_init0(MDB_cursor *mc);
  1311. static void mdb_xcursor_init1(MDB_cursor *mc, MDB_node *node);
  1312. static void mdb_xcursor_init2(MDB_cursor *mc, MDB_xcursor *src_mx, int force);
  1313. static int mdb_drop0(MDB_cursor *mc, int subs);
  1314. static void mdb_default_cmp(MDB_txn *txn, MDB_dbi dbi);
  1315. static int mdb_reader_check0(MDB_env *env, int rlocked, int *dead);
  1316. /** @cond */
  1317. static MDB_cmp_func mdb_cmp_memn, mdb_cmp_memnr, mdb_cmp_int, mdb_cmp_cint, mdb_cmp_long;
  1318. /** @endcond */
  1319. /** Compare two items pointing at size_t's of unknown alignment. */
  1320. #ifdef MISALIGNED_OK
  1321. # define mdb_cmp_clong mdb_cmp_long
  1322. #else
  1323. # define mdb_cmp_clong mdb_cmp_cint
  1324. #endif
  1325. #ifdef _WIN32
  1326. static SECURITY_DESCRIPTOR mdb_null_sd;
  1327. static SECURITY_ATTRIBUTES mdb_all_sa;
  1328. static int mdb_sec_inited;
  1329. struct MDB_name;
  1330. static int utf8_to_utf16(const char *src, struct MDB_name *dst, int xtra);
  1331. #endif
  1332. /** Return the library version info. */
  1333. char * ESECT
  1334. mdb_version(int *major, int *minor, int *patch)
  1335. {
  1336. if (major) *major = MDB_VERSION_MAJOR;
  1337. if (minor) *minor = MDB_VERSION_MINOR;
  1338. if (patch) *patch = MDB_VERSION_PATCH;
  1339. return MDB_VERSION_STRING;
  1340. }
  1341. /** Table of descriptions for LMDB @ref errors */
  1342. static char *const mdb_errstr[] = {
  1343. "MDB_KEYEXIST: Key/data pair already exists",
  1344. "MDB_NOTFOUND: No matching key/data pair found",
  1345. "MDB_PAGE_NOTFOUND: Requested page not found",
  1346. "MDB_CORRUPTED: Located page was wrong type",
  1347. "MDB_PANIC: Update of meta page failed or environment had fatal error",
  1348. "MDB_VERSION_MISMATCH: Database environment version mismatch",
  1349. "MDB_INVALID: File is not an LMDB file",
  1350. "MDB_MAP_FULL: Environment mapsize limit reached",
  1351. "MDB_DBS_FULL: Environment maxdbs limit reached",
  1352. "MDB_READERS_FULL: Environment maxreaders limit reached",
  1353. "MDB_TLS_FULL: Thread-local storage keys full - too many environments open",
  1354. "MDB_TXN_FULL: Transaction has too many dirty pages - transaction too big",
  1355. "MDB_CURSOR_FULL: Internal error - cursor stack limit reached",
  1356. "MDB_PAGE_FULL: Internal error - page has no more space",
  1357. "MDB_MAP_RESIZED: Database contents grew beyond environment mapsize",
  1358. "MDB_INCOMPATIBLE: Operation and DB incompatible, or DB flags changed",
  1359. "MDB_BAD_RSLOT: Invalid reuse of reader locktable slot",
  1360. "MDB_BAD_TXN: Transaction must abort, has a child, or is invalid",
  1361. "MDB_BAD_VALSIZE: Unsupported size of key/DB name/data, or wrong DUPFIXED size",
  1362. "MDB_BAD_DBI: The specified DBI handle was closed/changed unexpectedly",
  1363. };
  1364. char *
  1365. mdb_strerror(int err)
  1366. {
  1367. #ifdef _WIN32
  1368. /** HACK: pad 4KB on stack over the buf. Return system msgs in buf.
  1369. * This works as long as no function between the call to mdb_strerror
  1370. * and the actual use of the message uses more than 4K of stack.
  1371. */
  1372. #define MSGSIZE 1024
  1373. #define PADSIZE 4096
  1374. char buf[MSGSIZE+PADSIZE], *ptr = buf;
  1375. #endif
  1376. int i;
  1377. if (!err)
  1378. return ("Successful return: 0");
  1379. if (err >= MDB_KEYEXIST && err <= MDB_LAST_ERRCODE) {
  1380. i = err - MDB_KEYEXIST;
  1381. return mdb_errstr[i];
  1382. }
  1383. #ifdef _WIN32
  1384. /* These are the C-runtime error codes we use. The comment indicates
  1385. * their numeric value, and the Win32 error they would correspond to
  1386. * if the error actually came from a Win32 API. A major mess, we should
  1387. * have used LMDB-specific error codes for everything.
  1388. */
  1389. switch(err) {
  1390. case ENOENT: /* 2, FILE_NOT_FOUND */
  1391. case EIO: /* 5, ACCESS_DENIED */
  1392. case ENOMEM: /* 12, INVALID_ACCESS */
  1393. case EACCES: /* 13, INVALID_DATA */
  1394. case EBUSY: /* 16, CURRENT_DIRECTORY */
  1395. case EINVAL: /* 22, BAD_COMMAND */
  1396. case ENOSPC: /* 28, OUT_OF_PAPER */
  1397. return strerror(err);
  1398. default:
  1399. ;
  1400. }
  1401. buf[0] = 0;
  1402. FormatMessageA(FORMAT_MESSAGE_FROM_SYSTEM |
  1403. FORMAT_MESSAGE_IGNORE_INSERTS,
  1404. NULL, err, 0, ptr, MSGSIZE, (va_list *)buf+MSGSIZE);
  1405. return ptr;
  1406. #else
  1407. if (err < 0)
  1408. return "Invalid error code";
  1409. return strerror(err);
  1410. #endif
  1411. }
  1412. /** assert(3) variant in cursor context */
  1413. #define mdb_cassert(mc, expr) mdb_assert0((mc)->mc_txn->mt_env, expr, #expr)
  1414. /** assert(3) variant in transaction context */
  1415. #define mdb_tassert(txn, expr) mdb_assert0((txn)->mt_env, expr, #expr)
  1416. /** assert(3) variant in environment context */
  1417. #define mdb_eassert(env, expr) mdb_assert0(env, expr, #expr)
  1418. #ifndef NDEBUG
  1419. # define mdb_assert0(env, expr, expr_txt) ((expr) ? (void)0 : \
  1420. mdb_assert_fail(env, expr_txt, mdb_func_, __FILE__, __LINE__))
  1421. static void ESECT
  1422. mdb_assert_fail(MDB_env *env, const char *expr_txt,
  1423. const char *func, const char *file, int line)
  1424. {
  1425. char buf[400];
  1426. sprintf(buf, "%.100s:%d: Assertion '%.200s' failed in %.40s()",
  1427. file, line, expr_txt, func);
  1428. if (env->me_assert_func)
  1429. env->me_assert_func(env, buf);
  1430. fprintf(stderr, "%s\n", buf);
  1431. abort();
  1432. }
  1433. #else
  1434. # define mdb_assert0(env, expr, expr_txt) ((void) 0)
  1435. #endif /* NDEBUG */
  1436. #if MDB_DEBUG
  1437. /** Return the page number of \b mp which may be sub-page, for debug output */
  1438. static pgno_t
  1439. mdb_dbg_pgno(MDB_page *mp)
  1440. {
  1441. pgno_t ret;
  1442. COPY_PGNO(ret, MP_PGNO(mp));
  1443. return ret;
  1444. }
  1445. /** Display a key in hexadecimal and return the address of the result.
  1446. * @param[in] key the key to display
  1447. * @param[in] buf the buffer to write into. Should always be #DKBUF.
  1448. * @return The key in hexadecimal form.
  1449. */
  1450. char *
  1451. mdb_dkey(MDB_val *key, char *buf)
  1452. {
  1453. char *ptr = buf;
  1454. unsigned char *c = key->mv_data;
  1455. unsigned int i;
  1456. if (!key)
  1457. return "";
  1458. if (key->mv_size > DKBUF_MAXKEYSIZE)
  1459. return "MDB_MAXKEYSIZE";
  1460. /* may want to make this a dynamic check: if the key is mostly
  1461. * printable characters, print it as-is instead of converting to hex.
  1462. */
  1463. #if 1
  1464. buf[0] = '\0';
  1465. for (i=0; i<key->mv_size; i++)
  1466. ptr += sprintf(ptr, "%02x", *c++);
  1467. #else
  1468. sprintf(buf, "%.*s", key->mv_size, key->mv_data);
  1469. #endif
  1470. return buf;
  1471. }
  1472. static const char *
  1473. mdb_leafnode_type(MDB_node *n)
  1474. {
  1475. static char *const tp[2][2] = {{"", ": DB"}, {": sub-page", ": sub-DB"}};
  1476. return F_ISSET(n->mn_flags, F_BIGDATA) ? ": overflow page" :
  1477. tp[F_ISSET(n->mn_flags, F_DUPDATA)][F_ISSET(n->mn_flags, F_SUBDATA)];
  1478. }
  1479. /** Display all the keys in the page. */
  1480. void
  1481. mdb_page_list(MDB_page *mp)
  1482. {
  1483. pgno_t pgno = mdb_dbg_pgno(mp);
  1484. const char *type, *state = (MP_FLAGS(mp) & P_DIRTY) ? ", dirty" : "";
  1485. MDB_node *node;
  1486. unsigned int i, nkeys, nsize, total = 0;
  1487. MDB_val key;
  1488. DKBUF;
  1489. switch (MP_FLAGS(mp) & (P_BRANCH|P_LEAF|P_LEAF2|P_META|P_OVERFLOW|P_SUBP)) {
  1490. case P_BRANCH: type = "Branch page"; break;
  1491. case P_LEAF: type = "Leaf page"; break;
  1492. case P_LEAF|P_SUBP: type = "Sub-page"; break;
  1493. case P_LEAF|P_LEAF2: type = "LEAF2 page"; break;
  1494. case P_LEAF|P_LEAF2|P_SUBP: type = "LEAF2 sub-page"; break;
  1495. case P_OVERFLOW:
  1496. fprintf(stderr, "Overflow page %"Z"u pages %u%s\n",
  1497. pgno, mp->mp_pages, state);
  1498. return;
  1499. case P_META:
  1500. fprintf(stderr, "Meta-page %"Z"u txnid %"Z"u\n",
  1501. pgno, ((MDB_meta *)METADATA(mp))->mm_txnid);
  1502. return;
  1503. default:
  1504. fprintf(stderr, "Bad page %"Z"u flags 0x%X\n", pgno, MP_FLAGS(mp));
  1505. return;
  1506. }
  1507. nkeys = NUMKEYS(mp);
  1508. fprintf(stderr, "%s %"Z"u numkeys %d%s\n", type, pgno, nkeys, state);
  1509. for (i=0; i<nkeys; i++) {
  1510. if (IS_LEAF2(mp)) { /* LEAF2 pages have no mp_ptrs[] or node headers */
  1511. key.mv_size = nsize = mp->mp_pad;
  1512. key.mv_data = LEAF2KEY(mp, i, nsize);
  1513. total += nsize;
  1514. fprintf(stderr, "key %d: nsize %d, %s\n", i, nsize, DKEY(&key));
  1515. continue;
  1516. }
  1517. node = NODEPTR(mp, i);
  1518. key.mv_size = node->mn_ksize;
  1519. key.mv_data = node->mn_data;
  1520. nsize = NODESIZE + key.mv_size;
  1521. if (IS_BRANCH(mp)) {
  1522. fprintf(stderr, "key %d: page %"Z"u, %s\n", i, NODEPGNO(node),
  1523. DKEY(&key));
  1524. total += nsize;
  1525. } else {
  1526. if (F_ISSET(node->mn_flags, F_BIGDATA))
  1527. nsize += sizeof(pgno_t);
  1528. else
  1529. nsize += NODEDSZ(node);
  1530. total += nsize;
  1531. nsize += sizeof(indx_t);
  1532. fprintf(stderr, "key %d: nsize %d, %s%s\n",
  1533. i, nsize, DKEY(&key), mdb_leafnode_type(node));
  1534. }
  1535. total = EVEN(total);
  1536. }
  1537. fprintf(stderr, "Total: header %d + contents %d + unused %d\n",
  1538. IS_LEAF2(mp) ? PAGEHDRSZ : PAGEBASE + MP_LOWER(mp), total, SIZELEFT(mp));
  1539. }
  1540. void
  1541. mdb_cursor_chk(MDB_cursor *mc)
  1542. {
  1543. unsigned int i;
  1544. MDB_node *node;
  1545. MDB_page *mp;
  1546. if (!mc->mc_snum || !(mc->mc_flags & C_INITIALIZED)) return;
  1547. for (i=0; i<mc->mc_top; i++) {
  1548. mp = mc->mc_pg[i];
  1549. node = NODEPTR(mp, mc->mc_ki[i]);
  1550. if (NODEPGNO(node) != mc->mc_pg[i+1]->mp_pgno)
  1551. printf("oops!\n");
  1552. }
  1553. if (mc->mc_ki[i] >= NUMKEYS(mc->mc_pg[i]))
  1554. printf("ack!\n");
  1555. if (XCURSOR_INITED(mc)) {
  1556. node = NODEPTR(mc->mc_pg[mc->mc_top], mc->mc_ki[mc->mc_top]);
  1557. if (((node->mn_flags & (F_DUPDATA|F_SUBDATA)) == F_DUPDATA) &&
  1558. mc->mc_xcursor->mx_cursor.mc_pg[0] != NODEDATA(node)) {
  1559. printf("blah!\n");
  1560. }
  1561. }
  1562. }
  1563. #endif
  1564. #if (MDB_DEBUG) > 2
  1565. /** Count all the pages in each DB and in the freelist
  1566. * and make sure it matches the actual number of pages
  1567. * being used.
  1568. * All named DBs must be open for a correct count.
  1569. */
  1570. static void mdb_audit(MDB_txn *txn)
  1571. {
  1572. MDB_cursor mc;
  1573. MDB_val key, data;
  1574. MDB_ID freecount, count;
  1575. MDB_dbi i;
  1576. int rc;
  1577. freecount = 0;
  1578. mdb_cursor_init(&mc, txn, FREE_DBI, NULL);
  1579. while ((rc = mdb_cursor_get(&mc, &key, &data, MDB_NEXT)) == 0)
  1580. freecount += *(MDB_ID *)data.mv_data;
  1581. mdb_tassert(txn, rc == MDB_NOTFOUND);
  1582. count = 0;
  1583. for (i = 0; i<txn->mt_numdbs; i++) {
  1584. MDB_xcursor mx;
  1585. if (!(txn->mt_dbflags[i] & DB_VALID))
  1586. continue;
  1587. mdb_cursor_init(&mc, txn, i, &mx);
  1588. if (txn->mt_dbs[i].md_root == P_INVALID)
  1589. continue;
  1590. count += txn->mt_dbs[i].md_branch_pages +
  1591. txn->mt_dbs[i].md_leaf_pages +
  1592. txn->mt_dbs[i].md_overflow_pages;
  1593. if (txn->mt_dbs[i].md_flags & MDB_DUPSORT) {
  1594. rc = mdb_page_search(&mc, NULL, MDB_PS_FIRST);
  1595. for (; rc == MDB_SUCCESS; rc = mdb_cursor_sibling(&mc, 1)) {
  1596. unsigned j;
  1597. MDB_page *mp;
  1598. mp = mc.mc_pg[mc.mc_top];
  1599. for (j=0; j<NUMKEYS(mp); j++) {
  1600. MDB_node *leaf = NODEPTR(mp, j);
  1601. if (leaf->mn_flags & F_SUBDATA) {
  1602. MDB_db db;
  1603. memcpy(&db, NODEDATA(leaf), sizeof(db));
  1604. count += db.md_branch_pages + db.md_leaf_pages +
  1605. db.md_overflow_pages;
  1606. }
  1607. }
  1608. }
  1609. mdb_tassert(txn, rc == MDB_NOTFOUND);
  1610. }
  1611. }
  1612. if (freecount + count + NUM_METAS != txn->mt_next_pgno) {
  1613. fprintf(stderr, "audit: %"Z"u freecount: %"Z"u count: %"Z"u total: %"Z"u next_pgno: %"Z"u\n",
  1614. txn->mt_txnid, freecount, count+NUM_METAS,
  1615. freecount+count+NUM_METAS, txn->mt_next_pgno);
  1616. }
  1617. }
  1618. #endif
  1619. int
  1620. mdb_cmp(MDB_txn *txn, MDB_dbi dbi, const MDB_val *a, const MDB_val *b)
  1621. {
  1622. return txn->mt_dbxs[dbi].md_cmp(a, b);
  1623. }
  1624. int
  1625. mdb_dcmp(MDB_txn *txn, MDB_dbi dbi, const MDB_val *a, const MDB_val *b)
  1626. {
  1627. MDB_cmp_func *dcmp = txn->mt_dbxs[dbi].md_dcmp;
  1628. #if UINT_MAX < SIZE_MAX
  1629. if (dcmp == mdb_cmp_int && a->mv_size == sizeof(size_t))
  1630. dcmp = mdb_cmp_clong;
  1631. #endif
  1632. return dcmp(a, b);
  1633. }
  1634. /** Allocate memory for a page.
  1635. * Re-use old malloc'd pages first for singletons, otherwise just malloc.
  1636. * Set #MDB_TXN_ERROR on failure.
  1637. */
  1638. static MDB_page *
  1639. mdb_page_malloc(MDB_txn *txn, unsigned num)
  1640. {
  1641. MDB_env *env = txn->mt_env;
  1642. MDB_page *ret = env->me_dpages;
  1643. size_t psize = env->me_psize, sz = psize, off;
  1644. /* For ! #MDB_NOMEMINIT, psize counts how much to init.
  1645. * For a single page alloc, we init everything after the page header.
  1646. * For multi-page, we init the final page; if the caller needed that
  1647. * many pages they will be filling in at least up to the last page.
  1648. */
  1649. if (num == 1) {
  1650. if (ret) {
  1651. VGMEMP_ALLOC(env, ret, sz);
  1652. VGMEMP_DEFINED(ret, sizeof(ret->mp_next));
  1653. env->me_dpages = ret->mp_next;
  1654. return ret;
  1655. }
  1656. psize -= off = PAGEHDRSZ;
  1657. } else {
  1658. sz *= num;
  1659. off = sz - psize;
  1660. }
  1661. if ((ret = malloc(sz)) != NULL) {
  1662. VGMEMP_ALLOC(env, ret, sz);
  1663. if (!(env->me_flags & MDB_NOMEMINIT)) {
  1664. memset((char *)ret + off, 0, psize);
  1665. ret->mp_pad = 0;
  1666. }
  1667. } else {
  1668. txn->mt_flags |= MDB_TXN_ERROR;
  1669. }
  1670. return ret;
  1671. }
  1672. /** Free a single page.
  1673. * Saves single pages to a list, for future reuse.
  1674. * (This is not used for multi-page overflow pages.)
  1675. */
  1676. static void
  1677. mdb_page_free(MDB_env *env, MDB_page *mp)
  1678. {
  1679. mp->mp_next = env->me_dpages;
  1680. VGMEMP_FREE(env, mp);
  1681. env->me_dpages = mp;
  1682. }
  1683. /** Free a dirty page */
  1684. static void
  1685. mdb_dpage_free(MDB_env *env, MDB_page *dp)
  1686. {
  1687. if (!IS_OVERFLOW(dp) || dp->mp_pages == 1) {
  1688. mdb_page_free(env, dp);
  1689. } else {
  1690. /* large pages just get freed directly */
  1691. VGMEMP_FREE(env, dp);
  1692. free(dp);
  1693. }
  1694. }
  1695. /** Return all dirty pages to dpage list */
  1696. static void
  1697. mdb_dlist_free(MDB_txn *txn)
  1698. {
  1699. MDB_env *env = txn->mt_env;
  1700. MDB_ID2L dl = txn->mt_u.dirty_list;
  1701. unsigned i, n = dl[0].mid;
  1702. for (i = 1; i <= n; i++) {
  1703. mdb_dpage_free(env, dl[i].mptr);
  1704. }
  1705. dl[0].mid = 0;
  1706. }
  1707. /** Loosen or free a single page.
  1708. * Saves single pages to a list for future reuse
  1709. * in this same txn. It has been pulled from the freeDB
  1710. * and already resides on the dirty list, but has been
  1711. * deleted. Use these pages first before pulling again
  1712. * from the freeDB.
  1713. *
  1714. * If the page wasn't dirtied in this txn, just add it
  1715. * to this txn's free list.
  1716. */
  1717. static int
  1718. mdb_page_loose(MDB_cursor *mc, MDB_page *mp)
  1719. {
  1720. int loose = 0;
  1721. pgno_t pgno = mp->mp_pgno;
  1722. MDB_txn *txn = mc->mc_txn;
  1723. if ((mp->mp_flags & P_DIRTY) && mc->mc_dbi != FREE_DBI) {
  1724. if (txn->mt_parent) {
  1725. MDB_ID2 *dl = txn->mt_u.dirty_list;
  1726. /* If txn has a parent, make sure the page is in our
  1727. * dirty list.
  1728. */
  1729. if (dl[0].mid) {
  1730. unsigned x = mdb_mid2l_search(dl, pgno);
  1731. if (x <= dl[0].mid && dl[x].mid == pgno) {
  1732. if (mp != dl[x].mptr) { /* bad cursor? */
  1733. mc->mc_flags &= ~(C_INITIALIZED|C_EOF);
  1734. txn->mt_flags |= MDB_TXN_ERROR;
  1735. return MDB_CORRUPTED;
  1736. }
  1737. /* ok, it's ours */
  1738. loose = 1;
  1739. }
  1740. }
  1741. } else {
  1742. /* no parent txn, so it's just ours */
  1743. loose = 1;
  1744. }
  1745. }
  1746. if (loose) {
  1747. DPRINTF(("loosen db %d page %"Z"u", DDBI(mc),
  1748. mp->mp_pgno));
  1749. NEXT_LOOSE_PAGE(mp) = txn->mt_loose_pgs;
  1750. txn->mt_loose_pgs = mp;
  1751. txn->mt_loose_count++;
  1752. mp->mp_flags |= P_LOOSE;
  1753. } else {
  1754. int rc = mdb_midl_append(&txn->mt_free_pgs, pgno);
  1755. if (rc)
  1756. return rc;
  1757. }
  1758. return MDB_SUCCESS;
  1759. }
  1760. /** Set or clear P_KEEP in dirty, non-overflow, non-sub pages watched by txn.
  1761. * @param[in] mc A cursor handle for the current operation.
  1762. * @param[in] pflags Flags of the pages to update:
  1763. * P_DIRTY to set P_KEEP, P_DIRTY|P_KEEP to clear it.
  1764. * @param[in] all No shortcuts. Needed except after a full #mdb_page_flush().
  1765. * @return 0 on success, non-zero on failure.
  1766. */
  1767. static int
  1768. mdb_pages_xkeep(MDB_cursor *mc, unsigned pflags, int all)
  1769. {
  1770. enum { Mask = P_SUBP|P_DIRTY|P_LOOSE|P_KEEP };
  1771. MDB_txn *txn = mc->mc_txn;
  1772. MDB_cursor *m3, *m0 = mc;
  1773. MDB_xcursor *mx;
  1774. MDB_page *dp, *mp;
  1775. MDB_node *leaf;
  1776. unsigned i, j;
  1777. int rc = MDB_SUCCESS, level;
  1778. /* Mark pages seen by cursors */
  1779. if (mc->mc_flags & C_UNTRACK)
  1780. mc = NULL; /* will find mc in mt_cursors */
  1781. for (i = txn->mt_numdbs;; mc = txn->mt_cursors[--i]) {
  1782. for (; mc; mc=mc->mc_next) {
  1783. if (!(mc->mc_flags & C_INITIALIZED))
  1784. continue;
  1785. for (m3 = mc;; m3 = &mx->mx_cursor) {
  1786. mp = NULL;
  1787. for (j=0; j<m3->mc_snum; j++) {
  1788. mp = m3->mc_pg[j];
  1789. if ((mp->mp_flags & Mask) == pflags)
  1790. mp->mp_flags ^= P_KEEP;
  1791. }
  1792. mx = m3->mc_xcursor;
  1793. /* Proceed to mx if it is at a sub-database */
  1794. if (! (mx && (mx->mx_cursor.mc_flags & C_INITIALIZED)))
  1795. break;
  1796. if (! (mp && (mp->mp_flags & P_LEAF)))
  1797. break;
  1798. leaf = NODEPTR(mp, m3->mc_ki[j-1]);
  1799. if (!(leaf->mn_flags & F_SUBDATA))
  1800. break;
  1801. }
  1802. }
  1803. if (i == 0)
  1804. break;
  1805. }
  1806. if (all) {
  1807. /* Mark dirty root pages */
  1808. for (i=0; i<txn->mt_numdbs; i++) {
  1809. if (txn->mt_dbflags[i] & DB_DIRTY) {
  1810. pgno_t pgno = txn->mt_dbs[i].md_root;
  1811. if (pgno == P_INVALID)
  1812. continue;
  1813. if ((rc = mdb_page_get(m0, pgno, &dp, &level)) != MDB_SUCCESS)
  1814. break;
  1815. if ((dp->mp_flags & Mask) == pflags && level <= 1)
  1816. dp->mp_flags ^= P_KEEP;
  1817. }
  1818. }
  1819. }
  1820. return rc;
  1821. }
  1822. static int mdb_page_flush(MDB_txn *txn, int keep);
  1823. /** Spill pages from the dirty list back to disk.
  1824. * This is intended to prevent running into #MDB_TXN_FULL situations,
  1825. * but note that they may still occur in a few cases:
  1826. * 1) our estimate of the txn size could be too small. Currently this
  1827. * seems unlikely, except with a large number of #MDB_MULTIPLE items.
  1828. * 2) child txns may run out of space if their parents dirtied a
  1829. * lot of pages and never spilled them. TODO: we probably should do
  1830. * a preemptive spill during #mdb_txn_begin() of a child txn, if
  1831. * the parent's dirty_room is below a given threshold.
  1832. *
  1833. * Otherwise, if not using nested txns, it is expected that apps will
  1834. * not run into #MDB_TXN_FULL any more. The pages are flushed to disk
  1835. * the same way as for a txn commit, e.g. their P_DIRTY flag is cleared.
  1836. * If the txn never references them again, they can be left alone.
  1837. * If the txn only reads them, they can be used without any fuss.
  1838. * If the txn writes them again, they can be dirtied immediately without
  1839. * going thru all of the work of #mdb_page_touch(). Such references are
  1840. * handled by #mdb_page_unspill().
  1841. *
  1842. * Also note, we never spill DB root pages, nor pages of active cursors,
  1843. * because we'll need these back again soon anyway. And in nested txns,
  1844. * we can't spill a page in a child txn if it was already spilled in a
  1845. * parent txn. That would alter the parent txns' data even though
  1846. * the child hasn't committed yet, and we'd have no way to undo it if
  1847. * the child aborted.
  1848. *
  1849. * @param[in] m0 cursor A cursor handle identifying the transaction and
  1850. * database for which we are checking space.
  1851. * @param[in] key For a put operation, the key being stored.
  1852. * @param[in] data For a put operation, the data being stored.
  1853. * @return 0 on success, non-zero on failure.
  1854. */
  1855. static int
  1856. mdb_page_spill(MDB_cursor *m0, MDB_val *key, MDB_val *data)
  1857. {
  1858. MDB_txn *txn = m0->mc_txn;
  1859. MDB_page *dp;
  1860. MDB_ID2L dl = txn->mt_u.dirty_list;
  1861. unsigned int i, j, need;
  1862. int rc;
  1863. if (m0->mc_flags & C_SUB)
  1864. return MDB_SUCCESS;
  1865. /* Estimate how much space this op will take */
  1866. i = m0->mc_db->md_depth;
  1867. /* Named DBs also dirty the main DB */
  1868. if (m0->mc_dbi >= CORE_DBS)
  1869. i += txn->mt_dbs[MAIN_DBI].md_depth;
  1870. /* For puts, roughly factor in the key+data size */
  1871. if (key)
  1872. i += (LEAFSIZE(key, data) + txn->mt_env->me_psize) / txn->mt_env->me_psize;
  1873. i += i; /* double it for good measure */
  1874. need = i;
  1875. if (txn->mt_dirty_room > i)
  1876. return MDB_SUCCESS;
  1877. if (!txn->mt_spill_pgs) {
  1878. txn->mt_spill_pgs = mdb_midl_alloc(MDB_IDL_UM_MAX);
  1879. if (!txn->mt_spill_pgs)
  1880. return ENOMEM;
  1881. } else {
  1882. /* purge deleted slots */
  1883. MDB_IDL sl = txn->mt_spill_pgs;
  1884. unsigned int num = sl[0];
  1885. j=0;
  1886. for (i=1; i<=num; i++) {
  1887. if (!(sl[i] & 1))
  1888. sl[++j] = sl[i];
  1889. }
  1890. sl[0] = j;
  1891. }
  1892. /* Preserve pages which may soon be dirtied again */
  1893. if ((rc = mdb_pages_xkeep(m0, P_DIRTY, 1)) != MDB_SUCCESS)
  1894. goto done;
  1895. /* Less aggressive spill - we originally spilled the entire dirty list,
  1896. * with a few exceptions for cursor pages and DB root pages. But this
  1897. * turns out to be a lot of wasted effort because in a large txn many
  1898. * of those pages will need to be used again. So now we spill only 1/8th
  1899. * of the dirty pages. Testing revealed this to be a good tradeoff,
  1900. * better than 1/2, 1/4, or 1/10.
  1901. */
  1902. if (need < MDB_IDL_UM_MAX / 8)
  1903. need = MDB_IDL_UM_MAX / 8;
  1904. /* Save the page IDs of all the pages we're flushing */
  1905. /* flush from the tail forward, this saves a lot of shifting later on. */
  1906. for (i=dl[0].mid; i && need; i--) {
  1907. MDB_ID pn = dl[i].mid << 1;
  1908. dp = dl[i].mptr;
  1909. if (dp->mp_flags & (P_LOOSE|P_KEEP))
  1910. continue;
  1911. /* Can't spill twice, make sure it's not already in a parent's
  1912. * spill list.
  1913. */
  1914. if (txn->mt_parent) {
  1915. MDB_txn *tx2;
  1916. for (tx2 = txn->mt_parent; tx2; tx2 = tx2->mt_parent) {
  1917. if (tx2->mt_spill_pgs) {
  1918. j = mdb_midl_search(tx2->mt_spill_pgs, pn);
  1919. if (j <= tx2->mt_spill_pgs[0] && tx2->mt_spill_pgs[j] == pn) {
  1920. dp->mp_flags |= P_KEEP;
  1921. break;
  1922. }
  1923. }
  1924. }
  1925. if (tx2)
  1926. continue;
  1927. }
  1928. if ((rc = mdb_midl_append(&txn->mt_spill_pgs, pn)))
  1929. goto done;
  1930. need--;
  1931. }
  1932. mdb_midl_sort(txn->mt_spill_pgs);
  1933. /* Flush the spilled part of dirty list */
  1934. if ((rc = mdb_page_flush(txn, i)) != MDB_SUCCESS)
  1935. goto done;
  1936. /* Reset any dirty pages we kept that page_flush didn't see */
  1937. rc = mdb_pages_xkeep(m0, P_DIRTY|P_KEEP, i);
  1938. done:
  1939. txn->mt_flags |= rc ? MDB_TXN_ERROR : MDB_TXN_SPILLS;
  1940. return rc;
  1941. }
  1942. /** Find oldest txnid still referenced. Expects txn->mt_txnid > 0. */
  1943. static txnid_t
  1944. mdb_find_oldest(MDB_txn *txn)
  1945. {
  1946. int i;
  1947. txnid_t mr, oldest = txn->mt_txnid - 1;
  1948. if (txn->mt_env->me_txns) {
  1949. MDB_reader *r = txn->mt_env->me_txns->mti_readers;
  1950. for (i = txn->mt_env->me_txns->mti_numreaders; --i >= 0; ) {
  1951. if (r[i].mr_pid) {
  1952. mr = r[i].mr_txnid;
  1953. if (oldest > mr)
  1954. oldest = mr;
  1955. }
  1956. }
  1957. }
  1958. return oldest;
  1959. }
  1960. /** Add a page to the txn's dirty list */
  1961. static void
  1962. mdb_page_dirty(MDB_txn *txn, MDB_page *mp)
  1963. {
  1964. MDB_ID2 mid;
  1965. int rc, (*insert)(MDB_ID2L, MDB_ID2 *);
  1966. if (txn->mt_flags & MDB_TXN_WRITEMAP) {
  1967. insert = mdb_mid2l_append;
  1968. } else {
  1969. insert = mdb_mid2l_insert;
  1970. }
  1971. mid.mid = mp->mp_pgno;
  1972. mid.mptr = mp;
  1973. rc = insert(txn->mt_u.dirty_list, &mid);
  1974. mdb_tassert(txn, rc == 0);
  1975. txn->mt_dirty_room--;
  1976. }
  1977. /** Allocate page numbers and memory for writing. Maintain me_pglast,
  1978. * me_pghead and mt_next_pgno. Set #MDB_TXN_ERROR on failure.
  1979. *
  1980. * If there are free pages available from older transactions, they
  1981. * are re-used first. Otherwise allocate a new page at mt_next_pgno.
  1982. * Do not modify the freedB, just merge freeDB records into me_pghead[]
  1983. * and move me_pglast to say which records were consumed. Only this
  1984. * function can create me_pghead and move me_pglast/mt_next_pgno.
  1985. * @param[in] mc cursor A cursor handle identifying the transaction and
  1986. * database for which we are allocating.
  1987. * @param[in] num the number of pages to allocate.
  1988. * @param[out] mp Address of the allocated page(s). Requests for multiple pages
  1989. * will always be satisfied by a single contiguous chunk of memory.
  1990. * @return 0 on success, non-zero on failure.
  1991. */
  1992. static int
  1993. mdb_page_alloc(MDB_cursor *mc, int num, MDB_page **mp)
  1994. {
  1995. #ifdef MDB_PARANOID /* Seems like we can ignore this now */
  1996. /* Get at most <Max_retries> more freeDB records once me_pghead
  1997. * has enough pages. If not enough, use new pages from the map.
  1998. * If <Paranoid> and mc is updating the freeDB, only get new
  1999. * records if me_pghead is empty. Then the freelist cannot play
  2000. * catch-up with itself by growing while trying to save it.
  2001. */
  2002. enum { Paranoid = 1, Max_retries = 500 };
  2003. #else
  2004. enum { Paranoid = 0, Max_retries = INT_MAX /*infinite*/ };
  2005. #endif
  2006. int rc, retry = num * 60;
  2007. MDB_txn *txn = mc->mc_txn;
  2008. MDB_env *env = txn->mt_env;
  2009. pgno_t pgno, *mop = env->me_pghead;
  2010. unsigned i, j, mop_len = mop ? mop[0] : 0, n2 = num-1;
  2011. MDB_page *np;
  2012. txnid_t oldest = 0, last;
  2013. MDB_cursor_op op;
  2014. MDB_cursor m2;
  2015. int found_old = 0;
  2016. /* If there are any loose pages, just use them */
  2017. if (num == 1 && txn->mt_loose_pgs) {
  2018. np = txn->mt_loose_pgs;
  2019. txn->mt_loose_pgs = NEXT_LOOSE_PAGE(np);
  2020. txn->mt_loose_count--;
  2021. DPRINTF(("db %d use loose page %"Z"u", DDBI(mc),
  2022. np->mp_pgno));
  2023. *mp = np;
  2024. return MDB_SUCCESS;
  2025. }
  2026. *mp = NULL;
  2027. /* If our dirty list is already full, we can't do anything */
  2028. if (txn->mt_dirty_room == 0) {
  2029. rc = MDB_TXN_FULL;
  2030. goto fail;
  2031. }
  2032. for (op = MDB_FIRST;; op = MDB_NEXT) {
  2033. MDB_val key, data;
  2034. MDB_node *leaf;
  2035. pgno_t *idl;
  2036. /* Seek a big enough contiguous page range. Prefer
  2037. * pages at the tail, just truncating the list.
  2038. */
  2039. if (mop_len > n2) {
  2040. i = mop_len;
  2041. do {
  2042. pgno = mop[i];
  2043. if (mop[i-n2] == pgno+n2)
  2044. goto search_done;
  2045. } while (--i > n2);
  2046. if (--retry < 0)
  2047. break;
  2048. }
  2049. if (op == MDB_FIRST) { /* 1st iteration */
  2050. /* Prepare to fetch more and coalesce */
  2051. last = env->me_pglast;
  2052. oldest = env->me_pgoldest;
  2053. mdb_cursor_init(&m2, txn, FREE_DBI, NULL);
  2054. if (last) {
  2055. op = MDB_SET_RANGE;
  2056. key.mv_data = &last; /* will look up last+1 */
  2057. key.mv_size = sizeof(last);
  2058. }
  2059. if (Paranoid && mc->mc_dbi == FREE_DBI)
  2060. retry = -1;
  2061. }
  2062. if (Paranoid && retry < 0 && mop_len)
  2063. break;
  2064. last++;
  2065. /* Do not fetch more if the record will be too recent */
  2066. if (oldest <= last) {
  2067. if (!found_old) {
  2068. oldest = mdb_find_oldest(txn);
  2069. env->me_pgoldest = oldest;
  2070. found_old = 1;
  2071. }
  2072. if (oldest <= last)
  2073. break;
  2074. }
  2075. rc = mdb_cursor_get(&m2, &key, NULL, op);
  2076. if (rc) {
  2077. if (rc == MDB_NOTFOUND)
  2078. break;
  2079. goto fail;
  2080. }
  2081. last = *(txnid_t*)key.mv_data;
  2082. if (oldest <= last) {
  2083. if (!found_old) {
  2084. oldest = mdb_find_oldest(txn);
  2085. env->me_pgoldest = oldest;
  2086. found_old = 1;
  2087. }
  2088. if (oldest <= last)
  2089. break;
  2090. }
  2091. np = m2.mc_pg[m2.mc_top];
  2092. leaf = NODEPTR(np, m2.mc_ki[m2.mc_top]);
  2093. if ((rc = mdb_node_read(&m2, leaf, &data)) != MDB_SUCCESS)
  2094. goto fail;
  2095. idl = (MDB_ID *) data.mv_data;
  2096. i = idl[0];
  2097. if (!mop) {
  2098. if (!(env->me_pghead = mop = mdb_midl_alloc(i))) {
  2099. rc = ENOMEM;
  2100. goto fail;
  2101. }
  2102. } else {
  2103. if ((rc = mdb_midl_need(&env->me_pghead, i)) != 0)
  2104. goto fail;
  2105. mop = env->me_pghead;
  2106. }
  2107. env->me_pglast = last;
  2108. #if (MDB_DEBUG) > 1
  2109. DPRINTF(("IDL read txn %"Z"u root %"Z"u num %u",
  2110. last, txn->mt_dbs[FREE_DBI].md_root, i));
  2111. for (j = i; j; j--)
  2112. DPRINTF(("IDL %"Z"u", idl[j]));
  2113. #endif
  2114. /* Merge in descending sorted order */
  2115. mdb_midl_xmerge(mop, idl);
  2116. mop_len = mop[0];
  2117. }
  2118. /* Use new pages from the map when nothing suitable in the freeDB */
  2119. i = 0;
  2120. pgno = txn->mt_next_pgno;
  2121. if (pgno + num >= env->me_maxpg) {
  2122. DPUTS("DB size maxed out");
  2123. rc = MDB_MAP_FULL;
  2124. goto fail;
  2125. }
  2126. search_done:
  2127. if (env->me_flags & MDB_WRITEMAP) {
  2128. np = (MDB_page *)(env->me_map + env->me_psize * pgno);
  2129. } else {
  2130. if (!(np = mdb_page_malloc(txn, num))) {
  2131. rc = ENOMEM;
  2132. goto fail;
  2133. }
  2134. }
  2135. if (i) {
  2136. mop[0] = mop_len -= num;
  2137. /* Move any stragglers down */
  2138. for (j = i-num; j < mop_len; )
  2139. mop[++j] = mop[++i];
  2140. } else {
  2141. txn->mt_next_pgno = pgno + num;
  2142. }
  2143. np->mp_pgno = pgno;
  2144. mdb_page_dirty(txn, np);
  2145. *mp = np;
  2146. return MDB_SUCCESS;
  2147. fail:
  2148. txn->mt_flags |= MDB_TXN_ERROR;
  2149. return rc;
  2150. }
  2151. /** Copy the used portions of a non-overflow page.
  2152. * @param[in] dst page to copy into
  2153. * @param[in] src page to copy from
  2154. * @param[in] psize size of a page
  2155. */
  2156. static void
  2157. mdb_page_copy(MDB_page *dst, MDB_page *src, unsigned int psize)
  2158. {
  2159. enum { Align = sizeof(pgno_t) };
  2160. indx_t upper = src->mp_upper, lower = src->mp_lower, unused = upper-lower;
  2161. /* If page isn't full, just copy the used portion. Adjust
  2162. * alignment so memcpy may copy words instead of bytes.
  2163. */
  2164. if ((unused &= -Align) && !IS_LEAF2(src)) {
  2165. upper = (upper + PAGEBASE) & -Align;
  2166. memcpy(dst, src, (lower + PAGEBASE + (Align-1)) & -Align);
  2167. memcpy((pgno_t *)((char *)dst+upper), (pgno_t *)((char *)src+upper),
  2168. psize - upper);
  2169. } else {
  2170. memcpy(dst, src, psize - unused);
  2171. }
  2172. }
  2173. /** Pull a page off the txn's spill list, if present.
  2174. * If a page being referenced was spilled to disk in this txn, bring
  2175. * it back and make it dirty/writable again.
  2176. * @param[in] txn the transaction handle.
  2177. * @param[in] mp the page being referenced. It must not be dirty.
  2178. * @param[out] ret the writable page, if any. ret is unchanged if
  2179. * mp wasn't spilled.
  2180. */
  2181. static int
  2182. mdb_page_unspill(MDB_txn *txn, MDB_page *mp, MDB_page **ret)
  2183. {
  2184. MDB_env *env = txn->mt_env;
  2185. const MDB_txn *tx2;
  2186. unsigned x;
  2187. pgno_t pgno = mp->mp_pgno, pn = pgno << 1;
  2188. for (tx2 = txn; tx2; tx2=tx2->mt_parent) {
  2189. if (!tx2->mt_spill_pgs)
  2190. continue;
  2191. x = mdb_midl_search(tx2->mt_spill_pgs, pn);
  2192. if (x <= tx2->mt_spill_pgs[0] && tx2->mt_spill_pgs[x] == pn) {
  2193. MDB_page *np;
  2194. int num;
  2195. if (txn->mt_dirty_room == 0)
  2196. return MDB_TXN_FULL;
  2197. if (IS_OVERFLOW(mp))
  2198. num = mp->mp_pages;
  2199. else
  2200. num = 1;
  2201. if (env->me_flags & MDB_WRITEMAP) {
  2202. np = mp;
  2203. } else {
  2204. np = mdb_page_malloc(txn, num);
  2205. if (!np)
  2206. return ENOMEM;
  2207. if (num > 1)
  2208. memcpy(np, mp, num * env->me_psize);
  2209. else
  2210. mdb_page_copy(np, mp, env->me_psize);
  2211. }
  2212. if (tx2 == txn) {
  2213. /* If in current txn, this page is no longer spilled.
  2214. * If it happens to be the last page, truncate the spill list.
  2215. * Otherwise mark it as deleted by setting the LSB.
  2216. */
  2217. if (x == txn->mt_spill_pgs[0])
  2218. txn->mt_spill_pgs[0]--;
  2219. else
  2220. txn->mt_spill_pgs[x] |= 1;
  2221. } /* otherwise, if belonging to a parent txn, the
  2222. * page remains spilled until child commits
  2223. */
  2224. mdb_page_dirty(txn, np);
  2225. np->mp_flags |= P_DIRTY;
  2226. *ret = np;
  2227. break;
  2228. }
  2229. }
  2230. return MDB_SUCCESS;
  2231. }
  2232. /** Touch a page: make it dirty and re-insert into tree with updated pgno.
  2233. * Set #MDB_TXN_ERROR on failure.
  2234. * @param[in] mc cursor pointing to the page to be touched
  2235. * @return 0 on success, non-zero on failure.
  2236. */
  2237. static int
  2238. mdb_page_touch(MDB_cursor *mc)
  2239. {
  2240. MDB_page *mp = mc->mc_pg[mc->mc_top], *np;
  2241. MDB_txn *txn = mc->mc_txn;
  2242. MDB_cursor *m2, *m3;
  2243. pgno_t pgno;
  2244. int rc;
  2245. if (!F_ISSET(MP_FLAGS(mp), P_DIRTY)) {
  2246. if (txn->mt_flags & MDB_TXN_SPILLS) {
  2247. np = NULL;
  2248. rc = mdb_page_unspill(txn, mp, &np);
  2249. if (rc)
  2250. goto fail;
  2251. if (np)
  2252. goto done;
  2253. }
  2254. if ((rc = mdb_midl_need(&txn->mt_free_pgs, 1)) ||
  2255. (rc = mdb_page_alloc(mc, 1, &np)))
  2256. goto fail;
  2257. pgno = np->mp_pgno;
  2258. DPRINTF(("touched db %d page %"Z"u -> %"Z"u", DDBI(mc),
  2259. mp->mp_pgno, pgno));
  2260. mdb_cassert(mc, mp->mp_pgno != pgno);
  2261. mdb_midl_xappend(txn->mt_free_pgs, mp->mp_pgno);
  2262. /* Update the parent page, if any, to point to the new page */
  2263. if (mc->mc_top) {
  2264. MDB_page *parent = mc->mc_pg[mc->mc_top-1];
  2265. MDB_node *node = NODEPTR(parent, mc->mc_ki[mc->mc_top-1]);
  2266. SETPGNO(node, pgno);
  2267. } else {
  2268. mc->mc_db->md_root = pgno;
  2269. }
  2270. } else if (txn->mt_parent && !IS_SUBP(mp)) {
  2271. MDB_ID2 mid, *dl = txn->mt_u.dirty_list;
  2272. pgno = mp->mp_pgno;
  2273. /* If txn has a parent, make sure the page is in our
  2274. * dirty list.
  2275. */
  2276. if (dl[0].mid) {
  2277. unsigned x = mdb_mid2l_search(dl, pgno);
  2278. if (x <= dl[0].mid && dl[x].mid == pgno) {
  2279. if (mp != dl[x].mptr) { /* bad cursor? */
  2280. mc->mc_flags &= ~(C_INITIALIZED|C_EOF);
  2281. txn->mt_flags |= MDB_TXN_ERROR;
  2282. return MDB_CORRUPTED;
  2283. }
  2284. return 0;
  2285. }
  2286. }
  2287. mdb_cassert(mc, dl[0].mid < MDB_IDL_UM_MAX);
  2288. /* No - copy it */
  2289. np = mdb_page_malloc(txn, 1);
  2290. if (!np)
  2291. return ENOMEM;
  2292. mid.mid = pgno;
  2293. mid.mptr = np;
  2294. rc = mdb_mid2l_insert(dl, &mid);
  2295. mdb_cassert(mc, rc == 0);
  2296. } else {
  2297. return 0;
  2298. }
  2299. mdb_page_copy(np, mp, txn->mt_env->me_psize);
  2300. np->mp_pgno = pgno;
  2301. np->mp_flags |= P_DIRTY;
  2302. done:
  2303. /* Adjust cursors pointing to mp */
  2304. mc->mc_pg[mc->mc_top] = np;
  2305. m2 = txn->mt_cursors[mc->mc_dbi];
  2306. if (mc->mc_flags & C_SUB) {
  2307. for (; m2; m2=m2->mc_next) {
  2308. m3 = &m2->mc_xcursor->mx_cursor;
  2309. if (m3->mc_snum < mc->mc_snum) continue;
  2310. if (m3->mc_pg[mc->mc_top] == mp)
  2311. m3->mc_pg[mc->mc_top] = np;
  2312. }
  2313. } else {
  2314. for (; m2; m2=m2->mc_next) {
  2315. if (m2->mc_snum < mc->mc_snum) continue;
  2316. if (m2 == mc) continue;
  2317. if (m2->mc_pg[mc->mc_top] == mp) {
  2318. m2->mc_pg[mc->mc_top] = np;
  2319. if (IS_LEAF(np))
  2320. XCURSOR_REFRESH(m2, mc->mc_top, np);
  2321. }
  2322. }
  2323. }
  2324. return 0;
  2325. fail:
  2326. txn->mt_flags |= MDB_TXN_ERROR;
  2327. return rc;
  2328. }
  2329. int
  2330. mdb_env_sync(MDB_env *env, int force)
  2331. {
  2332. int rc = 0;
  2333. if (env->me_flags & MDB_RDONLY)
  2334. return EACCES;
  2335. if (force || !F_ISSET(env->me_flags, MDB_NOSYNC)) {
  2336. if (env->me_flags & MDB_WRITEMAP) {
  2337. int flags = ((env->me_flags & MDB_MAPASYNC) && !force)
  2338. ? MS_ASYNC : MS_SYNC;
  2339. if (MDB_MSYNC(env->me_map, env->me_mapsize, flags))
  2340. rc = ErrCode();
  2341. #ifdef _WIN32
  2342. else if (flags == MS_SYNC && MDB_FDATASYNC(env->me_fd))
  2343. rc = ErrCode();
  2344. #endif
  2345. } else {
  2346. #ifdef BROKEN_FDATASYNC
  2347. if (env->me_flags & MDB_FSYNCONLY) {
  2348. if (fsync(env->me_fd))
  2349. rc = ErrCode();
  2350. } else
  2351. #endif
  2352. if (MDB_FDATASYNC(env->me_fd))
  2353. rc = ErrCode();
  2354. }
  2355. }
  2356. return rc;
  2357. }
  2358. /** Back up parent txn's cursors, then grab the originals for tracking */
  2359. static int
  2360. mdb_cursor_shadow(MDB_txn *src, MDB_txn *dst)
  2361. {
  2362. MDB_cursor *mc, *bk;
  2363. MDB_xcursor *mx;
  2364. size_t size;
  2365. int i;
  2366. for (i = src->mt_numdbs; --i >= 0; ) {
  2367. if ((mc = src->mt_cursors[i]) != NULL) {
  2368. size = sizeof(MDB_cursor);
  2369. if (mc->mc_xcursor)
  2370. size += sizeof(MDB_xcursor);
  2371. for (; mc; mc = bk->mc_next) {
  2372. bk = malloc(size);
  2373. if (!bk)
  2374. return ENOMEM;
  2375. *bk = *mc;
  2376. mc->mc_backup = bk;
  2377. mc->mc_db = &dst->mt_dbs[i];
  2378. /* Kill pointers into src to reduce abuse: The
  2379. * user may not use mc until dst ends. But we need a valid
  2380. * txn pointer here for cursor fixups to keep working.
  2381. */
  2382. mc->mc_txn = dst;
  2383. mc->mc_dbflag = &dst->mt_dbflags[i];
  2384. if ((mx = mc->mc_xcursor) != NULL) {
  2385. *(MDB_xcursor *)(bk+1) = *mx;
  2386. mx->mx_cursor.mc_txn = dst;
  2387. }
  2388. mc->mc_next = dst->mt_cursors[i];
  2389. dst->mt_cursors[i] = mc;
  2390. }
  2391. }
  2392. }
  2393. return MDB_SUCCESS;
  2394. }
  2395. /** Close this write txn's cursors, give parent txn's cursors back to parent.
  2396. * @param[in] txn the transaction handle.
  2397. * @param[in] merge true to keep changes to parent cursors, false to revert.
  2398. * @return 0 on success, non-zero on failure.
  2399. */
  2400. static void
  2401. mdb_cursors_close(MDB_txn *txn, unsigned merge)
  2402. {
  2403. MDB_cursor **cursors = txn->mt_cursors, *mc, *next, *bk;
  2404. MDB_xcursor *mx;
  2405. int i;
  2406. for (i = txn->mt_numdbs; --i >= 0; ) {
  2407. for (mc = cursors[i]; mc; mc = next) {
  2408. next = mc->mc_next;
  2409. if ((bk = mc->mc_backup) != NULL) {
  2410. if (merge) {
  2411. /* Commit changes to parent txn */
  2412. mc->mc_next = bk->mc_next;
  2413. mc->mc_backup = bk->mc_backup;
  2414. mc->mc_txn = bk->mc_txn;
  2415. mc->mc_db = bk->mc_db;
  2416. mc->mc_dbflag = bk->mc_dbflag;
  2417. if ((mx = mc->mc_xcursor) != NULL)
  2418. mx->mx_cursor.mc_txn = bk->mc_txn;
  2419. } else {
  2420. /* Abort nested txn */
  2421. *mc = *bk;
  2422. if ((mx = mc->mc_xcursor) != NULL)
  2423. *mx = *(MDB_xcursor *)(bk+1);
  2424. }
  2425. mc = bk;
  2426. }
  2427. /* Only malloced cursors are permanently tracked. */
  2428. free(mc);
  2429. }
  2430. cursors[i] = NULL;
  2431. }
  2432. }
  2433. #if !(MDB_PIDLOCK) /* Currently the same as defined(_WIN32) */
  2434. enum Pidlock_op {
  2435. Pidset, Pidcheck
  2436. };
  2437. #else
  2438. enum Pidlock_op {
  2439. Pidset = F_SETLK, Pidcheck = F_GETLK
  2440. };
  2441. #endif
  2442. /** Set or check a pid lock. Set returns 0 on success.
  2443. * Check returns 0 if the process is certainly dead, nonzero if it may
  2444. * be alive (the lock exists or an error happened so we do not know).
  2445. *
  2446. * On Windows Pidset is a no-op, we merely check for the existence
  2447. * of the process with the given pid. On POSIX we use a single byte
  2448. * lock on the lockfile, set at an offset equal to the pid.
  2449. */
  2450. static int
  2451. mdb_reader_pid(MDB_env *env, enum Pidlock_op op, MDB_PID_T pid)
  2452. {
  2453. #if !(MDB_PIDLOCK) /* Currently the same as defined(_WIN32) */
  2454. int ret = 0;
  2455. HANDLE h;
  2456. if (op == Pidcheck) {
  2457. h = OpenProcess(env->me_pidquery, FALSE, pid);
  2458. /* No documented "no such process" code, but other program use this: */
  2459. if (!h)
  2460. return ErrCode() != ERROR_INVALID_PARAMETER;
  2461. /* A process exists until all handles to it close. Has it exited? */
  2462. ret = WaitForSingleObject(h, 0) != 0;
  2463. CloseHandle(h);
  2464. }
  2465. return ret;
  2466. #else
  2467. for (;;) {
  2468. int rc;
  2469. struct flock lock_info;
  2470. memset(&lock_info, 0, sizeof(lock_info));
  2471. lock_info.l_type = F_WRLCK;
  2472. lock_info.l_whence = SEEK_SET;
  2473. lock_info.l_start = pid;
  2474. lock_info.l_len = 1;
  2475. if ((rc = fcntl(env->me_lfd, op, &lock_info)) == 0) {
  2476. if (op == F_GETLK && lock_info.l_type != F_UNLCK)
  2477. rc = -1;
  2478. } else if ((rc = ErrCode()) == EINTR) {
  2479. continue;
  2480. }
  2481. return rc;
  2482. }
  2483. #endif
  2484. }
  2485. /** Common code for #mdb_txn_begin() and #mdb_txn_renew().
  2486. * @param[in] txn the transaction handle to initialize
  2487. * @return 0 on success, non-zero on failure.
  2488. */
  2489. static int
  2490. mdb_txn_renew0(MDB_txn *txn)
  2491. {
  2492. MDB_env *env = txn->mt_env;
  2493. MDB_txninfo *ti = env->me_txns;
  2494. MDB_meta *meta;
  2495. unsigned int i, nr, flags = txn->mt_flags;
  2496. uint16_t x;
  2497. int rc, new_notls = 0;
  2498. if ((flags &= MDB_TXN_RDONLY) != 0) {
  2499. if (!ti) {
  2500. meta = mdb_env_pick_meta(env);
  2501. txn->mt_txnid = meta->mm_txnid;
  2502. txn->mt_u.reader = NULL;
  2503. } else {
  2504. MDB_reader *r = (env->me_flags & MDB_NOTLS) ? txn->mt_u.reader :
  2505. pthread_getspecific(env->me_txkey);
  2506. if (r) {
  2507. if (r->mr_pid != env->me_pid || r->mr_txnid != (txnid_t)-1)
  2508. return MDB_BAD_RSLOT;
  2509. } else {
  2510. MDB_PID_T pid = env->me_pid;
  2511. MDB_THR_T tid = pthread_self();
  2512. mdb_mutexref_t rmutex = env->me_rmutex;
  2513. if (!env->me_live_reader) {
  2514. rc = mdb_reader_pid(env, Pidset, pid);
  2515. if (rc)
  2516. return rc;
  2517. env->me_live_reader = 1;
  2518. }
  2519. if (LOCK_MUTEX(rc, env, rmutex))
  2520. return rc;
  2521. nr = ti->mti_numreaders;
  2522. for (i=0; i<nr; i++)
  2523. if (ti->mti_readers[i].mr_pid == 0)
  2524. break;
  2525. if (i == env->me_maxreaders) {
  2526. UNLOCK_MUTEX(rmutex);
  2527. return MDB_READERS_FULL;
  2528. }
  2529. r = &ti->mti_readers[i];
  2530. /* Claim the reader slot, carefully since other code
  2531. * uses the reader table un-mutexed: First reset the
  2532. * slot, next publish it in mti_numreaders. After
  2533. * that, it is safe for mdb_env_close() to touch it.
  2534. * When it will be closed, we can finally claim it.
  2535. */
  2536. r->mr_pid = 0;
  2537. r->mr_txnid = (txnid_t)-1;
  2538. r->mr_tid = tid;
  2539. if (i == nr)
  2540. ti->mti_numreaders = ++nr;
  2541. env->me_close_readers = nr;
  2542. r->mr_pid = pid;
  2543. UNLOCK_MUTEX(rmutex);
  2544. new_notls = (env->me_flags & MDB_NOTLS);
  2545. if (!new_notls && (rc=pthread_setspecific(env->me_txkey, r))) {
  2546. r->mr_pid = 0;
  2547. return rc;
  2548. }
  2549. }
  2550. do /* LY: Retry on a race, ITS#7970. */
  2551. r->mr_txnid = ti->mti_txnid;
  2552. while(r->mr_txnid != ti->mti_txnid);
  2553. txn->mt_txnid = r->mr_txnid;
  2554. txn->mt_u.reader = r;
  2555. meta = env->me_metas[txn->mt_txnid & 1];
  2556. }
  2557. } else {
  2558. /* Not yet touching txn == env->me_txn0, it may be active */
  2559. if (ti) {
  2560. if (LOCK_MUTEX(rc, env, env->me_wmutex))
  2561. return rc;
  2562. txn->mt_txnid = ti->mti_txnid;
  2563. meta = env->me_metas[txn->mt_txnid & 1];
  2564. } else {
  2565. meta = mdb_env_pick_meta(env);
  2566. txn->mt_txnid = meta->mm_txnid;
  2567. }
  2568. txn->mt_txnid++;
  2569. #if MDB_DEBUG
  2570. if (txn->mt_txnid == mdb_debug_start)
  2571. mdb_debug = 1;
  2572. #endif
  2573. txn->mt_child = NULL;
  2574. txn->mt_loose_pgs = NULL;
  2575. txn->mt_loose_count = 0;
  2576. txn->mt_dirty_room = MDB_IDL_UM_MAX;
  2577. txn->mt_u.dirty_list = env->me_dirty_list;
  2578. txn->mt_u.dirty_list[0].mid = 0;
  2579. txn->mt_free_pgs = env->me_free_pgs;
  2580. txn->mt_free_pgs[0] = 0;
  2581. txn->mt_spill_pgs = NULL;
  2582. env->me_txn = txn;
  2583. memcpy(txn->mt_dbiseqs, env->me_dbiseqs, env->me_maxdbs * sizeof(unsigned int));
  2584. }
  2585. /* Copy the DB info and flags */
  2586. memcpy(txn->mt_dbs, meta->mm_dbs, CORE_DBS * sizeof(MDB_db));
  2587. /* Moved to here to avoid a data race in read TXNs */
  2588. txn->mt_next_pgno = meta->mm_last_pg+1;
  2589. txn->mt_flags = flags;
  2590. /* Setup db info */
  2591. txn->mt_numdbs = env->me_numdbs;
  2592. for (i=CORE_DBS; i<txn->mt_numdbs; i++) {
  2593. x = env->me_dbflags[i];
  2594. txn->mt_dbs[i].md_flags = x & PERSISTENT_FLAGS;
  2595. txn->mt_dbflags[i] = (x & MDB_VALID) ? DB_VALID|DB_USRVALID|DB_STALE : 0;
  2596. }
  2597. txn->mt_dbflags[MAIN_DBI] = DB_VALID|DB_USRVALID;
  2598. txn->mt_dbflags[FREE_DBI] = DB_VALID;
  2599. if (env->me_flags & MDB_FATAL_ERROR) {
  2600. DPUTS("environment had fatal error, must shutdown!");
  2601. rc = MDB_PANIC;
  2602. } else if (env->me_maxpg < txn->mt_next_pgno) {
  2603. rc = MDB_MAP_RESIZED;
  2604. } else {
  2605. return MDB_SUCCESS;
  2606. }
  2607. mdb_txn_end(txn, new_notls /*0 or MDB_END_SLOT*/ | MDB_END_FAIL_BEGIN);
  2608. return rc;
  2609. }
  2610. int
  2611. mdb_txn_renew(MDB_txn *txn)
  2612. {
  2613. int rc;
  2614. if (!txn || !F_ISSET(txn->mt_flags, MDB_TXN_RDONLY|MDB_TXN_FINISHED))
  2615. return EINVAL;
  2616. rc = mdb_txn_renew0(txn);
  2617. if (rc == MDB_SUCCESS) {
  2618. DPRINTF(("renew txn %"Z"u%c %p on mdbenv %p, root page %"Z"u",
  2619. txn->mt_txnid, (txn->mt_flags & MDB_TXN_RDONLY) ? 'r' : 'w',
  2620. (void *)txn, (void *)txn->mt_env, txn->mt_dbs[MAIN_DBI].md_root));
  2621. }
  2622. return rc;
  2623. }
  2624. int
  2625. mdb_txn_begin(MDB_env *env, MDB_txn *parent, unsigned int flags, MDB_txn **ret)
  2626. {
  2627. MDB_txn *txn;
  2628. MDB_ntxn *ntxn;
  2629. int rc, size, tsize;
  2630. flags &= MDB_TXN_BEGIN_FLAGS;
  2631. flags |= env->me_flags & MDB_WRITEMAP;
  2632. if (env->me_flags & MDB_RDONLY & ~flags) /* write txn in RDONLY env */
  2633. return EACCES;
  2634. if (parent) {
  2635. /* Nested transactions: Max 1 child, write txns only, no writemap */
  2636. flags |= parent->mt_flags;
  2637. if (flags & (MDB_RDONLY|MDB_WRITEMAP|MDB_TXN_BLOCKED)) {
  2638. return (parent->mt_flags & MDB_TXN_RDONLY) ? EINVAL : MDB_BAD_TXN;
  2639. }
  2640. /* Child txns save MDB_pgstate and use own copy of cursors */
  2641. size = env->me_maxdbs * (sizeof(MDB_db)+sizeof(MDB_cursor *)+1);
  2642. size += tsize = sizeof(MDB_ntxn);
  2643. } else if (flags & MDB_RDONLY) {
  2644. size = env->me_maxdbs * (sizeof(MDB_db)+1);
  2645. size += tsize = sizeof(MDB_txn);
  2646. } else {
  2647. /* Reuse preallocated write txn. However, do not touch it until
  2648. * mdb_txn_renew0() succeeds, since it currently may be active.
  2649. */
  2650. txn = env->me_txn0;
  2651. goto renew;
  2652. }
  2653. if ((txn = calloc(1, size)) == NULL) {
  2654. DPRINTF(("calloc: %s", strerror(errno)));
  2655. return ENOMEM;
  2656. }
  2657. txn->mt_dbxs = env->me_dbxs; /* static */
  2658. txn->mt_dbs = (MDB_db *) ((char *)txn + tsize);
  2659. txn->mt_dbflags = (unsigned char *)txn + size - env->me_maxdbs;
  2660. txn->mt_flags = flags;
  2661. txn->mt_env = env;
  2662. if (parent) {
  2663. unsigned int i;
  2664. txn->mt_cursors = (MDB_cursor **)(txn->mt_dbs + env->me_maxdbs);
  2665. txn->mt_dbiseqs = parent->mt_dbiseqs;
  2666. txn->mt_u.dirty_list = malloc(sizeof(MDB_ID2)*MDB_IDL_UM_SIZE);
  2667. if (!txn->mt_u.dirty_list ||
  2668. !(txn->mt_free_pgs = mdb_midl_alloc(MDB_IDL_UM_MAX)))
  2669. {
  2670. free(txn->mt_u.dirty_list);
  2671. free(txn);
  2672. return ENOMEM;
  2673. }
  2674. txn->mt_txnid = parent->mt_txnid;
  2675. txn->mt_dirty_room = parent->mt_dirty_room;
  2676. txn->mt_u.dirty_list[0].mid = 0;
  2677. txn->mt_spill_pgs = NULL;
  2678. txn->mt_next_pgno = parent->mt_next_pgno;
  2679. parent->mt_flags |= MDB_TXN_HAS_CHILD;
  2680. parent->mt_child = txn;
  2681. txn->mt_parent = parent;
  2682. txn->mt_numdbs = parent->mt_numdbs;
  2683. memcpy(txn->mt_dbs, parent->mt_dbs, txn->mt_numdbs * sizeof(MDB_db));
  2684. /* Copy parent's mt_dbflags, but clear DB_NEW */
  2685. for (i=0; i<txn->mt_numdbs; i++)
  2686. txn->mt_dbflags[i] = parent->mt_dbflags[i] & ~DB_NEW;
  2687. rc = 0;
  2688. ntxn = (MDB_ntxn *)txn;
  2689. ntxn->mnt_pgstate = env->me_pgstate; /* save parent me_pghead & co */
  2690. if (env->me_pghead) {
  2691. size = MDB_IDL_SIZEOF(env->me_pghead);
  2692. env->me_pghead = mdb_midl_alloc(env->me_pghead[0]);
  2693. if (env->me_pghead)
  2694. memcpy(env->me_pghead, ntxn->mnt_pgstate.mf_pghead, size);
  2695. else
  2696. rc = ENOMEM;
  2697. }
  2698. if (!rc)
  2699. rc = mdb_cursor_shadow(parent, txn);
  2700. if (rc)
  2701. mdb_txn_end(txn, MDB_END_FAIL_BEGINCHILD);
  2702. } else { /* MDB_RDONLY */
  2703. txn->mt_dbiseqs = env->me_dbiseqs;
  2704. renew:
  2705. rc = mdb_txn_renew0(txn);
  2706. }
  2707. if (rc) {
  2708. if (txn != env->me_txn0)
  2709. free(txn);
  2710. } else {
  2711. txn->mt_flags |= flags; /* could not change txn=me_txn0 earlier */
  2712. *ret = txn;
  2713. DPRINTF(("begin txn %"Z"u%c %p on mdbenv %p, root page %"Z"u",
  2714. txn->mt_txnid, (flags & MDB_RDONLY) ? 'r' : 'w',
  2715. (void *) txn, (void *) env, txn->mt_dbs[MAIN_DBI].md_root));
  2716. }
  2717. return rc;
  2718. }
  2719. MDB_env *
  2720. mdb_txn_env(MDB_txn *txn)
  2721. {
  2722. if(!txn) return NULL;
  2723. return txn->mt_env;
  2724. }
  2725. size_t
  2726. mdb_txn_id(MDB_txn *txn)
  2727. {
  2728. if(!txn) return 0;
  2729. return txn->mt_txnid;
  2730. }
  2731. /** Export or close DBI handles opened in this txn. */
  2732. static void
  2733. mdb_dbis_update(MDB_txn *txn, int keep)
  2734. {
  2735. int i;
  2736. MDB_dbi n = txn->mt_numdbs;
  2737. MDB_env *env = txn->mt_env;
  2738. unsigned char *tdbflags = txn->mt_dbflags;
  2739. for (i = n; --i >= CORE_DBS;) {
  2740. if (tdbflags[i] & DB_NEW) {
  2741. if (keep) {
  2742. env->me_dbflags[i] = txn->mt_dbs[i].md_flags | MDB_VALID;
  2743. } else {
  2744. char *ptr = env->me_dbxs[i].md_name.mv_data;
  2745. if (ptr) {
  2746. env->me_dbxs[i].md_name.mv_data = NULL;
  2747. env->me_dbxs[i].md_name.mv_size = 0;
  2748. env->me_dbflags[i] = 0;
  2749. env->me_dbiseqs[i]++;
  2750. free(ptr);
  2751. }
  2752. }
  2753. }
  2754. }
  2755. if (keep && env->me_numdbs < n)
  2756. env->me_numdbs = n;
  2757. }
  2758. /** End a transaction, except successful commit of a nested transaction.
  2759. * May be called twice for readonly txns: First reset it, then abort.
  2760. * @param[in] txn the transaction handle to end
  2761. * @param[in] mode why and how to end the transaction
  2762. */
  2763. static void
  2764. mdb_txn_end(MDB_txn *txn, unsigned mode)
  2765. {
  2766. MDB_env *env = txn->mt_env;
  2767. #if MDB_DEBUG
  2768. static const char *const names[] = MDB_END_NAMES;
  2769. #endif
  2770. /* Export or close DBI handles opened in this txn */
  2771. mdb_dbis_update(txn, mode & MDB_END_UPDATE);
  2772. DPRINTF(("%s txn %"Z"u%c %p on mdbenv %p, root page %"Z"u",
  2773. names[mode & MDB_END_OPMASK],
  2774. txn->mt_txnid, (txn->mt_flags & MDB_TXN_RDONLY) ? 'r' : 'w',
  2775. (void *) txn, (void *)env, txn->mt_dbs[MAIN_DBI].md_root));
  2776. if (F_ISSET(txn->mt_flags, MDB_TXN_RDONLY)) {
  2777. if (txn->mt_u.reader) {
  2778. txn->mt_u.reader->mr_txnid = (txnid_t)-1;
  2779. if (!(env->me_flags & MDB_NOTLS)) {
  2780. txn->mt_u.reader = NULL; /* txn does not own reader */
  2781. } else if (mode & MDB_END_SLOT) {
  2782. txn->mt_u.reader->mr_pid = 0;
  2783. txn->mt_u.reader = NULL;
  2784. } /* else txn owns the slot until it does MDB_END_SLOT */
  2785. }
  2786. txn->mt_numdbs = 0; /* prevent further DBI activity */
  2787. txn->mt_flags |= MDB_TXN_FINISHED;
  2788. } else if (!F_ISSET(txn->mt_flags, MDB_TXN_FINISHED)) {
  2789. pgno_t *pghead = env->me_pghead;
  2790. if (!(mode & MDB_END_UPDATE)) /* !(already closed cursors) */
  2791. mdb_cursors_close(txn, 0);
  2792. if (!(env->me_flags & MDB_WRITEMAP)) {
  2793. mdb_dlist_free(txn);
  2794. }
  2795. txn->mt_numdbs = 0;
  2796. txn->mt_flags = MDB_TXN_FINISHED;
  2797. if (!txn->mt_parent) {
  2798. mdb_midl_shrink(&txn->mt_free_pgs);
  2799. env->me_free_pgs = txn->mt_free_pgs;
  2800. /* me_pgstate: */
  2801. env->me_pghead = NULL;
  2802. env->me_pglast = 0;
  2803. env->me_txn = NULL;
  2804. mode = 0; /* txn == env->me_txn0, do not free() it */
  2805. /* The writer mutex was locked in mdb_txn_begin. */
  2806. if (env->me_txns)
  2807. UNLOCK_MUTEX(env->me_wmutex);
  2808. } else {
  2809. txn->mt_parent->mt_child = NULL;
  2810. txn->mt_parent->mt_flags &= ~MDB_TXN_HAS_CHILD;
  2811. env->me_pgstate = ((MDB_ntxn *)txn)->mnt_pgstate;
  2812. mdb_midl_free(txn->mt_free_pgs);
  2813. free(txn->mt_u.dirty_list);
  2814. }
  2815. mdb_midl_free(txn->mt_spill_pgs);
  2816. mdb_midl_free(pghead);
  2817. }
  2818. if (mode & MDB_END_FREE)
  2819. free(txn);
  2820. }
  2821. void
  2822. mdb_txn_reset(MDB_txn *txn)
  2823. {
  2824. if (txn == NULL)
  2825. return;
  2826. /* This call is only valid for read-only txns */
  2827. if (!(txn->mt_flags & MDB_TXN_RDONLY))
  2828. return;
  2829. mdb_txn_end(txn, MDB_END_RESET);
  2830. }
  2831. void
  2832. mdb_txn_abort(MDB_txn *txn)
  2833. {
  2834. if (txn == NULL)
  2835. return;
  2836. if (txn->mt_child)
  2837. mdb_txn_abort(txn->mt_child);
  2838. mdb_txn_end(txn, MDB_END_ABORT|MDB_END_SLOT|MDB_END_FREE);
  2839. }
  2840. /** Save the freelist as of this transaction to the freeDB.
  2841. * This changes the freelist. Keep trying until it stabilizes.
  2842. */
  2843. static int
  2844. mdb_freelist_save(MDB_txn *txn)
  2845. {
  2846. /* env->me_pghead[] can grow and shrink during this call.
  2847. * env->me_pglast and txn->mt_free_pgs[] can only grow.
  2848. * Page numbers cannot disappear from txn->mt_free_pgs[].
  2849. */
  2850. MDB_cursor mc;
  2851. MDB_env *env = txn->mt_env;
  2852. int rc, maxfree_1pg = env->me_maxfree_1pg, more = 1;
  2853. txnid_t pglast = 0, head_id = 0;
  2854. pgno_t freecnt = 0, *free_pgs, *mop;
  2855. ssize_t head_room = 0, total_room = 0, mop_len, clean_limit;
  2856. mdb_cursor_init(&mc, txn, FREE_DBI, NULL);
  2857. if (env->me_pghead) {
  2858. /* Make sure first page of freeDB is touched and on freelist */
  2859. rc = mdb_page_search(&mc, NULL, MDB_PS_FIRST|MDB_PS_MODIFY);
  2860. if (rc && rc != MDB_NOTFOUND)
  2861. return rc;
  2862. }
  2863. if (!env->me_pghead && txn->mt_loose_pgs) {
  2864. /* Put loose page numbers in mt_free_pgs, since
  2865. * we may be unable to return them to me_pghead.
  2866. */
  2867. MDB_page *mp = txn->mt_loose_pgs;
  2868. MDB_ID2 *dl = txn->mt_u.dirty_list;
  2869. unsigned x;
  2870. if ((rc = mdb_midl_need(&txn->mt_free_pgs, txn->mt_loose_count)) != 0)
  2871. return rc;
  2872. for (; mp; mp = NEXT_LOOSE_PAGE(mp)) {
  2873. mdb_midl_xappend(txn->mt_free_pgs, mp->mp_pgno);
  2874. /* must also remove from dirty list */
  2875. if (txn->mt_flags & MDB_TXN_WRITEMAP) {
  2876. for (x=1; x<=dl[0].mid; x++)
  2877. if (dl[x].mid == mp->mp_pgno)
  2878. break;
  2879. mdb_tassert(txn, x <= dl[0].mid);
  2880. } else {
  2881. x = mdb_mid2l_search(dl, mp->mp_pgno);
  2882. mdb_tassert(txn, dl[x].mid == mp->mp_pgno);
  2883. mdb_dpage_free(env, mp);
  2884. }
  2885. dl[x].mptr = NULL;
  2886. }
  2887. {
  2888. /* squash freed slots out of the dirty list */
  2889. unsigned y;
  2890. for (y=1; dl[y].mptr && y <= dl[0].mid; y++);
  2891. if (y <= dl[0].mid) {
  2892. for(x=y, y++;;) {
  2893. while (!dl[y].mptr && y <= dl[0].mid) y++;
  2894. if (y > dl[0].mid) break;
  2895. dl[x++] = dl[y++];
  2896. }
  2897. dl[0].mid = x-1;
  2898. } else {
  2899. /* all slots freed */
  2900. dl[0].mid = 0;
  2901. }
  2902. }
  2903. txn->mt_loose_pgs = NULL;
  2904. txn->mt_loose_count = 0;
  2905. }
  2906. /* MDB_RESERVE cancels meminit in ovpage malloc (when no WRITEMAP) */
  2907. clean_limit = (env->me_flags & (MDB_NOMEMINIT|MDB_WRITEMAP))
  2908. ? SSIZE_MAX : maxfree_1pg;
  2909. for (;;) {
  2910. /* Come back here after each Put() in case freelist changed */
  2911. MDB_val key, data;
  2912. pgno_t *pgs;
  2913. ssize_t j;
  2914. /* If using records from freeDB which we have not yet
  2915. * deleted, delete them and any we reserved for me_pghead.
  2916. */
  2917. while (pglast < env->me_pglast) {
  2918. rc = mdb_cursor_first(&mc, &key, NULL);
  2919. if (rc)
  2920. return rc;
  2921. pglast = head_id = *(txnid_t *)key.mv_data;
  2922. total_room = head_room = 0;
  2923. mdb_tassert(txn, pglast <= env->me_pglast);
  2924. rc = mdb_cursor_del(&mc, 0);
  2925. if (rc)
  2926. return rc;
  2927. }
  2928. /* Save the IDL of pages freed by this txn, to a single record */
  2929. if (freecnt < txn->mt_free_pgs[0]) {
  2930. if (!freecnt) {
  2931. /* Make sure last page of freeDB is touched and on freelist */
  2932. rc = mdb_page_search(&mc, NULL, MDB_PS_LAST|MDB_PS_MODIFY);
  2933. if (rc && rc != MDB_NOTFOUND)
  2934. return rc;
  2935. }
  2936. free_pgs = txn->mt_free_pgs;
  2937. /* Write to last page of freeDB */
  2938. key.mv_size = sizeof(txn->mt_txnid);
  2939. key.mv_data = &txn->mt_txnid;
  2940. do {
  2941. freecnt = free_pgs[0];
  2942. data.mv_size = MDB_IDL_SIZEOF(free_pgs);
  2943. rc = mdb_cursor_put(&mc, &key, &data, MDB_RESERVE);
  2944. if (rc)
  2945. return rc;
  2946. /* Retry if mt_free_pgs[] grew during the Put() */
  2947. free_pgs = txn->mt_free_pgs;
  2948. } while (freecnt < free_pgs[0]);
  2949. mdb_midl_sort(free_pgs);
  2950. memcpy(data.mv_data, free_pgs, data.mv_size);
  2951. #if (MDB_DEBUG) > 1
  2952. {
  2953. unsigned int i = free_pgs[0];
  2954. DPRINTF(("IDL write txn %"Z"u root %"Z"u num %u",
  2955. txn->mt_txnid, txn->mt_dbs[FREE_DBI].md_root, i));
  2956. for (; i; i--)
  2957. DPRINTF(("IDL %"Z"u", free_pgs[i]));
  2958. }
  2959. #endif
  2960. continue;
  2961. }
  2962. mop = env->me_pghead;
  2963. mop_len = (mop ? mop[0] : 0) + txn->mt_loose_count;
  2964. /* Reserve records for me_pghead[]. Split it if multi-page,
  2965. * to avoid searching freeDB for a page range. Use keys in
  2966. * range [1,me_pglast]: Smaller than txnid of oldest reader.
  2967. */
  2968. if (total_room >= mop_len) {
  2969. if (total_room == mop_len || --more < 0)
  2970. break;
  2971. } else if (head_room >= maxfree_1pg && head_id > 1) {
  2972. /* Keep current record (overflow page), add a new one */
  2973. head_id--;
  2974. head_room = 0;
  2975. }
  2976. /* (Re)write {key = head_id, IDL length = head_room} */
  2977. total_room -= head_room;
  2978. head_room = mop_len - total_room;
  2979. if (head_room > maxfree_1pg && head_id > 1) {
  2980. /* Overflow multi-page for part of me_pghead */
  2981. head_room /= head_id; /* amortize page sizes */
  2982. head_room += maxfree_1pg - head_room % (maxfree_1pg + 1);
  2983. } else if (head_room < 0) {
  2984. /* Rare case, not bothering to delete this record */
  2985. head_room = 0;
  2986. }
  2987. key.mv_size = sizeof(head_id);
  2988. key.mv_data = &head_id;
  2989. data.mv_size = (head_room + 1) * sizeof(pgno_t);
  2990. rc = mdb_cursor_put(&mc, &key, &data, MDB_RESERVE);
  2991. if (rc)
  2992. return rc;
  2993. /* IDL is initially empty, zero out at least the length */
  2994. pgs = (pgno_t *)data.mv_data;
  2995. j = head_room > clean_limit ? head_room : 0;
  2996. do {
  2997. pgs[j] = 0;
  2998. } while (--j >= 0);
  2999. total_room += head_room;
  3000. }
  3001. /* Return loose page numbers to me_pghead, though usually none are
  3002. * left at this point. The pages themselves remain in dirty_list.
  3003. */
  3004. if (txn->mt_loose_pgs) {
  3005. MDB_page *mp = txn->mt_loose_pgs;
  3006. unsigned count = txn->mt_loose_count;
  3007. MDB_IDL loose;
  3008. /* Room for loose pages + temp IDL with same */
  3009. if ((rc = mdb_midl_need(&env->me_pghead, 2*count+1)) != 0)
  3010. return rc;
  3011. mop = env->me_pghead;
  3012. loose = mop + MDB_IDL_ALLOCLEN(mop) - count;
  3013. for (count = 0; mp; mp = NEXT_LOOSE_PAGE(mp))
  3014. loose[ ++count ] = mp->mp_pgno;
  3015. loose[0] = count;
  3016. mdb_midl_sort(loose);
  3017. mdb_midl_xmerge(mop, loose);
  3018. txn->mt_loose_pgs = NULL;
  3019. txn->mt_loose_count = 0;
  3020. mop_len = mop[0];
  3021. }
  3022. /* Fill in the reserved me_pghead records */
  3023. rc = MDB_SUCCESS;
  3024. if (mop_len) {
  3025. MDB_val key, data;
  3026. mop += mop_len;
  3027. rc = mdb_cursor_first(&mc, &key, &data);
  3028. for (; !rc; rc = mdb_cursor_next(&mc, &key, &data, MDB_NEXT)) {
  3029. txnid_t id = *(txnid_t *)key.mv_data;
  3030. ssize_t len = (ssize_t)(data.mv_size / sizeof(MDB_ID)) - 1;
  3031. MDB_ID save;
  3032. mdb_tassert(txn, len >= 0 && id <= env->me_pglast);
  3033. key.mv_data = &id;
  3034. if (len > mop_len) {
  3035. len = mop_len;
  3036. data.mv_size = (len + 1) * sizeof(MDB_ID);
  3037. }
  3038. data.mv_data = mop -= len;
  3039. save = mop[0];
  3040. mop[0] = len;
  3041. rc = mdb_cursor_put(&mc, &key, &data, MDB_CURRENT);
  3042. mop[0] = save;
  3043. if (rc || !(mop_len -= len))
  3044. break;
  3045. }
  3046. }
  3047. return rc;
  3048. }
  3049. /** Flush (some) dirty pages to the map, after clearing their dirty flag.
  3050. * @param[in] txn the transaction that's being committed
  3051. * @param[in] keep number of initial pages in dirty_list to keep dirty.
  3052. * @return 0 on success, non-zero on failure.
  3053. */
  3054. static int
  3055. mdb_page_flush(MDB_txn *txn, int keep)
  3056. {
  3057. MDB_env *env = txn->mt_env;
  3058. MDB_ID2L dl = txn->mt_u.dirty_list;
  3059. unsigned psize = env->me_psize, j;
  3060. int i, pagecount = dl[0].mid, rc;
  3061. size_t size = 0, pos = 0;
  3062. pgno_t pgno = 0;
  3063. MDB_page *dp = NULL;
  3064. #ifdef _WIN32
  3065. OVERLAPPED ov;
  3066. #else
  3067. struct iovec iov[MDB_COMMIT_PAGES];
  3068. ssize_t wpos = 0, wsize = 0, wres;
  3069. size_t next_pos = 1; /* impossible pos, so pos != next_pos */
  3070. int n = 0;
  3071. #endif
  3072. j = i = keep;
  3073. if (env->me_flags & MDB_WRITEMAP) {
  3074. /* Clear dirty flags */
  3075. while (++i <= pagecount) {
  3076. dp = dl[i].mptr;
  3077. /* Don't flush this page yet */
  3078. if (dp->mp_flags & (P_LOOSE|P_KEEP)) {
  3079. dp->mp_flags &= ~P_KEEP;
  3080. dl[++j] = dl[i];
  3081. continue;
  3082. }
  3083. dp->mp_flags &= ~P_DIRTY;
  3084. }
  3085. goto done;
  3086. }
  3087. /* Write the pages */
  3088. for (;;) {
  3089. if (++i <= pagecount) {
  3090. dp = dl[i].mptr;
  3091. /* Don't flush this page yet */
  3092. if (dp->mp_flags & (P_LOOSE|P_KEEP)) {
  3093. dp->mp_flags &= ~P_KEEP;
  3094. dl[i].mid = 0;
  3095. continue;
  3096. }
  3097. pgno = dl[i].mid;
  3098. /* clear dirty flag */
  3099. dp->mp_flags &= ~P_DIRTY;
  3100. pos = pgno * psize;
  3101. size = psize;
  3102. if (IS_OVERFLOW(dp)) size *= dp->mp_pages;
  3103. }
  3104. #ifdef _WIN32
  3105. else break;
  3106. /* Windows actually supports scatter/gather I/O, but only on
  3107. * unbuffered file handles. Since we're relying on the OS page
  3108. * cache for all our data, that's self-defeating. So we just
  3109. * write pages one at a time. We use the ov structure to set
  3110. * the write offset, to at least save the overhead of a Seek
  3111. * system call.
  3112. */
  3113. DPRINTF(("committing page %"Z"u", pgno));
  3114. memset(&ov, 0, sizeof(ov));
  3115. ov.Offset = pos & 0xffffffff;
  3116. ov.OffsetHigh = pos >> 16 >> 16;
  3117. if (!WriteFile(env->me_fd, dp, size, NULL, &ov)) {
  3118. rc = ErrCode();
  3119. DPRINTF(("WriteFile: %d", rc));
  3120. return rc;
  3121. }
  3122. #else
  3123. /* Write up to MDB_COMMIT_PAGES dirty pages at a time. */
  3124. if (pos!=next_pos || n==MDB_COMMIT_PAGES || wsize+size>MAX_WRITE) {
  3125. if (n) {
  3126. retry_write:
  3127. /* Write previous page(s) */
  3128. #ifdef MDB_USE_PWRITEV
  3129. wres = pwritev(env->me_fd, iov, n, wpos);
  3130. #else
  3131. if (n == 1) {
  3132. wres = pwrite(env->me_fd, iov[0].iov_base, wsize, wpos);
  3133. } else {
  3134. retry_seek:
  3135. if (lseek(env->me_fd, wpos, SEEK_SET) == -1) {
  3136. rc = ErrCode();
  3137. if (rc == EINTR)
  3138. goto retry_seek;
  3139. DPRINTF(("lseek: %s", strerror(rc)));
  3140. return rc;
  3141. }
  3142. wres = writev(env->me_fd, iov, n);
  3143. }
  3144. #endif
  3145. if (wres != wsize) {
  3146. if (wres < 0) {
  3147. rc = ErrCode();
  3148. if (rc == EINTR)
  3149. goto retry_write;
  3150. DPRINTF(("Write error: %s", strerror(rc)));
  3151. } else {
  3152. rc = EIO; /* TODO: Use which error code? */
  3153. DPUTS("short write, filesystem full?");
  3154. }
  3155. return rc;
  3156. }
  3157. n = 0;
  3158. }
  3159. if (i > pagecount)
  3160. break;
  3161. wpos = pos;
  3162. wsize = 0;
  3163. }
  3164. DPRINTF(("committing page %"Z"u", pgno));
  3165. next_pos = pos + size;
  3166. iov[n].iov_len = size;
  3167. iov[n].iov_base = (char *)dp;
  3168. wsize += size;
  3169. n++;
  3170. #endif /* _WIN32 */
  3171. }
  3172. /* MIPS has cache coherency issues, this is a no-op everywhere else
  3173. * Note: for any size >= on-chip cache size, entire on-chip cache is
  3174. * flushed.
  3175. */
  3176. CACHEFLUSH(env->me_map, txn->mt_next_pgno * env->me_psize, DCACHE);
  3177. for (i = keep; ++i <= pagecount; ) {
  3178. dp = dl[i].mptr;
  3179. /* This is a page we skipped above */
  3180. if (!dl[i].mid) {
  3181. dl[++j] = dl[i];
  3182. dl[j].mid = dp->mp_pgno;
  3183. continue;
  3184. }
  3185. mdb_dpage_free(env, dp);
  3186. }
  3187. done:
  3188. i--;
  3189. txn->mt_dirty_room += i - j;
  3190. dl[0].mid = j;
  3191. return MDB_SUCCESS;
  3192. }
  3193. int
  3194. mdb_txn_commit(MDB_txn *txn)
  3195. {
  3196. int rc;
  3197. unsigned int i, end_mode;
  3198. MDB_env *env;
  3199. if (txn == NULL)
  3200. return EINVAL;
  3201. /* mdb_txn_end() mode for a commit which writes nothing */
  3202. end_mode = MDB_END_EMPTY_COMMIT|MDB_END_UPDATE|MDB_END_SLOT|MDB_END_FREE;
  3203. if (txn->mt_child) {
  3204. rc = mdb_txn_commit(txn->mt_child);
  3205. if (rc)
  3206. goto fail;
  3207. }
  3208. env = txn->mt_env;
  3209. if (F_ISSET(txn->mt_flags, MDB_TXN_RDONLY)) {
  3210. goto done;
  3211. }
  3212. if (txn->mt_flags & (MDB_TXN_FINISHED|MDB_TXN_ERROR)) {
  3213. DPUTS("txn has failed/finished, can't commit");
  3214. if (txn->mt_parent)
  3215. txn->mt_parent->mt_flags |= MDB_TXN_ERROR;
  3216. rc = MDB_BAD_TXN;
  3217. goto fail;
  3218. }
  3219. if (txn->mt_parent) {
  3220. MDB_txn *parent = txn->mt_parent;
  3221. MDB_page **lp;
  3222. MDB_ID2L dst, src;
  3223. MDB_IDL pspill;
  3224. unsigned x, y, len, ps_len;
  3225. /* Append our free list to parent's */
  3226. rc = mdb_midl_append_list(&parent->mt_free_pgs, txn->mt_free_pgs);
  3227. if (rc)
  3228. goto fail;
  3229. mdb_midl_free(txn->mt_free_pgs);
  3230. /* Failures after this must either undo the changes
  3231. * to the parent or set MDB_TXN_ERROR in the parent.
  3232. */
  3233. parent->mt_next_pgno = txn->mt_next_pgno;
  3234. parent->mt_flags = txn->mt_flags;
  3235. /* Merge our cursors into parent's and close them */
  3236. mdb_cursors_close(txn, 1);
  3237. /* Update parent's DB table. */
  3238. memcpy(parent->mt_dbs, txn->mt_dbs, txn->mt_numdbs * sizeof(MDB_db));
  3239. parent->mt_numdbs = txn->mt_numdbs;
  3240. parent->mt_dbflags[FREE_DBI] = txn->mt_dbflags[FREE_DBI];
  3241. parent->mt_dbflags[MAIN_DBI] = txn->mt_dbflags[MAIN_DBI];
  3242. for (i=CORE_DBS; i<txn->mt_numdbs; i++) {
  3243. /* preserve parent's DB_NEW status */
  3244. x = parent->mt_dbflags[i] & DB_NEW;
  3245. parent->mt_dbflags[i] = txn->mt_dbflags[i] | x;
  3246. }
  3247. dst = parent->mt_u.dirty_list;
  3248. src = txn->mt_u.dirty_list;
  3249. /* Remove anything in our dirty list from parent's spill list */
  3250. if ((pspill = parent->mt_spill_pgs) && (ps_len = pspill[0])) {
  3251. x = y = ps_len;
  3252. pspill[0] = (pgno_t)-1;
  3253. /* Mark our dirty pages as deleted in parent spill list */
  3254. for (i=0, len=src[0].mid; ++i <= len; ) {
  3255. MDB_ID pn = src[i].mid << 1;
  3256. while (pn > pspill[x])
  3257. x--;
  3258. if (pn == pspill[x]) {
  3259. pspill[x] = 1;
  3260. y = --x;
  3261. }
  3262. }
  3263. /* Squash deleted pagenums if we deleted any */
  3264. for (x=y; ++x <= ps_len; )
  3265. if (!(pspill[x] & 1))
  3266. pspill[++y] = pspill[x];
  3267. pspill[0] = y;
  3268. }
  3269. /* Remove anything in our spill list from parent's dirty list */
  3270. if (txn->mt_spill_pgs && txn->mt_spill_pgs[0]) {
  3271. for (i=1; i<=txn->mt_spill_pgs[0]; i++) {
  3272. MDB_ID pn = txn->mt_spill_pgs[i];
  3273. if (pn & 1)
  3274. continue; /* deleted spillpg */
  3275. pn >>= 1;
  3276. y = mdb_mid2l_search(dst, pn);
  3277. if (y <= dst[0].mid && dst[y].mid == pn) {
  3278. free(dst[y].mptr);
  3279. while (y < dst[0].mid) {
  3280. dst[y] = dst[y+1];
  3281. y++;
  3282. }
  3283. dst[0].mid--;
  3284. }
  3285. }
  3286. }
  3287. /* Find len = length of merging our dirty list with parent's */
  3288. x = dst[0].mid;
  3289. dst[0].mid = 0; /* simplify loops */
  3290. if (parent->mt_parent) {
  3291. len = x + src[0].mid;
  3292. y = mdb_mid2l_search(src, dst[x].mid + 1) - 1;
  3293. for (i = x; y && i; y--) {
  3294. pgno_t yp = src[y].mid;
  3295. while (yp < dst[i].mid)
  3296. i--;
  3297. if (yp == dst[i].mid) {
  3298. i--;
  3299. len--;
  3300. }
  3301. }
  3302. } else { /* Simplify the above for single-ancestor case */
  3303. len = MDB_IDL_UM_MAX - txn->mt_dirty_room;
  3304. }
  3305. /* Merge our dirty list with parent's */
  3306. y = src[0].mid;
  3307. for (i = len; y; dst[i--] = src[y--]) {
  3308. pgno_t yp = src[y].mid;
  3309. while (yp < dst[x].mid)
  3310. dst[i--] = dst[x--];
  3311. if (yp == dst[x].mid)
  3312. free(dst[x--].mptr);
  3313. }
  3314. mdb_tassert(txn, i == x);
  3315. dst[0].mid = len;
  3316. free(txn->mt_u.dirty_list);
  3317. parent->mt_dirty_room = txn->mt_dirty_room;
  3318. if (txn->mt_spill_pgs) {
  3319. if (parent->mt_spill_pgs) {
  3320. /* TODO: Prevent failure here, so parent does not fail */
  3321. rc = mdb_midl_append_list(&parent->mt_spill_pgs, txn->mt_spill_pgs);
  3322. if (rc)
  3323. parent->mt_flags |= MDB_TXN_ERROR;
  3324. mdb_midl_free(txn->mt_spill_pgs);
  3325. mdb_midl_sort(parent->mt_spill_pgs);
  3326. } else {
  3327. parent->mt_spill_pgs = txn->mt_spill_pgs;
  3328. }
  3329. }
  3330. /* Append our loose page list to parent's */
  3331. for (lp = &parent->mt_loose_pgs; *lp; lp = &NEXT_LOOSE_PAGE(*lp))
  3332. ;
  3333. *lp = txn->mt_loose_pgs;
  3334. parent->mt_loose_count += txn->mt_loose_count;
  3335. parent->mt_child = NULL;
  3336. mdb_midl_free(((MDB_ntxn *)txn)->mnt_pgstate.mf_pghead);
  3337. free(txn);
  3338. return rc;
  3339. }
  3340. if (txn != env->me_txn) {
  3341. DPUTS("attempt to commit unknown transaction");
  3342. rc = EINVAL;
  3343. goto fail;
  3344. }
  3345. mdb_cursors_close(txn, 0);
  3346. if (!txn->mt_u.dirty_list[0].mid &&
  3347. !(txn->mt_flags & (MDB_TXN_DIRTY|MDB_TXN_SPILLS)))
  3348. goto done;
  3349. DPRINTF(("committing txn %"Z"u %p on mdbenv %p, root page %"Z"u",
  3350. txn->mt_txnid, (void*)txn, (void*)env, txn->mt_dbs[MAIN_DBI].md_root));
  3351. /* Update DB root pointers */
  3352. if (txn->mt_numdbs > CORE_DBS) {
  3353. MDB_cursor mc;
  3354. MDB_dbi i;
  3355. MDB_val data;
  3356. data.mv_size = sizeof(MDB_db);
  3357. mdb_cursor_init(&mc, txn, MAIN_DBI, NULL);
  3358. for (i = CORE_DBS; i < txn->mt_numdbs; i++) {
  3359. if (txn->mt_dbflags[i] & DB_DIRTY) {
  3360. if (TXN_DBI_CHANGED(txn, i)) {
  3361. rc = MDB_BAD_DBI;
  3362. goto fail;
  3363. }
  3364. data.mv_data = &txn->mt_dbs[i];
  3365. rc = mdb_cursor_put(&mc, &txn->mt_dbxs[i].md_name, &data,
  3366. F_SUBDATA);
  3367. if (rc)
  3368. goto fail;
  3369. }
  3370. }
  3371. }
  3372. rc = mdb_freelist_save(txn);
  3373. if (rc)
  3374. goto fail;
  3375. mdb_midl_free(env->me_pghead);
  3376. env->me_pghead = NULL;
  3377. mdb_midl_shrink(&txn->mt_free_pgs);
  3378. #if (MDB_DEBUG) > 2
  3379. mdb_audit(txn);
  3380. #endif
  3381. if ((rc = mdb_page_flush(txn, 0)) ||
  3382. (rc = mdb_env_sync(env, 0)) ||
  3383. (rc = mdb_env_write_meta(txn)))
  3384. goto fail;
  3385. end_mode = MDB_END_COMMITTED|MDB_END_UPDATE;
  3386. done:
  3387. mdb_txn_end(txn, end_mode);
  3388. return MDB_SUCCESS;
  3389. fail:
  3390. mdb_txn_abort(txn);
  3391. return rc;
  3392. }
  3393. /** Read the environment parameters of a DB environment before
  3394. * mapping it into memory.
  3395. * @param[in] env the environment handle
  3396. * @param[out] meta address of where to store the meta information
  3397. * @return 0 on success, non-zero on failure.
  3398. */
  3399. static int ESECT
  3400. mdb_env_read_header(MDB_env *env, MDB_meta *meta)
  3401. {
  3402. MDB_metabuf pbuf;
  3403. MDB_page *p;
  3404. MDB_meta *m;
  3405. int i, rc, off;
  3406. enum { Size = sizeof(pbuf) };
  3407. /* We don't know the page size yet, so use a minimum value.
  3408. * Read both meta pages so we can use the latest one.
  3409. */
  3410. for (i=off=0; i<NUM_METAS; i++, off += meta->mm_psize) {
  3411. #ifdef _WIN32
  3412. DWORD len;
  3413. OVERLAPPED ov;
  3414. memset(&ov, 0, sizeof(ov));
  3415. ov.Offset = off;
  3416. rc = ReadFile(env->me_fd, &pbuf, Size, &len, &ov) ? (int)len : -1;
  3417. if (rc == -1 && ErrCode() == ERROR_HANDLE_EOF)
  3418. rc = 0;
  3419. #else
  3420. rc = pread(env->me_fd, &pbuf, Size, off);
  3421. #endif
  3422. if (rc != Size) {
  3423. if (rc == 0 && off == 0)
  3424. return ENOENT;
  3425. rc = rc < 0 ? (int) ErrCode() : MDB_INVALID;
  3426. DPRINTF(("read: %s", mdb_strerror(rc)));
  3427. return rc;
  3428. }
  3429. p = (MDB_page *)&pbuf;
  3430. if (!F_ISSET(p->mp_flags, P_META)) {
  3431. DPRINTF(("page %"Z"u not a meta page", p->mp_pgno));
  3432. return MDB_INVALID;
  3433. }
  3434. m = METADATA(p);
  3435. if (m->mm_magic != MDB_MAGIC) {
  3436. DPUTS("meta has invalid magic");
  3437. return MDB_INVALID;
  3438. }
  3439. if (m->mm_version != MDB_DATA_VERSION) {
  3440. DPRINTF(("database is version %u, expected version %u",
  3441. m->mm_version, MDB_DATA_VERSION));
  3442. return MDB_VERSION_MISMATCH;
  3443. }
  3444. if (off == 0 || m->mm_txnid > meta->mm_txnid)
  3445. *meta = *m;
  3446. }
  3447. return 0;
  3448. }
  3449. /** Fill in most of the zeroed #MDB_meta for an empty database environment */
  3450. static void ESECT
  3451. mdb_env_init_meta0(MDB_env *env, MDB_meta *meta)
  3452. {
  3453. meta->mm_magic = MDB_MAGIC;
  3454. meta->mm_version = MDB_DATA_VERSION;
  3455. meta->mm_mapsize = env->me_mapsize;
  3456. meta->mm_psize = env->me_psize;
  3457. meta->mm_last_pg = NUM_METAS-1;
  3458. meta->mm_flags = env->me_flags & 0xffff;
  3459. meta->mm_flags |= MDB_INTEGERKEY; /* this is mm_dbs[FREE_DBI].md_flags */
  3460. meta->mm_dbs[FREE_DBI].md_root = P_INVALID;
  3461. meta->mm_dbs[MAIN_DBI].md_root = P_INVALID;
  3462. }
  3463. /** Write the environment parameters of a freshly created DB environment.
  3464. * @param[in] env the environment handle
  3465. * @param[in] meta the #MDB_meta to write
  3466. * @return 0 on success, non-zero on failure.
  3467. */
  3468. static int ESECT
  3469. mdb_env_init_meta(MDB_env *env, MDB_meta *meta)
  3470. {
  3471. MDB_page *p, *q;
  3472. int rc;
  3473. unsigned int psize;
  3474. #ifdef _WIN32
  3475. DWORD len;
  3476. OVERLAPPED ov;
  3477. memset(&ov, 0, sizeof(ov));
  3478. #define DO_PWRITE(rc, fd, ptr, size, len, pos) do { \
  3479. ov.Offset = pos; \
  3480. rc = WriteFile(fd, ptr, size, &len, &ov); } while(0)
  3481. #else
  3482. int len;
  3483. #define DO_PWRITE(rc, fd, ptr, size, len, pos) do { \
  3484. len = pwrite(fd, ptr, size, pos); \
  3485. if (len == -1 && ErrCode() == EINTR) continue; \
  3486. rc = (len >= 0); break; } while(1)
  3487. #endif
  3488. DPUTS("writing new meta page");
  3489. psize = env->me_psize;
  3490. p = calloc(NUM_METAS, psize);
  3491. if (!p)
  3492. return ENOMEM;
  3493. p->mp_pgno = 0;
  3494. p->mp_flags = P_META;
  3495. *(MDB_meta *)METADATA(p) = *meta;
  3496. q = (MDB_page *)((char *)p + psize);
  3497. q->mp_pgno = 1;
  3498. q->mp_flags = P_META;
  3499. *(MDB_meta *)METADATA(q) = *meta;
  3500. DO_PWRITE(rc, env->me_fd, p, psize * NUM_METAS, len, 0);
  3501. if (!rc)
  3502. rc = ErrCode();
  3503. else if ((unsigned) len == psize * NUM_METAS)
  3504. rc = MDB_SUCCESS;
  3505. else
  3506. rc = ENOSPC;
  3507. free(p);
  3508. return rc;
  3509. }
  3510. /** Update the environment info to commit a transaction.
  3511. * @param[in] txn the transaction that's being committed
  3512. * @return 0 on success, non-zero on failure.
  3513. */
  3514. static int
  3515. mdb_env_write_meta(MDB_txn *txn)
  3516. {
  3517. MDB_env *env;
  3518. MDB_meta meta, metab, *mp;
  3519. unsigned flags;
  3520. size_t mapsize;
  3521. off_t off;
  3522. int rc, len, toggle;
  3523. char *ptr;
  3524. HANDLE mfd;
  3525. #ifdef _WIN32
  3526. OVERLAPPED ov;
  3527. #else
  3528. int r2;
  3529. #endif
  3530. toggle = txn->mt_txnid & 1;
  3531. DPRINTF(("writing meta page %d for root page %"Z"u",
  3532. toggle, txn->mt_dbs[MAIN_DBI].md_root));
  3533. env = txn->mt_env;
  3534. flags = env->me_flags;
  3535. mp = env->me_metas[toggle];
  3536. mapsize = env->me_metas[toggle ^ 1]->mm_mapsize;
  3537. /* Persist any increases of mapsize config */
  3538. if (mapsize < env->me_mapsize)
  3539. mapsize = env->me_mapsize;
  3540. if (flags & MDB_WRITEMAP) {
  3541. mp->mm_mapsize = mapsize;
  3542. mp->mm_dbs[FREE_DBI] = txn->mt_dbs[FREE_DBI];
  3543. mp->mm_dbs[MAIN_DBI] = txn->mt_dbs[MAIN_DBI];
  3544. mp->mm_last_pg = txn->mt_next_pgno - 1;
  3545. #if (__GNUC__ * 100 + __GNUC_MINOR__ >= 404) && /* TODO: portability */ \
  3546. !(defined(__i386__) || defined(__x86_64__))
  3547. /* LY: issue a memory barrier, if not x86. ITS#7969 */
  3548. __sync_synchronize();
  3549. #endif
  3550. mp->mm_txnid = txn->mt_txnid;
  3551. if (!(flags & (MDB_NOMETASYNC|MDB_NOSYNC))) {
  3552. unsigned meta_size = env->me_psize;
  3553. rc = (env->me_flags & MDB_MAPASYNC) ? MS_ASYNC : MS_SYNC;
  3554. ptr = (char *)mp - PAGEHDRSZ;
  3555. #ifndef _WIN32 /* POSIX msync() requires ptr = start of OS page */
  3556. r2 = (ptr - env->me_map) & (env->me_os_psize - 1);
  3557. ptr -= r2;
  3558. meta_size += r2;
  3559. #endif
  3560. if (MDB_MSYNC(ptr, meta_size, rc)) {
  3561. rc = ErrCode();
  3562. goto fail;
  3563. }
  3564. }
  3565. goto done;
  3566. }
  3567. metab.mm_txnid = mp->mm_txnid;
  3568. metab.mm_last_pg = mp->mm_last_pg;
  3569. meta.mm_mapsize = mapsize;
  3570. meta.mm_dbs[FREE_DBI] = txn->mt_dbs[FREE_DBI];
  3571. meta.mm_dbs[MAIN_DBI] = txn->mt_dbs[MAIN_DBI];
  3572. meta.mm_last_pg = txn->mt_next_pgno - 1;
  3573. meta.mm_txnid = txn->mt_txnid;
  3574. off = offsetof(MDB_meta, mm_mapsize);
  3575. ptr = (char *)&meta + off;
  3576. len = sizeof(MDB_meta) - off;
  3577. off += (char *)mp - env->me_map;
  3578. /* Write to the SYNC fd unless MDB_NOSYNC/MDB_NOMETASYNC.
  3579. * (me_mfd goes to the same file as me_fd, but writing to it
  3580. * also syncs to disk. Avoids a separate fdatasync() call.)
  3581. */
  3582. mfd = (flags & (MDB_NOSYNC|MDB_NOMETASYNC)) ? env->me_fd : env->me_mfd;
  3583. #ifdef _WIN32
  3584. {
  3585. memset(&ov, 0, sizeof(ov));
  3586. ov.Offset = off;
  3587. if (!WriteFile(mfd, ptr, len, (DWORD *)&rc, &ov))
  3588. rc = -1;
  3589. }
  3590. #else
  3591. retry_write:
  3592. rc = pwrite(mfd, ptr, len, off);
  3593. #endif
  3594. if (rc != len) {
  3595. rc = rc < 0 ? ErrCode() : EIO;
  3596. #ifndef _WIN32
  3597. if (rc == EINTR)
  3598. goto retry_write;
  3599. #endif
  3600. DPUTS("write failed, disk error?");
  3601. /* On a failure, the pagecache still contains the new data.
  3602. * Write some old data back, to prevent it from being used.
  3603. * Use the non-SYNC fd; we know it will fail anyway.
  3604. */
  3605. meta.mm_last_pg = metab.mm_last_pg;
  3606. meta.mm_txnid = metab.mm_txnid;
  3607. #ifdef _WIN32
  3608. memset(&ov, 0, sizeof(ov));
  3609. ov.Offset = off;
  3610. WriteFile(env->me_fd, ptr, len, NULL, &ov);
  3611. #else
  3612. r2 = pwrite(env->me_fd, ptr, len, off);
  3613. (void)r2; /* Silence warnings. We don't care about pwrite's return value */
  3614. #endif
  3615. fail:
  3616. env->me_flags |= MDB_FATAL_ERROR;
  3617. return rc;
  3618. }
  3619. /* MIPS has cache coherency issues, this is a no-op everywhere else */
  3620. CACHEFLUSH(env->me_map + off, len, DCACHE);
  3621. done:
  3622. /* Memory ordering issues are irrelevant; since the entire writer
  3623. * is wrapped by wmutex, all of these changes will become visible
  3624. * after the wmutex is unlocked. Since the DB is multi-version,
  3625. * readers will get consistent data regardless of how fresh or
  3626. * how stale their view of these values is.
  3627. */
  3628. if (env->me_txns)
  3629. env->me_txns->mti_txnid = txn->mt_txnid;
  3630. return MDB_SUCCESS;
  3631. }
  3632. /** Check both meta pages to see which one is newer.
  3633. * @param[in] env the environment handle
  3634. * @return newest #MDB_meta.
  3635. */
  3636. static MDB_meta *
  3637. mdb_env_pick_meta(const MDB_env *env)
  3638. {
  3639. MDB_meta *const *metas = env->me_metas;
  3640. return metas[ metas[0]->mm_txnid < metas[1]->mm_txnid ];
  3641. }
  3642. int ESECT
  3643. mdb_env_create(MDB_env **env)
  3644. {
  3645. MDB_env *e;
  3646. e = calloc(1, sizeof(MDB_env));
  3647. if (!e)
  3648. return ENOMEM;
  3649. e->me_maxreaders = DEFAULT_READERS;
  3650. e->me_maxdbs = e->me_numdbs = CORE_DBS;
  3651. e->me_fd = INVALID_HANDLE_VALUE;
  3652. e->me_lfd = INVALID_HANDLE_VALUE;
  3653. e->me_mfd = INVALID_HANDLE_VALUE;
  3654. #ifdef MDB_USE_POSIX_SEM
  3655. e->me_rmutex = SEM_FAILED;
  3656. e->me_wmutex = SEM_FAILED;
  3657. #endif
  3658. e->me_pid = getpid();
  3659. GET_PAGESIZE(e->me_os_psize);
  3660. VGMEMP_CREATE(e,0,0);
  3661. *env = e;
  3662. return MDB_SUCCESS;
  3663. }
  3664. static int ESECT
  3665. mdb_env_map(MDB_env *env, void *addr)
  3666. {
  3667. MDB_page *p;
  3668. unsigned int flags = env->me_flags;
  3669. #ifdef _WIN32
  3670. int rc;
  3671. HANDLE mh;
  3672. LONG sizelo, sizehi;
  3673. size_t msize;
  3674. if (flags & MDB_RDONLY) {
  3675. /* Don't set explicit map size, use whatever exists */
  3676. msize = 0;
  3677. sizelo = 0;
  3678. sizehi = 0;
  3679. } else {
  3680. msize = env->me_mapsize;
  3681. sizelo = msize & 0xffffffff;
  3682. sizehi = msize >> 16 >> 16; /* only needed on Win64 */
  3683. /* Windows won't create mappings for zero length files.
  3684. * and won't map more than the file size.
  3685. * Just set the maxsize right now.
  3686. */
  3687. if (!(flags & MDB_WRITEMAP) && (SetFilePointer(env->me_fd, sizelo, &sizehi, 0) != (DWORD)sizelo
  3688. || !SetEndOfFile(env->me_fd)
  3689. || SetFilePointer(env->me_fd, 0, NULL, 0) != 0))
  3690. return ErrCode();
  3691. }
  3692. mh = CreateFileMapping(env->me_fd, NULL, flags & MDB_WRITEMAP ?
  3693. PAGE_READWRITE : PAGE_READONLY,
  3694. sizehi, sizelo, NULL);
  3695. if (!mh)
  3696. return ErrCode();
  3697. env->me_map = MapViewOfFileEx(mh, flags & MDB_WRITEMAP ?
  3698. FILE_MAP_WRITE : FILE_MAP_READ,
  3699. 0, 0, msize, addr);
  3700. rc = env->me_map ? 0 : ErrCode();
  3701. CloseHandle(mh);
  3702. if (rc)
  3703. return rc;
  3704. #else
  3705. int mmap_flags = MAP_SHARED;
  3706. int prot = PROT_READ;
  3707. #ifdef MAP_NOSYNC /* Used on FreeBSD */
  3708. if (flags & MDB_NOSYNC)
  3709. mmap_flags |= MAP_NOSYNC;
  3710. #endif
  3711. if (flags & MDB_WRITEMAP) {
  3712. prot |= PROT_WRITE;
  3713. if (ftruncate(env->me_fd, env->me_mapsize) < 0)
  3714. return ErrCode();
  3715. }
  3716. env->me_map = mmap(addr, env->me_mapsize, prot, mmap_flags,
  3717. env->me_fd, 0);
  3718. if (env->me_map == MAP_FAILED) {
  3719. env->me_map = NULL;
  3720. return ErrCode();
  3721. }
  3722. if (flags & MDB_NORDAHEAD) {
  3723. /* Turn off readahead. It's harmful when the DB is larger than RAM. */
  3724. #ifdef MADV_RANDOM
  3725. madvise(env->me_map, env->me_mapsize, MADV_RANDOM);
  3726. #else
  3727. #ifdef POSIX_MADV_RANDOM
  3728. posix_madvise(env->me_map, env->me_mapsize, POSIX_MADV_RANDOM);
  3729. #endif /* POSIX_MADV_RANDOM */
  3730. #endif /* MADV_RANDOM */
  3731. }
  3732. #endif /* _WIN32 */
  3733. /* Can happen because the address argument to mmap() is just a
  3734. * hint. mmap() can pick another, e.g. if the range is in use.
  3735. * The MAP_FIXED flag would prevent that, but then mmap could
  3736. * instead unmap existing pages to make room for the new map.
  3737. */
  3738. if (addr && env->me_map != addr)
  3739. return EBUSY; /* TODO: Make a new MDB_* error code? */
  3740. p = (MDB_page *)env->me_map;
  3741. env->me_metas[0] = METADATA(p);
  3742. env->me_metas[1] = (MDB_meta *)((char *)env->me_metas[0] + env->me_psize);
  3743. return MDB_SUCCESS;
  3744. }
  3745. int ESECT
  3746. mdb_env_set_mapsize(MDB_env *env, size_t size)
  3747. {
  3748. /* If env is already open, caller is responsible for making
  3749. * sure there are no active txns.
  3750. */
  3751. if (env->me_map) {
  3752. int rc;
  3753. MDB_meta *meta;
  3754. void *old;
  3755. if (env->me_txn)
  3756. return EINVAL;
  3757. meta = mdb_env_pick_meta(env);
  3758. if (!size)
  3759. size = meta->mm_mapsize;
  3760. {
  3761. /* Silently round up to minimum if the size is too small */
  3762. size_t minsize = (meta->mm_last_pg + 1) * env->me_psize;
  3763. if (size < minsize)
  3764. size = minsize;
  3765. }
  3766. munmap(env->me_map, env->me_mapsize);
  3767. env->me_mapsize = size;
  3768. old = (env->me_flags & MDB_FIXEDMAP) ? env->me_map : NULL;
  3769. rc = mdb_env_map(env, old);
  3770. if (rc)
  3771. return rc;
  3772. }
  3773. env->me_mapsize = size;
  3774. if (env->me_psize)
  3775. env->me_maxpg = env->me_mapsize / env->me_psize;
  3776. return MDB_SUCCESS;
  3777. }
  3778. int ESECT
  3779. mdb_env_set_maxdbs(MDB_env *env, MDB_dbi dbs)
  3780. {
  3781. if (env->me_map)
  3782. return EINVAL;
  3783. env->me_maxdbs = dbs + CORE_DBS;
  3784. return MDB_SUCCESS;
  3785. }
  3786. int ESECT
  3787. mdb_env_set_maxreaders(MDB_env *env, unsigned int readers)
  3788. {
  3789. if (env->me_map || readers < 1)
  3790. return EINVAL;
  3791. env->me_maxreaders = readers;
  3792. return MDB_SUCCESS;
  3793. }
  3794. int ESECT
  3795. mdb_env_get_maxreaders(MDB_env *env, unsigned int *readers)
  3796. {
  3797. if (!env || !readers)
  3798. return EINVAL;
  3799. *readers = env->me_maxreaders;
  3800. return MDB_SUCCESS;
  3801. }
  3802. static int ESECT
  3803. mdb_fsize(HANDLE fd, size_t *size)
  3804. {
  3805. #ifdef _WIN32
  3806. LARGE_INTEGER fsize;
  3807. if (!GetFileSizeEx(fd, &fsize))
  3808. return ErrCode();
  3809. *size = fsize.QuadPart;
  3810. #else
  3811. struct stat st;
  3812. if (fstat(fd, &st))
  3813. return ErrCode();
  3814. *size = st.st_size;
  3815. #endif
  3816. return MDB_SUCCESS;
  3817. }
  3818. #ifdef _WIN32
  3819. typedef wchar_t mdb_nchar_t;
  3820. # define MDB_NAME(str) L##str
  3821. # define mdb_name_cpy wcscpy
  3822. #else
  3823. /** Character type for file names: char on Unix, wchar_t on Windows */
  3824. typedef char mdb_nchar_t;
  3825. # define MDB_NAME(str) str /**< #mdb_nchar_t[] string literal */
  3826. # define mdb_name_cpy strcpy /**< Copy name (#mdb_nchar_t string) */
  3827. #endif
  3828. /** Filename - string of #mdb_nchar_t[] */
  3829. typedef struct MDB_name {
  3830. int mn_len; /**< Length */
  3831. int mn_alloced; /**< True if #mn_val was malloced */
  3832. mdb_nchar_t *mn_val; /**< Contents */
  3833. } MDB_name;
  3834. /** Filename suffixes [datafile,lockfile][without,with MDB_NOSUBDIR] */
  3835. static const mdb_nchar_t *const mdb_suffixes[2][2] = {
  3836. { MDB_NAME("/data.mdb"), MDB_NAME("") },
  3837. { MDB_NAME("/lock.mdb"), MDB_NAME("-lock") }
  3838. };
  3839. #define MDB_SUFFLEN 9 /**< Max string length in #mdb_suffixes[] */
  3840. /** Set up filename + scratch area for filename suffix, for opening files.
  3841. * It should be freed with #mdb_fname_destroy().
  3842. * On Windows, paths are converted from char *UTF-8 to wchar_t *UTF-16.
  3843. *
  3844. * @param[in] path Pathname for #mdb_env_open().
  3845. * @param[in] envflags Whether a subdir and/or lockfile will be used.
  3846. * @param[out] fname Resulting filename, with room for a suffix if necessary.
  3847. */
  3848. static int ESECT
  3849. mdb_fname_init(const char *path, unsigned envflags, MDB_name *fname)
  3850. {
  3851. int no_suffix = F_ISSET(envflags, MDB_NOSUBDIR|MDB_NOLOCK);
  3852. fname->mn_alloced = 0;
  3853. #ifdef _WIN32
  3854. return utf8_to_utf16(path, fname, no_suffix ? 0 : MDB_SUFFLEN);
  3855. #else
  3856. fname->mn_len = strlen(path);
  3857. if (no_suffix)
  3858. fname->mn_val = (char *) path;
  3859. else if ((fname->mn_val = malloc(fname->mn_len + MDB_SUFFLEN+1)) != NULL) {
  3860. fname->mn_alloced = 1;
  3861. strcpy(fname->mn_val, path);
  3862. }
  3863. else
  3864. return ENOMEM;
  3865. return MDB_SUCCESS;
  3866. #endif
  3867. }
  3868. /** Destroy \b fname from #mdb_fname_init() */
  3869. #define mdb_fname_destroy(fname) \
  3870. do { if ((fname).mn_alloced) free((fname).mn_val); } while (0)
  3871. #ifdef O_CLOEXEC /* POSIX.1-2008: Set FD_CLOEXEC atomically at open() */
  3872. # define MDB_CLOEXEC O_CLOEXEC
  3873. #else
  3874. # define MDB_CLOEXEC 0
  3875. #endif
  3876. /** File type, access mode etc. for #mdb_fopen() */
  3877. enum mdb_fopen_type {
  3878. #ifdef _WIN32
  3879. MDB_O_RDONLY, MDB_O_RDWR, MDB_O_META, MDB_O_COPY, MDB_O_LOCKS
  3880. #else
  3881. /* A comment in mdb_fopen() explains some O_* flag choices. */
  3882. MDB_O_RDONLY= O_RDONLY, /**< for RDONLY me_fd */
  3883. MDB_O_RDWR = O_RDWR |O_CREAT, /**< for me_fd */
  3884. MDB_O_META = O_WRONLY|MDB_DSYNC |MDB_CLOEXEC, /**< for me_mfd */
  3885. MDB_O_COPY = O_WRONLY|O_CREAT|O_EXCL|MDB_CLOEXEC, /**< for #mdb_env_copy() */
  3886. /** Bitmask for open() flags in enum #mdb_fopen_type. The other bits
  3887. * distinguish otherwise-equal MDB_O_* constants from each other.
  3888. */
  3889. MDB_O_MASK = MDB_O_RDWR|MDB_CLOEXEC | MDB_O_RDONLY|MDB_O_META|MDB_O_COPY,
  3890. MDB_O_LOCKS = MDB_O_RDWR|MDB_CLOEXEC | ((MDB_O_MASK+1) & ~MDB_O_MASK) /**< for me_lfd */
  3891. #endif
  3892. };
  3893. /** Open an LMDB file.
  3894. * @param[in] env The LMDB environment.
  3895. * @param[in,out] fname Path from from #mdb_fname_init(). A suffix is
  3896. * appended if necessary to create the filename, without changing mn_len.
  3897. * @param[in] which Determines file type, access mode, etc.
  3898. * @param[in] mode The Unix permissions for the file, if we create it.
  3899. * @param[out] res Resulting file handle.
  3900. * @return 0 on success, non-zero on failure.
  3901. */
  3902. static int ESECT
  3903. mdb_fopen(const MDB_env *env, MDB_name *fname,
  3904. enum mdb_fopen_type which, mdb_mode_t mode,
  3905. HANDLE *res)
  3906. {
  3907. int rc = MDB_SUCCESS;
  3908. HANDLE fd;
  3909. #ifdef _WIN32
  3910. DWORD acc, share, disp, attrs;
  3911. #else
  3912. int flags;
  3913. #endif
  3914. if (fname->mn_alloced) /* modifiable copy */
  3915. mdb_name_cpy(fname->mn_val + fname->mn_len,
  3916. mdb_suffixes[which==MDB_O_LOCKS][F_ISSET(env->me_flags, MDB_NOSUBDIR)]);
  3917. /* The directory must already exist. Usually the file need not.
  3918. * MDB_O_META requires the file because we already created it using
  3919. * MDB_O_RDWR. MDB_O_COPY must not overwrite an existing file.
  3920. *
  3921. * With MDB_O_COPY we do not want the OS to cache the writes, since
  3922. * the source data is already in the OS cache.
  3923. *
  3924. * The lockfile needs FD_CLOEXEC (close file descriptor on exec*())
  3925. * to avoid the flock() issues noted under Caveats in lmdb.h.
  3926. * Also set it for other filehandles which the user cannot get at
  3927. * and close himself, which he may need after fork(). I.e. all but
  3928. * me_fd, which programs do use via mdb_env_get_fd().
  3929. */
  3930. #ifdef _WIN32
  3931. acc = GENERIC_READ|GENERIC_WRITE;
  3932. share = FILE_SHARE_READ|FILE_SHARE_WRITE;
  3933. disp = OPEN_ALWAYS;
  3934. attrs = FILE_ATTRIBUTE_NORMAL;
  3935. switch (which) {
  3936. case MDB_O_RDONLY: /* read-only datafile */
  3937. acc = GENERIC_READ;
  3938. disp = OPEN_EXISTING;
  3939. break;
  3940. case MDB_O_META: /* for writing metapages */
  3941. acc = GENERIC_WRITE;
  3942. disp = OPEN_EXISTING;
  3943. attrs = FILE_ATTRIBUTE_NORMAL|FILE_FLAG_WRITE_THROUGH;
  3944. break;
  3945. case MDB_O_COPY: /* mdb_env_copy() & co */
  3946. acc = GENERIC_WRITE;
  3947. share = 0;
  3948. disp = CREATE_NEW;
  3949. attrs = FILE_FLAG_NO_BUFFERING|FILE_FLAG_WRITE_THROUGH;
  3950. break;
  3951. default: break; /* silence gcc -Wswitch (not all enum values handled) */
  3952. }
  3953. fd = CreateFileW(fname->mn_val, acc, share, NULL, disp, attrs, NULL);
  3954. #else
  3955. fd = open(fname->mn_val, which & MDB_O_MASK, mode);
  3956. #endif
  3957. if (fd == INVALID_HANDLE_VALUE)
  3958. rc = ErrCode();
  3959. #ifndef _WIN32
  3960. else {
  3961. if (which != MDB_O_RDONLY && which != MDB_O_RDWR) {
  3962. /* Set CLOEXEC if we could not pass it to open() */
  3963. if (!MDB_CLOEXEC && (flags = fcntl(fd, F_GETFD)) != -1)
  3964. (void) fcntl(fd, F_SETFD, flags | FD_CLOEXEC);
  3965. }
  3966. if (which == MDB_O_COPY && env->me_psize >= env->me_os_psize) {
  3967. /* This may require buffer alignment. There is no portable
  3968. * way to ask how much, so we require OS pagesize alignment.
  3969. */
  3970. # ifdef F_NOCACHE /* __APPLE__ */
  3971. (void) fcntl(fd, F_NOCACHE, 1);
  3972. # elif defined O_DIRECT
  3973. /* open(...O_DIRECT...) would break on filesystems without
  3974. * O_DIRECT support (ITS#7682). Try to set it here instead.
  3975. */
  3976. if ((flags = fcntl(fd, F_GETFL)) != -1)
  3977. (void) fcntl(fd, F_SETFL, flags | O_DIRECT);
  3978. # endif
  3979. }
  3980. }
  3981. #endif /* !_WIN32 */
  3982. *res = fd;
  3983. return rc;
  3984. }
  3985. #ifdef BROKEN_FDATASYNC
  3986. #include <sys/utsname.h>
  3987. #include <sys/vfs.h>
  3988. #endif
  3989. /** Further setup required for opening an LMDB environment
  3990. */
  3991. static int ESECT
  3992. mdb_env_open2(MDB_env *env)
  3993. {
  3994. unsigned int flags = env->me_flags;
  3995. int i, newenv = 0, rc;
  3996. MDB_meta meta;
  3997. #ifdef _WIN32
  3998. /* See if we should use QueryLimited */
  3999. rc = GetVersion();
  4000. if ((rc & 0xff) > 5)
  4001. env->me_pidquery = MDB_PROCESS_QUERY_LIMITED_INFORMATION;
  4002. else
  4003. env->me_pidquery = PROCESS_QUERY_INFORMATION;
  4004. #endif /* _WIN32 */
  4005. #ifdef BROKEN_FDATASYNC
  4006. /* ext3/ext4 fdatasync is broken on some older Linux kernels.
  4007. * https://lkml.org/lkml/2012/9/3/83
  4008. * Kernels after 3.6-rc6 are known good.
  4009. * https://lkml.org/lkml/2012/9/10/556
  4010. * See if the DB is on ext3/ext4, then check for new enough kernel
  4011. * Kernels 2.6.32.60, 2.6.34.15, 3.2.30, and 3.5.4 are also known
  4012. * to be patched.
  4013. */
  4014. {
  4015. struct statfs st;
  4016. fstatfs(env->me_fd, &st);
  4017. while (st.f_type == 0xEF53) {
  4018. struct utsname uts;
  4019. int i;
  4020. uname(&uts);
  4021. if (uts.release[0] < '3') {
  4022. if (!strncmp(uts.release, "2.6.32.", 7)) {
  4023. i = atoi(uts.release+7);
  4024. if (i >= 60)
  4025. break; /* 2.6.32.60 and newer is OK */
  4026. } else if (!strncmp(uts.release, "2.6.34.", 7)) {
  4027. i = atoi(uts.release+7);
  4028. if (i >= 15)
  4029. break; /* 2.6.34.15 and newer is OK */
  4030. }
  4031. } else if (uts.release[0] == '3') {
  4032. i = atoi(uts.release+2);
  4033. if (i > 5)
  4034. break; /* 3.6 and newer is OK */
  4035. if (i == 5) {
  4036. i = atoi(uts.release+4);
  4037. if (i >= 4)
  4038. break; /* 3.5.4 and newer is OK */
  4039. } else if (i == 2) {
  4040. i = atoi(uts.release+4);
  4041. if (i >= 30)
  4042. break; /* 3.2.30 and newer is OK */
  4043. }
  4044. } else { /* 4.x and newer is OK */
  4045. break;
  4046. }
  4047. env->me_flags |= MDB_FSYNCONLY;
  4048. break;
  4049. }
  4050. }
  4051. #endif
  4052. if ((i = mdb_env_read_header(env, &meta)) != 0) {
  4053. if (i != ENOENT)
  4054. return i;
  4055. DPUTS("new mdbenv");
  4056. newenv = 1;
  4057. env->me_psize = env->me_os_psize;
  4058. if (env->me_psize > MAX_PAGESIZE)
  4059. env->me_psize = MAX_PAGESIZE;
  4060. memset(&meta, 0, sizeof(meta));
  4061. mdb_env_init_meta0(env, &meta);
  4062. meta.mm_mapsize = DEFAULT_MAPSIZE;
  4063. } else {
  4064. env->me_psize = meta.mm_psize;
  4065. }
  4066. /* Was a mapsize configured? */
  4067. if (!env->me_mapsize) {
  4068. env->me_mapsize = meta.mm_mapsize;
  4069. }
  4070. {
  4071. /* Make sure mapsize >= committed data size. Even when using
  4072. * mm_mapsize, which could be broken in old files (ITS#7789).
  4073. */
  4074. size_t minsize = (meta.mm_last_pg + 1) * meta.mm_psize;
  4075. if (env->me_mapsize < minsize)
  4076. env->me_mapsize = minsize;
  4077. }
  4078. meta.mm_mapsize = env->me_mapsize;
  4079. if (newenv && !(flags & MDB_FIXEDMAP)) {
  4080. /* mdb_env_map() may grow the datafile. Write the metapages
  4081. * first, so the file will be valid if initialization fails.
  4082. * Except with FIXEDMAP, since we do not yet know mm_address.
  4083. * We could fill in mm_address later, but then a different
  4084. * program might end up doing that - one with a memory layout
  4085. * and map address which does not suit the main program.
  4086. */
  4087. rc = mdb_env_init_meta(env, &meta);
  4088. if (rc)
  4089. return rc;
  4090. newenv = 0;
  4091. }
  4092. rc = mdb_env_map(env, (flags & MDB_FIXEDMAP) ? meta.mm_address : NULL);
  4093. if (rc)
  4094. return rc;
  4095. if (newenv) {
  4096. if (flags & MDB_FIXEDMAP)
  4097. meta.mm_address = env->me_map;
  4098. i = mdb_env_init_meta(env, &meta);
  4099. if (i != MDB_SUCCESS) {
  4100. return i;
  4101. }
  4102. }
  4103. env->me_maxfree_1pg = (env->me_psize - PAGEHDRSZ) / sizeof(pgno_t) - 1;
  4104. env->me_nodemax = (((env->me_psize - PAGEHDRSZ) / MDB_MINKEYS) & -2)
  4105. - sizeof(indx_t);
  4106. #if !(MDB_MAXKEYSIZE)
  4107. env->me_maxkey = env->me_nodemax - (NODESIZE + sizeof(MDB_db));
  4108. #endif
  4109. env->me_maxpg = env->me_mapsize / env->me_psize;
  4110. #if MDB_DEBUG
  4111. {
  4112. MDB_meta *meta = mdb_env_pick_meta(env);
  4113. MDB_db *db = &meta->mm_dbs[MAIN_DBI];
  4114. DPRINTF(("opened database version %u, pagesize %u",
  4115. meta->mm_version, env->me_psize));
  4116. DPRINTF(("using meta page %d", (int) (meta->mm_txnid & 1)));
  4117. DPRINTF(("depth: %u", db->md_depth));
  4118. DPRINTF(("entries: %"Z"u", db->md_entries));
  4119. DPRINTF(("branch pages: %"Z"u", db->md_branch_pages));
  4120. DPRINTF(("leaf pages: %"Z"u", db->md_leaf_pages));
  4121. DPRINTF(("overflow pages: %"Z"u", db->md_overflow_pages));
  4122. DPRINTF(("root: %"Z"u", db->md_root));
  4123. }
  4124. #endif
  4125. return MDB_SUCCESS;
  4126. }
  4127. /** Release a reader thread's slot in the reader lock table.
  4128. * This function is called automatically when a thread exits.
  4129. * @param[in] ptr This points to the slot in the reader lock table.
  4130. */
  4131. static void
  4132. mdb_env_reader_dest(void *ptr)
  4133. {
  4134. MDB_reader *reader = ptr;
  4135. #ifndef _WIN32
  4136. if (reader->mr_pid == getpid()) /* catch pthread_exit() in child process */
  4137. #endif
  4138. /* We omit the mutex, so do this atomically (i.e. skip mr_txnid) */
  4139. reader->mr_pid = 0;
  4140. }
  4141. #ifdef _WIN32
  4142. /** Junk for arranging thread-specific callbacks on Windows. This is
  4143. * necessarily platform and compiler-specific. Windows supports up
  4144. * to 1088 keys. Let's assume nobody opens more than 64 environments
  4145. * in a single process, for now. They can override this if needed.
  4146. */
  4147. #ifndef MAX_TLS_KEYS
  4148. #define MAX_TLS_KEYS 64
  4149. #endif
  4150. static pthread_key_t mdb_tls_keys[MAX_TLS_KEYS];
  4151. static int mdb_tls_nkeys;
  4152. static void NTAPI mdb_tls_callback(PVOID module, DWORD reason, PVOID ptr)
  4153. {
  4154. int i;
  4155. switch(reason) {
  4156. case DLL_PROCESS_ATTACH: break;
  4157. case DLL_THREAD_ATTACH: break;
  4158. case DLL_THREAD_DETACH:
  4159. for (i=0; i<mdb_tls_nkeys; i++) {
  4160. MDB_reader *r = pthread_getspecific(mdb_tls_keys[i]);
  4161. if (r) {
  4162. mdb_env_reader_dest(r);
  4163. }
  4164. }
  4165. break;
  4166. case DLL_PROCESS_DETACH: break;
  4167. }
  4168. }
  4169. #ifdef __GNUC__
  4170. #ifdef _WIN64
  4171. const PIMAGE_TLS_CALLBACK mdb_tls_cbp __attribute__((section (".CRT$XLB"))) = mdb_tls_callback;
  4172. #else
  4173. PIMAGE_TLS_CALLBACK mdb_tls_cbp __attribute__((section (".CRT$XLB"))) = mdb_tls_callback;
  4174. #endif
  4175. #else
  4176. #ifdef _WIN64
  4177. /* Force some symbol references.
  4178. * _tls_used forces the linker to create the TLS directory if not already done
  4179. * mdb_tls_cbp prevents whole-program-optimizer from dropping the symbol.
  4180. */
  4181. #pragma comment(linker, "/INCLUDE:_tls_used")
  4182. #pragma comment(linker, "/INCLUDE:mdb_tls_cbp")
  4183. #pragma const_seg(".CRT$XLB")
  4184. extern const PIMAGE_TLS_CALLBACK mdb_tls_cbp;
  4185. const PIMAGE_TLS_CALLBACK mdb_tls_cbp = mdb_tls_callback;
  4186. #pragma const_seg()
  4187. #else /* _WIN32 */
  4188. #pragma comment(linker, "/INCLUDE:__tls_used")
  4189. #pragma comment(linker, "/INCLUDE:_mdb_tls_cbp")
  4190. #pragma data_seg(".CRT$XLB")
  4191. PIMAGE_TLS_CALLBACK mdb_tls_cbp = mdb_tls_callback;
  4192. #pragma data_seg()
  4193. #endif /* WIN 32/64 */
  4194. #endif /* !__GNUC__ */
  4195. #endif
  4196. /** Downgrade the exclusive lock on the region back to shared */
  4197. static int ESECT
  4198. mdb_env_share_locks(MDB_env *env, int *excl)
  4199. {
  4200. int rc = 0;
  4201. MDB_meta *meta = mdb_env_pick_meta(env);
  4202. env->me_txns->mti_txnid = meta->mm_txnid;
  4203. #ifdef _WIN32
  4204. {
  4205. OVERLAPPED ov;
  4206. /* First acquire a shared lock. The Unlock will
  4207. * then release the existing exclusive lock.
  4208. */
  4209. memset(&ov, 0, sizeof(ov));
  4210. if (!LockFileEx(env->me_lfd, 0, 0, 1, 0, &ov)) {
  4211. rc = ErrCode();
  4212. } else {
  4213. UnlockFile(env->me_lfd, 0, 0, 1, 0);
  4214. *excl = 0;
  4215. }
  4216. }
  4217. #else
  4218. {
  4219. struct flock lock_info;
  4220. /* The shared lock replaces the existing lock */
  4221. memset((void *)&lock_info, 0, sizeof(lock_info));
  4222. lock_info.l_type = F_RDLCK;
  4223. lock_info.l_whence = SEEK_SET;
  4224. lock_info.l_start = 0;
  4225. lock_info.l_len = 1;
  4226. while ((rc = fcntl(env->me_lfd, F_SETLK, &lock_info)) &&
  4227. (rc = ErrCode()) == EINTR) ;
  4228. *excl = rc ? -1 : 0; /* error may mean we lost the lock */
  4229. }
  4230. #endif
  4231. return rc;
  4232. }
  4233. /** Try to get exclusive lock, otherwise shared.
  4234. * Maintain *excl = -1: no/unknown lock, 0: shared, 1: exclusive.
  4235. */
  4236. static int ESECT
  4237. mdb_env_excl_lock(MDB_env *env, int *excl)
  4238. {
  4239. int rc = 0;
  4240. #ifdef _WIN32
  4241. if (LockFile(env->me_lfd, 0, 0, 1, 0)) {
  4242. *excl = 1;
  4243. } else {
  4244. OVERLAPPED ov;
  4245. memset(&ov, 0, sizeof(ov));
  4246. if (LockFileEx(env->me_lfd, 0, 0, 1, 0, &ov)) {
  4247. *excl = 0;
  4248. } else {
  4249. rc = ErrCode();
  4250. }
  4251. }
  4252. #else
  4253. struct flock lock_info;
  4254. memset((void *)&lock_info, 0, sizeof(lock_info));
  4255. lock_info.l_type = F_WRLCK;
  4256. lock_info.l_whence = SEEK_SET;
  4257. lock_info.l_start = 0;
  4258. lock_info.l_len = 1;
  4259. while ((rc = fcntl(env->me_lfd, F_SETLK, &lock_info)) &&
  4260. (rc = ErrCode()) == EINTR) ;
  4261. if (!rc) {
  4262. *excl = 1;
  4263. } else
  4264. # ifndef MDB_USE_POSIX_MUTEX
  4265. if (*excl < 0) /* always true when MDB_USE_POSIX_MUTEX */
  4266. # endif
  4267. {
  4268. lock_info.l_type = F_RDLCK;
  4269. while ((rc = fcntl(env->me_lfd, F_SETLKW, &lock_info)) &&
  4270. (rc = ErrCode()) == EINTR) ;
  4271. if (rc == 0)
  4272. *excl = 0;
  4273. }
  4274. #endif
  4275. return rc;
  4276. }
  4277. #ifdef MDB_USE_HASH
  4278. /*
  4279. * hash_64 - 64 bit Fowler/Noll/Vo-0 FNV-1a hash code
  4280. *
  4281. * @(#) $Revision: 5.1 $
  4282. * @(#) $Id: hash_64a.c,v 5.1 2009/06/30 09:01:38 chongo Exp $
  4283. * @(#) $Source: /usr/local/src/cmd/fnv/RCS/hash_64a.c,v $
  4284. *
  4285. * http://www.isthe.com/chongo/tech/comp/fnv/index.html
  4286. *
  4287. ***
  4288. *
  4289. * Please do not copyright this code. This code is in the public domain.
  4290. *
  4291. * LANDON CURT NOLL DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE,
  4292. * INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO
  4293. * EVENT SHALL LANDON CURT NOLL BE LIABLE FOR ANY SPECIAL, INDIRECT OR
  4294. * CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF
  4295. * USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR
  4296. * OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
  4297. * PERFORMANCE OF THIS SOFTWARE.
  4298. *
  4299. * By:
  4300. * chongo <Landon Curt Noll> /\oo/\
  4301. * http://www.isthe.com/chongo/
  4302. *
  4303. * Share and Enjoy! :-)
  4304. */
  4305. typedef unsigned long long mdb_hash_t;
  4306. #define MDB_HASH_INIT ((mdb_hash_t)0xcbf29ce484222325ULL)
  4307. /** perform a 64 bit Fowler/Noll/Vo FNV-1a hash on a buffer
  4308. * @param[in] val value to hash
  4309. * @param[in] hval initial value for hash
  4310. * @return 64 bit hash
  4311. *
  4312. * NOTE: To use the recommended 64 bit FNV-1a hash, use MDB_HASH_INIT as the
  4313. * hval arg on the first call.
  4314. */
  4315. static mdb_hash_t
  4316. mdb_hash_val(MDB_val *val, mdb_hash_t hval)
  4317. {
  4318. unsigned char *s = (unsigned char *)val->mv_data; /* unsigned string */
  4319. unsigned char *end = s + val->mv_size;
  4320. /*
  4321. * FNV-1a hash each octet of the string
  4322. */
  4323. while (s < end) {
  4324. /* xor the bottom with the current octet */
  4325. hval ^= (mdb_hash_t)*s++;
  4326. /* multiply by the 64 bit FNV magic prime mod 2^64 */
  4327. hval += (hval << 1) + (hval << 4) + (hval << 5) +
  4328. (hval << 7) + (hval << 8) + (hval << 40);
  4329. }
  4330. /* return our new hash value */
  4331. return hval;
  4332. }
  4333. /** Hash the string and output the encoded hash.
  4334. * This uses modified RFC1924 Ascii85 encoding to accommodate systems with
  4335. * very short name limits. We don't care about the encoding being reversible,
  4336. * we just want to preserve as many bits of the input as possible in a
  4337. * small printable string.
  4338. * @param[in] str string to hash
  4339. * @param[out] encbuf an array of 11 chars to hold the hash
  4340. */
  4341. static const char mdb_a85[]= "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz!#$%&()*+-;<=>?@^_`{|}~";
  4342. static void ESECT
  4343. mdb_pack85(unsigned long l, char *out)
  4344. {
  4345. int i;
  4346. for (i=0; i<5; i++) {
  4347. *out++ = mdb_a85[l % 85];
  4348. l /= 85;
  4349. }
  4350. }
  4351. static void ESECT
  4352. mdb_hash_enc(MDB_val *val, char *encbuf)
  4353. {
  4354. mdb_hash_t h = mdb_hash_val(val, MDB_HASH_INIT);
  4355. mdb_pack85(h, encbuf);
  4356. mdb_pack85(h>>32, encbuf+5);
  4357. encbuf[10] = '\0';
  4358. }
  4359. #endif
  4360. /** Open and/or initialize the lock region for the environment.
  4361. * @param[in] env The LMDB environment.
  4362. * @param[in] fname Filename + scratch area, from #mdb_fname_init().
  4363. * @param[in] mode The Unix permissions for the file, if we create it.
  4364. * @param[in,out] excl In -1, out lock type: -1 none, 0 shared, 1 exclusive
  4365. * @return 0 on success, non-zero on failure.
  4366. */
  4367. static int ESECT
  4368. mdb_env_setup_locks(MDB_env *env, MDB_name *fname, int mode, int *excl)
  4369. {
  4370. #ifdef _WIN32
  4371. # define MDB_ERRCODE_ROFS ERROR_WRITE_PROTECT
  4372. #else
  4373. # define MDB_ERRCODE_ROFS EROFS
  4374. #endif
  4375. int rc;
  4376. off_t size, rsize;
  4377. rc = mdb_fopen(env, fname, MDB_O_LOCKS, mode, &env->me_lfd);
  4378. if (rc) {
  4379. /* Omit lockfile if read-only env on read-only filesystem */
  4380. if (rc == MDB_ERRCODE_ROFS && (env->me_flags & MDB_RDONLY)) {
  4381. return MDB_SUCCESS;
  4382. }
  4383. goto fail;
  4384. }
  4385. if (!(env->me_flags & MDB_NOTLS)) {
  4386. rc = pthread_key_create(&env->me_txkey, mdb_env_reader_dest);
  4387. if (rc)
  4388. goto fail;
  4389. env->me_flags |= MDB_ENV_TXKEY;
  4390. #ifdef _WIN32
  4391. /* Windows TLS callbacks need help finding their TLS info. */
  4392. if (mdb_tls_nkeys >= MAX_TLS_KEYS) {
  4393. rc = MDB_TLS_FULL;
  4394. goto fail;
  4395. }
  4396. mdb_tls_keys[mdb_tls_nkeys++] = env->me_txkey;
  4397. #endif
  4398. }
  4399. /* Try to get exclusive lock. If we succeed, then
  4400. * nobody is using the lock region and we should initialize it.
  4401. */
  4402. if ((rc = mdb_env_excl_lock(env, excl))) goto fail;
  4403. #ifdef _WIN32
  4404. size = GetFileSize(env->me_lfd, NULL);
  4405. #else
  4406. size = lseek(env->me_lfd, 0, SEEK_END);
  4407. if (size == -1) goto fail_errno;
  4408. #endif
  4409. rsize = (env->me_maxreaders-1) * sizeof(MDB_reader) + sizeof(MDB_txninfo);
  4410. if (size < rsize && *excl > 0) {
  4411. #ifdef _WIN32
  4412. if (SetFilePointer(env->me_lfd, rsize, NULL, FILE_BEGIN) != (DWORD)rsize
  4413. || !SetEndOfFile(env->me_lfd))
  4414. goto fail_errno;
  4415. #else
  4416. if (ftruncate(env->me_lfd, rsize) != 0) goto fail_errno;
  4417. #endif
  4418. } else {
  4419. rsize = size;
  4420. size = rsize - sizeof(MDB_txninfo);
  4421. env->me_maxreaders = size/sizeof(MDB_reader) + 1;
  4422. }
  4423. {
  4424. #ifdef _WIN32
  4425. HANDLE mh;
  4426. mh = CreateFileMapping(env->me_lfd, NULL, PAGE_READWRITE,
  4427. 0, 0, NULL);
  4428. if (!mh) goto fail_errno;
  4429. env->me_txns = MapViewOfFileEx(mh, FILE_MAP_WRITE, 0, 0, rsize, NULL);
  4430. CloseHandle(mh);
  4431. if (!env->me_txns) goto fail_errno;
  4432. #else
  4433. void *m = mmap(NULL, rsize, PROT_READ|PROT_WRITE, MAP_SHARED,
  4434. env->me_lfd, 0);
  4435. if (m == MAP_FAILED) goto fail_errno;
  4436. env->me_txns = m;
  4437. #endif
  4438. }
  4439. if (*excl > 0) {
  4440. #ifdef _WIN32
  4441. BY_HANDLE_FILE_INFORMATION stbuf;
  4442. struct {
  4443. DWORD volume;
  4444. DWORD nhigh;
  4445. DWORD nlow;
  4446. } idbuf;
  4447. MDB_val val;
  4448. char encbuf[11];
  4449. if (!mdb_sec_inited) {
  4450. InitializeSecurityDescriptor(&mdb_null_sd,
  4451. SECURITY_DESCRIPTOR_REVISION);
  4452. SetSecurityDescriptorDacl(&mdb_null_sd, TRUE, 0, FALSE);
  4453. mdb_all_sa.nLength = sizeof(SECURITY_ATTRIBUTES);
  4454. mdb_all_sa.bInheritHandle = FALSE;
  4455. mdb_all_sa.lpSecurityDescriptor = &mdb_null_sd;
  4456. mdb_sec_inited = 1;
  4457. }
  4458. if (!GetFileInformationByHandle(env->me_lfd, &stbuf)) goto fail_errno;
  4459. idbuf.volume = stbuf.dwVolumeSerialNumber;
  4460. idbuf.nhigh = stbuf.nFileIndexHigh;
  4461. idbuf.nlow = stbuf.nFileIndexLow;
  4462. val.mv_data = &idbuf;
  4463. val.mv_size = sizeof(idbuf);
  4464. mdb_hash_enc(&val, encbuf);
  4465. sprintf(env->me_txns->mti_rmname, "Global\\MDBr%s", encbuf);
  4466. sprintf(env->me_txns->mti_wmname, "Global\\MDBw%s", encbuf);
  4467. env->me_rmutex = CreateMutexA(&mdb_all_sa, FALSE, env->me_txns->mti_rmname);
  4468. if (!env->me_rmutex) goto fail_errno;
  4469. env->me_wmutex = CreateMutexA(&mdb_all_sa, FALSE, env->me_txns->mti_wmname);
  4470. if (!env->me_wmutex) goto fail_errno;
  4471. #elif defined(MDB_USE_POSIX_SEM)
  4472. struct stat stbuf;
  4473. struct {
  4474. dev_t dev;
  4475. ino_t ino;
  4476. } idbuf;
  4477. MDB_val val;
  4478. char encbuf[11];
  4479. #if defined(__NetBSD__)
  4480. #define MDB_SHORT_SEMNAMES 1 /* limited to 14 chars */
  4481. #endif
  4482. if (fstat(env->me_lfd, &stbuf)) goto fail_errno;
  4483. idbuf.dev = stbuf.st_dev;
  4484. idbuf.ino = stbuf.st_ino;
  4485. val.mv_data = &idbuf;
  4486. val.mv_size = sizeof(idbuf);
  4487. mdb_hash_enc(&val, encbuf);
  4488. #ifdef MDB_SHORT_SEMNAMES
  4489. encbuf[9] = '\0'; /* drop name from 15 chars to 14 chars */
  4490. #endif
  4491. sprintf(env->me_txns->mti_rmname, "/MDBr%s", encbuf);
  4492. sprintf(env->me_txns->mti_wmname, "/MDBw%s", encbuf);
  4493. /* Clean up after a previous run, if needed: Try to
  4494. * remove both semaphores before doing anything else.
  4495. */
  4496. sem_unlink(env->me_txns->mti_rmname);
  4497. sem_unlink(env->me_txns->mti_wmname);
  4498. env->me_rmutex = sem_open(env->me_txns->mti_rmname,
  4499. O_CREAT|O_EXCL, mode, 1);
  4500. if (env->me_rmutex == SEM_FAILED) goto fail_errno;
  4501. env->me_wmutex = sem_open(env->me_txns->mti_wmname,
  4502. O_CREAT|O_EXCL, mode, 1);
  4503. if (env->me_wmutex == SEM_FAILED) goto fail_errno;
  4504. #else /* MDB_USE_POSIX_MUTEX: */
  4505. pthread_mutexattr_t mattr;
  4506. /* Solaris needs this before initing a robust mutex. Otherwise
  4507. * it may skip the init and return EBUSY "seems someone already
  4508. * inited" or EINVAL "it was inited differently".
  4509. */
  4510. memset(env->me_txns->mti_rmutex, 0, sizeof(*env->me_txns->mti_rmutex));
  4511. memset(env->me_txns->mti_wmutex, 0, sizeof(*env->me_txns->mti_wmutex));
  4512. if ((rc = pthread_mutexattr_init(&mattr)))
  4513. goto fail;
  4514. rc = pthread_mutexattr_setpshared(&mattr, PTHREAD_PROCESS_SHARED);
  4515. #ifdef MDB_ROBUST_SUPPORTED
  4516. if (!rc) rc = pthread_mutexattr_setrobust(&mattr, PTHREAD_MUTEX_ROBUST);
  4517. #endif
  4518. if (!rc) rc = pthread_mutex_init(env->me_txns->mti_rmutex, &mattr);
  4519. if (!rc) rc = pthread_mutex_init(env->me_txns->mti_wmutex, &mattr);
  4520. pthread_mutexattr_destroy(&mattr);
  4521. if (rc)
  4522. goto fail;
  4523. #endif /* _WIN32 || MDB_USE_POSIX_SEM */
  4524. env->me_txns->mti_magic = MDB_MAGIC;
  4525. env->me_txns->mti_format = MDB_LOCK_FORMAT;
  4526. env->me_txns->mti_txnid = 0;
  4527. env->me_txns->mti_numreaders = 0;
  4528. } else {
  4529. if (env->me_txns->mti_magic != MDB_MAGIC) {
  4530. DPUTS("lock region has invalid magic");
  4531. rc = MDB_INVALID;
  4532. goto fail;
  4533. }
  4534. if (env->me_txns->mti_format != MDB_LOCK_FORMAT) {
  4535. DPRINTF(("lock region has format+version 0x%x, expected 0x%x",
  4536. env->me_txns->mti_format, MDB_LOCK_FORMAT));
  4537. rc = MDB_VERSION_MISMATCH;
  4538. goto fail;
  4539. }
  4540. rc = ErrCode();
  4541. if (rc && rc != EACCES && rc != EAGAIN) {
  4542. goto fail;
  4543. }
  4544. #ifdef _WIN32
  4545. env->me_rmutex = OpenMutexA(SYNCHRONIZE, FALSE, env->me_txns->mti_rmname);
  4546. if (!env->me_rmutex) goto fail_errno;
  4547. env->me_wmutex = OpenMutexA(SYNCHRONIZE, FALSE, env->me_txns->mti_wmname);
  4548. if (!env->me_wmutex) goto fail_errno;
  4549. #elif defined(MDB_USE_POSIX_SEM)
  4550. env->me_rmutex = sem_open(env->me_txns->mti_rmname, 0);
  4551. if (env->me_rmutex == SEM_FAILED) goto fail_errno;
  4552. env->me_wmutex = sem_open(env->me_txns->mti_wmname, 0);
  4553. if (env->me_wmutex == SEM_FAILED) goto fail_errno;
  4554. #endif
  4555. }
  4556. return MDB_SUCCESS;
  4557. fail_errno:
  4558. rc = ErrCode();
  4559. fail:
  4560. return rc;
  4561. }
  4562. /** Only a subset of the @ref mdb_env flags can be changed
  4563. * at runtime. Changing other flags requires closing the
  4564. * environment and re-opening it with the new flags.
  4565. */
  4566. #define CHANGEABLE (MDB_NOSYNC|MDB_NOMETASYNC|MDB_MAPASYNC|MDB_NOMEMINIT)
  4567. #define CHANGELESS (MDB_FIXEDMAP|MDB_NOSUBDIR|MDB_RDONLY| \
  4568. MDB_WRITEMAP|MDB_NOTLS|MDB_NOLOCK|MDB_NORDAHEAD)
  4569. #if VALID_FLAGS & PERSISTENT_FLAGS & (CHANGEABLE|CHANGELESS)
  4570. # error "Persistent DB flags & env flags overlap, but both go in mm_flags"
  4571. #endif
  4572. int ESECT
  4573. mdb_env_open(MDB_env *env, const char *path, unsigned int flags, mdb_mode_t mode)
  4574. {
  4575. int rc, excl = -1;
  4576. MDB_name fname;
  4577. if (env->me_fd!=INVALID_HANDLE_VALUE || (flags & ~(CHANGEABLE|CHANGELESS)))
  4578. return EINVAL;
  4579. flags |= env->me_flags;
  4580. rc = mdb_fname_init(path, flags, &fname);
  4581. if (rc)
  4582. return rc;
  4583. if (flags & MDB_RDONLY) {
  4584. /* silently ignore WRITEMAP when we're only getting read access */
  4585. flags &= ~MDB_WRITEMAP;
  4586. } else {
  4587. if (!((env->me_free_pgs = mdb_midl_alloc(MDB_IDL_UM_MAX)) &&
  4588. (env->me_dirty_list = calloc(MDB_IDL_UM_SIZE, sizeof(MDB_ID2)))))
  4589. rc = ENOMEM;
  4590. }
  4591. env->me_flags = flags |= MDB_ENV_ACTIVE;
  4592. if (rc)
  4593. goto leave;
  4594. env->me_path = strdup(path);
  4595. env->me_dbxs = calloc(env->me_maxdbs, sizeof(MDB_dbx));
  4596. env->me_dbflags = calloc(env->me_maxdbs, sizeof(uint16_t));
  4597. env->me_dbiseqs = calloc(env->me_maxdbs, sizeof(unsigned int));
  4598. if (!(env->me_dbxs && env->me_path && env->me_dbflags && env->me_dbiseqs)) {
  4599. rc = ENOMEM;
  4600. goto leave;
  4601. }
  4602. env->me_dbxs[FREE_DBI].md_cmp = mdb_cmp_long; /* aligned MDB_INTEGERKEY */
  4603. /* For RDONLY, get lockfile after we know datafile exists */
  4604. if (!(flags & (MDB_RDONLY|MDB_NOLOCK))) {
  4605. rc = mdb_env_setup_locks(env, &fname, mode, &excl);
  4606. if (rc)
  4607. goto leave;
  4608. }
  4609. rc = mdb_fopen(env, &fname,
  4610. (flags & MDB_RDONLY) ? MDB_O_RDONLY : MDB_O_RDWR,
  4611. mode, &env->me_fd);
  4612. if (rc)
  4613. goto leave;
  4614. if ((flags & (MDB_RDONLY|MDB_NOLOCK)) == MDB_RDONLY) {
  4615. rc = mdb_env_setup_locks(env, &fname, mode, &excl);
  4616. if (rc)
  4617. goto leave;
  4618. }
  4619. if ((rc = mdb_env_open2(env)) == MDB_SUCCESS) {
  4620. if (!(flags & (MDB_RDONLY|MDB_WRITEMAP))) {
  4621. /* Synchronous fd for meta writes. Needed even with
  4622. * MDB_NOSYNC/MDB_NOMETASYNC, in case these get reset.
  4623. */
  4624. rc = mdb_fopen(env, &fname, MDB_O_META, mode, &env->me_mfd);
  4625. if (rc)
  4626. goto leave;
  4627. }
  4628. DPRINTF(("opened dbenv %p", (void *) env));
  4629. if (excl > 0) {
  4630. rc = mdb_env_share_locks(env, &excl);
  4631. if (rc)
  4632. goto leave;
  4633. }
  4634. if (!(flags & MDB_RDONLY)) {
  4635. MDB_txn *txn;
  4636. int tsize = sizeof(MDB_txn), size = tsize + env->me_maxdbs *
  4637. (sizeof(MDB_db)+sizeof(MDB_cursor *)+sizeof(unsigned int)+1);
  4638. if ((env->me_pbuf = calloc(1, env->me_psize)) &&
  4639. (txn = calloc(1, size)))
  4640. {
  4641. txn->mt_dbs = (MDB_db *)((char *)txn + tsize);
  4642. txn->mt_cursors = (MDB_cursor **)(txn->mt_dbs + env->me_maxdbs);
  4643. txn->mt_dbiseqs = (unsigned int *)(txn->mt_cursors + env->me_maxdbs);
  4644. txn->mt_dbflags = (unsigned char *)(txn->mt_dbiseqs + env->me_maxdbs);
  4645. txn->mt_env = env;
  4646. txn->mt_dbxs = env->me_dbxs;
  4647. txn->mt_flags = MDB_TXN_FINISHED;
  4648. env->me_txn0 = txn;
  4649. } else {
  4650. rc = ENOMEM;
  4651. }
  4652. }
  4653. }
  4654. leave:
  4655. if (rc) {
  4656. mdb_env_close0(env, excl);
  4657. }
  4658. mdb_fname_destroy(fname);
  4659. return rc;
  4660. }
  4661. /** Destroy resources from mdb_env_open(), clear our readers & DBIs */
  4662. static void ESECT
  4663. mdb_env_close0(MDB_env *env, int excl)
  4664. {
  4665. int i;
  4666. if (!(env->me_flags & MDB_ENV_ACTIVE))
  4667. return;
  4668. /* Doing this here since me_dbxs may not exist during mdb_env_close */
  4669. if (env->me_dbxs) {
  4670. for (i = env->me_maxdbs; --i >= CORE_DBS; )
  4671. free(env->me_dbxs[i].md_name.mv_data);
  4672. free(env->me_dbxs);
  4673. }
  4674. free(env->me_pbuf);
  4675. free(env->me_dbiseqs);
  4676. free(env->me_dbflags);
  4677. free(env->me_path);
  4678. free(env->me_dirty_list);
  4679. free(env->me_txn0);
  4680. mdb_midl_free(env->me_free_pgs);
  4681. if (env->me_flags & MDB_ENV_TXKEY) {
  4682. pthread_key_delete(env->me_txkey);
  4683. #ifdef _WIN32
  4684. /* Delete our key from the global list */
  4685. for (i=0; i<mdb_tls_nkeys; i++)
  4686. if (mdb_tls_keys[i] == env->me_txkey) {
  4687. mdb_tls_keys[i] = mdb_tls_keys[mdb_tls_nkeys-1];
  4688. mdb_tls_nkeys--;
  4689. break;
  4690. }
  4691. #endif
  4692. }
  4693. if (env->me_map) {
  4694. munmap(env->me_map, env->me_mapsize);
  4695. }
  4696. if (env->me_mfd != INVALID_HANDLE_VALUE)
  4697. (void) close(env->me_mfd);
  4698. if (env->me_fd != INVALID_HANDLE_VALUE)
  4699. (void) close(env->me_fd);
  4700. if (env->me_txns) {
  4701. MDB_PID_T pid = getpid();
  4702. /* Clearing readers is done in this function because
  4703. * me_txkey with its destructor must be disabled first.
  4704. *
  4705. * We skip the the reader mutex, so we touch only
  4706. * data owned by this process (me_close_readers and
  4707. * our readers), and clear each reader atomically.
  4708. */
  4709. for (i = env->me_close_readers; --i >= 0; )
  4710. if (env->me_txns->mti_readers[i].mr_pid == pid)
  4711. env->me_txns->mti_readers[i].mr_pid = 0;
  4712. #ifdef _WIN32
  4713. if (env->me_rmutex) {
  4714. CloseHandle(env->me_rmutex);
  4715. if (env->me_wmutex) CloseHandle(env->me_wmutex);
  4716. }
  4717. /* Windows automatically destroys the mutexes when
  4718. * the last handle closes.
  4719. */
  4720. #elif defined(MDB_USE_POSIX_SEM)
  4721. if (env->me_rmutex != SEM_FAILED) {
  4722. sem_close(env->me_rmutex);
  4723. if (env->me_wmutex != SEM_FAILED)
  4724. sem_close(env->me_wmutex);
  4725. /* If we have the filelock: If we are the
  4726. * only remaining user, clean up semaphores.
  4727. */
  4728. if (excl == 0)
  4729. mdb_env_excl_lock(env, &excl);
  4730. if (excl > 0) {
  4731. sem_unlink(env->me_txns->mti_rmname);
  4732. sem_unlink(env->me_txns->mti_wmname);
  4733. }
  4734. }
  4735. #elif defined(MDB_ROBUST_SUPPORTED)
  4736. /* If we have the filelock: If we are the
  4737. * only remaining user, clean up robust
  4738. * mutexes.
  4739. */
  4740. if (excl == 0)
  4741. mdb_env_excl_lock(env, &excl);
  4742. if (excl > 0) {
  4743. pthread_mutex_destroy(env->me_txns->mti_rmutex);
  4744. pthread_mutex_destroy(env->me_txns->mti_wmutex);
  4745. }
  4746. #endif
  4747. munmap((void *)env->me_txns, (env->me_maxreaders-1)*sizeof(MDB_reader)+sizeof(MDB_txninfo));
  4748. }
  4749. if (env->me_lfd != INVALID_HANDLE_VALUE) {
  4750. #ifdef _WIN32
  4751. if (excl >= 0) {
  4752. /* Unlock the lockfile. Windows would have unlocked it
  4753. * after closing anyway, but not necessarily at once.
  4754. */
  4755. UnlockFile(env->me_lfd, 0, 0, 1, 0);
  4756. }
  4757. #endif
  4758. (void) close(env->me_lfd);
  4759. }
  4760. env->me_flags &= ~(MDB_ENV_ACTIVE|MDB_ENV_TXKEY);
  4761. }
  4762. void ESECT
  4763. mdb_env_close(MDB_env *env)
  4764. {
  4765. MDB_page *dp;
  4766. if (env == NULL)
  4767. return;
  4768. VGMEMP_DESTROY(env);
  4769. while ((dp = env->me_dpages) != NULL) {
  4770. VGMEMP_DEFINED(&dp->mp_next, sizeof(dp->mp_next));
  4771. env->me_dpages = dp->mp_next;
  4772. free(dp);
  4773. }
  4774. mdb_env_close0(env, 0);
  4775. free(env);
  4776. }
  4777. /** Compare two items pointing at aligned size_t's */
  4778. static int
  4779. mdb_cmp_long(const MDB_val *a, const MDB_val *b)
  4780. {
  4781. return (*(size_t *)a->mv_data < *(size_t *)b->mv_data) ? -1 :
  4782. *(size_t *)a->mv_data > *(size_t *)b->mv_data;
  4783. }
  4784. /** Compare two items pointing at aligned unsigned int's.
  4785. *
  4786. * This is also set as #MDB_INTEGERDUP|#MDB_DUPFIXED's #MDB_dbx.%md_dcmp,
  4787. * but #mdb_cmp_clong() is called instead if the data type is size_t.
  4788. */
  4789. static int
  4790. mdb_cmp_int(const MDB_val *a, const MDB_val *b)
  4791. {
  4792. return (*(unsigned int *)a->mv_data < *(unsigned int *)b->mv_data) ? -1 :
  4793. *(unsigned int *)a->mv_data > *(unsigned int *)b->mv_data;
  4794. }
  4795. /** Compare two items pointing at unsigned ints of unknown alignment.
  4796. * Nodes and keys are guaranteed to be 2-byte aligned.
  4797. */
  4798. static int
  4799. mdb_cmp_cint(const MDB_val *a, const MDB_val *b)
  4800. {
  4801. #if BYTE_ORDER == LITTLE_ENDIAN
  4802. unsigned short *u, *c;
  4803. int x;
  4804. u = (unsigned short *) ((char *) a->mv_data + a->mv_size);
  4805. c = (unsigned short *) ((char *) b->mv_data + a->mv_size);
  4806. do {
  4807. x = *--u - *--c;
  4808. } while(!x && u > (unsigned short *)a->mv_data);
  4809. return x;
  4810. #else
  4811. unsigned short *u, *c, *end;
  4812. int x;
  4813. end = (unsigned short *) ((char *) a->mv_data + a->mv_size);
  4814. u = (unsigned short *)a->mv_data;
  4815. c = (unsigned short *)b->mv_data;
  4816. do {
  4817. x = *u++ - *c++;
  4818. } while(!x && u < end);
  4819. return x;
  4820. #endif
  4821. }
  4822. /** Compare two items lexically */
  4823. static int
  4824. mdb_cmp_memn(const MDB_val *a, const MDB_val *b)
  4825. {
  4826. int diff;
  4827. ssize_t len_diff;
  4828. unsigned int len;
  4829. len = a->mv_size;
  4830. len_diff = (ssize_t) a->mv_size - (ssize_t) b->mv_size;
  4831. if (len_diff > 0) {
  4832. len = b->mv_size;
  4833. len_diff = 1;
  4834. }
  4835. diff = memcmp(a->mv_data, b->mv_data, len);
  4836. return diff ? diff : len_diff<0 ? -1 : len_diff;
  4837. }
  4838. /** Compare two items in reverse byte order */
  4839. static int
  4840. mdb_cmp_memnr(const MDB_val *a, const MDB_val *b)
  4841. {
  4842. const unsigned char *p1, *p2, *p1_lim;
  4843. ssize_t len_diff;
  4844. int diff;
  4845. p1_lim = (const unsigned char *)a->mv_data;
  4846. p1 = (const unsigned char *)a->mv_data + a->mv_size;
  4847. p2 = (const unsigned char *)b->mv_data + b->mv_size;
  4848. len_diff = (ssize_t) a->mv_size - (ssize_t) b->mv_size;
  4849. if (len_diff > 0) {
  4850. p1_lim += len_diff;
  4851. len_diff = 1;
  4852. }
  4853. while (p1 > p1_lim) {
  4854. diff = *--p1 - *--p2;
  4855. if (diff)
  4856. return diff;
  4857. }
  4858. return len_diff<0 ? -1 : len_diff;
  4859. }
  4860. /** Search for key within a page, using binary search.
  4861. * Returns the smallest entry larger or equal to the key.
  4862. * If exactp is non-null, stores whether the found entry was an exact match
  4863. * in *exactp (1 or 0).
  4864. * Updates the cursor index with the index of the found entry.
  4865. * If no entry larger or equal to the key is found, returns NULL.
  4866. */
  4867. static MDB_node *
  4868. mdb_node_search(MDB_cursor *mc, MDB_val *key, int *exactp)
  4869. {
  4870. unsigned int i = 0, nkeys;
  4871. int low, high;
  4872. int rc = 0;
  4873. MDB_page *mp = mc->mc_pg[mc->mc_top];
  4874. MDB_node *node = NULL;
  4875. MDB_val nodekey;
  4876. MDB_cmp_func *cmp;
  4877. DKBUF;
  4878. nkeys = NUMKEYS(mp);
  4879. DPRINTF(("searching %u keys in %s %spage %"Z"u",
  4880. nkeys, IS_LEAF(mp) ? "leaf" : "branch", IS_SUBP(mp) ? "sub-" : "",
  4881. mdb_dbg_pgno(mp)));
  4882. low = IS_LEAF(mp) ? 0 : 1;
  4883. high = nkeys - 1;
  4884. cmp = mc->mc_dbx->md_cmp;
  4885. /* Branch pages have no data, so if using integer keys,
  4886. * alignment is guaranteed. Use faster mdb_cmp_int.
  4887. */
  4888. if (cmp == mdb_cmp_cint && IS_BRANCH(mp)) {
  4889. if (NODEPTR(mp, 1)->mn_ksize == sizeof(size_t))
  4890. cmp = mdb_cmp_long;
  4891. else
  4892. cmp = mdb_cmp_int;
  4893. }
  4894. if (IS_LEAF2(mp)) {
  4895. nodekey.mv_size = mc->mc_db->md_pad;
  4896. node = NODEPTR(mp, 0); /* fake */
  4897. while (low <= high) {
  4898. i = (low + high) >> 1;
  4899. nodekey.mv_data = LEAF2KEY(mp, i, nodekey.mv_size);
  4900. rc = cmp(key, &nodekey);
  4901. DPRINTF(("found leaf index %u [%s], rc = %i",
  4902. i, DKEY(&nodekey), rc));
  4903. if (rc == 0)
  4904. break;
  4905. if (rc > 0)
  4906. low = i + 1;
  4907. else
  4908. high = i - 1;
  4909. }
  4910. } else {
  4911. while (low <= high) {
  4912. i = (low + high) >> 1;
  4913. node = NODEPTR(mp, i);
  4914. nodekey.mv_size = NODEKSZ(node);
  4915. nodekey.mv_data = NODEKEY(node);
  4916. rc = cmp(key, &nodekey);
  4917. #if MDB_DEBUG
  4918. if (IS_LEAF(mp))
  4919. DPRINTF(("found leaf index %u [%s], rc = %i",
  4920. i, DKEY(&nodekey), rc));
  4921. else
  4922. DPRINTF(("found branch index %u [%s -> %"Z"u], rc = %i",
  4923. i, DKEY(&nodekey), NODEPGNO(node), rc));
  4924. #endif
  4925. if (rc == 0)
  4926. break;
  4927. if (rc > 0)
  4928. low = i + 1;
  4929. else
  4930. high = i - 1;
  4931. }
  4932. }
  4933. if (rc > 0) { /* Found entry is less than the key. */
  4934. i++; /* Skip to get the smallest entry larger than key. */
  4935. if (!IS_LEAF2(mp))
  4936. node = NODEPTR(mp, i);
  4937. }
  4938. if (exactp)
  4939. *exactp = (rc == 0 && nkeys > 0);
  4940. /* store the key index */
  4941. mc->mc_ki[mc->mc_top] = i;
  4942. if (i >= nkeys)
  4943. /* There is no entry larger or equal to the key. */
  4944. return NULL;
  4945. /* nodeptr is fake for LEAF2 */
  4946. return node;
  4947. }
  4948. #if 0
  4949. static void
  4950. mdb_cursor_adjust(MDB_cursor *mc, func)
  4951. {
  4952. MDB_cursor *m2;
  4953. for (m2 = mc->mc_txn->mt_cursors[mc->mc_dbi]; m2; m2=m2->mc_next) {
  4954. if (m2->mc_pg[m2->mc_top] == mc->mc_pg[mc->mc_top]) {
  4955. func(mc, m2);
  4956. }
  4957. }
  4958. }
  4959. #endif
  4960. /** Pop a page off the top of the cursor's stack. */
  4961. static void
  4962. mdb_cursor_pop(MDB_cursor *mc)
  4963. {
  4964. if (mc->mc_snum) {
  4965. DPRINTF(("popping page %"Z"u off db %d cursor %p",
  4966. mc->mc_pg[mc->mc_top]->mp_pgno, DDBI(mc), (void *) mc));
  4967. mc->mc_snum--;
  4968. if (mc->mc_snum) {
  4969. mc->mc_top--;
  4970. } else {
  4971. mc->mc_flags &= ~C_INITIALIZED;
  4972. }
  4973. }
  4974. }
  4975. /** Push a page onto the top of the cursor's stack.
  4976. * Set #MDB_TXN_ERROR on failure.
  4977. */
  4978. static int
  4979. mdb_cursor_push(MDB_cursor *mc, MDB_page *mp)
  4980. {
  4981. DPRINTF(("pushing page %"Z"u on db %d cursor %p", mp->mp_pgno,
  4982. DDBI(mc), (void *) mc));
  4983. if (mc->mc_snum >= CURSOR_STACK) {
  4984. mc->mc_txn->mt_flags |= MDB_TXN_ERROR;
  4985. return MDB_CURSOR_FULL;
  4986. }
  4987. mc->mc_top = mc->mc_snum++;
  4988. mc->mc_pg[mc->mc_top] = mp;
  4989. mc->mc_ki[mc->mc_top] = 0;
  4990. return MDB_SUCCESS;
  4991. }
  4992. /** Find the address of the page corresponding to a given page number.
  4993. * Set #MDB_TXN_ERROR on failure.
  4994. * @param[in] mc the cursor accessing the page.
  4995. * @param[in] pgno the page number for the page to retrieve.
  4996. * @param[out] ret address of a pointer where the page's address will be stored.
  4997. * @param[out] lvl dirty_list inheritance level of found page. 1=current txn, 0=mapped page.
  4998. * @return 0 on success, non-zero on failure.
  4999. */
  5000. static int
  5001. mdb_page_get(MDB_cursor *mc, pgno_t pgno, MDB_page **ret, int *lvl)
  5002. {
  5003. MDB_txn *txn = mc->mc_txn;
  5004. MDB_env *env = txn->mt_env;
  5005. MDB_page *p = NULL;
  5006. int level;
  5007. if (! (txn->mt_flags & (MDB_TXN_RDONLY|MDB_TXN_WRITEMAP))) {
  5008. MDB_txn *tx2 = txn;
  5009. level = 1;
  5010. do {
  5011. MDB_ID2L dl = tx2->mt_u.dirty_list;
  5012. unsigned x;
  5013. /* Spilled pages were dirtied in this txn and flushed
  5014. * because the dirty list got full. Bring this page
  5015. * back in from the map (but don't unspill it here,
  5016. * leave that unless page_touch happens again).
  5017. */
  5018. if (tx2->mt_spill_pgs) {
  5019. MDB_ID pn = pgno << 1;
  5020. x = mdb_midl_search(tx2->mt_spill_pgs, pn);
  5021. if (x <= tx2->mt_spill_pgs[0] && tx2->mt_spill_pgs[x] == pn) {
  5022. p = (MDB_page *)(env->me_map + env->me_psize * pgno);
  5023. goto done;
  5024. }
  5025. }
  5026. if (dl[0].mid) {
  5027. unsigned x = mdb_mid2l_search(dl, pgno);
  5028. if (x <= dl[0].mid && dl[x].mid == pgno) {
  5029. p = dl[x].mptr;
  5030. goto done;
  5031. }
  5032. }
  5033. level++;
  5034. } while ((tx2 = tx2->mt_parent) != NULL);
  5035. }
  5036. if (pgno < txn->mt_next_pgno) {
  5037. level = 0;
  5038. p = (MDB_page *)(env->me_map + env->me_psize * pgno);
  5039. } else {
  5040. DPRINTF(("page %"Z"u not found", pgno));
  5041. txn->mt_flags |= MDB_TXN_ERROR;
  5042. return MDB_PAGE_NOTFOUND;
  5043. }
  5044. done:
  5045. *ret = p;
  5046. if (lvl)
  5047. *lvl = level;
  5048. return MDB_SUCCESS;
  5049. }
  5050. /** Finish #mdb_page_search() / #mdb_page_search_lowest().
  5051. * The cursor is at the root page, set up the rest of it.
  5052. */
  5053. static int
  5054. mdb_page_search_root(MDB_cursor *mc, MDB_val *key, int flags)
  5055. {
  5056. MDB_page *mp = mc->mc_pg[mc->mc_top];
  5057. int rc;
  5058. DKBUF;
  5059. while (IS_BRANCH(mp)) {
  5060. MDB_node *node;
  5061. indx_t i;
  5062. DPRINTF(("branch page %"Z"u has %u keys", mp->mp_pgno, NUMKEYS(mp)));
  5063. /* Don't assert on branch pages in the FreeDB. We can get here
  5064. * while in the process of rebalancing a FreeDB branch page; we must
  5065. * let that proceed. ITS#8336
  5066. */
  5067. mdb_cassert(mc, !mc->mc_dbi || NUMKEYS(mp) > 1);
  5068. DPRINTF(("found index 0 to page %"Z"u", NODEPGNO(NODEPTR(mp, 0))));
  5069. if (flags & (MDB_PS_FIRST|MDB_PS_LAST)) {
  5070. i = 0;
  5071. if (flags & MDB_PS_LAST) {
  5072. i = NUMKEYS(mp) - 1;
  5073. /* if already init'd, see if we're already in right place */
  5074. if (mc->mc_flags & C_INITIALIZED) {
  5075. if (mc->mc_ki[mc->mc_top] == i) {
  5076. mc->mc_top = mc->mc_snum++;
  5077. mp = mc->mc_pg[mc->mc_top];
  5078. goto ready;
  5079. }
  5080. }
  5081. }
  5082. } else {
  5083. int exact;
  5084. node = mdb_node_search(mc, key, &exact);
  5085. if (node == NULL)
  5086. i = NUMKEYS(mp) - 1;
  5087. else {
  5088. i = mc->mc_ki[mc->mc_top];
  5089. if (!exact) {
  5090. mdb_cassert(mc, i > 0);
  5091. i--;
  5092. }
  5093. }
  5094. DPRINTF(("following index %u for key [%s]", i, DKEY(key)));
  5095. }
  5096. mdb_cassert(mc, i < NUMKEYS(mp));
  5097. node = NODEPTR(mp, i);
  5098. if ((rc = mdb_page_get(mc, NODEPGNO(node), &mp, NULL)) != 0)
  5099. return rc;
  5100. mc->mc_ki[mc->mc_top] = i;
  5101. if ((rc = mdb_cursor_push(mc, mp)))
  5102. return rc;
  5103. ready:
  5104. if (flags & MDB_PS_MODIFY) {
  5105. if ((rc = mdb_page_touch(mc)) != 0)
  5106. return rc;
  5107. mp = mc->mc_pg[mc->mc_top];
  5108. }
  5109. }
  5110. if (!IS_LEAF(mp)) {
  5111. DPRINTF(("internal error, index points to a %02X page!?",
  5112. mp->mp_flags));
  5113. mc->mc_txn->mt_flags |= MDB_TXN_ERROR;
  5114. return MDB_CORRUPTED;
  5115. }
  5116. DPRINTF(("found leaf page %"Z"u for key [%s]", mp->mp_pgno,
  5117. key ? DKEY(key) : "null"));
  5118. mc->mc_flags |= C_INITIALIZED;
  5119. mc->mc_flags &= ~C_EOF;
  5120. return MDB_SUCCESS;
  5121. }
  5122. /** Search for the lowest key under the current branch page.
  5123. * This just bypasses a NUMKEYS check in the current page
  5124. * before calling mdb_page_search_root(), because the callers
  5125. * are all in situations where the current page is known to
  5126. * be underfilled.
  5127. */
  5128. static int
  5129. mdb_page_search_lowest(MDB_cursor *mc)
  5130. {
  5131. MDB_page *mp = mc->mc_pg[mc->mc_top];
  5132. MDB_node *node = NODEPTR(mp, 0);
  5133. int rc;
  5134. if ((rc = mdb_page_get(mc, NODEPGNO(node), &mp, NULL)) != 0)
  5135. return rc;
  5136. mc->mc_ki[mc->mc_top] = 0;
  5137. if ((rc = mdb_cursor_push(mc, mp)))
  5138. return rc;
  5139. return mdb_page_search_root(mc, NULL, MDB_PS_FIRST);
  5140. }
  5141. /** Search for the page a given key should be in.
  5142. * Push it and its parent pages on the cursor stack.
  5143. * @param[in,out] mc the cursor for this operation.
  5144. * @param[in] key the key to search for, or NULL for first/last page.
  5145. * @param[in] flags If MDB_PS_MODIFY is set, visited pages in the DB
  5146. * are touched (updated with new page numbers).
  5147. * If MDB_PS_FIRST or MDB_PS_LAST is set, find first or last leaf.
  5148. * This is used by #mdb_cursor_first() and #mdb_cursor_last().
  5149. * If MDB_PS_ROOTONLY set, just fetch root node, no further lookups.
  5150. * @return 0 on success, non-zero on failure.
  5151. */
  5152. static int
  5153. mdb_page_search(MDB_cursor *mc, MDB_val *key, int flags)
  5154. {
  5155. int rc;
  5156. pgno_t root;
  5157. /* Make sure the txn is still viable, then find the root from
  5158. * the txn's db table and set it as the root of the cursor's stack.
  5159. */
  5160. if (mc->mc_txn->mt_flags & MDB_TXN_BLOCKED) {
  5161. DPUTS("transaction may not be used now");
  5162. return MDB_BAD_TXN;
  5163. } else {
  5164. /* Make sure we're using an up-to-date root */
  5165. if (*mc->mc_dbflag & DB_STALE) {
  5166. MDB_cursor mc2;
  5167. if (TXN_DBI_CHANGED(mc->mc_txn, mc->mc_dbi))
  5168. return MDB_BAD_DBI;
  5169. mdb_cursor_init(&mc2, mc->mc_txn, MAIN_DBI, NULL);
  5170. rc = mdb_page_search(&mc2, &mc->mc_dbx->md_name, 0);
  5171. if (rc)
  5172. return rc;
  5173. {
  5174. MDB_val data;
  5175. int exact = 0;
  5176. uint16_t flags;
  5177. MDB_node *leaf = mdb_node_search(&mc2,
  5178. &mc->mc_dbx->md_name, &exact);
  5179. if (!exact)
  5180. return MDB_NOTFOUND;
  5181. if ((leaf->mn_flags & (F_DUPDATA|F_SUBDATA)) != F_SUBDATA)
  5182. return MDB_INCOMPATIBLE; /* not a named DB */
  5183. rc = mdb_node_read(&mc2, leaf, &data);
  5184. if (rc)
  5185. return rc;
  5186. memcpy(&flags, ((char *) data.mv_data + offsetof(MDB_db, md_flags)),
  5187. sizeof(uint16_t));
  5188. /* The txn may not know this DBI, or another process may
  5189. * have dropped and recreated the DB with other flags.
  5190. */
  5191. if ((mc->mc_db->md_flags & PERSISTENT_FLAGS) != flags)
  5192. return MDB_INCOMPATIBLE;
  5193. memcpy(mc->mc_db, data.mv_data, sizeof(MDB_db));
  5194. }
  5195. *mc->mc_dbflag &= ~DB_STALE;
  5196. }
  5197. root = mc->mc_db->md_root;
  5198. if (root == P_INVALID) { /* Tree is empty. */
  5199. DPUTS("tree is empty");
  5200. return MDB_NOTFOUND;
  5201. }
  5202. }
  5203. mdb_cassert(mc, root > 1);
  5204. if (!mc->mc_pg[0] || mc->mc_pg[0]->mp_pgno != root)
  5205. if ((rc = mdb_page_get(mc, root, &mc->mc_pg[0], NULL)) != 0)
  5206. return rc;
  5207. mc->mc_snum = 1;
  5208. mc->mc_top = 0;
  5209. DPRINTF(("db %d root page %"Z"u has flags 0x%X",
  5210. DDBI(mc), root, mc->mc_pg[0]->mp_flags));
  5211. if (flags & MDB_PS_MODIFY) {
  5212. if ((rc = mdb_page_touch(mc)))
  5213. return rc;
  5214. }
  5215. if (flags & MDB_PS_ROOTONLY)
  5216. return MDB_SUCCESS;
  5217. return mdb_page_search_root(mc, key, flags);
  5218. }
  5219. static int
  5220. mdb_ovpage_free(MDB_cursor *mc, MDB_page *mp)
  5221. {
  5222. MDB_txn *txn = mc->mc_txn;
  5223. pgno_t pg = mp->mp_pgno;
  5224. unsigned x = 0, ovpages = mp->mp_pages;
  5225. MDB_env *env = txn->mt_env;
  5226. MDB_IDL sl = txn->mt_spill_pgs;
  5227. MDB_ID pn = pg << 1;
  5228. int rc;
  5229. DPRINTF(("free ov page %"Z"u (%d)", pg, ovpages));
  5230. /* If the page is dirty or on the spill list we just acquired it,
  5231. * so we should give it back to our current free list, if any.
  5232. * Otherwise put it onto the list of pages we freed in this txn.
  5233. *
  5234. * Won't create me_pghead: me_pglast must be inited along with it.
  5235. * Unsupported in nested txns: They would need to hide the page
  5236. * range in ancestor txns' dirty and spilled lists.
  5237. */
  5238. if (env->me_pghead &&
  5239. !txn->mt_parent &&
  5240. ((mp->mp_flags & P_DIRTY) ||
  5241. (sl && (x = mdb_midl_search(sl, pn)) <= sl[0] && sl[x] == pn)))
  5242. {
  5243. unsigned i, j;
  5244. pgno_t *mop;
  5245. MDB_ID2 *dl, ix, iy;
  5246. rc = mdb_midl_need(&env->me_pghead, ovpages);
  5247. if (rc)
  5248. return rc;
  5249. if (!(mp->mp_flags & P_DIRTY)) {
  5250. /* This page is no longer spilled */
  5251. if (x == sl[0])
  5252. sl[0]--;
  5253. else
  5254. sl[x] |= 1;
  5255. goto release;
  5256. }
  5257. /* Remove from dirty list */
  5258. dl = txn->mt_u.dirty_list;
  5259. x = dl[0].mid--;
  5260. for (ix = dl[x]; ix.mptr != mp; ix = iy) {
  5261. if (x > 1) {
  5262. x--;
  5263. iy = dl[x];
  5264. dl[x] = ix;
  5265. } else {
  5266. mdb_cassert(mc, x > 1);
  5267. j = ++(dl[0].mid);
  5268. dl[j] = ix; /* Unsorted. OK when MDB_TXN_ERROR. */
  5269. txn->mt_flags |= MDB_TXN_ERROR;
  5270. return MDB_CORRUPTED;
  5271. }
  5272. }
  5273. txn->mt_dirty_room++;
  5274. if (!(env->me_flags & MDB_WRITEMAP))
  5275. mdb_dpage_free(env, mp);
  5276. release:
  5277. /* Insert in me_pghead */
  5278. mop = env->me_pghead;
  5279. j = mop[0] + ovpages;
  5280. for (i = mop[0]; i && mop[i] < pg; i--)
  5281. mop[j--] = mop[i];
  5282. while (j>i)
  5283. mop[j--] = pg++;
  5284. mop[0] += ovpages;
  5285. } else {
  5286. rc = mdb_midl_append_range(&txn->mt_free_pgs, pg, ovpages);
  5287. if (rc)
  5288. return rc;
  5289. }
  5290. mc->mc_db->md_overflow_pages -= ovpages;
  5291. return 0;
  5292. }
  5293. /** Return the data associated with a given node.
  5294. * @param[in] mc The cursor for this operation.
  5295. * @param[in] leaf The node being read.
  5296. * @param[out] data Updated to point to the node's data.
  5297. * @return 0 on success, non-zero on failure.
  5298. */
  5299. static int
  5300. mdb_node_read(MDB_cursor *mc, MDB_node *leaf, MDB_val *data)
  5301. {
  5302. MDB_page *omp; /* overflow page */
  5303. pgno_t pgno;
  5304. int rc;
  5305. if (!F_ISSET(leaf->mn_flags, F_BIGDATA)) {
  5306. data->mv_size = NODEDSZ(leaf);
  5307. data->mv_data = NODEDATA(leaf);
  5308. return MDB_SUCCESS;
  5309. }
  5310. /* Read overflow data.
  5311. */
  5312. data->mv_size = NODEDSZ(leaf);
  5313. memcpy(&pgno, NODEDATA(leaf), sizeof(pgno));
  5314. if ((rc = mdb_page_get(mc, pgno, &omp, NULL)) != 0) {
  5315. DPRINTF(("read overflow page %"Z"u failed", pgno));
  5316. return rc;
  5317. }
  5318. data->mv_data = METADATA(omp);
  5319. return MDB_SUCCESS;
  5320. }
  5321. int
  5322. mdb_get(MDB_txn *txn, MDB_dbi dbi,
  5323. MDB_val *key, MDB_val *data)
  5324. {
  5325. MDB_cursor mc;
  5326. MDB_xcursor mx;
  5327. int exact = 0;
  5328. DKBUF;
  5329. DPRINTF(("===> get db %u key [%s]", dbi, DKEY(key)));
  5330. if (!key || !data || !TXN_DBI_EXIST(txn, dbi, DB_USRVALID))
  5331. return EINVAL;
  5332. if (txn->mt_flags & MDB_TXN_BLOCKED)
  5333. return MDB_BAD_TXN;
  5334. mdb_cursor_init(&mc, txn, dbi, &mx);
  5335. return mdb_cursor_set(&mc, key, data, MDB_SET, &exact);
  5336. }
  5337. /** Find a sibling for a page.
  5338. * Replaces the page at the top of the cursor's stack with the
  5339. * specified sibling, if one exists.
  5340. * @param[in] mc The cursor for this operation.
  5341. * @param[in] move_right Non-zero if the right sibling is requested,
  5342. * otherwise the left sibling.
  5343. * @return 0 on success, non-zero on failure.
  5344. */
  5345. static int
  5346. mdb_cursor_sibling(MDB_cursor *mc, int move_right)
  5347. {
  5348. int rc;
  5349. MDB_node *indx;
  5350. MDB_page *mp;
  5351. if (mc->mc_snum < 2) {
  5352. return MDB_NOTFOUND; /* root has no siblings */
  5353. }
  5354. mdb_cursor_pop(mc);
  5355. DPRINTF(("parent page is page %"Z"u, index %u",
  5356. mc->mc_pg[mc->mc_top]->mp_pgno, mc->mc_ki[mc->mc_top]));
  5357. if (move_right ? (mc->mc_ki[mc->mc_top] + 1u >= NUMKEYS(mc->mc_pg[mc->mc_top]))
  5358. : (mc->mc_ki[mc->mc_top] == 0)) {
  5359. DPRINTF(("no more keys left, moving to %s sibling",
  5360. move_right ? "right" : "left"));
  5361. if ((rc = mdb_cursor_sibling(mc, move_right)) != MDB_SUCCESS) {
  5362. /* undo cursor_pop before returning */
  5363. mc->mc_top++;
  5364. mc->mc_snum++;
  5365. return rc;
  5366. }
  5367. } else {
  5368. if (move_right)
  5369. mc->mc_ki[mc->mc_top]++;
  5370. else
  5371. mc->mc_ki[mc->mc_top]--;
  5372. DPRINTF(("just moving to %s index key %u",
  5373. move_right ? "right" : "left", mc->mc_ki[mc->mc_top]));
  5374. }
  5375. mdb_cassert(mc, IS_BRANCH(mc->mc_pg[mc->mc_top]));
  5376. indx = NODEPTR(mc->mc_pg[mc->mc_top], mc->mc_ki[mc->mc_top]);
  5377. if ((rc = mdb_page_get(mc, NODEPGNO(indx), &mp, NULL)) != 0) {
  5378. /* mc will be inconsistent if caller does mc_snum++ as above */
  5379. mc->mc_flags &= ~(C_INITIALIZED|C_EOF);
  5380. return rc;
  5381. }
  5382. mdb_cursor_push(mc, mp);
  5383. if (!move_right)
  5384. mc->mc_ki[mc->mc_top] = NUMKEYS(mp)-1;
  5385. return MDB_SUCCESS;
  5386. }
  5387. /** Move the cursor to the next data item. */
  5388. static int
  5389. mdb_cursor_next(MDB_cursor *mc, MDB_val *key, MDB_val *data, MDB_cursor_op op)
  5390. {
  5391. MDB_page *mp;
  5392. MDB_node *leaf;
  5393. int rc;
  5394. if ((mc->mc_flags & C_DEL && op == MDB_NEXT_DUP))
  5395. return MDB_NOTFOUND;
  5396. if (!(mc->mc_flags & C_INITIALIZED))
  5397. return mdb_cursor_first(mc, key, data);
  5398. mp = mc->mc_pg[mc->mc_top];
  5399. if (mc->mc_flags & C_EOF) {
  5400. if (mc->mc_ki[mc->mc_top] >= NUMKEYS(mp)-1)
  5401. return MDB_NOTFOUND;
  5402. mc->mc_flags ^= C_EOF;
  5403. }
  5404. if (mc->mc_db->md_flags & MDB_DUPSORT) {
  5405. leaf = NODEPTR(mp, mc->mc_ki[mc->mc_top]);
  5406. if (F_ISSET(leaf->mn_flags, F_DUPDATA)) {
  5407. if (op == MDB_NEXT || op == MDB_NEXT_DUP) {
  5408. rc = mdb_cursor_next(&mc->mc_xcursor->mx_cursor, data, NULL, MDB_NEXT);
  5409. if (op != MDB_NEXT || rc != MDB_NOTFOUND) {
  5410. if (rc == MDB_SUCCESS)
  5411. MDB_GET_KEY(leaf, key);
  5412. return rc;
  5413. }
  5414. }
  5415. } else {
  5416. mc->mc_xcursor->mx_cursor.mc_flags &= ~(C_INITIALIZED|C_EOF);
  5417. if (op == MDB_NEXT_DUP)
  5418. return MDB_NOTFOUND;
  5419. }
  5420. }
  5421. DPRINTF(("cursor_next: top page is %"Z"u in cursor %p",
  5422. mdb_dbg_pgno(mp), (void *) mc));
  5423. if (mc->mc_flags & C_DEL) {
  5424. mc->mc_flags ^= C_DEL;
  5425. goto skip;
  5426. }
  5427. if (mc->mc_ki[mc->mc_top] + 1u >= NUMKEYS(mp)) {
  5428. DPUTS("=====> move to next sibling page");
  5429. if ((rc = mdb_cursor_sibling(mc, 1)) != MDB_SUCCESS) {
  5430. mc->mc_flags |= C_EOF;
  5431. return rc;
  5432. }
  5433. mp = mc->mc_pg[mc->mc_top];
  5434. DPRINTF(("next page is %"Z"u, key index %u", mp->mp_pgno, mc->mc_ki[mc->mc_top]));
  5435. } else
  5436. mc->mc_ki[mc->mc_top]++;
  5437. skip:
  5438. DPRINTF(("==> cursor points to page %"Z"u with %u keys, key index %u",
  5439. mdb_dbg_pgno(mp), NUMKEYS(mp), mc->mc_ki[mc->mc_top]));
  5440. if (IS_LEAF2(mp)) {
  5441. key->mv_size = mc->mc_db->md_pad;
  5442. key->mv_data = LEAF2KEY(mp, mc->mc_ki[mc->mc_top], key->mv_size);
  5443. return MDB_SUCCESS;
  5444. }
  5445. mdb_cassert(mc, IS_LEAF(mp));
  5446. leaf = NODEPTR(mp, mc->mc_ki[mc->mc_top]);
  5447. if (F_ISSET(leaf->mn_flags, F_DUPDATA)) {
  5448. mdb_xcursor_init1(mc, leaf);
  5449. rc = mdb_cursor_first(&mc->mc_xcursor->mx_cursor, data, NULL);
  5450. if (rc != MDB_SUCCESS)
  5451. return rc;
  5452. } else if (data) {
  5453. if ((rc = mdb_node_read(mc, leaf, data)) != MDB_SUCCESS)
  5454. return rc;
  5455. }
  5456. MDB_GET_KEY(leaf, key);
  5457. return MDB_SUCCESS;
  5458. }
  5459. /** Move the cursor to the previous data item. */
  5460. static int
  5461. mdb_cursor_prev(MDB_cursor *mc, MDB_val *key, MDB_val *data, MDB_cursor_op op)
  5462. {
  5463. MDB_page *mp;
  5464. MDB_node *leaf;
  5465. int rc;
  5466. if (!(mc->mc_flags & C_INITIALIZED)) {
  5467. rc = mdb_cursor_last(mc, key, data);
  5468. if (rc)
  5469. return rc;
  5470. mc->mc_ki[mc->mc_top]++;
  5471. }
  5472. mp = mc->mc_pg[mc->mc_top];
  5473. if ((mc->mc_db->md_flags & MDB_DUPSORT) &&
  5474. mc->mc_ki[mc->mc_top] < NUMKEYS(mp)) {
  5475. leaf = NODEPTR(mp, mc->mc_ki[mc->mc_top]);
  5476. if (F_ISSET(leaf->mn_flags, F_DUPDATA)) {
  5477. if (op == MDB_PREV || op == MDB_PREV_DUP) {
  5478. rc = mdb_cursor_prev(&mc->mc_xcursor->mx_cursor, data, NULL, MDB_PREV);
  5479. if (op != MDB_PREV || rc != MDB_NOTFOUND) {
  5480. if (rc == MDB_SUCCESS) {
  5481. MDB_GET_KEY(leaf, key);
  5482. mc->mc_flags &= ~C_EOF;
  5483. }
  5484. return rc;
  5485. }
  5486. }
  5487. } else {
  5488. mc->mc_xcursor->mx_cursor.mc_flags &= ~(C_INITIALIZED|C_EOF);
  5489. if (op == MDB_PREV_DUP)
  5490. return MDB_NOTFOUND;
  5491. }
  5492. }
  5493. DPRINTF(("cursor_prev: top page is %"Z"u in cursor %p",
  5494. mdb_dbg_pgno(mp), (void *) mc));
  5495. mc->mc_flags &= ~(C_EOF|C_DEL);
  5496. if (mc->mc_ki[mc->mc_top] == 0) {
  5497. DPUTS("=====> move to prev sibling page");
  5498. if ((rc = mdb_cursor_sibling(mc, 0)) != MDB_SUCCESS) {
  5499. return rc;
  5500. }
  5501. mp = mc->mc_pg[mc->mc_top];
  5502. mc->mc_ki[mc->mc_top] = NUMKEYS(mp) - 1;
  5503. DPRINTF(("prev page is %"Z"u, key index %u", mp->mp_pgno, mc->mc_ki[mc->mc_top]));
  5504. } else
  5505. mc->mc_ki[mc->mc_top]--;
  5506. DPRINTF(("==> cursor points to page %"Z"u with %u keys, key index %u",
  5507. mdb_dbg_pgno(mp), NUMKEYS(mp), mc->mc_ki[mc->mc_top]));
  5508. if (!IS_LEAF(mp))
  5509. return MDB_CORRUPTED;
  5510. if (IS_LEAF2(mp)) {
  5511. key->mv_size = mc->mc_db->md_pad;
  5512. key->mv_data = LEAF2KEY(mp, mc->mc_ki[mc->mc_top], key->mv_size);
  5513. return MDB_SUCCESS;
  5514. }
  5515. leaf = NODEPTR(mp, mc->mc_ki[mc->mc_top]);
  5516. if (F_ISSET(leaf->mn_flags, F_DUPDATA)) {
  5517. mdb_xcursor_init1(mc, leaf);
  5518. rc = mdb_cursor_last(&mc->mc_xcursor->mx_cursor, data, NULL);
  5519. if (rc != MDB_SUCCESS)
  5520. return rc;
  5521. } else if (data) {
  5522. if ((rc = mdb_node_read(mc, leaf, data)) != MDB_SUCCESS)
  5523. return rc;
  5524. }
  5525. MDB_GET_KEY(leaf, key);
  5526. return MDB_SUCCESS;
  5527. }
  5528. /** Set the cursor on a specific data item. */
  5529. static int
  5530. mdb_cursor_set(MDB_cursor *mc, MDB_val *key, MDB_val *data,
  5531. MDB_cursor_op op, int *exactp)
  5532. {
  5533. int rc;
  5534. MDB_page *mp;
  5535. MDB_node *leaf = NULL;
  5536. DKBUF;
  5537. if (key->mv_size == 0)
  5538. return MDB_BAD_VALSIZE;
  5539. if (mc->mc_xcursor)
  5540. mc->mc_xcursor->mx_cursor.mc_flags &= ~(C_INITIALIZED|C_EOF);
  5541. /* See if we're already on the right page */
  5542. if (mc->mc_flags & C_INITIALIZED) {
  5543. MDB_val nodekey;
  5544. mp = mc->mc_pg[mc->mc_top];
  5545. if (!NUMKEYS(mp)) {
  5546. mc->mc_ki[mc->mc_top] = 0;
  5547. return MDB_NOTFOUND;
  5548. }
  5549. if (MP_FLAGS(mp) & P_LEAF2) {
  5550. nodekey.mv_size = mc->mc_db->md_pad;
  5551. nodekey.mv_data = LEAF2KEY(mp, 0, nodekey.mv_size);
  5552. } else {
  5553. leaf = NODEPTR(mp, 0);
  5554. MDB_GET_KEY2(leaf, nodekey);
  5555. }
  5556. rc = mc->mc_dbx->md_cmp(key, &nodekey);
  5557. if (rc == 0) {
  5558. /* Probably happens rarely, but first node on the page
  5559. * was the one we wanted.
  5560. */
  5561. mc->mc_ki[mc->mc_top] = 0;
  5562. if (exactp)
  5563. *exactp = 1;
  5564. goto set1;
  5565. }
  5566. if (rc > 0) {
  5567. unsigned int i;
  5568. unsigned int nkeys = NUMKEYS(mp);
  5569. if (nkeys > 1) {
  5570. if (MP_FLAGS(mp) & P_LEAF2) {
  5571. nodekey.mv_data = LEAF2KEY(mp,
  5572. nkeys-1, nodekey.mv_size);
  5573. } else {
  5574. leaf = NODEPTR(mp, nkeys-1);
  5575. MDB_GET_KEY2(leaf, nodekey);
  5576. }
  5577. rc = mc->mc_dbx->md_cmp(key, &nodekey);
  5578. if (rc == 0) {
  5579. /* last node was the one we wanted */
  5580. mc->mc_ki[mc->mc_top] = nkeys-1;
  5581. if (exactp)
  5582. *exactp = 1;
  5583. goto set1;
  5584. }
  5585. if (rc < 0) {
  5586. if (mc->mc_ki[mc->mc_top] < NUMKEYS(mp)) {
  5587. /* This is definitely the right page, skip search_page */
  5588. if (MP_FLAGS(mp) & P_LEAF2) {
  5589. nodekey.mv_data = LEAF2KEY(mp,
  5590. mc->mc_ki[mc->mc_top], nodekey.mv_size);
  5591. } else {
  5592. leaf = NODEPTR(mp, mc->mc_ki[mc->mc_top]);
  5593. MDB_GET_KEY2(leaf, nodekey);
  5594. }
  5595. rc = mc->mc_dbx->md_cmp(key, &nodekey);
  5596. if (rc == 0) {
  5597. /* current node was the one we wanted */
  5598. if (exactp)
  5599. *exactp = 1;
  5600. goto set1;
  5601. }
  5602. }
  5603. rc = 0;
  5604. mc->mc_flags &= ~C_EOF;
  5605. goto set2;
  5606. }
  5607. }
  5608. /* If any parents have right-sibs, search.
  5609. * Otherwise, there's nothing further.
  5610. */
  5611. for (i=0; i<mc->mc_top; i++)
  5612. if (mc->mc_ki[i] <
  5613. NUMKEYS(mc->mc_pg[i])-1)
  5614. break;
  5615. if (i == mc->mc_top) {
  5616. /* There are no other pages */
  5617. mc->mc_ki[mc->mc_top] = nkeys;
  5618. return MDB_NOTFOUND;
  5619. }
  5620. }
  5621. if (!mc->mc_top) {
  5622. /* There are no other pages */
  5623. mc->mc_ki[mc->mc_top] = 0;
  5624. if (op == MDB_SET_RANGE && !exactp) {
  5625. rc = 0;
  5626. goto set1;
  5627. } else
  5628. return MDB_NOTFOUND;
  5629. }
  5630. } else {
  5631. mc->mc_pg[0] = 0;
  5632. }
  5633. rc = mdb_page_search(mc, key, 0);
  5634. if (rc != MDB_SUCCESS)
  5635. return rc;
  5636. mp = mc->mc_pg[mc->mc_top];
  5637. mdb_cassert(mc, IS_LEAF(mp));
  5638. set2:
  5639. leaf = mdb_node_search(mc, key, exactp);
  5640. if (exactp != NULL && !*exactp) {
  5641. /* MDB_SET specified and not an exact match. */
  5642. return MDB_NOTFOUND;
  5643. }
  5644. if (leaf == NULL) {
  5645. DPUTS("===> inexact leaf not found, goto sibling");
  5646. if ((rc = mdb_cursor_sibling(mc, 1)) != MDB_SUCCESS) {
  5647. mc->mc_flags |= C_EOF;
  5648. return rc; /* no entries matched */
  5649. }
  5650. mp = mc->mc_pg[mc->mc_top];
  5651. mdb_cassert(mc, IS_LEAF(mp));
  5652. leaf = NODEPTR(mp, 0);
  5653. }
  5654. set1:
  5655. mc->mc_flags |= C_INITIALIZED;
  5656. mc->mc_flags &= ~C_EOF;
  5657. if (IS_LEAF2(mp)) {
  5658. if (op == MDB_SET_RANGE || op == MDB_SET_KEY) {
  5659. key->mv_size = mc->mc_db->md_pad;
  5660. key->mv_data = LEAF2KEY(mp, mc->mc_ki[mc->mc_top], key->mv_size);
  5661. }
  5662. return MDB_SUCCESS;
  5663. }
  5664. if (F_ISSET(leaf->mn_flags, F_DUPDATA)) {
  5665. mdb_xcursor_init1(mc, leaf);
  5666. if (op == MDB_SET || op == MDB_SET_KEY || op == MDB_SET_RANGE) {
  5667. rc = mdb_cursor_first(&mc->mc_xcursor->mx_cursor, data, NULL);
  5668. } else {
  5669. int ex2, *ex2p;
  5670. if (op == MDB_GET_BOTH) {
  5671. ex2p = &ex2;
  5672. ex2 = 0;
  5673. } else {
  5674. ex2p = NULL;
  5675. }
  5676. rc = mdb_cursor_set(&mc->mc_xcursor->mx_cursor, data, NULL, MDB_SET_RANGE, ex2p);
  5677. if (rc != MDB_SUCCESS)
  5678. return rc;
  5679. }
  5680. } else if (data) {
  5681. if (op == MDB_GET_BOTH || op == MDB_GET_BOTH_RANGE) {
  5682. MDB_val olddata;
  5683. MDB_cmp_func *dcmp;
  5684. if ((rc = mdb_node_read(mc, leaf, &olddata)) != MDB_SUCCESS)
  5685. return rc;
  5686. dcmp = mc->mc_dbx->md_dcmp;
  5687. #if UINT_MAX < SIZE_MAX
  5688. if (dcmp == mdb_cmp_int && olddata.mv_size == sizeof(size_t))
  5689. dcmp = mdb_cmp_clong;
  5690. #endif
  5691. rc = dcmp(data, &olddata);
  5692. if (rc) {
  5693. if (op == MDB_GET_BOTH || rc > 0)
  5694. return MDB_NOTFOUND;
  5695. rc = 0;
  5696. }
  5697. *data = olddata;
  5698. } else {
  5699. if (mc->mc_xcursor)
  5700. mc->mc_xcursor->mx_cursor.mc_flags &= ~(C_INITIALIZED|C_EOF);
  5701. if ((rc = mdb_node_read(mc, leaf, data)) != MDB_SUCCESS)
  5702. return rc;
  5703. }
  5704. }
  5705. /* The key already matches in all other cases */
  5706. if (op == MDB_SET_RANGE || op == MDB_SET_KEY)
  5707. MDB_GET_KEY(leaf, key);
  5708. DPRINTF(("==> cursor placed on key [%s]", DKEY(key)));
  5709. return rc;
  5710. }
  5711. /** Move the cursor to the first item in the database. */
  5712. static int
  5713. mdb_cursor_first(MDB_cursor *mc, MDB_val *key, MDB_val *data)
  5714. {
  5715. int rc;
  5716. MDB_node *leaf;
  5717. if (mc->mc_xcursor)
  5718. mc->mc_xcursor->mx_cursor.mc_flags &= ~(C_INITIALIZED|C_EOF);
  5719. if (!(mc->mc_flags & C_INITIALIZED) || mc->mc_top) {
  5720. rc = mdb_page_search(mc, NULL, MDB_PS_FIRST);
  5721. if (rc != MDB_SUCCESS)
  5722. return rc;
  5723. }
  5724. mdb_cassert(mc, IS_LEAF(mc->mc_pg[mc->mc_top]));
  5725. leaf = NODEPTR(mc->mc_pg[mc->mc_top], 0);
  5726. mc->mc_flags |= C_INITIALIZED;
  5727. mc->mc_flags &= ~C_EOF;
  5728. mc->mc_ki[mc->mc_top] = 0;
  5729. if (IS_LEAF2(mc->mc_pg[mc->mc_top])) {
  5730. if ( key ) {
  5731. key->mv_size = mc->mc_db->md_pad;
  5732. key->mv_data = LEAF2KEY(mc->mc_pg[mc->mc_top], 0, key->mv_size);
  5733. }
  5734. return MDB_SUCCESS;
  5735. }
  5736. if (F_ISSET(leaf->mn_flags, F_DUPDATA)) {
  5737. mdb_xcursor_init1(mc, leaf);
  5738. rc = mdb_cursor_first(&mc->mc_xcursor->mx_cursor, data, NULL);
  5739. if (rc)
  5740. return rc;
  5741. } else if (data) {
  5742. if ((rc = mdb_node_read(mc, leaf, data)) != MDB_SUCCESS)
  5743. return rc;
  5744. }
  5745. MDB_GET_KEY(leaf, key);
  5746. return MDB_SUCCESS;
  5747. }
  5748. /** Move the cursor to the last item in the database. */
  5749. static int
  5750. mdb_cursor_last(MDB_cursor *mc, MDB_val *key, MDB_val *data)
  5751. {
  5752. int rc;
  5753. MDB_node *leaf;
  5754. if (mc->mc_xcursor)
  5755. mc->mc_xcursor->mx_cursor.mc_flags &= ~(C_INITIALIZED|C_EOF);
  5756. if (!(mc->mc_flags & C_INITIALIZED) || mc->mc_top) {
  5757. rc = mdb_page_search(mc, NULL, MDB_PS_LAST);
  5758. if (rc != MDB_SUCCESS)
  5759. return rc;
  5760. }
  5761. mdb_cassert(mc, IS_LEAF(mc->mc_pg[mc->mc_top]));
  5762. mc->mc_ki[mc->mc_top] = NUMKEYS(mc->mc_pg[mc->mc_top]) - 1;
  5763. mc->mc_flags |= C_INITIALIZED|C_EOF;
  5764. leaf = NODEPTR(mc->mc_pg[mc->mc_top], mc->mc_ki[mc->mc_top]);
  5765. if (IS_LEAF2(mc->mc_pg[mc->mc_top])) {
  5766. if (key) {
  5767. key->mv_size = mc->mc_db->md_pad;
  5768. key->mv_data = LEAF2KEY(mc->mc_pg[mc->mc_top], mc->mc_ki[mc->mc_top], key->mv_size);
  5769. }
  5770. return MDB_SUCCESS;
  5771. }
  5772. if (F_ISSET(leaf->mn_flags, F_DUPDATA)) {
  5773. mdb_xcursor_init1(mc, leaf);
  5774. rc = mdb_cursor_last(&mc->mc_xcursor->mx_cursor, data, NULL);
  5775. if (rc)
  5776. return rc;
  5777. } else if (data) {
  5778. if ((rc = mdb_node_read(mc, leaf, data)) != MDB_SUCCESS)
  5779. return rc;
  5780. }
  5781. MDB_GET_KEY(leaf, key);
  5782. return MDB_SUCCESS;
  5783. }
  5784. int
  5785. mdb_cursor_get(MDB_cursor *mc, MDB_val *key, MDB_val *data,
  5786. MDB_cursor_op op)
  5787. {
  5788. int rc;
  5789. int exact = 0;
  5790. int (*mfunc)(MDB_cursor *mc, MDB_val *key, MDB_val *data);
  5791. if (mc == NULL)
  5792. return EINVAL;
  5793. if (mc->mc_txn->mt_flags & MDB_TXN_BLOCKED)
  5794. return MDB_BAD_TXN;
  5795. switch (op) {
  5796. case MDB_GET_CURRENT:
  5797. if (!(mc->mc_flags & C_INITIALIZED)) {
  5798. rc = EINVAL;
  5799. } else {
  5800. MDB_page *mp = mc->mc_pg[mc->mc_top];
  5801. int nkeys = NUMKEYS(mp);
  5802. if (!nkeys || mc->mc_ki[mc->mc_top] >= nkeys) {
  5803. mc->mc_ki[mc->mc_top] = nkeys;
  5804. rc = MDB_NOTFOUND;
  5805. break;
  5806. }
  5807. rc = MDB_SUCCESS;
  5808. if (IS_LEAF2(mp)) {
  5809. key->mv_size = mc->mc_db->md_pad;
  5810. key->mv_data = LEAF2KEY(mp, mc->mc_ki[mc->mc_top], key->mv_size);
  5811. } else {
  5812. MDB_node *leaf = NODEPTR(mp, mc->mc_ki[mc->mc_top]);
  5813. MDB_GET_KEY(leaf, key);
  5814. if (data) {
  5815. if (F_ISSET(leaf->mn_flags, F_DUPDATA)) {
  5816. rc = mdb_cursor_get(&mc->mc_xcursor->mx_cursor, data, NULL, MDB_GET_CURRENT);
  5817. } else {
  5818. rc = mdb_node_read(mc, leaf, data);
  5819. }
  5820. }
  5821. }
  5822. }
  5823. break;
  5824. case MDB_GET_BOTH:
  5825. case MDB_GET_BOTH_RANGE:
  5826. if (data == NULL) {
  5827. rc = EINVAL;
  5828. break;
  5829. }
  5830. if (mc->mc_xcursor == NULL) {
  5831. rc = MDB_INCOMPATIBLE;
  5832. break;
  5833. }
  5834. /* FALLTHRU */
  5835. case MDB_SET:
  5836. case MDB_SET_KEY:
  5837. case MDB_SET_RANGE:
  5838. if (key == NULL) {
  5839. rc = EINVAL;
  5840. } else {
  5841. rc = mdb_cursor_set(mc, key, data, op,
  5842. op == MDB_SET_RANGE ? NULL : &exact);
  5843. }
  5844. break;
  5845. case MDB_GET_MULTIPLE:
  5846. if (data == NULL || !(mc->mc_flags & C_INITIALIZED)) {
  5847. rc = EINVAL;
  5848. break;
  5849. }
  5850. if (!(mc->mc_db->md_flags & MDB_DUPFIXED)) {
  5851. rc = MDB_INCOMPATIBLE;
  5852. break;
  5853. }
  5854. rc = MDB_SUCCESS;
  5855. if (!(mc->mc_xcursor->mx_cursor.mc_flags & C_INITIALIZED) ||
  5856. (mc->mc_xcursor->mx_cursor.mc_flags & C_EOF))
  5857. break;
  5858. goto fetchm;
  5859. case MDB_NEXT_MULTIPLE:
  5860. if (data == NULL) {
  5861. rc = EINVAL;
  5862. break;
  5863. }
  5864. if (!(mc->mc_db->md_flags & MDB_DUPFIXED)) {
  5865. rc = MDB_INCOMPATIBLE;
  5866. break;
  5867. }
  5868. rc = mdb_cursor_next(mc, key, data, MDB_NEXT_DUP);
  5869. if (rc == MDB_SUCCESS) {
  5870. if (mc->mc_xcursor->mx_cursor.mc_flags & C_INITIALIZED) {
  5871. MDB_cursor *mx;
  5872. fetchm:
  5873. mx = &mc->mc_xcursor->mx_cursor;
  5874. data->mv_size = NUMKEYS(mx->mc_pg[mx->mc_top]) *
  5875. mx->mc_db->md_pad;
  5876. data->mv_data = METADATA(mx->mc_pg[mx->mc_top]);
  5877. mx->mc_ki[mx->mc_top] = NUMKEYS(mx->mc_pg[mx->mc_top])-1;
  5878. } else {
  5879. rc = MDB_NOTFOUND;
  5880. }
  5881. }
  5882. break;
  5883. case MDB_PREV_MULTIPLE:
  5884. if (data == NULL) {
  5885. rc = EINVAL;
  5886. break;
  5887. }
  5888. if (!(mc->mc_db->md_flags & MDB_DUPFIXED)) {
  5889. rc = MDB_INCOMPATIBLE;
  5890. break;
  5891. }
  5892. if (!(mc->mc_flags & C_INITIALIZED))
  5893. rc = mdb_cursor_last(mc, key, data);
  5894. else
  5895. rc = MDB_SUCCESS;
  5896. if (rc == MDB_SUCCESS) {
  5897. MDB_cursor *mx = &mc->mc_xcursor->mx_cursor;
  5898. if (mx->mc_flags & C_INITIALIZED) {
  5899. rc = mdb_cursor_sibling(mx, 0);
  5900. if (rc == MDB_SUCCESS)
  5901. goto fetchm;
  5902. } else {
  5903. rc = MDB_NOTFOUND;
  5904. }
  5905. }
  5906. break;
  5907. case MDB_NEXT:
  5908. case MDB_NEXT_DUP:
  5909. case MDB_NEXT_NODUP:
  5910. rc = mdb_cursor_next(mc, key, data, op);
  5911. break;
  5912. case MDB_PREV:
  5913. case MDB_PREV_DUP:
  5914. case MDB_PREV_NODUP:
  5915. rc = mdb_cursor_prev(mc, key, data, op);
  5916. break;
  5917. case MDB_FIRST:
  5918. rc = mdb_cursor_first(mc, key, data);
  5919. break;
  5920. case MDB_FIRST_DUP:
  5921. mfunc = mdb_cursor_first;
  5922. mmove:
  5923. if (data == NULL || !(mc->mc_flags & C_INITIALIZED)) {
  5924. rc = EINVAL;
  5925. break;
  5926. }
  5927. if (mc->mc_xcursor == NULL) {
  5928. rc = MDB_INCOMPATIBLE;
  5929. break;
  5930. }
  5931. if (mc->mc_ki[mc->mc_top] >= NUMKEYS(mc->mc_pg[mc->mc_top])) {
  5932. mc->mc_ki[mc->mc_top] = NUMKEYS(mc->mc_pg[mc->mc_top]);
  5933. rc = MDB_NOTFOUND;
  5934. break;
  5935. }
  5936. mc->mc_flags &= ~C_EOF;
  5937. {
  5938. MDB_node *leaf = NODEPTR(mc->mc_pg[mc->mc_top], mc->mc_ki[mc->mc_top]);
  5939. if (!F_ISSET(leaf->mn_flags, F_DUPDATA)) {
  5940. MDB_GET_KEY(leaf, key);
  5941. rc = mdb_node_read(mc, leaf, data);
  5942. break;
  5943. }
  5944. }
  5945. if (!(mc->mc_xcursor->mx_cursor.mc_flags & C_INITIALIZED)) {
  5946. rc = EINVAL;
  5947. break;
  5948. }
  5949. rc = mfunc(&mc->mc_xcursor->mx_cursor, data, NULL);
  5950. break;
  5951. case MDB_LAST:
  5952. rc = mdb_cursor_last(mc, key, data);
  5953. break;
  5954. case MDB_LAST_DUP:
  5955. mfunc = mdb_cursor_last;
  5956. goto mmove;
  5957. default:
  5958. DPRINTF(("unhandled/unimplemented cursor operation %u", op));
  5959. rc = EINVAL;
  5960. break;
  5961. }
  5962. if (mc->mc_flags & C_DEL)
  5963. mc->mc_flags ^= C_DEL;
  5964. return rc;
  5965. }
  5966. /** Touch all the pages in the cursor stack. Set mc_top.
  5967. * Makes sure all the pages are writable, before attempting a write operation.
  5968. * @param[in] mc The cursor to operate on.
  5969. */
  5970. static int
  5971. mdb_cursor_touch(MDB_cursor *mc)
  5972. {
  5973. int rc = MDB_SUCCESS;
  5974. if (mc->mc_dbi >= CORE_DBS && !(*mc->mc_dbflag & (DB_DIRTY|DB_DUPDATA))) {
  5975. /* Touch DB record of named DB */
  5976. MDB_cursor mc2;
  5977. MDB_xcursor mcx;
  5978. if (TXN_DBI_CHANGED(mc->mc_txn, mc->mc_dbi))
  5979. return MDB_BAD_DBI;
  5980. mdb_cursor_init(&mc2, mc->mc_txn, MAIN_DBI, &mcx);
  5981. rc = mdb_page_search(&mc2, &mc->mc_dbx->md_name, MDB_PS_MODIFY);
  5982. if (rc)
  5983. return rc;
  5984. *mc->mc_dbflag |= DB_DIRTY;
  5985. }
  5986. mc->mc_top = 0;
  5987. if (mc->mc_snum) {
  5988. do {
  5989. rc = mdb_page_touch(mc);
  5990. } while (!rc && ++(mc->mc_top) < mc->mc_snum);
  5991. mc->mc_top = mc->mc_snum-1;
  5992. }
  5993. return rc;
  5994. }
  5995. /** Do not spill pages to disk if txn is getting full, may fail instead */
  5996. #define MDB_NOSPILL 0x8000
  5997. int
  5998. mdb_cursor_put(MDB_cursor *mc, MDB_val *key, MDB_val *data,
  5999. unsigned int flags)
  6000. {
  6001. MDB_env *env;
  6002. MDB_node *leaf = NULL;
  6003. MDB_page *fp, *mp, *sub_root = NULL;
  6004. uint16_t fp_flags;
  6005. MDB_val xdata, *rdata, dkey, olddata;
  6006. MDB_db dummy;
  6007. int do_sub = 0, insert_key, insert_data;
  6008. unsigned int mcount = 0, dcount = 0, nospill;
  6009. size_t nsize;
  6010. int rc, rc2;
  6011. unsigned int nflags;
  6012. DKBUF;
  6013. if (mc == NULL || key == NULL)
  6014. return EINVAL;
  6015. env = mc->mc_txn->mt_env;
  6016. /* Check this first so counter will always be zero on any
  6017. * early failures.
  6018. */
  6019. if (flags & MDB_MULTIPLE) {
  6020. dcount = data[1].mv_size;
  6021. data[1].mv_size = 0;
  6022. if (!F_ISSET(mc->mc_db->md_flags, MDB_DUPFIXED))
  6023. return MDB_INCOMPATIBLE;
  6024. }
  6025. nospill = flags & MDB_NOSPILL;
  6026. flags &= ~MDB_NOSPILL;
  6027. if (mc->mc_txn->mt_flags & (MDB_TXN_RDONLY|MDB_TXN_BLOCKED))
  6028. return (mc->mc_txn->mt_flags & MDB_TXN_RDONLY) ? EACCES : MDB_BAD_TXN;
  6029. if (key->mv_size-1 >= ENV_MAXKEY(env))
  6030. return MDB_BAD_VALSIZE;
  6031. #if SIZE_MAX > MAXDATASIZE
  6032. if (data->mv_size > ((mc->mc_db->md_flags & MDB_DUPSORT) ? ENV_MAXKEY(env) : MAXDATASIZE))
  6033. return MDB_BAD_VALSIZE;
  6034. #else
  6035. if ((mc->mc_db->md_flags & MDB_DUPSORT) && data->mv_size > ENV_MAXKEY(env))
  6036. return MDB_BAD_VALSIZE;
  6037. #endif
  6038. DPRINTF(("==> put db %d key [%s], size %"Z"u, data size %"Z"u",
  6039. DDBI(mc), DKEY(key), key ? key->mv_size : 0, data->mv_size));
  6040. dkey.mv_size = 0;
  6041. if (flags & MDB_CURRENT) {
  6042. if (!(mc->mc_flags & C_INITIALIZED))
  6043. return EINVAL;
  6044. rc = MDB_SUCCESS;
  6045. } else if (mc->mc_db->md_root == P_INVALID) {
  6046. /* new database, cursor has nothing to point to */
  6047. mc->mc_snum = 0;
  6048. mc->mc_top = 0;
  6049. mc->mc_flags &= ~C_INITIALIZED;
  6050. rc = MDB_NO_ROOT;
  6051. } else {
  6052. int exact = 0;
  6053. MDB_val d2;
  6054. if (flags & MDB_APPEND) {
  6055. MDB_val k2;
  6056. rc = mdb_cursor_last(mc, &k2, &d2);
  6057. if (rc == 0) {
  6058. rc = mc->mc_dbx->md_cmp(key, &k2);
  6059. if (rc > 0) {
  6060. rc = MDB_NOTFOUND;
  6061. mc->mc_ki[mc->mc_top]++;
  6062. } else {
  6063. /* new key is <= last key */
  6064. rc = MDB_KEYEXIST;
  6065. }
  6066. }
  6067. } else {
  6068. rc = mdb_cursor_set(mc, key, &d2, MDB_SET, &exact);
  6069. }
  6070. if ((flags & MDB_NOOVERWRITE) && rc == 0) {
  6071. DPRINTF(("duplicate key [%s]", DKEY(key)));
  6072. *data = d2;
  6073. return MDB_KEYEXIST;
  6074. }
  6075. if (rc && rc != MDB_NOTFOUND)
  6076. return rc;
  6077. }
  6078. if (mc->mc_flags & C_DEL)
  6079. mc->mc_flags ^= C_DEL;
  6080. /* Cursor is positioned, check for room in the dirty list */
  6081. if (!nospill) {
  6082. if (flags & MDB_MULTIPLE) {
  6083. rdata = &xdata;
  6084. xdata.mv_size = data->mv_size * dcount;
  6085. } else {
  6086. rdata = data;
  6087. }
  6088. if ((rc2 = mdb_page_spill(mc, key, rdata)))
  6089. return rc2;
  6090. }
  6091. if (rc == MDB_NO_ROOT) {
  6092. MDB_page *np;
  6093. /* new database, write a root leaf page */
  6094. DPUTS("allocating new root leaf page");
  6095. if ((rc2 = mdb_page_new(mc, P_LEAF, 1, &np))) {
  6096. return rc2;
  6097. }
  6098. mdb_cursor_push(mc, np);
  6099. mc->mc_db->md_root = np->mp_pgno;
  6100. mc->mc_db->md_depth++;
  6101. *mc->mc_dbflag |= DB_DIRTY;
  6102. if ((mc->mc_db->md_flags & (MDB_DUPSORT|MDB_DUPFIXED))
  6103. == MDB_DUPFIXED)
  6104. MP_FLAGS(np) |= P_LEAF2;
  6105. mc->mc_flags |= C_INITIALIZED;
  6106. } else {
  6107. /* make sure all cursor pages are writable */
  6108. rc2 = mdb_cursor_touch(mc);
  6109. if (rc2)
  6110. return rc2;
  6111. }
  6112. insert_key = insert_data = rc;
  6113. if (insert_key) {
  6114. /* The key does not exist */
  6115. DPRINTF(("inserting key at index %i", mc->mc_ki[mc->mc_top]));
  6116. if ((mc->mc_db->md_flags & MDB_DUPSORT) &&
  6117. LEAFSIZE(key, data) > env->me_nodemax)
  6118. {
  6119. /* Too big for a node, insert in sub-DB. Set up an empty
  6120. * "old sub-page" for prep_subDB to expand to a full page.
  6121. */
  6122. fp_flags = P_LEAF|P_DIRTY;
  6123. fp = env->me_pbuf;
  6124. fp->mp_pad = data->mv_size; /* used if MDB_DUPFIXED */
  6125. MP_LOWER(fp) = MP_UPPER(fp) = (PAGEHDRSZ-PAGEBASE);
  6126. olddata.mv_size = PAGEHDRSZ;
  6127. goto prep_subDB;
  6128. }
  6129. } else {
  6130. /* there's only a key anyway, so this is a no-op */
  6131. if (IS_LEAF2(mc->mc_pg[mc->mc_top])) {
  6132. char *ptr;
  6133. unsigned int ksize = mc->mc_db->md_pad;
  6134. if (key->mv_size != ksize)
  6135. return MDB_BAD_VALSIZE;
  6136. ptr = LEAF2KEY(mc->mc_pg[mc->mc_top], mc->mc_ki[mc->mc_top], ksize);
  6137. memcpy(ptr, key->mv_data, ksize);
  6138. fix_parent:
  6139. /* if overwriting slot 0 of leaf, need to
  6140. * update branch key if there is a parent page
  6141. */
  6142. if (mc->mc_top && !mc->mc_ki[mc->mc_top]) {
  6143. unsigned short dtop = 1;
  6144. mc->mc_top--;
  6145. /* slot 0 is always an empty key, find real slot */
  6146. while (mc->mc_top && !mc->mc_ki[mc->mc_top]) {
  6147. mc->mc_top--;
  6148. dtop++;
  6149. }
  6150. if (mc->mc_ki[mc->mc_top])
  6151. rc2 = mdb_update_key(mc, key);
  6152. else
  6153. rc2 = MDB_SUCCESS;
  6154. mc->mc_top += dtop;
  6155. if (rc2)
  6156. return rc2;
  6157. }
  6158. return MDB_SUCCESS;
  6159. }
  6160. more:
  6161. leaf = NODEPTR(mc->mc_pg[mc->mc_top], mc->mc_ki[mc->mc_top]);
  6162. olddata.mv_size = NODEDSZ(leaf);
  6163. olddata.mv_data = NODEDATA(leaf);
  6164. /* DB has dups? */
  6165. if (F_ISSET(mc->mc_db->md_flags, MDB_DUPSORT)) {
  6166. /* Prepare (sub-)page/sub-DB to accept the new item,
  6167. * if needed. fp: old sub-page or a header faking
  6168. * it. mp: new (sub-)page. offset: growth in page
  6169. * size. xdata: node data with new page or DB.
  6170. */
  6171. unsigned i, offset = 0;
  6172. mp = fp = xdata.mv_data = env->me_pbuf;
  6173. mp->mp_pgno = mc->mc_pg[mc->mc_top]->mp_pgno;
  6174. /* Was a single item before, must convert now */
  6175. if (!F_ISSET(leaf->mn_flags, F_DUPDATA)) {
  6176. MDB_cmp_func *dcmp;
  6177. /* Just overwrite the current item */
  6178. if (flags == MDB_CURRENT)
  6179. goto current;
  6180. dcmp = mc->mc_dbx->md_dcmp;
  6181. #if UINT_MAX < SIZE_MAX
  6182. if (dcmp == mdb_cmp_int && olddata.mv_size == sizeof(size_t))
  6183. dcmp = mdb_cmp_clong;
  6184. #endif
  6185. /* does data match? */
  6186. if (!dcmp(data, &olddata)) {
  6187. if (flags & (MDB_NODUPDATA|MDB_APPENDDUP))
  6188. return MDB_KEYEXIST;
  6189. /* overwrite it */
  6190. goto current;
  6191. }
  6192. /* Back up original data item */
  6193. dkey.mv_size = olddata.mv_size;
  6194. dkey.mv_data = memcpy(fp+1, olddata.mv_data, olddata.mv_size);
  6195. /* Make sub-page header for the dup items, with dummy body */
  6196. MP_FLAGS(fp) = P_LEAF|P_DIRTY|P_SUBP;
  6197. MP_LOWER(fp) = (PAGEHDRSZ-PAGEBASE);
  6198. xdata.mv_size = PAGEHDRSZ + dkey.mv_size + data->mv_size;
  6199. if (mc->mc_db->md_flags & MDB_DUPFIXED) {
  6200. MP_FLAGS(fp) |= P_LEAF2;
  6201. fp->mp_pad = data->mv_size;
  6202. xdata.mv_size += 2 * data->mv_size; /* leave space for 2 more */
  6203. } else {
  6204. xdata.mv_size += 2 * (sizeof(indx_t) + NODESIZE) +
  6205. (dkey.mv_size & 1) + (data->mv_size & 1);
  6206. }
  6207. MP_UPPER(fp) = xdata.mv_size - PAGEBASE;
  6208. olddata.mv_size = xdata.mv_size; /* pretend olddata is fp */
  6209. } else if (leaf->mn_flags & F_SUBDATA) {
  6210. /* Data is on sub-DB, just store it */
  6211. flags |= F_DUPDATA|F_SUBDATA;
  6212. goto put_sub;
  6213. } else {
  6214. /* Data is on sub-page */
  6215. fp = olddata.mv_data;
  6216. switch (flags) {
  6217. default:
  6218. if (!(mc->mc_db->md_flags & MDB_DUPFIXED)) {
  6219. offset = EVEN(NODESIZE + sizeof(indx_t) +
  6220. data->mv_size);
  6221. break;
  6222. }
  6223. offset = fp->mp_pad;
  6224. if (SIZELEFT(fp) < offset) {
  6225. offset *= 4; /* space for 4 more */
  6226. break;
  6227. }
  6228. /* FALLTHRU */ /* Big enough MDB_DUPFIXED sub-page */
  6229. case MDB_CURRENT:
  6230. MP_FLAGS(fp) |= P_DIRTY;
  6231. COPY_PGNO(MP_PGNO(fp), MP_PGNO(mp));
  6232. mc->mc_xcursor->mx_cursor.mc_pg[0] = fp;
  6233. flags |= F_DUPDATA;
  6234. goto put_sub;
  6235. }
  6236. xdata.mv_size = olddata.mv_size + offset;
  6237. }
  6238. fp_flags = MP_FLAGS(fp);
  6239. if (NODESIZE + NODEKSZ(leaf) + xdata.mv_size > env->me_nodemax) {
  6240. /* Too big for a sub-page, convert to sub-DB */
  6241. fp_flags &= ~P_SUBP;
  6242. prep_subDB:
  6243. if (mc->mc_db->md_flags & MDB_DUPFIXED) {
  6244. fp_flags |= P_LEAF2;
  6245. dummy.md_pad = fp->mp_pad;
  6246. dummy.md_flags = MDB_DUPFIXED;
  6247. if (mc->mc_db->md_flags & MDB_INTEGERDUP)
  6248. dummy.md_flags |= MDB_INTEGERKEY;
  6249. } else {
  6250. dummy.md_pad = 0;
  6251. dummy.md_flags = 0;
  6252. }
  6253. dummy.md_depth = 1;
  6254. dummy.md_branch_pages = 0;
  6255. dummy.md_leaf_pages = 1;
  6256. dummy.md_overflow_pages = 0;
  6257. dummy.md_entries = NUMKEYS(fp);
  6258. xdata.mv_size = sizeof(MDB_db);
  6259. xdata.mv_data = &dummy;
  6260. if ((rc = mdb_page_alloc(mc, 1, &mp)))
  6261. return rc;
  6262. offset = env->me_psize - olddata.mv_size;
  6263. flags |= F_DUPDATA|F_SUBDATA;
  6264. dummy.md_root = mp->mp_pgno;
  6265. sub_root = mp;
  6266. }
  6267. if (mp != fp) {
  6268. MP_FLAGS(mp) = fp_flags | P_DIRTY;
  6269. MP_PAD(mp) = MP_PAD(fp);
  6270. MP_LOWER(mp) = MP_LOWER(fp);
  6271. MP_UPPER(mp) = MP_UPPER(fp) + offset;
  6272. if (fp_flags & P_LEAF2) {
  6273. memcpy(METADATA(mp), METADATA(fp), NUMKEYS(fp) * fp->mp_pad);
  6274. } else {
  6275. memcpy((char *)mp + MP_UPPER(mp) + PAGEBASE, (char *)fp + MP_UPPER(fp) + PAGEBASE,
  6276. olddata.mv_size - MP_UPPER(fp) - PAGEBASE);
  6277. memcpy((char *)MP_PTRS(mp), (char *)MP_PTRS(fp), NUMKEYS(fp) * sizeof(mp->mp_ptrs[0]));
  6278. for (i=0; i<NUMKEYS(fp); i++)
  6279. mp->mp_ptrs[i] += offset;
  6280. }
  6281. }
  6282. rdata = &xdata;
  6283. flags |= F_DUPDATA;
  6284. do_sub = 1;
  6285. if (!insert_key)
  6286. mdb_node_del(mc, 0);
  6287. goto new_sub;
  6288. }
  6289. current:
  6290. /* LMDB passes F_SUBDATA in 'flags' to write a DB record */
  6291. if ((leaf->mn_flags ^ flags) & F_SUBDATA)
  6292. return MDB_INCOMPATIBLE;
  6293. /* overflow page overwrites need special handling */
  6294. if (F_ISSET(leaf->mn_flags, F_BIGDATA)) {
  6295. MDB_page *omp;
  6296. pgno_t pg;
  6297. int level, ovpages, dpages = OVPAGES(data->mv_size, env->me_psize);
  6298. memcpy(&pg, olddata.mv_data, sizeof(pg));
  6299. if ((rc2 = mdb_page_get(mc, pg, &omp, &level)) != 0)
  6300. return rc2;
  6301. ovpages = omp->mp_pages;
  6302. /* Is the ov page large enough? */
  6303. if (ovpages >= dpages) {
  6304. if (!(omp->mp_flags & P_DIRTY) &&
  6305. (level || (env->me_flags & MDB_WRITEMAP)))
  6306. {
  6307. rc = mdb_page_unspill(mc->mc_txn, omp, &omp);
  6308. if (rc)
  6309. return rc;
  6310. level = 0; /* dirty in this txn or clean */
  6311. }
  6312. /* Is it dirty? */
  6313. if (omp->mp_flags & P_DIRTY) {
  6314. /* yes, overwrite it. Note in this case we don't
  6315. * bother to try shrinking the page if the new data
  6316. * is smaller than the overflow threshold.
  6317. */
  6318. if (level > 1) {
  6319. /* It is writable only in a parent txn */
  6320. size_t sz = (size_t) env->me_psize * ovpages, off;
  6321. MDB_page *np = mdb_page_malloc(mc->mc_txn, ovpages);
  6322. MDB_ID2 id2;
  6323. if (!np)
  6324. return ENOMEM;
  6325. id2.mid = pg;
  6326. id2.mptr = np;
  6327. /* Note - this page is already counted in parent's dirty_room */
  6328. rc2 = mdb_mid2l_insert(mc->mc_txn->mt_u.dirty_list, &id2);
  6329. mdb_cassert(mc, rc2 == 0);
  6330. /* Currently we make the page look as with put() in the
  6331. * parent txn, in case the user peeks at MDB_RESERVEd
  6332. * or unused parts. Some users treat ovpages specially.
  6333. */
  6334. if (!(flags & MDB_RESERVE)) {
  6335. /* Skip the part where LMDB will put *data.
  6336. * Copy end of page, adjusting alignment so
  6337. * compiler may copy words instead of bytes.
  6338. */
  6339. off = (PAGEHDRSZ + data->mv_size) & -(int)sizeof(size_t);
  6340. memcpy((size_t *)((char *)np + off),
  6341. (size_t *)((char *)omp + off), sz - off);
  6342. sz = PAGEHDRSZ;
  6343. }
  6344. memcpy(np, omp, sz); /* Copy beginning of page */
  6345. omp = np;
  6346. }
  6347. SETDSZ(leaf, data->mv_size);
  6348. if (F_ISSET(flags, MDB_RESERVE))
  6349. data->mv_data = METADATA(omp);
  6350. else
  6351. memcpy(METADATA(omp), data->mv_data, data->mv_size);
  6352. return MDB_SUCCESS;
  6353. }
  6354. }
  6355. if ((rc2 = mdb_ovpage_free(mc, omp)) != MDB_SUCCESS)
  6356. return rc2;
  6357. } else if (data->mv_size == olddata.mv_size) {
  6358. /* same size, just replace it. Note that we could
  6359. * also reuse this node if the new data is smaller,
  6360. * but instead we opt to shrink the node in that case.
  6361. */
  6362. if (F_ISSET(flags, MDB_RESERVE))
  6363. data->mv_data = olddata.mv_data;
  6364. else if (!(mc->mc_flags & C_SUB))
  6365. memcpy(olddata.mv_data, data->mv_data, data->mv_size);
  6366. else {
  6367. if (key->mv_size != NODEKSZ(leaf))
  6368. goto new_ksize;
  6369. memcpy(NODEKEY(leaf), key->mv_data, key->mv_size);
  6370. goto fix_parent;
  6371. }
  6372. return MDB_SUCCESS;
  6373. }
  6374. new_ksize:
  6375. mdb_node_del(mc, 0);
  6376. }
  6377. rdata = data;
  6378. new_sub:
  6379. nflags = flags & NODE_ADD_FLAGS;
  6380. nsize = IS_LEAF2(mc->mc_pg[mc->mc_top]) ? key->mv_size : mdb_leaf_size(env, key, rdata);
  6381. if (SIZELEFT(mc->mc_pg[mc->mc_top]) < nsize) {
  6382. if (( flags & (F_DUPDATA|F_SUBDATA)) == F_DUPDATA )
  6383. nflags &= ~MDB_APPEND; /* sub-page may need room to grow */
  6384. if (!insert_key)
  6385. nflags |= MDB_SPLIT_REPLACE;
  6386. rc = mdb_page_split(mc, key, rdata, P_INVALID, nflags);
  6387. } else {
  6388. /* There is room already in this leaf page. */
  6389. rc = mdb_node_add(mc, mc->mc_ki[mc->mc_top], key, rdata, 0, nflags);
  6390. if (rc == 0) {
  6391. /* Adjust other cursors pointing to mp */
  6392. MDB_cursor *m2, *m3;
  6393. MDB_dbi dbi = mc->mc_dbi;
  6394. unsigned i = mc->mc_top;
  6395. MDB_page *mp = mc->mc_pg[i];
  6396. for (m2 = mc->mc_txn->mt_cursors[dbi]; m2; m2=m2->mc_next) {
  6397. if (mc->mc_flags & C_SUB)
  6398. m3 = &m2->mc_xcursor->mx_cursor;
  6399. else
  6400. m3 = m2;
  6401. if (m3 == mc || m3->mc_snum < mc->mc_snum || m3->mc_pg[i] != mp) continue;
  6402. if (m3->mc_ki[i] >= mc->mc_ki[i] && insert_key) {
  6403. m3->mc_ki[i]++;
  6404. }
  6405. XCURSOR_REFRESH(m3, i, mp);
  6406. }
  6407. }
  6408. }
  6409. if (rc == MDB_SUCCESS) {
  6410. /* Now store the actual data in the child DB. Note that we're
  6411. * storing the user data in the keys field, so there are strict
  6412. * size limits on dupdata. The actual data fields of the child
  6413. * DB are all zero size.
  6414. */
  6415. if (do_sub) {
  6416. int xflags, new_dupdata;
  6417. size_t ecount;
  6418. put_sub:
  6419. xdata.mv_size = 0;
  6420. xdata.mv_data = "";
  6421. leaf = NODEPTR(mc->mc_pg[mc->mc_top], mc->mc_ki[mc->mc_top]);
  6422. if ((flags & (MDB_CURRENT|MDB_APPENDDUP)) == MDB_CURRENT) {
  6423. xflags = MDB_CURRENT|MDB_NOSPILL;
  6424. } else {
  6425. mdb_xcursor_init1(mc, leaf);
  6426. xflags = (flags & MDB_NODUPDATA) ?
  6427. MDB_NOOVERWRITE|MDB_NOSPILL : MDB_NOSPILL;
  6428. }
  6429. if (sub_root)
  6430. mc->mc_xcursor->mx_cursor.mc_pg[0] = sub_root;
  6431. new_dupdata = (int)dkey.mv_size;
  6432. /* converted, write the original data first */
  6433. if (dkey.mv_size) {
  6434. rc = mdb_cursor_put(&mc->mc_xcursor->mx_cursor, &dkey, &xdata, xflags);
  6435. if (rc)
  6436. goto bad_sub;
  6437. /* we've done our job */
  6438. dkey.mv_size = 0;
  6439. }
  6440. if (!(leaf->mn_flags & F_SUBDATA) || sub_root) {
  6441. /* Adjust other cursors pointing to mp */
  6442. MDB_cursor *m2;
  6443. MDB_xcursor *mx = mc->mc_xcursor;
  6444. unsigned i = mc->mc_top;
  6445. MDB_page *mp = mc->mc_pg[i];
  6446. for (m2 = mc->mc_txn->mt_cursors[mc->mc_dbi]; m2; m2=m2->mc_next) {
  6447. if (m2 == mc || m2->mc_snum < mc->mc_snum) continue;
  6448. if (!(m2->mc_flags & C_INITIALIZED)) continue;
  6449. if (m2->mc_pg[i] == mp) {
  6450. if (m2->mc_ki[i] == mc->mc_ki[i]) {
  6451. mdb_xcursor_init2(m2, mx, new_dupdata);
  6452. } else if (!insert_key) {
  6453. XCURSOR_REFRESH(m2, i, mp);
  6454. }
  6455. }
  6456. }
  6457. }
  6458. ecount = mc->mc_xcursor->mx_db.md_entries;
  6459. if (flags & MDB_APPENDDUP)
  6460. xflags |= MDB_APPEND;
  6461. rc = mdb_cursor_put(&mc->mc_xcursor->mx_cursor, data, &xdata, xflags);
  6462. if (flags & F_SUBDATA) {
  6463. void *db = NODEDATA(leaf);
  6464. memcpy(db, &mc->mc_xcursor->mx_db, sizeof(MDB_db));
  6465. }
  6466. insert_data = mc->mc_xcursor->mx_db.md_entries - ecount;
  6467. }
  6468. /* Increment count unless we just replaced an existing item. */
  6469. if (insert_data)
  6470. mc->mc_db->md_entries++;
  6471. if (insert_key) {
  6472. /* Invalidate txn if we created an empty sub-DB */
  6473. if (rc)
  6474. goto bad_sub;
  6475. /* If we succeeded and the key didn't exist before,
  6476. * make sure the cursor is marked valid.
  6477. */
  6478. mc->mc_flags |= C_INITIALIZED;
  6479. }
  6480. if (flags & MDB_MULTIPLE) {
  6481. if (!rc) {
  6482. mcount++;
  6483. /* let caller know how many succeeded, if any */
  6484. data[1].mv_size = mcount;
  6485. if (mcount < dcount) {
  6486. data[0].mv_data = (char *)data[0].mv_data + data[0].mv_size;
  6487. insert_key = insert_data = 0;
  6488. goto more;
  6489. }
  6490. }
  6491. }
  6492. return rc;
  6493. bad_sub:
  6494. if (rc == MDB_KEYEXIST) /* should not happen, we deleted that item */
  6495. rc = MDB_CORRUPTED;
  6496. }
  6497. mc->mc_txn->mt_flags |= MDB_TXN_ERROR;
  6498. return rc;
  6499. }
  6500. int
  6501. mdb_cursor_del(MDB_cursor *mc, unsigned int flags)
  6502. {
  6503. MDB_node *leaf;
  6504. MDB_page *mp;
  6505. int rc;
  6506. if (mc->mc_txn->mt_flags & (MDB_TXN_RDONLY|MDB_TXN_BLOCKED))
  6507. return (mc->mc_txn->mt_flags & MDB_TXN_RDONLY) ? EACCES : MDB_BAD_TXN;
  6508. if (!(mc->mc_flags & C_INITIALIZED))
  6509. return EINVAL;
  6510. if (mc->mc_ki[mc->mc_top] >= NUMKEYS(mc->mc_pg[mc->mc_top]))
  6511. return MDB_NOTFOUND;
  6512. if (!(flags & MDB_NOSPILL) && (rc = mdb_page_spill(mc, NULL, NULL)))
  6513. return rc;
  6514. rc = mdb_cursor_touch(mc);
  6515. if (rc)
  6516. return rc;
  6517. mp = mc->mc_pg[mc->mc_top];
  6518. if (!IS_LEAF(mp))
  6519. return MDB_CORRUPTED;
  6520. if (IS_LEAF2(mp))
  6521. goto del_key;
  6522. leaf = NODEPTR(mp, mc->mc_ki[mc->mc_top]);
  6523. if (F_ISSET(leaf->mn_flags, F_DUPDATA)) {
  6524. if (flags & MDB_NODUPDATA) {
  6525. /* mdb_cursor_del0() will subtract the final entry */
  6526. mc->mc_db->md_entries -= mc->mc_xcursor->mx_db.md_entries - 1;
  6527. mc->mc_xcursor->mx_cursor.mc_flags &= ~C_INITIALIZED;
  6528. } else {
  6529. if (!F_ISSET(leaf->mn_flags, F_SUBDATA)) {
  6530. mc->mc_xcursor->mx_cursor.mc_pg[0] = NODEDATA(leaf);
  6531. }
  6532. rc = mdb_cursor_del(&mc->mc_xcursor->mx_cursor, MDB_NOSPILL);
  6533. if (rc)
  6534. return rc;
  6535. /* If sub-DB still has entries, we're done */
  6536. if (mc->mc_xcursor->mx_db.md_entries) {
  6537. if (leaf->mn_flags & F_SUBDATA) {
  6538. /* update subDB info */
  6539. void *db = NODEDATA(leaf);
  6540. memcpy(db, &mc->mc_xcursor->mx_db, sizeof(MDB_db));
  6541. } else {
  6542. MDB_cursor *m2;
  6543. /* shrink fake page */
  6544. mdb_node_shrink(mp, mc->mc_ki[mc->mc_top]);
  6545. leaf = NODEPTR(mp, mc->mc_ki[mc->mc_top]);
  6546. mc->mc_xcursor->mx_cursor.mc_pg[0] = NODEDATA(leaf);
  6547. /* fix other sub-DB cursors pointed at fake pages on this page */
  6548. for (m2 = mc->mc_txn->mt_cursors[mc->mc_dbi]; m2; m2=m2->mc_next) {
  6549. if (m2 == mc || m2->mc_snum < mc->mc_snum) continue;
  6550. if (!(m2->mc_flags & C_INITIALIZED)) continue;
  6551. if (m2->mc_pg[mc->mc_top] == mp) {
  6552. XCURSOR_REFRESH(m2, mc->mc_top, mp);
  6553. }
  6554. }
  6555. }
  6556. mc->mc_db->md_entries--;
  6557. return rc;
  6558. } else {
  6559. mc->mc_xcursor->mx_cursor.mc_flags &= ~C_INITIALIZED;
  6560. }
  6561. /* otherwise fall thru and delete the sub-DB */
  6562. }
  6563. if (leaf->mn_flags & F_SUBDATA) {
  6564. /* add all the child DB's pages to the free list */
  6565. rc = mdb_drop0(&mc->mc_xcursor->mx_cursor, 0);
  6566. if (rc)
  6567. goto fail;
  6568. }
  6569. }
  6570. /* LMDB passes F_SUBDATA in 'flags' to delete a DB record */
  6571. else if ((leaf->mn_flags ^ flags) & F_SUBDATA) {
  6572. rc = MDB_INCOMPATIBLE;
  6573. goto fail;
  6574. }
  6575. /* add overflow pages to free list */
  6576. if (F_ISSET(leaf->mn_flags, F_BIGDATA)) {
  6577. MDB_page *omp;
  6578. pgno_t pg;
  6579. memcpy(&pg, NODEDATA(leaf), sizeof(pg));
  6580. if ((rc = mdb_page_get(mc, pg, &omp, NULL)) ||
  6581. (rc = mdb_ovpage_free(mc, omp)))
  6582. goto fail;
  6583. }
  6584. del_key:
  6585. return mdb_cursor_del0(mc);
  6586. fail:
  6587. mc->mc_txn->mt_flags |= MDB_TXN_ERROR;
  6588. return rc;
  6589. }
  6590. /** Allocate and initialize new pages for a database.
  6591. * Set #MDB_TXN_ERROR on failure.
  6592. * @param[in] mc a cursor on the database being added to.
  6593. * @param[in] flags flags defining what type of page is being allocated.
  6594. * @param[in] num the number of pages to allocate. This is usually 1,
  6595. * unless allocating overflow pages for a large record.
  6596. * @param[out] mp Address of a page, or NULL on failure.
  6597. * @return 0 on success, non-zero on failure.
  6598. */
  6599. static int
  6600. mdb_page_new(MDB_cursor *mc, uint32_t flags, int num, MDB_page **mp)
  6601. {
  6602. MDB_page *np;
  6603. int rc;
  6604. if ((rc = mdb_page_alloc(mc, num, &np)))
  6605. return rc;
  6606. DPRINTF(("allocated new mpage %"Z"u, page size %u",
  6607. np->mp_pgno, mc->mc_txn->mt_env->me_psize));
  6608. np->mp_flags = flags | P_DIRTY;
  6609. np->mp_lower = (PAGEHDRSZ-PAGEBASE);
  6610. np->mp_upper = mc->mc_txn->mt_env->me_psize - PAGEBASE;
  6611. if (IS_BRANCH(np))
  6612. mc->mc_db->md_branch_pages++;
  6613. else if (IS_LEAF(np))
  6614. mc->mc_db->md_leaf_pages++;
  6615. else if (IS_OVERFLOW(np)) {
  6616. mc->mc_db->md_overflow_pages += num;
  6617. np->mp_pages = num;
  6618. }
  6619. *mp = np;
  6620. return 0;
  6621. }
  6622. /** Calculate the size of a leaf node.
  6623. * The size depends on the environment's page size; if a data item
  6624. * is too large it will be put onto an overflow page and the node
  6625. * size will only include the key and not the data. Sizes are always
  6626. * rounded up to an even number of bytes, to guarantee 2-byte alignment
  6627. * of the #MDB_node headers.
  6628. * @param[in] env The environment handle.
  6629. * @param[in] key The key for the node.
  6630. * @param[in] data The data for the node.
  6631. * @return The number of bytes needed to store the node.
  6632. */
  6633. static size_t
  6634. mdb_leaf_size(MDB_env *env, MDB_val *key, MDB_val *data)
  6635. {
  6636. size_t sz;
  6637. sz = LEAFSIZE(key, data);
  6638. if (sz > env->me_nodemax) {
  6639. /* put on overflow page */
  6640. sz -= data->mv_size - sizeof(pgno_t);
  6641. }
  6642. return EVEN(sz + sizeof(indx_t));
  6643. }
  6644. /** Calculate the size of a branch node.
  6645. * The size should depend on the environment's page size but since
  6646. * we currently don't support spilling large keys onto overflow
  6647. * pages, it's simply the size of the #MDB_node header plus the
  6648. * size of the key. Sizes are always rounded up to an even number
  6649. * of bytes, to guarantee 2-byte alignment of the #MDB_node headers.
  6650. * @param[in] env The environment handle.
  6651. * @param[in] key The key for the node.
  6652. * @return The number of bytes needed to store the node.
  6653. */
  6654. static size_t
  6655. mdb_branch_size(MDB_env *env, MDB_val *key)
  6656. {
  6657. size_t sz;
  6658. sz = INDXSIZE(key);
  6659. if (sz > env->me_nodemax) {
  6660. /* put on overflow page */
  6661. /* not implemented */
  6662. /* sz -= key->size - sizeof(pgno_t); */
  6663. }
  6664. return sz + sizeof(indx_t);
  6665. }
  6666. /** Add a node to the page pointed to by the cursor.
  6667. * Set #MDB_TXN_ERROR on failure.
  6668. * @param[in] mc The cursor for this operation.
  6669. * @param[in] indx The index on the page where the new node should be added.
  6670. * @param[in] key The key for the new node.
  6671. * @param[in] data The data for the new node, if any.
  6672. * @param[in] pgno The page number, if adding a branch node.
  6673. * @param[in] flags Flags for the node.
  6674. * @return 0 on success, non-zero on failure. Possible errors are:
  6675. * <ul>
  6676. * <li>ENOMEM - failed to allocate overflow pages for the node.
  6677. * <li>MDB_PAGE_FULL - there is insufficient room in the page. This error
  6678. * should never happen since all callers already calculate the
  6679. * page's free space before calling this function.
  6680. * </ul>
  6681. */
  6682. static int
  6683. mdb_node_add(MDB_cursor *mc, indx_t indx,
  6684. MDB_val *key, MDB_val *data, pgno_t pgno, unsigned int flags)
  6685. {
  6686. unsigned int i;
  6687. size_t node_size = NODESIZE;
  6688. ssize_t room;
  6689. indx_t ofs;
  6690. MDB_node *node;
  6691. MDB_page *mp = mc->mc_pg[mc->mc_top];
  6692. MDB_page *ofp = NULL; /* overflow page */
  6693. void *ndata;
  6694. DKBUF;
  6695. mdb_cassert(mc, MP_UPPER(mp) >= MP_LOWER(mp));
  6696. DPRINTF(("add to %s %spage %"Z"u index %i, data size %"Z"u key size %"Z"u [%s]",
  6697. IS_LEAF(mp) ? "leaf" : "branch",
  6698. IS_SUBP(mp) ? "sub-" : "",
  6699. mdb_dbg_pgno(mp), indx, data ? data->mv_size : 0,
  6700. key ? key->mv_size : 0, key ? DKEY(key) : "null"));
  6701. if (IS_LEAF2(mp)) {
  6702. /* Move higher keys up one slot. */
  6703. int ksize = mc->mc_db->md_pad, dif;
  6704. char *ptr = LEAF2KEY(mp, indx, ksize);
  6705. dif = NUMKEYS(mp) - indx;
  6706. if (dif > 0)
  6707. memmove(ptr+ksize, ptr, dif*ksize);
  6708. /* insert new key */
  6709. memcpy(ptr, key->mv_data, ksize);
  6710. /* Just using these for counting */
  6711. MP_LOWER(mp) += sizeof(indx_t);
  6712. MP_UPPER(mp) -= ksize - sizeof(indx_t);
  6713. return MDB_SUCCESS;
  6714. }
  6715. room = (ssize_t)SIZELEFT(mp) - (ssize_t)sizeof(indx_t);
  6716. if (key != NULL)
  6717. node_size += key->mv_size;
  6718. if (IS_LEAF(mp)) {
  6719. mdb_cassert(mc, key && data);
  6720. if (F_ISSET(flags, F_BIGDATA)) {
  6721. /* Data already on overflow page. */
  6722. node_size += sizeof(pgno_t);
  6723. } else if (node_size + data->mv_size > mc->mc_txn->mt_env->me_nodemax) {
  6724. int ovpages = OVPAGES(data->mv_size, mc->mc_txn->mt_env->me_psize);
  6725. int rc;
  6726. /* Put data on overflow page. */
  6727. DPRINTF(("data size is %"Z"u, node would be %"Z"u, put data on overflow page",
  6728. data->mv_size, node_size+data->mv_size));
  6729. node_size = EVEN(node_size + sizeof(pgno_t));
  6730. if ((ssize_t)node_size > room)
  6731. goto full;
  6732. if ((rc = mdb_page_new(mc, P_OVERFLOW, ovpages, &ofp)))
  6733. return rc;
  6734. DPRINTF(("allocated overflow page %"Z"u", ofp->mp_pgno));
  6735. flags |= F_BIGDATA;
  6736. goto update;
  6737. } else {
  6738. node_size += data->mv_size;
  6739. }
  6740. }
  6741. node_size = EVEN(node_size);
  6742. if ((ssize_t)node_size > room)
  6743. goto full;
  6744. update:
  6745. /* Move higher pointers up one slot. */
  6746. for (i = NUMKEYS(mp); i > indx; i--)
  6747. MP_PTRS(mp)[i] = MP_PTRS(mp)[i - 1];
  6748. /* Adjust free space offsets. */
  6749. ofs = MP_UPPER(mp) - node_size;
  6750. mdb_cassert(mc, ofs >= MP_LOWER(mp) + sizeof(indx_t));
  6751. MP_PTRS(mp)[indx] = ofs;
  6752. MP_UPPER(mp) = ofs;
  6753. MP_LOWER(mp) += sizeof(indx_t);
  6754. /* Write the node data. */
  6755. node = NODEPTR(mp, indx);
  6756. node->mn_ksize = (key == NULL) ? 0 : key->mv_size;
  6757. node->mn_flags = flags;
  6758. if (IS_LEAF(mp))
  6759. SETDSZ(node,data->mv_size);
  6760. else
  6761. SETPGNO(node,pgno);
  6762. if (key)
  6763. memcpy(NODEKEY(node), key->mv_data, key->mv_size);
  6764. if (IS_LEAF(mp)) {
  6765. ndata = NODEDATA(node);
  6766. if (ofp == NULL) {
  6767. if (F_ISSET(flags, F_BIGDATA))
  6768. memcpy(ndata, data->mv_data, sizeof(pgno_t));
  6769. else if (F_ISSET(flags, MDB_RESERVE))
  6770. data->mv_data = ndata;
  6771. else
  6772. memcpy(ndata, data->mv_data, data->mv_size);
  6773. } else {
  6774. memcpy(ndata, &ofp->mp_pgno, sizeof(pgno_t));
  6775. ndata = METADATA(ofp);
  6776. if (F_ISSET(flags, MDB_RESERVE))
  6777. data->mv_data = ndata;
  6778. else
  6779. memcpy(ndata, data->mv_data, data->mv_size);
  6780. }
  6781. }
  6782. return MDB_SUCCESS;
  6783. full:
  6784. DPRINTF(("not enough room in page %"Z"u, got %u ptrs",
  6785. mdb_dbg_pgno(mp), NUMKEYS(mp)));
  6786. DPRINTF(("upper-lower = %u - %u = %"Z"d", MP_UPPER(mp),MP_LOWER(mp),room));
  6787. DPRINTF(("node size = %"Z"u", node_size));
  6788. mc->mc_txn->mt_flags |= MDB_TXN_ERROR;
  6789. return MDB_PAGE_FULL;
  6790. }
  6791. /** Delete the specified node from a page.
  6792. * @param[in] mc Cursor pointing to the node to delete.
  6793. * @param[in] ksize The size of a node. Only used if the page is
  6794. * part of a #MDB_DUPFIXED database.
  6795. */
  6796. static void
  6797. mdb_node_del(MDB_cursor *mc, int ksize)
  6798. {
  6799. MDB_page *mp = mc->mc_pg[mc->mc_top];
  6800. indx_t indx = mc->mc_ki[mc->mc_top];
  6801. unsigned int sz;
  6802. indx_t i, j, numkeys, ptr;
  6803. MDB_node *node;
  6804. char *base;
  6805. DPRINTF(("delete node %u on %s page %"Z"u", indx,
  6806. IS_LEAF(mp) ? "leaf" : "branch", mdb_dbg_pgno(mp)));
  6807. numkeys = NUMKEYS(mp);
  6808. mdb_cassert(mc, indx < numkeys);
  6809. if (IS_LEAF2(mp)) {
  6810. int x = numkeys - 1 - indx;
  6811. base = LEAF2KEY(mp, indx, ksize);
  6812. if (x)
  6813. memmove(base, base + ksize, x * ksize);
  6814. MP_LOWER(mp) -= sizeof(indx_t);
  6815. MP_UPPER(mp) += ksize - sizeof(indx_t);
  6816. return;
  6817. }
  6818. node = NODEPTR(mp, indx);
  6819. sz = NODESIZE + node->mn_ksize;
  6820. if (IS_LEAF(mp)) {
  6821. if (F_ISSET(node->mn_flags, F_BIGDATA))
  6822. sz += sizeof(pgno_t);
  6823. else
  6824. sz += NODEDSZ(node);
  6825. }
  6826. sz = EVEN(sz);
  6827. ptr = MP_PTRS(mp)[indx];
  6828. for (i = j = 0; i < numkeys; i++) {
  6829. if (i != indx) {
  6830. MP_PTRS(mp)[j] = MP_PTRS(mp)[i];
  6831. if (MP_PTRS(mp)[i] < ptr)
  6832. MP_PTRS(mp)[j] += sz;
  6833. j++;
  6834. }
  6835. }
  6836. base = (char *)mp + MP_UPPER(mp) + PAGEBASE;
  6837. memmove(base + sz, base, ptr - MP_UPPER(mp));
  6838. MP_LOWER(mp) -= sizeof(indx_t);
  6839. MP_UPPER(mp) += sz;
  6840. }
  6841. /** Compact the main page after deleting a node on a subpage.
  6842. * @param[in] mp The main page to operate on.
  6843. * @param[in] indx The index of the subpage on the main page.
  6844. */
  6845. static void
  6846. mdb_node_shrink(MDB_page *mp, indx_t indx)
  6847. {
  6848. MDB_node *node;
  6849. MDB_page *sp, *xp;
  6850. char *base;
  6851. indx_t delta, nsize, len, ptr;
  6852. int i;
  6853. node = NODEPTR(mp, indx);
  6854. sp = (MDB_page *)NODEDATA(node);
  6855. delta = SIZELEFT(sp);
  6856. nsize = NODEDSZ(node) - delta;
  6857. /* Prepare to shift upward, set len = length(subpage part to shift) */
  6858. if (IS_LEAF2(sp)) {
  6859. len = nsize;
  6860. if (nsize & 1)
  6861. return; /* do not make the node uneven-sized */
  6862. } else {
  6863. xp = (MDB_page *)((char *)sp + delta); /* destination subpage */
  6864. for (i = NUMKEYS(sp); --i >= 0; )
  6865. MP_PTRS(xp)[i] = MP_PTRS(sp)[i] - delta;
  6866. len = PAGEHDRSZ;
  6867. }
  6868. MP_UPPER(sp) = MP_LOWER(sp);
  6869. COPY_PGNO(MP_PGNO(sp), mp->mp_pgno);
  6870. SETDSZ(node, nsize);
  6871. /* Shift <lower nodes...initial part of subpage> upward */
  6872. base = (char *)mp + mp->mp_upper + PAGEBASE;
  6873. memmove(base + delta, base, (char *)sp + len - base);
  6874. ptr = mp->mp_ptrs[indx];
  6875. for (i = NUMKEYS(mp); --i >= 0; ) {
  6876. if (mp->mp_ptrs[i] <= ptr)
  6877. mp->mp_ptrs[i] += delta;
  6878. }
  6879. mp->mp_upper += delta;
  6880. }
  6881. /** Initial setup of a sorted-dups cursor.
  6882. * Sorted duplicates are implemented as a sub-database for the given key.
  6883. * The duplicate data items are actually keys of the sub-database.
  6884. * Operations on the duplicate data items are performed using a sub-cursor
  6885. * initialized when the sub-database is first accessed. This function does
  6886. * the preliminary setup of the sub-cursor, filling in the fields that
  6887. * depend only on the parent DB.
  6888. * @param[in] mc The main cursor whose sorted-dups cursor is to be initialized.
  6889. */
  6890. static void
  6891. mdb_xcursor_init0(MDB_cursor *mc)
  6892. {
  6893. MDB_xcursor *mx = mc->mc_xcursor;
  6894. mx->mx_cursor.mc_xcursor = NULL;
  6895. mx->mx_cursor.mc_txn = mc->mc_txn;
  6896. mx->mx_cursor.mc_db = &mx->mx_db;
  6897. mx->mx_cursor.mc_dbx = &mx->mx_dbx;
  6898. mx->mx_cursor.mc_dbi = mc->mc_dbi;
  6899. mx->mx_cursor.mc_dbflag = &mx->mx_dbflag;
  6900. mx->mx_cursor.mc_snum = 0;
  6901. mx->mx_cursor.mc_top = 0;
  6902. mx->mx_cursor.mc_flags = C_SUB;
  6903. mx->mx_dbx.md_name.mv_size = 0;
  6904. mx->mx_dbx.md_name.mv_data = NULL;
  6905. mx->mx_dbx.md_cmp = mc->mc_dbx->md_dcmp;
  6906. mx->mx_dbx.md_dcmp = NULL;
  6907. mx->mx_dbx.md_rel = mc->mc_dbx->md_rel;
  6908. }
  6909. /** Final setup of a sorted-dups cursor.
  6910. * Sets up the fields that depend on the data from the main cursor.
  6911. * @param[in] mc The main cursor whose sorted-dups cursor is to be initialized.
  6912. * @param[in] node The data containing the #MDB_db record for the
  6913. * sorted-dup database.
  6914. */
  6915. static void
  6916. mdb_xcursor_init1(MDB_cursor *mc, MDB_node *node)
  6917. {
  6918. MDB_xcursor *mx = mc->mc_xcursor;
  6919. if (node->mn_flags & F_SUBDATA) {
  6920. memcpy(&mx->mx_db, NODEDATA(node), sizeof(MDB_db));
  6921. mx->mx_cursor.mc_pg[0] = 0;
  6922. mx->mx_cursor.mc_snum = 0;
  6923. mx->mx_cursor.mc_top = 0;
  6924. mx->mx_cursor.mc_flags = C_SUB;
  6925. } else {
  6926. MDB_page *fp = NODEDATA(node);
  6927. mx->mx_db.md_pad = 0;
  6928. mx->mx_db.md_flags = 0;
  6929. mx->mx_db.md_depth = 1;
  6930. mx->mx_db.md_branch_pages = 0;
  6931. mx->mx_db.md_leaf_pages = 1;
  6932. mx->mx_db.md_overflow_pages = 0;
  6933. mx->mx_db.md_entries = NUMKEYS(fp);
  6934. COPY_PGNO(mx->mx_db.md_root, MP_PGNO(fp));
  6935. mx->mx_cursor.mc_snum = 1;
  6936. mx->mx_cursor.mc_top = 0;
  6937. mx->mx_cursor.mc_flags = C_INITIALIZED|C_SUB;
  6938. mx->mx_cursor.mc_pg[0] = fp;
  6939. mx->mx_cursor.mc_ki[0] = 0;
  6940. if (mc->mc_db->md_flags & MDB_DUPFIXED) {
  6941. mx->mx_db.md_flags = MDB_DUPFIXED;
  6942. mx->mx_db.md_pad = fp->mp_pad;
  6943. if (mc->mc_db->md_flags & MDB_INTEGERDUP)
  6944. mx->mx_db.md_flags |= MDB_INTEGERKEY;
  6945. }
  6946. }
  6947. DPRINTF(("Sub-db -%u root page %"Z"u", mx->mx_cursor.mc_dbi,
  6948. mx->mx_db.md_root));
  6949. mx->mx_dbflag = DB_VALID|DB_USRVALID|DB_DUPDATA;
  6950. #if UINT_MAX < SIZE_MAX
  6951. if (mx->mx_dbx.md_cmp == mdb_cmp_int && mx->mx_db.md_pad == sizeof(size_t))
  6952. mx->mx_dbx.md_cmp = mdb_cmp_clong;
  6953. #endif
  6954. }
  6955. /** Fixup a sorted-dups cursor due to underlying update.
  6956. * Sets up some fields that depend on the data from the main cursor.
  6957. * Almost the same as init1, but skips initialization steps if the
  6958. * xcursor had already been used.
  6959. * @param[in] mc The main cursor whose sorted-dups cursor is to be fixed up.
  6960. * @param[in] src_mx The xcursor of an up-to-date cursor.
  6961. * @param[in] new_dupdata True if converting from a non-#F_DUPDATA item.
  6962. */
  6963. static void
  6964. mdb_xcursor_init2(MDB_cursor *mc, MDB_xcursor *src_mx, int new_dupdata)
  6965. {
  6966. MDB_xcursor *mx = mc->mc_xcursor;
  6967. if (new_dupdata) {
  6968. mx->mx_cursor.mc_snum = 1;
  6969. mx->mx_cursor.mc_top = 0;
  6970. mx->mx_cursor.mc_flags |= C_INITIALIZED;
  6971. mx->mx_cursor.mc_ki[0] = 0;
  6972. mx->mx_dbflag = DB_VALID|DB_USRVALID|DB_DUPDATA;
  6973. #if UINT_MAX < SIZE_MAX
  6974. mx->mx_dbx.md_cmp = src_mx->mx_dbx.md_cmp;
  6975. #endif
  6976. } else if (!(mx->mx_cursor.mc_flags & C_INITIALIZED)) {
  6977. return;
  6978. }
  6979. mx->mx_db = src_mx->mx_db;
  6980. mx->mx_cursor.mc_pg[0] = src_mx->mx_cursor.mc_pg[0];
  6981. DPRINTF(("Sub-db -%u root page %"Z"u", mx->mx_cursor.mc_dbi,
  6982. mx->mx_db.md_root));
  6983. }
  6984. /** Initialize a cursor for a given transaction and database. */
  6985. static void
  6986. mdb_cursor_init(MDB_cursor *mc, MDB_txn *txn, MDB_dbi dbi, MDB_xcursor *mx)
  6987. {
  6988. mc->mc_next = NULL;
  6989. mc->mc_backup = NULL;
  6990. mc->mc_dbi = dbi;
  6991. mc->mc_txn = txn;
  6992. mc->mc_db = &txn->mt_dbs[dbi];
  6993. mc->mc_dbx = &txn->mt_dbxs[dbi];
  6994. mc->mc_dbflag = &txn->mt_dbflags[dbi];
  6995. mc->mc_snum = 0;
  6996. mc->mc_top = 0;
  6997. mc->mc_pg[0] = 0;
  6998. mc->mc_ki[0] = 0;
  6999. mc->mc_flags = 0;
  7000. if (txn->mt_dbs[dbi].md_flags & MDB_DUPSORT) {
  7001. mdb_tassert(txn, mx != NULL);
  7002. mc->mc_xcursor = mx;
  7003. mdb_xcursor_init0(mc);
  7004. } else {
  7005. mc->mc_xcursor = NULL;
  7006. }
  7007. if (*mc->mc_dbflag & DB_STALE) {
  7008. mdb_page_search(mc, NULL, MDB_PS_ROOTONLY);
  7009. }
  7010. }
  7011. int
  7012. mdb_cursor_open(MDB_txn *txn, MDB_dbi dbi, MDB_cursor **ret)
  7013. {
  7014. MDB_cursor *mc;
  7015. size_t size = sizeof(MDB_cursor);
  7016. if (!ret || !TXN_DBI_EXIST(txn, dbi, DB_VALID))
  7017. return EINVAL;
  7018. if (txn->mt_flags & MDB_TXN_BLOCKED)
  7019. return MDB_BAD_TXN;
  7020. if (dbi == FREE_DBI && !F_ISSET(txn->mt_flags, MDB_TXN_RDONLY))
  7021. return EINVAL;
  7022. if (txn->mt_dbs[dbi].md_flags & MDB_DUPSORT)
  7023. size += sizeof(MDB_xcursor);
  7024. if ((mc = malloc(size)) != NULL) {
  7025. mdb_cursor_init(mc, txn, dbi, (MDB_xcursor *)(mc + 1));
  7026. if (txn->mt_cursors) {
  7027. mc->mc_next = txn->mt_cursors[dbi];
  7028. txn->mt_cursors[dbi] = mc;
  7029. mc->mc_flags |= C_UNTRACK;
  7030. }
  7031. } else {
  7032. return ENOMEM;
  7033. }
  7034. *ret = mc;
  7035. return MDB_SUCCESS;
  7036. }
  7037. int
  7038. mdb_cursor_renew(MDB_txn *txn, MDB_cursor *mc)
  7039. {
  7040. if (!mc || !TXN_DBI_EXIST(txn, mc->mc_dbi, DB_VALID))
  7041. return EINVAL;
  7042. if ((mc->mc_flags & C_UNTRACK) || txn->mt_cursors)
  7043. return EINVAL;
  7044. if (txn->mt_flags & MDB_TXN_BLOCKED)
  7045. return MDB_BAD_TXN;
  7046. mdb_cursor_init(mc, txn, mc->mc_dbi, mc->mc_xcursor);
  7047. return MDB_SUCCESS;
  7048. }
  7049. /* Return the count of duplicate data items for the current key */
  7050. int
  7051. mdb_cursor_count(MDB_cursor *mc, size_t *countp)
  7052. {
  7053. MDB_node *leaf;
  7054. if (mc == NULL || countp == NULL)
  7055. return EINVAL;
  7056. if (mc->mc_xcursor == NULL)
  7057. return MDB_INCOMPATIBLE;
  7058. if (mc->mc_txn->mt_flags & MDB_TXN_BLOCKED)
  7059. return MDB_BAD_TXN;
  7060. if (!(mc->mc_flags & C_INITIALIZED))
  7061. return EINVAL;
  7062. if (!mc->mc_snum)
  7063. return MDB_NOTFOUND;
  7064. if (mc->mc_flags & C_EOF) {
  7065. if (mc->mc_ki[mc->mc_top] >= NUMKEYS(mc->mc_pg[mc->mc_top]))
  7066. return MDB_NOTFOUND;
  7067. mc->mc_flags ^= C_EOF;
  7068. }
  7069. leaf = NODEPTR(mc->mc_pg[mc->mc_top], mc->mc_ki[mc->mc_top]);
  7070. if (!F_ISSET(leaf->mn_flags, F_DUPDATA)) {
  7071. *countp = 1;
  7072. } else {
  7073. if (!(mc->mc_xcursor->mx_cursor.mc_flags & C_INITIALIZED))
  7074. return EINVAL;
  7075. *countp = mc->mc_xcursor->mx_db.md_entries;
  7076. }
  7077. return MDB_SUCCESS;
  7078. }
  7079. void
  7080. mdb_cursor_close(MDB_cursor *mc)
  7081. {
  7082. if (mc && !mc->mc_backup) {
  7083. /* remove from txn, if tracked */
  7084. if ((mc->mc_flags & C_UNTRACK) && mc->mc_txn->mt_cursors) {
  7085. MDB_cursor **prev = &mc->mc_txn->mt_cursors[mc->mc_dbi];
  7086. while (*prev && *prev != mc) prev = &(*prev)->mc_next;
  7087. if (*prev == mc)
  7088. *prev = mc->mc_next;
  7089. }
  7090. free(mc);
  7091. }
  7092. }
  7093. MDB_txn *
  7094. mdb_cursor_txn(MDB_cursor *mc)
  7095. {
  7096. if (!mc) return NULL;
  7097. return mc->mc_txn;
  7098. }
  7099. MDB_dbi
  7100. mdb_cursor_dbi(MDB_cursor *mc)
  7101. {
  7102. return mc->mc_dbi;
  7103. }
  7104. /** Replace the key for a branch node with a new key.
  7105. * Set #MDB_TXN_ERROR on failure.
  7106. * @param[in] mc Cursor pointing to the node to operate on.
  7107. * @param[in] key The new key to use.
  7108. * @return 0 on success, non-zero on failure.
  7109. */
  7110. static int
  7111. mdb_update_key(MDB_cursor *mc, MDB_val *key)
  7112. {
  7113. MDB_page *mp;
  7114. MDB_node *node;
  7115. char *base;
  7116. size_t len;
  7117. int delta, ksize, oksize;
  7118. indx_t ptr, i, numkeys, indx;
  7119. DKBUF;
  7120. indx = mc->mc_ki[mc->mc_top];
  7121. mp = mc->mc_pg[mc->mc_top];
  7122. node = NODEPTR(mp, indx);
  7123. ptr = mp->mp_ptrs[indx];
  7124. #if MDB_DEBUG
  7125. {
  7126. MDB_val k2;
  7127. char kbuf2[DKBUF_MAXKEYSIZE*2+1];
  7128. k2.mv_data = NODEKEY(node);
  7129. k2.mv_size = node->mn_ksize;
  7130. DPRINTF(("update key %u (ofs %u) [%s] to [%s] on page %"Z"u",
  7131. indx, ptr,
  7132. mdb_dkey(&k2, kbuf2),
  7133. DKEY(key),
  7134. mp->mp_pgno));
  7135. }
  7136. #endif
  7137. /* Sizes must be 2-byte aligned. */
  7138. ksize = EVEN(key->mv_size);
  7139. oksize = EVEN(node->mn_ksize);
  7140. delta = ksize - oksize;
  7141. /* Shift node contents if EVEN(key length) changed. */
  7142. if (delta) {
  7143. if (delta > 0 && SIZELEFT(mp) < delta) {
  7144. pgno_t pgno;
  7145. /* not enough space left, do a delete and split */
  7146. DPRINTF(("Not enough room, delta = %d, splitting...", delta));
  7147. pgno = NODEPGNO(node);
  7148. mdb_node_del(mc, 0);
  7149. return mdb_page_split(mc, key, NULL, pgno, MDB_SPLIT_REPLACE);
  7150. }
  7151. numkeys = NUMKEYS(mp);
  7152. for (i = 0; i < numkeys; i++) {
  7153. if (mp->mp_ptrs[i] <= ptr)
  7154. mp->mp_ptrs[i] -= delta;
  7155. }
  7156. base = (char *)mp + mp->mp_upper + PAGEBASE;
  7157. len = ptr - mp->mp_upper + NODESIZE;
  7158. memmove(base - delta, base, len);
  7159. mp->mp_upper -= delta;
  7160. node = NODEPTR(mp, indx);
  7161. }
  7162. /* But even if no shift was needed, update ksize */
  7163. if (node->mn_ksize != key->mv_size)
  7164. node->mn_ksize = key->mv_size;
  7165. if (key->mv_size)
  7166. memcpy(NODEKEY(node), key->mv_data, key->mv_size);
  7167. return MDB_SUCCESS;
  7168. }
  7169. static void
  7170. mdb_cursor_copy(const MDB_cursor *csrc, MDB_cursor *cdst);
  7171. /** Perform \b act while tracking temporary cursor \b mn */
  7172. #define WITH_CURSOR_TRACKING(mn, act) do { \
  7173. MDB_cursor dummy, *tracked, **tp = &(mn).mc_txn->mt_cursors[mn.mc_dbi]; \
  7174. if ((mn).mc_flags & C_SUB) { \
  7175. dummy.mc_flags = C_INITIALIZED; \
  7176. dummy.mc_xcursor = (MDB_xcursor *)&(mn); \
  7177. tracked = &dummy; \
  7178. } else { \
  7179. tracked = &(mn); \
  7180. } \
  7181. tracked->mc_next = *tp; \
  7182. *tp = tracked; \
  7183. { act; } \
  7184. *tp = tracked->mc_next; \
  7185. } while (0)
  7186. /** Move a node from csrc to cdst.
  7187. */
  7188. static int
  7189. mdb_node_move(MDB_cursor *csrc, MDB_cursor *cdst, int fromleft)
  7190. {
  7191. MDB_node *srcnode;
  7192. MDB_val key, data;
  7193. pgno_t srcpg;
  7194. MDB_cursor mn;
  7195. int rc;
  7196. unsigned short flags;
  7197. DKBUF;
  7198. /* Mark src and dst as dirty. */
  7199. if ((rc = mdb_page_touch(csrc)) ||
  7200. (rc = mdb_page_touch(cdst)))
  7201. return rc;
  7202. if (IS_LEAF2(csrc->mc_pg[csrc->mc_top])) {
  7203. key.mv_size = csrc->mc_db->md_pad;
  7204. key.mv_data = LEAF2KEY(csrc->mc_pg[csrc->mc_top], csrc->mc_ki[csrc->mc_top], key.mv_size);
  7205. data.mv_size = 0;
  7206. data.mv_data = NULL;
  7207. srcpg = 0;
  7208. flags = 0;
  7209. } else {
  7210. srcnode = NODEPTR(csrc->mc_pg[csrc->mc_top], csrc->mc_ki[csrc->mc_top]);
  7211. mdb_cassert(csrc, !((size_t)srcnode & 1));
  7212. srcpg = NODEPGNO(srcnode);
  7213. flags = srcnode->mn_flags;
  7214. if (csrc->mc_ki[csrc->mc_top] == 0 && IS_BRANCH(csrc->mc_pg[csrc->mc_top])) {
  7215. unsigned int snum = csrc->mc_snum;
  7216. MDB_node *s2;
  7217. /* must find the lowest key below src */
  7218. rc = mdb_page_search_lowest(csrc);
  7219. if (rc)
  7220. return rc;
  7221. if (IS_LEAF2(csrc->mc_pg[csrc->mc_top])) {
  7222. key.mv_size = csrc->mc_db->md_pad;
  7223. key.mv_data = LEAF2KEY(csrc->mc_pg[csrc->mc_top], 0, key.mv_size);
  7224. } else {
  7225. s2 = NODEPTR(csrc->mc_pg[csrc->mc_top], 0);
  7226. key.mv_size = NODEKSZ(s2);
  7227. key.mv_data = NODEKEY(s2);
  7228. }
  7229. csrc->mc_snum = snum--;
  7230. csrc->mc_top = snum;
  7231. } else {
  7232. key.mv_size = NODEKSZ(srcnode);
  7233. key.mv_data = NODEKEY(srcnode);
  7234. }
  7235. data.mv_size = NODEDSZ(srcnode);
  7236. data.mv_data = NODEDATA(srcnode);
  7237. }
  7238. mn.mc_xcursor = NULL;
  7239. if (IS_BRANCH(cdst->mc_pg[cdst->mc_top]) && cdst->mc_ki[cdst->mc_top] == 0) {
  7240. unsigned int snum = cdst->mc_snum;
  7241. MDB_node *s2;
  7242. MDB_val bkey;
  7243. /* must find the lowest key below dst */
  7244. mdb_cursor_copy(cdst, &mn);
  7245. rc = mdb_page_search_lowest(&mn);
  7246. if (rc)
  7247. return rc;
  7248. if (IS_LEAF2(mn.mc_pg[mn.mc_top])) {
  7249. bkey.mv_size = mn.mc_db->md_pad;
  7250. bkey.mv_data = LEAF2KEY(mn.mc_pg[mn.mc_top], 0, bkey.mv_size);
  7251. } else {
  7252. s2 = NODEPTR(mn.mc_pg[mn.mc_top], 0);
  7253. bkey.mv_size = NODEKSZ(s2);
  7254. bkey.mv_data = NODEKEY(s2);
  7255. }
  7256. mn.mc_snum = snum--;
  7257. mn.mc_top = snum;
  7258. mn.mc_ki[snum] = 0;
  7259. rc = mdb_update_key(&mn, &bkey);
  7260. if (rc)
  7261. return rc;
  7262. }
  7263. DPRINTF(("moving %s node %u [%s] on page %"Z"u to node %u on page %"Z"u",
  7264. IS_LEAF(csrc->mc_pg[csrc->mc_top]) ? "leaf" : "branch",
  7265. csrc->mc_ki[csrc->mc_top],
  7266. DKEY(&key),
  7267. csrc->mc_pg[csrc->mc_top]->mp_pgno,
  7268. cdst->mc_ki[cdst->mc_top], cdst->mc_pg[cdst->mc_top]->mp_pgno));
  7269. /* Add the node to the destination page.
  7270. */
  7271. rc = mdb_node_add(cdst, cdst->mc_ki[cdst->mc_top], &key, &data, srcpg, flags);
  7272. if (rc != MDB_SUCCESS)
  7273. return rc;
  7274. /* Delete the node from the source page.
  7275. */
  7276. mdb_node_del(csrc, key.mv_size);
  7277. {
  7278. /* Adjust other cursors pointing to mp */
  7279. MDB_cursor *m2, *m3;
  7280. MDB_dbi dbi = csrc->mc_dbi;
  7281. MDB_page *mpd, *mps;
  7282. mps = csrc->mc_pg[csrc->mc_top];
  7283. /* If we're adding on the left, bump others up */
  7284. if (fromleft) {
  7285. mpd = cdst->mc_pg[csrc->mc_top];
  7286. for (m2 = csrc->mc_txn->mt_cursors[dbi]; m2; m2=m2->mc_next) {
  7287. if (csrc->mc_flags & C_SUB)
  7288. m3 = &m2->mc_xcursor->mx_cursor;
  7289. else
  7290. m3 = m2;
  7291. if (!(m3->mc_flags & C_INITIALIZED) || m3->mc_top < csrc->mc_top)
  7292. continue;
  7293. if (m3 != cdst &&
  7294. m3->mc_pg[csrc->mc_top] == mpd &&
  7295. m3->mc_ki[csrc->mc_top] >= cdst->mc_ki[csrc->mc_top]) {
  7296. m3->mc_ki[csrc->mc_top]++;
  7297. }
  7298. if (m3 !=csrc &&
  7299. m3->mc_pg[csrc->mc_top] == mps &&
  7300. m3->mc_ki[csrc->mc_top] == csrc->mc_ki[csrc->mc_top]) {
  7301. m3->mc_pg[csrc->mc_top] = cdst->mc_pg[cdst->mc_top];
  7302. m3->mc_ki[csrc->mc_top] = cdst->mc_ki[cdst->mc_top];
  7303. m3->mc_ki[csrc->mc_top-1]++;
  7304. }
  7305. if (IS_LEAF(mps))
  7306. XCURSOR_REFRESH(m3, csrc->mc_top, m3->mc_pg[csrc->mc_top]);
  7307. }
  7308. } else
  7309. /* Adding on the right, bump others down */
  7310. {
  7311. for (m2 = csrc->mc_txn->mt_cursors[dbi]; m2; m2=m2->mc_next) {
  7312. if (csrc->mc_flags & C_SUB)
  7313. m3 = &m2->mc_xcursor->mx_cursor;
  7314. else
  7315. m3 = m2;
  7316. if (m3 == csrc) continue;
  7317. if (!(m3->mc_flags & C_INITIALIZED) || m3->mc_top < csrc->mc_top)
  7318. continue;
  7319. if (m3->mc_pg[csrc->mc_top] == mps) {
  7320. if (!m3->mc_ki[csrc->mc_top]) {
  7321. m3->mc_pg[csrc->mc_top] = cdst->mc_pg[cdst->mc_top];
  7322. m3->mc_ki[csrc->mc_top] = cdst->mc_ki[cdst->mc_top];
  7323. m3->mc_ki[csrc->mc_top-1]--;
  7324. } else {
  7325. m3->mc_ki[csrc->mc_top]--;
  7326. }
  7327. if (IS_LEAF(mps))
  7328. XCURSOR_REFRESH(m3, csrc->mc_top, m3->mc_pg[csrc->mc_top]);
  7329. }
  7330. }
  7331. }
  7332. }
  7333. /* Update the parent separators.
  7334. */
  7335. if (csrc->mc_ki[csrc->mc_top] == 0) {
  7336. if (csrc->mc_ki[csrc->mc_top-1] != 0) {
  7337. if (IS_LEAF2(csrc->mc_pg[csrc->mc_top])) {
  7338. key.mv_data = LEAF2KEY(csrc->mc_pg[csrc->mc_top], 0, key.mv_size);
  7339. } else {
  7340. srcnode = NODEPTR(csrc->mc_pg[csrc->mc_top], 0);
  7341. key.mv_size = NODEKSZ(srcnode);
  7342. key.mv_data = NODEKEY(srcnode);
  7343. }
  7344. DPRINTF(("update separator for source page %"Z"u to [%s]",
  7345. csrc->mc_pg[csrc->mc_top]->mp_pgno, DKEY(&key)));
  7346. mdb_cursor_copy(csrc, &mn);
  7347. mn.mc_snum--;
  7348. mn.mc_top--;
  7349. /* We want mdb_rebalance to find mn when doing fixups */
  7350. WITH_CURSOR_TRACKING(mn,
  7351. rc = mdb_update_key(&mn, &key));
  7352. if (rc)
  7353. return rc;
  7354. }
  7355. if (IS_BRANCH(csrc->mc_pg[csrc->mc_top])) {
  7356. MDB_val nullkey;
  7357. indx_t ix = csrc->mc_ki[csrc->mc_top];
  7358. nullkey.mv_size = 0;
  7359. csrc->mc_ki[csrc->mc_top] = 0;
  7360. rc = mdb_update_key(csrc, &nullkey);
  7361. csrc->mc_ki[csrc->mc_top] = ix;
  7362. mdb_cassert(csrc, rc == MDB_SUCCESS);
  7363. }
  7364. }
  7365. if (cdst->mc_ki[cdst->mc_top] == 0) {
  7366. if (cdst->mc_ki[cdst->mc_top-1] != 0) {
  7367. if (IS_LEAF2(csrc->mc_pg[csrc->mc_top])) {
  7368. key.mv_data = LEAF2KEY(cdst->mc_pg[cdst->mc_top], 0, key.mv_size);
  7369. } else {
  7370. srcnode = NODEPTR(cdst->mc_pg[cdst->mc_top], 0);
  7371. key.mv_size = NODEKSZ(srcnode);
  7372. key.mv_data = NODEKEY(srcnode);
  7373. }
  7374. DPRINTF(("update separator for destination page %"Z"u to [%s]",
  7375. cdst->mc_pg[cdst->mc_top]->mp_pgno, DKEY(&key)));
  7376. mdb_cursor_copy(cdst, &mn);
  7377. mn.mc_snum--;
  7378. mn.mc_top--;
  7379. /* We want mdb_rebalance to find mn when doing fixups */
  7380. WITH_CURSOR_TRACKING(mn,
  7381. rc = mdb_update_key(&mn, &key));
  7382. if (rc)
  7383. return rc;
  7384. }
  7385. if (IS_BRANCH(cdst->mc_pg[cdst->mc_top])) {
  7386. MDB_val nullkey;
  7387. indx_t ix = cdst->mc_ki[cdst->mc_top];
  7388. nullkey.mv_size = 0;
  7389. cdst->mc_ki[cdst->mc_top] = 0;
  7390. rc = mdb_update_key(cdst, &nullkey);
  7391. cdst->mc_ki[cdst->mc_top] = ix;
  7392. mdb_cassert(cdst, rc == MDB_SUCCESS);
  7393. }
  7394. }
  7395. return MDB_SUCCESS;
  7396. }
  7397. /** Merge one page into another.
  7398. * The nodes from the page pointed to by \b csrc will
  7399. * be copied to the page pointed to by \b cdst and then
  7400. * the \b csrc page will be freed.
  7401. * @param[in] csrc Cursor pointing to the source page.
  7402. * @param[in] cdst Cursor pointing to the destination page.
  7403. * @return 0 on success, non-zero on failure.
  7404. */
  7405. static int
  7406. mdb_page_merge(MDB_cursor *csrc, MDB_cursor *cdst)
  7407. {
  7408. MDB_page *psrc, *pdst;
  7409. MDB_node *srcnode;
  7410. MDB_val key, data;
  7411. unsigned nkeys;
  7412. int rc;
  7413. indx_t i, j;
  7414. psrc = csrc->mc_pg[csrc->mc_top];
  7415. pdst = cdst->mc_pg[cdst->mc_top];
  7416. DPRINTF(("merging page %"Z"u into %"Z"u", psrc->mp_pgno, pdst->mp_pgno));
  7417. mdb_cassert(csrc, csrc->mc_snum > 1); /* can't merge root page */
  7418. mdb_cassert(csrc, cdst->mc_snum > 1);
  7419. /* Mark dst as dirty. */
  7420. if ((rc = mdb_page_touch(cdst)))
  7421. return rc;
  7422. /* get dst page again now that we've touched it. */
  7423. pdst = cdst->mc_pg[cdst->mc_top];
  7424. /* Move all nodes from src to dst.
  7425. */
  7426. j = nkeys = NUMKEYS(pdst);
  7427. if (IS_LEAF2(psrc)) {
  7428. key.mv_size = csrc->mc_db->md_pad;
  7429. key.mv_data = METADATA(psrc);
  7430. for (i = 0; i < NUMKEYS(psrc); i++, j++) {
  7431. rc = mdb_node_add(cdst, j, &key, NULL, 0, 0);
  7432. if (rc != MDB_SUCCESS)
  7433. return rc;
  7434. key.mv_data = (char *)key.mv_data + key.mv_size;
  7435. }
  7436. } else {
  7437. for (i = 0; i < NUMKEYS(psrc); i++, j++) {
  7438. srcnode = NODEPTR(psrc, i);
  7439. if (i == 0 && IS_BRANCH(psrc)) {
  7440. MDB_cursor mn;
  7441. MDB_node *s2;
  7442. mdb_cursor_copy(csrc, &mn);
  7443. mn.mc_xcursor = NULL;
  7444. /* must find the lowest key below src */
  7445. rc = mdb_page_search_lowest(&mn);
  7446. if (rc)
  7447. return rc;
  7448. if (IS_LEAF2(mn.mc_pg[mn.mc_top])) {
  7449. key.mv_size = mn.mc_db->md_pad;
  7450. key.mv_data = LEAF2KEY(mn.mc_pg[mn.mc_top], 0, key.mv_size);
  7451. } else {
  7452. s2 = NODEPTR(mn.mc_pg[mn.mc_top], 0);
  7453. key.mv_size = NODEKSZ(s2);
  7454. key.mv_data = NODEKEY(s2);
  7455. }
  7456. } else {
  7457. key.mv_size = srcnode->mn_ksize;
  7458. key.mv_data = NODEKEY(srcnode);
  7459. }
  7460. data.mv_size = NODEDSZ(srcnode);
  7461. data.mv_data = NODEDATA(srcnode);
  7462. rc = mdb_node_add(cdst, j, &key, &data, NODEPGNO(srcnode), srcnode->mn_flags);
  7463. if (rc != MDB_SUCCESS)
  7464. return rc;
  7465. }
  7466. }
  7467. DPRINTF(("dst page %"Z"u now has %u keys (%.1f%% filled)",
  7468. pdst->mp_pgno, NUMKEYS(pdst),
  7469. (float)PAGEFILL(cdst->mc_txn->mt_env, pdst) / 10));
  7470. /* Unlink the src page from parent and add to free list.
  7471. */
  7472. csrc->mc_top--;
  7473. mdb_node_del(csrc, 0);
  7474. if (csrc->mc_ki[csrc->mc_top] == 0) {
  7475. key.mv_size = 0;
  7476. rc = mdb_update_key(csrc, &key);
  7477. if (rc) {
  7478. csrc->mc_top++;
  7479. return rc;
  7480. }
  7481. }
  7482. csrc->mc_top++;
  7483. psrc = csrc->mc_pg[csrc->mc_top];
  7484. /* If not operating on FreeDB, allow this page to be reused
  7485. * in this txn. Otherwise just add to free list.
  7486. */
  7487. rc = mdb_page_loose(csrc, psrc);
  7488. if (rc)
  7489. return rc;
  7490. if (IS_LEAF(psrc))
  7491. csrc->mc_db->md_leaf_pages--;
  7492. else
  7493. csrc->mc_db->md_branch_pages--;
  7494. {
  7495. /* Adjust other cursors pointing to mp */
  7496. MDB_cursor *m2, *m3;
  7497. MDB_dbi dbi = csrc->mc_dbi;
  7498. unsigned int top = csrc->mc_top;
  7499. for (m2 = csrc->mc_txn->mt_cursors[dbi]; m2; m2=m2->mc_next) {
  7500. if (csrc->mc_flags & C_SUB)
  7501. m3 = &m2->mc_xcursor->mx_cursor;
  7502. else
  7503. m3 = m2;
  7504. if (m3 == csrc) continue;
  7505. if (m3->mc_snum < csrc->mc_snum) continue;
  7506. if (m3->mc_pg[top] == psrc) {
  7507. m3->mc_pg[top] = pdst;
  7508. m3->mc_ki[top] += nkeys;
  7509. m3->mc_ki[top-1] = cdst->mc_ki[top-1];
  7510. } else if (m3->mc_pg[top-1] == csrc->mc_pg[top-1] &&
  7511. m3->mc_ki[top-1] > csrc->mc_ki[top-1]) {
  7512. m3->mc_ki[top-1]--;
  7513. }
  7514. if (IS_LEAF(psrc))
  7515. XCURSOR_REFRESH(m3, top, m3->mc_pg[top]);
  7516. }
  7517. }
  7518. {
  7519. unsigned int snum = cdst->mc_snum;
  7520. uint16_t depth = cdst->mc_db->md_depth;
  7521. mdb_cursor_pop(cdst);
  7522. rc = mdb_rebalance(cdst);
  7523. /* Did the tree height change? */
  7524. if (depth != cdst->mc_db->md_depth)
  7525. snum += cdst->mc_db->md_depth - depth;
  7526. cdst->mc_snum = snum;
  7527. cdst->mc_top = snum-1;
  7528. }
  7529. return rc;
  7530. }
  7531. /** Copy the contents of a cursor.
  7532. * @param[in] csrc The cursor to copy from.
  7533. * @param[out] cdst The cursor to copy to.
  7534. */
  7535. static void
  7536. mdb_cursor_copy(const MDB_cursor *csrc, MDB_cursor *cdst)
  7537. {
  7538. unsigned int i;
  7539. cdst->mc_txn = csrc->mc_txn;
  7540. cdst->mc_dbi = csrc->mc_dbi;
  7541. cdst->mc_db = csrc->mc_db;
  7542. cdst->mc_dbx = csrc->mc_dbx;
  7543. cdst->mc_snum = csrc->mc_snum;
  7544. cdst->mc_top = csrc->mc_top;
  7545. cdst->mc_flags = csrc->mc_flags;
  7546. for (i=0; i<csrc->mc_snum; i++) {
  7547. cdst->mc_pg[i] = csrc->mc_pg[i];
  7548. cdst->mc_ki[i] = csrc->mc_ki[i];
  7549. }
  7550. }
  7551. /** Rebalance the tree after a delete operation.
  7552. * @param[in] mc Cursor pointing to the page where rebalancing
  7553. * should begin.
  7554. * @return 0 on success, non-zero on failure.
  7555. */
  7556. static int
  7557. mdb_rebalance(MDB_cursor *mc)
  7558. {
  7559. MDB_node *node;
  7560. int rc, fromleft;
  7561. unsigned int ptop, minkeys, thresh;
  7562. MDB_cursor mn;
  7563. indx_t oldki;
  7564. if (IS_BRANCH(mc->mc_pg[mc->mc_top])) {
  7565. minkeys = 2;
  7566. thresh = 1;
  7567. } else {
  7568. minkeys = 1;
  7569. thresh = FILL_THRESHOLD;
  7570. }
  7571. DPRINTF(("rebalancing %s page %"Z"u (has %u keys, %.1f%% full)",
  7572. IS_LEAF(mc->mc_pg[mc->mc_top]) ? "leaf" : "branch",
  7573. mdb_dbg_pgno(mc->mc_pg[mc->mc_top]), NUMKEYS(mc->mc_pg[mc->mc_top]),
  7574. (float)PAGEFILL(mc->mc_txn->mt_env, mc->mc_pg[mc->mc_top]) / 10));
  7575. if (PAGEFILL(mc->mc_txn->mt_env, mc->mc_pg[mc->mc_top]) >= thresh &&
  7576. NUMKEYS(mc->mc_pg[mc->mc_top]) >= minkeys) {
  7577. DPRINTF(("no need to rebalance page %"Z"u, above fill threshold",
  7578. mdb_dbg_pgno(mc->mc_pg[mc->mc_top])));
  7579. return MDB_SUCCESS;
  7580. }
  7581. if (mc->mc_snum < 2) {
  7582. MDB_page *mp = mc->mc_pg[0];
  7583. if (IS_SUBP(mp)) {
  7584. DPUTS("Can't rebalance a subpage, ignoring");
  7585. return MDB_SUCCESS;
  7586. }
  7587. if (NUMKEYS(mp) == 0) {
  7588. DPUTS("tree is completely empty");
  7589. mc->mc_db->md_root = P_INVALID;
  7590. mc->mc_db->md_depth = 0;
  7591. mc->mc_db->md_leaf_pages = 0;
  7592. rc = mdb_midl_append(&mc->mc_txn->mt_free_pgs, mp->mp_pgno);
  7593. if (rc)
  7594. return rc;
  7595. /* Adjust cursors pointing to mp */
  7596. mc->mc_snum = 0;
  7597. mc->mc_top = 0;
  7598. mc->mc_flags &= ~C_INITIALIZED;
  7599. {
  7600. MDB_cursor *m2, *m3;
  7601. MDB_dbi dbi = mc->mc_dbi;
  7602. for (m2 = mc->mc_txn->mt_cursors[dbi]; m2; m2=m2->mc_next) {
  7603. if (mc->mc_flags & C_SUB)
  7604. m3 = &m2->mc_xcursor->mx_cursor;
  7605. else
  7606. m3 = m2;
  7607. if (!(m3->mc_flags & C_INITIALIZED) || (m3->mc_snum < mc->mc_snum))
  7608. continue;
  7609. if (m3->mc_pg[0] == mp) {
  7610. m3->mc_snum = 0;
  7611. m3->mc_top = 0;
  7612. m3->mc_flags &= ~C_INITIALIZED;
  7613. }
  7614. }
  7615. }
  7616. } else if (IS_BRANCH(mp) && NUMKEYS(mp) == 1) {
  7617. int i;
  7618. DPUTS("collapsing root page!");
  7619. rc = mdb_midl_append(&mc->mc_txn->mt_free_pgs, mp->mp_pgno);
  7620. if (rc)
  7621. return rc;
  7622. mc->mc_db->md_root = NODEPGNO(NODEPTR(mp, 0));
  7623. rc = mdb_page_get(mc, mc->mc_db->md_root, &mc->mc_pg[0], NULL);
  7624. if (rc)
  7625. return rc;
  7626. mc->mc_db->md_depth--;
  7627. mc->mc_db->md_branch_pages--;
  7628. mc->mc_ki[0] = mc->mc_ki[1];
  7629. for (i = 1; i<mc->mc_db->md_depth; i++) {
  7630. mc->mc_pg[i] = mc->mc_pg[i+1];
  7631. mc->mc_ki[i] = mc->mc_ki[i+1];
  7632. }
  7633. {
  7634. /* Adjust other cursors pointing to mp */
  7635. MDB_cursor *m2, *m3;
  7636. MDB_dbi dbi = mc->mc_dbi;
  7637. for (m2 = mc->mc_txn->mt_cursors[dbi]; m2; m2=m2->mc_next) {
  7638. if (mc->mc_flags & C_SUB)
  7639. m3 = &m2->mc_xcursor->mx_cursor;
  7640. else
  7641. m3 = m2;
  7642. if (m3 == mc) continue;
  7643. if (!(m3->mc_flags & C_INITIALIZED))
  7644. continue;
  7645. if (m3->mc_pg[0] == mp) {
  7646. for (i=0; i<mc->mc_db->md_depth; i++) {
  7647. m3->mc_pg[i] = m3->mc_pg[i+1];
  7648. m3->mc_ki[i] = m3->mc_ki[i+1];
  7649. }
  7650. m3->mc_snum--;
  7651. m3->mc_top--;
  7652. }
  7653. }
  7654. }
  7655. } else
  7656. DPUTS("root page doesn't need rebalancing");
  7657. return MDB_SUCCESS;
  7658. }
  7659. /* The parent (branch page) must have at least 2 pointers,
  7660. * otherwise the tree is invalid.
  7661. */
  7662. ptop = mc->mc_top-1;
  7663. mdb_cassert(mc, NUMKEYS(mc->mc_pg[ptop]) > 1);
  7664. /* Leaf page fill factor is below the threshold.
  7665. * Try to move keys from left or right neighbor, or
  7666. * merge with a neighbor page.
  7667. */
  7668. /* Find neighbors.
  7669. */
  7670. mdb_cursor_copy(mc, &mn);
  7671. mn.mc_xcursor = NULL;
  7672. oldki = mc->mc_ki[mc->mc_top];
  7673. if (mc->mc_ki[ptop] == 0) {
  7674. /* We're the leftmost leaf in our parent.
  7675. */
  7676. DPUTS("reading right neighbor");
  7677. mn.mc_ki[ptop]++;
  7678. node = NODEPTR(mc->mc_pg[ptop], mn.mc_ki[ptop]);
  7679. rc = mdb_page_get(mc, NODEPGNO(node), &mn.mc_pg[mn.mc_top], NULL);
  7680. if (rc)
  7681. return rc;
  7682. mn.mc_ki[mn.mc_top] = 0;
  7683. mc->mc_ki[mc->mc_top] = NUMKEYS(mc->mc_pg[mc->mc_top]);
  7684. fromleft = 0;
  7685. } else {
  7686. /* There is at least one neighbor to the left.
  7687. */
  7688. DPUTS("reading left neighbor");
  7689. mn.mc_ki[ptop]--;
  7690. node = NODEPTR(mc->mc_pg[ptop], mn.mc_ki[ptop]);
  7691. rc = mdb_page_get(mc, NODEPGNO(node), &mn.mc_pg[mn.mc_top], NULL);
  7692. if (rc)
  7693. return rc;
  7694. mn.mc_ki[mn.mc_top] = NUMKEYS(mn.mc_pg[mn.mc_top]) - 1;
  7695. mc->mc_ki[mc->mc_top] = 0;
  7696. fromleft = 1;
  7697. }
  7698. DPRINTF(("found neighbor page %"Z"u (%u keys, %.1f%% full)",
  7699. mn.mc_pg[mn.mc_top]->mp_pgno, NUMKEYS(mn.mc_pg[mn.mc_top]),
  7700. (float)PAGEFILL(mc->mc_txn->mt_env, mn.mc_pg[mn.mc_top]) / 10));
  7701. /* If the neighbor page is above threshold and has enough keys,
  7702. * move one key from it. Otherwise we should try to merge them.
  7703. * (A branch page must never have less than 2 keys.)
  7704. */
  7705. if (PAGEFILL(mc->mc_txn->mt_env, mn.mc_pg[mn.mc_top]) >= thresh && NUMKEYS(mn.mc_pg[mn.mc_top]) > minkeys) {
  7706. rc = mdb_node_move(&mn, mc, fromleft);
  7707. if (fromleft) {
  7708. /* if we inserted on left, bump position up */
  7709. oldki++;
  7710. }
  7711. } else {
  7712. if (!fromleft) {
  7713. rc = mdb_page_merge(&mn, mc);
  7714. } else {
  7715. oldki += NUMKEYS(mn.mc_pg[mn.mc_top]);
  7716. mn.mc_ki[mn.mc_top] += mc->mc_ki[mn.mc_top] + 1;
  7717. /* We want mdb_rebalance to find mn when doing fixups */
  7718. WITH_CURSOR_TRACKING(mn,
  7719. rc = mdb_page_merge(mc, &mn));
  7720. mdb_cursor_copy(&mn, mc);
  7721. }
  7722. mc->mc_flags &= ~C_EOF;
  7723. }
  7724. mc->mc_ki[mc->mc_top] = oldki;
  7725. return rc;
  7726. }
  7727. /** Complete a delete operation started by #mdb_cursor_del(). */
  7728. static int
  7729. mdb_cursor_del0(MDB_cursor *mc)
  7730. {
  7731. int rc;
  7732. MDB_page *mp;
  7733. indx_t ki;
  7734. unsigned int nkeys;
  7735. MDB_cursor *m2, *m3;
  7736. MDB_dbi dbi = mc->mc_dbi;
  7737. ki = mc->mc_ki[mc->mc_top];
  7738. mp = mc->mc_pg[mc->mc_top];
  7739. mdb_node_del(mc, mc->mc_db->md_pad);
  7740. mc->mc_db->md_entries--;
  7741. {
  7742. /* Adjust other cursors pointing to mp */
  7743. for (m2 = mc->mc_txn->mt_cursors[dbi]; m2; m2=m2->mc_next) {
  7744. m3 = (mc->mc_flags & C_SUB) ? &m2->mc_xcursor->mx_cursor : m2;
  7745. if (! (m2->mc_flags & m3->mc_flags & C_INITIALIZED))
  7746. continue;
  7747. if (m3 == mc || m3->mc_snum < mc->mc_snum)
  7748. continue;
  7749. if (m3->mc_pg[mc->mc_top] == mp) {
  7750. if (m3->mc_ki[mc->mc_top] == ki) {
  7751. m3->mc_flags |= C_DEL;
  7752. if (mc->mc_db->md_flags & MDB_DUPSORT) {
  7753. /* Sub-cursor referred into dataset which is gone */
  7754. m3->mc_xcursor->mx_cursor.mc_flags &= ~(C_INITIALIZED|C_EOF);
  7755. }
  7756. continue;
  7757. } else if (m3->mc_ki[mc->mc_top] > ki) {
  7758. m3->mc_ki[mc->mc_top]--;
  7759. }
  7760. XCURSOR_REFRESH(m3, mc->mc_top, mp);
  7761. }
  7762. }
  7763. }
  7764. rc = mdb_rebalance(mc);
  7765. if (rc)
  7766. goto fail;
  7767. /* DB is totally empty now, just bail out.
  7768. * Other cursors adjustments were already done
  7769. * by mdb_rebalance and aren't needed here.
  7770. */
  7771. if (!mc->mc_snum) {
  7772. mc->mc_flags |= C_EOF;
  7773. return rc;
  7774. }
  7775. mp = mc->mc_pg[mc->mc_top];
  7776. nkeys = NUMKEYS(mp);
  7777. /* Adjust other cursors pointing to mp */
  7778. for (m2 = mc->mc_txn->mt_cursors[dbi]; !rc && m2; m2=m2->mc_next) {
  7779. m3 = (mc->mc_flags & C_SUB) ? &m2->mc_xcursor->mx_cursor : m2;
  7780. if (!(m2->mc_flags & m3->mc_flags & C_INITIALIZED))
  7781. continue;
  7782. if (m3->mc_snum < mc->mc_snum)
  7783. continue;
  7784. if (m3->mc_pg[mc->mc_top] == mp) {
  7785. if (m3->mc_ki[mc->mc_top] >= mc->mc_ki[mc->mc_top]) {
  7786. /* if m3 points past last node in page, find next sibling */
  7787. if (m3->mc_ki[mc->mc_top] >= nkeys) {
  7788. rc = mdb_cursor_sibling(m3, 1);
  7789. if (rc == MDB_NOTFOUND) {
  7790. m3->mc_flags |= C_EOF;
  7791. rc = MDB_SUCCESS;
  7792. continue;
  7793. }
  7794. if (rc)
  7795. goto fail;
  7796. }
  7797. if (m3->mc_xcursor && !(m3->mc_flags & C_EOF)) {
  7798. MDB_node *node = NODEPTR(m3->mc_pg[m3->mc_top], m3->mc_ki[m3->mc_top]);
  7799. /* If this node has dupdata, it may need to be reinited
  7800. * because its data has moved.
  7801. * If the xcursor was not initd it must be reinited.
  7802. * Else if node points to a subDB, nothing is needed.
  7803. * Else (xcursor was initd, not a subDB) needs mc_pg[0] reset.
  7804. */
  7805. if (node->mn_flags & F_DUPDATA) {
  7806. if (m3->mc_xcursor->mx_cursor.mc_flags & C_INITIALIZED) {
  7807. if (!(node->mn_flags & F_SUBDATA))
  7808. m3->mc_xcursor->mx_cursor.mc_pg[0] = NODEDATA(node);
  7809. } else {
  7810. mdb_xcursor_init1(m3, node);
  7811. rc = mdb_cursor_first(&m3->mc_xcursor->mx_cursor, NULL, NULL);
  7812. if (rc)
  7813. goto fail;
  7814. }
  7815. }
  7816. m3->mc_xcursor->mx_cursor.mc_flags |= C_DEL;
  7817. }
  7818. }
  7819. }
  7820. }
  7821. mc->mc_flags |= C_DEL;
  7822. fail:
  7823. if (rc)
  7824. mc->mc_txn->mt_flags |= MDB_TXN_ERROR;
  7825. return rc;
  7826. }
  7827. int
  7828. mdb_del(MDB_txn *txn, MDB_dbi dbi,
  7829. MDB_val *key, MDB_val *data)
  7830. {
  7831. if (!key || !TXN_DBI_EXIST(txn, dbi, DB_USRVALID))
  7832. return EINVAL;
  7833. if (txn->mt_flags & (MDB_TXN_RDONLY|MDB_TXN_BLOCKED))
  7834. return (txn->mt_flags & MDB_TXN_RDONLY) ? EACCES : MDB_BAD_TXN;
  7835. if (!F_ISSET(txn->mt_dbs[dbi].md_flags, MDB_DUPSORT)) {
  7836. /* must ignore any data */
  7837. data = NULL;
  7838. }
  7839. return mdb_del0(txn, dbi, key, data, 0);
  7840. }
  7841. static int
  7842. mdb_del0(MDB_txn *txn, MDB_dbi dbi,
  7843. MDB_val *key, MDB_val *data, unsigned flags)
  7844. {
  7845. MDB_cursor mc;
  7846. MDB_xcursor mx;
  7847. MDB_cursor_op op;
  7848. MDB_val rdata, *xdata;
  7849. int rc, exact = 0;
  7850. DKBUF;
  7851. DPRINTF(("====> delete db %u key [%s]", dbi, DKEY(key)));
  7852. mdb_cursor_init(&mc, txn, dbi, &mx);
  7853. if (data) {
  7854. op = MDB_GET_BOTH;
  7855. rdata = *data;
  7856. xdata = &rdata;
  7857. } else {
  7858. op = MDB_SET;
  7859. xdata = NULL;
  7860. flags |= MDB_NODUPDATA;
  7861. }
  7862. rc = mdb_cursor_set(&mc, key, xdata, op, &exact);
  7863. if (rc == 0) {
  7864. /* let mdb_page_split know about this cursor if needed:
  7865. * delete will trigger a rebalance; if it needs to move
  7866. * a node from one page to another, it will have to
  7867. * update the parent's separator key(s). If the new sepkey
  7868. * is larger than the current one, the parent page may
  7869. * run out of space, triggering a split. We need this
  7870. * cursor to be consistent until the end of the rebalance.
  7871. */
  7872. mc.mc_flags |= C_UNTRACK;
  7873. mc.mc_next = txn->mt_cursors[dbi];
  7874. txn->mt_cursors[dbi] = &mc;
  7875. rc = mdb_cursor_del(&mc, flags);
  7876. txn->mt_cursors[dbi] = mc.mc_next;
  7877. }
  7878. return rc;
  7879. }
  7880. /** Split a page and insert a new node.
  7881. * Set #MDB_TXN_ERROR on failure.
  7882. * @param[in,out] mc Cursor pointing to the page and desired insertion index.
  7883. * The cursor will be updated to point to the actual page and index where
  7884. * the node got inserted after the split.
  7885. * @param[in] newkey The key for the newly inserted node.
  7886. * @param[in] newdata The data for the newly inserted node.
  7887. * @param[in] newpgno The page number, if the new node is a branch node.
  7888. * @param[in] nflags The #NODE_ADD_FLAGS for the new node.
  7889. * @return 0 on success, non-zero on failure.
  7890. */
  7891. static int
  7892. mdb_page_split(MDB_cursor *mc, MDB_val *newkey, MDB_val *newdata, pgno_t newpgno,
  7893. unsigned int nflags)
  7894. {
  7895. unsigned int flags;
  7896. int rc = MDB_SUCCESS, new_root = 0, did_split = 0;
  7897. indx_t newindx;
  7898. pgno_t pgno = 0;
  7899. int i, j, split_indx, nkeys, pmax;
  7900. MDB_env *env = mc->mc_txn->mt_env;
  7901. MDB_node *node;
  7902. MDB_val sepkey, rkey, xdata, *rdata = &xdata;
  7903. MDB_page *copy = NULL;
  7904. MDB_page *mp, *rp, *pp;
  7905. int ptop;
  7906. MDB_cursor mn;
  7907. DKBUF;
  7908. mp = mc->mc_pg[mc->mc_top];
  7909. newindx = mc->mc_ki[mc->mc_top];
  7910. nkeys = NUMKEYS(mp);
  7911. DPRINTF(("-----> splitting %s page %"Z"u and adding [%s] at index %i/%i",
  7912. IS_LEAF(mp) ? "leaf" : "branch", mp->mp_pgno,
  7913. DKEY(newkey), mc->mc_ki[mc->mc_top], nkeys));
  7914. /* Create a right sibling. */
  7915. if ((rc = mdb_page_new(mc, mp->mp_flags, 1, &rp)))
  7916. return rc;
  7917. rp->mp_pad = mp->mp_pad;
  7918. DPRINTF(("new right sibling: page %"Z"u", rp->mp_pgno));
  7919. /* Usually when splitting the root page, the cursor
  7920. * height is 1. But when called from mdb_update_key,
  7921. * the cursor height may be greater because it walks
  7922. * up the stack while finding the branch slot to update.
  7923. */
  7924. if (mc->mc_top < 1) {
  7925. if ((rc = mdb_page_new(mc, P_BRANCH, 1, &pp)))
  7926. goto done;
  7927. /* shift current top to make room for new parent */
  7928. for (i=mc->mc_snum; i>0; i--) {
  7929. mc->mc_pg[i] = mc->mc_pg[i-1];
  7930. mc->mc_ki[i] = mc->mc_ki[i-1];
  7931. }
  7932. mc->mc_pg[0] = pp;
  7933. mc->mc_ki[0] = 0;
  7934. mc->mc_db->md_root = pp->mp_pgno;
  7935. DPRINTF(("root split! new root = %"Z"u", pp->mp_pgno));
  7936. new_root = mc->mc_db->md_depth++;
  7937. /* Add left (implicit) pointer. */
  7938. if ((rc = mdb_node_add(mc, 0, NULL, NULL, mp->mp_pgno, 0)) != MDB_SUCCESS) {
  7939. /* undo the pre-push */
  7940. mc->mc_pg[0] = mc->mc_pg[1];
  7941. mc->mc_ki[0] = mc->mc_ki[1];
  7942. mc->mc_db->md_root = mp->mp_pgno;
  7943. mc->mc_db->md_depth--;
  7944. goto done;
  7945. }
  7946. mc->mc_snum++;
  7947. mc->mc_top++;
  7948. ptop = 0;
  7949. } else {
  7950. ptop = mc->mc_top-1;
  7951. DPRINTF(("parent branch page is %"Z"u", mc->mc_pg[ptop]->mp_pgno));
  7952. }
  7953. mdb_cursor_copy(mc, &mn);
  7954. mn.mc_xcursor = NULL;
  7955. mn.mc_pg[mn.mc_top] = rp;
  7956. mn.mc_ki[ptop] = mc->mc_ki[ptop]+1;
  7957. if (nflags & MDB_APPEND) {
  7958. mn.mc_ki[mn.mc_top] = 0;
  7959. sepkey = *newkey;
  7960. split_indx = newindx;
  7961. nkeys = 0;
  7962. } else {
  7963. split_indx = (nkeys+1) / 2;
  7964. if (IS_LEAF2(rp)) {
  7965. char *split, *ins;
  7966. int x;
  7967. unsigned int lsize, rsize, ksize;
  7968. /* Move half of the keys to the right sibling */
  7969. x = mc->mc_ki[mc->mc_top] - split_indx;
  7970. ksize = mc->mc_db->md_pad;
  7971. split = LEAF2KEY(mp, split_indx, ksize);
  7972. rsize = (nkeys - split_indx) * ksize;
  7973. lsize = (nkeys - split_indx) * sizeof(indx_t);
  7974. mp->mp_lower -= lsize;
  7975. rp->mp_lower += lsize;
  7976. mp->mp_upper += rsize - lsize;
  7977. rp->mp_upper -= rsize - lsize;
  7978. sepkey.mv_size = ksize;
  7979. if (newindx == split_indx) {
  7980. sepkey.mv_data = newkey->mv_data;
  7981. } else {
  7982. sepkey.mv_data = split;
  7983. }
  7984. if (x<0) {
  7985. ins = LEAF2KEY(mp, mc->mc_ki[mc->mc_top], ksize);
  7986. memcpy(rp->mp_ptrs, split, rsize);
  7987. sepkey.mv_data = rp->mp_ptrs;
  7988. memmove(ins+ksize, ins, (split_indx - mc->mc_ki[mc->mc_top]) * ksize);
  7989. memcpy(ins, newkey->mv_data, ksize);
  7990. mp->mp_lower += sizeof(indx_t);
  7991. mp->mp_upper -= ksize - sizeof(indx_t);
  7992. } else {
  7993. if (x)
  7994. memcpy(rp->mp_ptrs, split, x * ksize);
  7995. ins = LEAF2KEY(rp, x, ksize);
  7996. memcpy(ins, newkey->mv_data, ksize);
  7997. memcpy(ins+ksize, split + x * ksize, rsize - x * ksize);
  7998. rp->mp_lower += sizeof(indx_t);
  7999. rp->mp_upper -= ksize - sizeof(indx_t);
  8000. mc->mc_ki[mc->mc_top] = x;
  8001. }
  8002. } else {
  8003. int psize, nsize, k, keythresh;
  8004. /* Maximum free space in an empty page */
  8005. pmax = env->me_psize - PAGEHDRSZ;
  8006. /* Threshold number of keys considered "small" */
  8007. keythresh = env->me_psize >> 7;
  8008. if (IS_LEAF(mp))
  8009. nsize = mdb_leaf_size(env, newkey, newdata);
  8010. else
  8011. nsize = mdb_branch_size(env, newkey);
  8012. nsize = EVEN(nsize);
  8013. /* grab a page to hold a temporary copy */
  8014. copy = mdb_page_malloc(mc->mc_txn, 1);
  8015. if (copy == NULL) {
  8016. rc = ENOMEM;
  8017. goto done;
  8018. }
  8019. copy->mp_pgno = mp->mp_pgno;
  8020. copy->mp_flags = mp->mp_flags;
  8021. copy->mp_lower = (PAGEHDRSZ-PAGEBASE);
  8022. copy->mp_upper = env->me_psize - PAGEBASE;
  8023. /* prepare to insert */
  8024. for (i=0, j=0; i<nkeys; i++) {
  8025. if (i == newindx) {
  8026. copy->mp_ptrs[j++] = 0;
  8027. }
  8028. copy->mp_ptrs[j++] = mp->mp_ptrs[i];
  8029. }
  8030. /* When items are relatively large the split point needs
  8031. * to be checked, because being off-by-one will make the
  8032. * difference between success or failure in mdb_node_add.
  8033. *
  8034. * It's also relevant if a page happens to be laid out
  8035. * such that one half of its nodes are all "small" and
  8036. * the other half of its nodes are "large." If the new
  8037. * item is also "large" and falls on the half with
  8038. * "large" nodes, it also may not fit.
  8039. *
  8040. * As a final tweak, if the new item goes on the last
  8041. * spot on the page (and thus, onto the new page), bias
  8042. * the split so the new page is emptier than the old page.
  8043. * This yields better packing during sequential inserts.
  8044. */
  8045. if (nkeys < keythresh || nsize > pmax/16 || newindx >= nkeys) {
  8046. /* Find split point */
  8047. psize = 0;
  8048. if (newindx <= split_indx || newindx >= nkeys) {
  8049. i = 0; j = 1;
  8050. k = newindx >= nkeys ? nkeys : split_indx+1+IS_LEAF(mp);
  8051. } else {
  8052. i = nkeys; j = -1;
  8053. k = split_indx-1;
  8054. }
  8055. for (; i!=k; i+=j) {
  8056. if (i == newindx) {
  8057. psize += nsize;
  8058. node = NULL;
  8059. } else {
  8060. node = (MDB_node *)((char *)mp + copy->mp_ptrs[i] + PAGEBASE);
  8061. psize += NODESIZE + NODEKSZ(node) + sizeof(indx_t);
  8062. if (IS_LEAF(mp)) {
  8063. if (F_ISSET(node->mn_flags, F_BIGDATA))
  8064. psize += sizeof(pgno_t);
  8065. else
  8066. psize += NODEDSZ(node);
  8067. }
  8068. psize = EVEN(psize);
  8069. }
  8070. if (psize > pmax || i == k-j) {
  8071. split_indx = i + (j<0);
  8072. break;
  8073. }
  8074. }
  8075. }
  8076. if (split_indx == newindx) {
  8077. sepkey.mv_size = newkey->mv_size;
  8078. sepkey.mv_data = newkey->mv_data;
  8079. } else {
  8080. node = (MDB_node *)((char *)mp + copy->mp_ptrs[split_indx] + PAGEBASE);
  8081. sepkey.mv_size = node->mn_ksize;
  8082. sepkey.mv_data = NODEKEY(node);
  8083. }
  8084. }
  8085. }
  8086. DPRINTF(("separator is %d [%s]", split_indx, DKEY(&sepkey)));
  8087. /* Copy separator key to the parent.
  8088. */
  8089. if (SIZELEFT(mn.mc_pg[ptop]) < mdb_branch_size(env, &sepkey)) {
  8090. int snum = mc->mc_snum;
  8091. mn.mc_snum--;
  8092. mn.mc_top--;
  8093. did_split = 1;
  8094. /* We want other splits to find mn when doing fixups */
  8095. WITH_CURSOR_TRACKING(mn,
  8096. rc = mdb_page_split(&mn, &sepkey, NULL, rp->mp_pgno, 0));
  8097. if (rc)
  8098. goto done;
  8099. /* root split? */
  8100. if (mc->mc_snum > snum) {
  8101. ptop++;
  8102. }
  8103. /* Right page might now have changed parent.
  8104. * Check if left page also changed parent.
  8105. */
  8106. if (mn.mc_pg[ptop] != mc->mc_pg[ptop] &&
  8107. mc->mc_ki[ptop] >= NUMKEYS(mc->mc_pg[ptop])) {
  8108. for (i=0; i<ptop; i++) {
  8109. mc->mc_pg[i] = mn.mc_pg[i];
  8110. mc->mc_ki[i] = mn.mc_ki[i];
  8111. }
  8112. mc->mc_pg[ptop] = mn.mc_pg[ptop];
  8113. if (mn.mc_ki[ptop]) {
  8114. mc->mc_ki[ptop] = mn.mc_ki[ptop] - 1;
  8115. } else {
  8116. /* find right page's left sibling */
  8117. mc->mc_ki[ptop] = mn.mc_ki[ptop];
  8118. mdb_cursor_sibling(mc, 0);
  8119. }
  8120. }
  8121. } else {
  8122. mn.mc_top--;
  8123. rc = mdb_node_add(&mn, mn.mc_ki[ptop], &sepkey, NULL, rp->mp_pgno, 0);
  8124. mn.mc_top++;
  8125. }
  8126. if (rc != MDB_SUCCESS) {
  8127. goto done;
  8128. }
  8129. if (nflags & MDB_APPEND) {
  8130. mc->mc_pg[mc->mc_top] = rp;
  8131. mc->mc_ki[mc->mc_top] = 0;
  8132. rc = mdb_node_add(mc, 0, newkey, newdata, newpgno, nflags);
  8133. if (rc)
  8134. goto done;
  8135. for (i=0; i<mc->mc_top; i++)
  8136. mc->mc_ki[i] = mn.mc_ki[i];
  8137. } else if (!IS_LEAF2(mp)) {
  8138. /* Move nodes */
  8139. mc->mc_pg[mc->mc_top] = rp;
  8140. i = split_indx;
  8141. j = 0;
  8142. do {
  8143. if (i == newindx) {
  8144. rkey.mv_data = newkey->mv_data;
  8145. rkey.mv_size = newkey->mv_size;
  8146. if (IS_LEAF(mp)) {
  8147. rdata = newdata;
  8148. } else
  8149. pgno = newpgno;
  8150. flags = nflags;
  8151. /* Update index for the new key. */
  8152. mc->mc_ki[mc->mc_top] = j;
  8153. } else {
  8154. node = (MDB_node *)((char *)mp + copy->mp_ptrs[i] + PAGEBASE);
  8155. rkey.mv_data = NODEKEY(node);
  8156. rkey.mv_size = node->mn_ksize;
  8157. if (IS_LEAF(mp)) {
  8158. xdata.mv_data = NODEDATA(node);
  8159. xdata.mv_size = NODEDSZ(node);
  8160. rdata = &xdata;
  8161. } else
  8162. pgno = NODEPGNO(node);
  8163. flags = node->mn_flags;
  8164. }
  8165. if (!IS_LEAF(mp) && j == 0) {
  8166. /* First branch index doesn't need key data. */
  8167. rkey.mv_size = 0;
  8168. }
  8169. rc = mdb_node_add(mc, j, &rkey, rdata, pgno, flags);
  8170. if (rc)
  8171. goto done;
  8172. if (i == nkeys) {
  8173. i = 0;
  8174. j = 0;
  8175. mc->mc_pg[mc->mc_top] = copy;
  8176. } else {
  8177. i++;
  8178. j++;
  8179. }
  8180. } while (i != split_indx);
  8181. nkeys = NUMKEYS(copy);
  8182. for (i=0; i<nkeys; i++)
  8183. mp->mp_ptrs[i] = copy->mp_ptrs[i];
  8184. mp->mp_lower = copy->mp_lower;
  8185. mp->mp_upper = copy->mp_upper;
  8186. memcpy(NODEPTR(mp, nkeys-1), NODEPTR(copy, nkeys-1),
  8187. env->me_psize - copy->mp_upper - PAGEBASE);
  8188. /* reset back to original page */
  8189. if (newindx < split_indx) {
  8190. mc->mc_pg[mc->mc_top] = mp;
  8191. } else {
  8192. mc->mc_pg[mc->mc_top] = rp;
  8193. mc->mc_ki[ptop]++;
  8194. /* Make sure mc_ki is still valid.
  8195. */
  8196. if (mn.mc_pg[ptop] != mc->mc_pg[ptop] &&
  8197. mc->mc_ki[ptop] >= NUMKEYS(mc->mc_pg[ptop])) {
  8198. for (i=0; i<=ptop; i++) {
  8199. mc->mc_pg[i] = mn.mc_pg[i];
  8200. mc->mc_ki[i] = mn.mc_ki[i];
  8201. }
  8202. }
  8203. }
  8204. if (nflags & MDB_RESERVE) {
  8205. node = NODEPTR(mc->mc_pg[mc->mc_top], mc->mc_ki[mc->mc_top]);
  8206. if (!(node->mn_flags & F_BIGDATA))
  8207. newdata->mv_data = NODEDATA(node);
  8208. }
  8209. } else {
  8210. if (newindx >= split_indx) {
  8211. mc->mc_pg[mc->mc_top] = rp;
  8212. mc->mc_ki[ptop]++;
  8213. /* Make sure mc_ki is still valid.
  8214. */
  8215. if (mn.mc_pg[ptop] != mc->mc_pg[ptop] &&
  8216. mc->mc_ki[ptop] >= NUMKEYS(mc->mc_pg[ptop])) {
  8217. for (i=0; i<=ptop; i++) {
  8218. mc->mc_pg[i] = mn.mc_pg[i];
  8219. mc->mc_ki[i] = mn.mc_ki[i];
  8220. }
  8221. }
  8222. }
  8223. }
  8224. {
  8225. /* Adjust other cursors pointing to mp */
  8226. MDB_cursor *m2, *m3;
  8227. MDB_dbi dbi = mc->mc_dbi;
  8228. nkeys = NUMKEYS(mp);
  8229. for (m2 = mc->mc_txn->mt_cursors[dbi]; m2; m2=m2->mc_next) {
  8230. if (mc->mc_flags & C_SUB)
  8231. m3 = &m2->mc_xcursor->mx_cursor;
  8232. else
  8233. m3 = m2;
  8234. if (m3 == mc)
  8235. continue;
  8236. if (!(m2->mc_flags & m3->mc_flags & C_INITIALIZED))
  8237. continue;
  8238. if (new_root) {
  8239. int k;
  8240. /* sub cursors may be on different DB */
  8241. if (m3->mc_pg[0] != mp)
  8242. continue;
  8243. /* root split */
  8244. for (k=new_root; k>=0; k--) {
  8245. m3->mc_ki[k+1] = m3->mc_ki[k];
  8246. m3->mc_pg[k+1] = m3->mc_pg[k];
  8247. }
  8248. if (m3->mc_ki[0] >= nkeys) {
  8249. m3->mc_ki[0] = 1;
  8250. } else {
  8251. m3->mc_ki[0] = 0;
  8252. }
  8253. m3->mc_pg[0] = mc->mc_pg[0];
  8254. m3->mc_snum++;
  8255. m3->mc_top++;
  8256. }
  8257. if (m3->mc_top >= mc->mc_top && m3->mc_pg[mc->mc_top] == mp) {
  8258. if (m3->mc_ki[mc->mc_top] >= newindx && !(nflags & MDB_SPLIT_REPLACE))
  8259. m3->mc_ki[mc->mc_top]++;
  8260. if (m3->mc_ki[mc->mc_top] >= nkeys) {
  8261. m3->mc_pg[mc->mc_top] = rp;
  8262. m3->mc_ki[mc->mc_top] -= nkeys;
  8263. for (i=0; i<mc->mc_top; i++) {
  8264. m3->mc_ki[i] = mn.mc_ki[i];
  8265. m3->mc_pg[i] = mn.mc_pg[i];
  8266. }
  8267. }
  8268. } else if (!did_split && m3->mc_top >= ptop && m3->mc_pg[ptop] == mc->mc_pg[ptop] &&
  8269. m3->mc_ki[ptop] >= mc->mc_ki[ptop]) {
  8270. m3->mc_ki[ptop]++;
  8271. }
  8272. if (IS_LEAF(mp))
  8273. XCURSOR_REFRESH(m3, mc->mc_top, m3->mc_pg[mc->mc_top]);
  8274. }
  8275. }
  8276. DPRINTF(("mp left: %d, rp left: %d", SIZELEFT(mp), SIZELEFT(rp)));
  8277. done:
  8278. if (copy) /* tmp page */
  8279. mdb_page_free(env, copy);
  8280. if (rc)
  8281. mc->mc_txn->mt_flags |= MDB_TXN_ERROR;
  8282. return rc;
  8283. }
  8284. int
  8285. mdb_put(MDB_txn *txn, MDB_dbi dbi,
  8286. MDB_val *key, MDB_val *data, unsigned int flags)
  8287. {
  8288. MDB_cursor mc;
  8289. MDB_xcursor mx;
  8290. int rc;
  8291. if (!key || !data || !TXN_DBI_EXIST(txn, dbi, DB_USRVALID))
  8292. return EINVAL;
  8293. if (flags & ~(MDB_NOOVERWRITE|MDB_NODUPDATA|MDB_RESERVE|MDB_APPEND|MDB_APPENDDUP))
  8294. return EINVAL;
  8295. if (txn->mt_flags & (MDB_TXN_RDONLY|MDB_TXN_BLOCKED))
  8296. return (txn->mt_flags & MDB_TXN_RDONLY) ? EACCES : MDB_BAD_TXN;
  8297. mdb_cursor_init(&mc, txn, dbi, &mx);
  8298. mc.mc_next = txn->mt_cursors[dbi];
  8299. txn->mt_cursors[dbi] = &mc;
  8300. rc = mdb_cursor_put(&mc, key, data, flags);
  8301. txn->mt_cursors[dbi] = mc.mc_next;
  8302. return rc;
  8303. }
  8304. #ifndef MDB_WBUF
  8305. #define MDB_WBUF (1024*1024)
  8306. #endif
  8307. #define MDB_EOF 0x10 /**< #mdb_env_copyfd1() is done reading */
  8308. /** State needed for a double-buffering compacting copy. */
  8309. typedef struct mdb_copy {
  8310. MDB_env *mc_env;
  8311. MDB_txn *mc_txn;
  8312. pthread_mutex_t mc_mutex;
  8313. pthread_cond_t mc_cond; /**< Condition variable for #mc_new */
  8314. char *mc_wbuf[2];
  8315. char *mc_over[2];
  8316. int mc_wlen[2];
  8317. int mc_olen[2];
  8318. pgno_t mc_next_pgno;
  8319. HANDLE mc_fd;
  8320. int mc_toggle; /**< Buffer number in provider */
  8321. int mc_new; /**< (0-2 buffers to write) | (#MDB_EOF at end) */
  8322. /** Error code. Never cleared if set. Both threads can set nonzero
  8323. * to fail the copy. Not mutex-protected, LMDB expects atomic int.
  8324. */
  8325. volatile int mc_error;
  8326. } mdb_copy;
  8327. /** Dedicated writer thread for compacting copy. */
  8328. static THREAD_RET ESECT CALL_CONV
  8329. mdb_env_copythr(void *arg)
  8330. {
  8331. mdb_copy *my = arg;
  8332. char *ptr;
  8333. int toggle = 0, wsize, rc;
  8334. #ifdef _WIN32
  8335. DWORD len;
  8336. #define DO_WRITE(rc, fd, ptr, w2, len) rc = WriteFile(fd, ptr, w2, &len, NULL)
  8337. #else
  8338. int len;
  8339. #define DO_WRITE(rc, fd, ptr, w2, len) len = write(fd, ptr, w2); rc = (len >= 0)
  8340. #ifdef SIGPIPE
  8341. sigset_t set;
  8342. sigemptyset(&set);
  8343. sigaddset(&set, SIGPIPE);
  8344. if ((rc = pthread_sigmask(SIG_BLOCK, &set, NULL)) != 0)
  8345. my->mc_error = rc;
  8346. #endif
  8347. #endif
  8348. pthread_mutex_lock(&my->mc_mutex);
  8349. for(;;) {
  8350. while (!my->mc_new)
  8351. pthread_cond_wait(&my->mc_cond, &my->mc_mutex);
  8352. if (my->mc_new == 0 + MDB_EOF) /* 0 buffers, just EOF */
  8353. break;
  8354. wsize = my->mc_wlen[toggle];
  8355. ptr = my->mc_wbuf[toggle];
  8356. again:
  8357. rc = MDB_SUCCESS;
  8358. while (wsize > 0 && !my->mc_error) {
  8359. DO_WRITE(rc, my->mc_fd, ptr, wsize, len);
  8360. if (!rc) {
  8361. rc = ErrCode();
  8362. #if defined(SIGPIPE) && !defined(_WIN32)
  8363. if (rc == EPIPE) {
  8364. /* Collect the pending SIGPIPE, otherwise at least OS X
  8365. * gives it to the process on thread-exit (ITS#8504).
  8366. */
  8367. int tmp;
  8368. sigwait(&set, &tmp);
  8369. }
  8370. #endif
  8371. break;
  8372. } else if (len > 0) {
  8373. rc = MDB_SUCCESS;
  8374. ptr += len;
  8375. wsize -= len;
  8376. continue;
  8377. } else {
  8378. rc = EIO;
  8379. break;
  8380. }
  8381. }
  8382. if (rc) {
  8383. my->mc_error = rc;
  8384. }
  8385. /* If there's an overflow page tail, write it too */
  8386. if (my->mc_olen[toggle]) {
  8387. wsize = my->mc_olen[toggle];
  8388. ptr = my->mc_over[toggle];
  8389. my->mc_olen[toggle] = 0;
  8390. goto again;
  8391. }
  8392. my->mc_wlen[toggle] = 0;
  8393. toggle ^= 1;
  8394. /* Return the empty buffer to provider */
  8395. my->mc_new--;
  8396. pthread_cond_signal(&my->mc_cond);
  8397. }
  8398. pthread_mutex_unlock(&my->mc_mutex);
  8399. return (THREAD_RET)0;
  8400. #undef DO_WRITE
  8401. }
  8402. /** Give buffer and/or #MDB_EOF to writer thread, await unused buffer.
  8403. *
  8404. * @param[in] my control structure.
  8405. * @param[in] adjust (1 to hand off 1 buffer) | (MDB_EOF when ending).
  8406. */
  8407. static int ESECT
  8408. mdb_env_cthr_toggle(mdb_copy *my, int adjust)
  8409. {
  8410. pthread_mutex_lock(&my->mc_mutex);
  8411. my->mc_new += adjust;
  8412. pthread_cond_signal(&my->mc_cond);
  8413. while (my->mc_new & 2) /* both buffers in use */
  8414. pthread_cond_wait(&my->mc_cond, &my->mc_mutex);
  8415. pthread_mutex_unlock(&my->mc_mutex);
  8416. my->mc_toggle ^= (adjust & 1);
  8417. /* Both threads reset mc_wlen, to be safe from threading errors */
  8418. my->mc_wlen[my->mc_toggle] = 0;
  8419. return my->mc_error;
  8420. }
  8421. /** Depth-first tree traversal for compacting copy.
  8422. * @param[in] my control structure.
  8423. * @param[in,out] pg database root.
  8424. * @param[in] flags includes #F_DUPDATA if it is a sorted-duplicate sub-DB.
  8425. */
  8426. static int ESECT
  8427. mdb_env_cwalk(mdb_copy *my, pgno_t *pg, int flags)
  8428. {
  8429. MDB_cursor mc = {0};
  8430. MDB_node *ni;
  8431. MDB_page *mo, *mp, *leaf;
  8432. char *buf, *ptr;
  8433. int rc, toggle;
  8434. unsigned int i;
  8435. /* Empty DB, nothing to do */
  8436. if (*pg == P_INVALID)
  8437. return MDB_SUCCESS;
  8438. mc.mc_snum = 1;
  8439. mc.mc_txn = my->mc_txn;
  8440. rc = mdb_page_get(&mc, *pg, &mc.mc_pg[0], NULL);
  8441. if (rc)
  8442. return rc;
  8443. rc = mdb_page_search_root(&mc, NULL, MDB_PS_FIRST);
  8444. if (rc)
  8445. return rc;
  8446. /* Make cursor pages writable */
  8447. buf = ptr = malloc(my->mc_env->me_psize * mc.mc_snum);
  8448. if (buf == NULL)
  8449. return ENOMEM;
  8450. for (i=0; i<mc.mc_top; i++) {
  8451. mdb_page_copy((MDB_page *)ptr, mc.mc_pg[i], my->mc_env->me_psize);
  8452. mc.mc_pg[i] = (MDB_page *)ptr;
  8453. ptr += my->mc_env->me_psize;
  8454. }
  8455. /* This is writable space for a leaf page. Usually not needed. */
  8456. leaf = (MDB_page *)ptr;
  8457. toggle = my->mc_toggle;
  8458. while (mc.mc_snum > 0) {
  8459. unsigned n;
  8460. mp = mc.mc_pg[mc.mc_top];
  8461. n = NUMKEYS(mp);
  8462. if (IS_LEAF(mp)) {
  8463. if (!IS_LEAF2(mp) && !(flags & F_DUPDATA)) {
  8464. for (i=0; i<n; i++) {
  8465. ni = NODEPTR(mp, i);
  8466. if (ni->mn_flags & F_BIGDATA) {
  8467. MDB_page *omp;
  8468. pgno_t pg;
  8469. /* Need writable leaf */
  8470. if (mp != leaf) {
  8471. mc.mc_pg[mc.mc_top] = leaf;
  8472. mdb_page_copy(leaf, mp, my->mc_env->me_psize);
  8473. mp = leaf;
  8474. ni = NODEPTR(mp, i);
  8475. }
  8476. memcpy(&pg, NODEDATA(ni), sizeof(pg));
  8477. memcpy(NODEDATA(ni), &my->mc_next_pgno, sizeof(pgno_t));
  8478. rc = mdb_page_get(&mc, pg, &omp, NULL);
  8479. if (rc)
  8480. goto done;
  8481. if (my->mc_wlen[toggle] >= MDB_WBUF) {
  8482. rc = mdb_env_cthr_toggle(my, 1);
  8483. if (rc)
  8484. goto done;
  8485. toggle = my->mc_toggle;
  8486. }
  8487. mo = (MDB_page *)(my->mc_wbuf[toggle] + my->mc_wlen[toggle]);
  8488. memcpy(mo, omp, my->mc_env->me_psize);
  8489. mo->mp_pgno = my->mc_next_pgno;
  8490. my->mc_next_pgno += omp->mp_pages;
  8491. my->mc_wlen[toggle] += my->mc_env->me_psize;
  8492. if (omp->mp_pages > 1) {
  8493. my->mc_olen[toggle] = my->mc_env->me_psize * (omp->mp_pages - 1);
  8494. my->mc_over[toggle] = (char *)omp + my->mc_env->me_psize;
  8495. rc = mdb_env_cthr_toggle(my, 1);
  8496. if (rc)
  8497. goto done;
  8498. toggle = my->mc_toggle;
  8499. }
  8500. } else if (ni->mn_flags & F_SUBDATA) {
  8501. MDB_db db;
  8502. /* Need writable leaf */
  8503. if (mp != leaf) {
  8504. mc.mc_pg[mc.mc_top] = leaf;
  8505. mdb_page_copy(leaf, mp, my->mc_env->me_psize);
  8506. mp = leaf;
  8507. ni = NODEPTR(mp, i);
  8508. }
  8509. memcpy(&db, NODEDATA(ni), sizeof(db));
  8510. my->mc_toggle = toggle;
  8511. rc = mdb_env_cwalk(my, &db.md_root, ni->mn_flags & F_DUPDATA);
  8512. if (rc)
  8513. goto done;
  8514. toggle = my->mc_toggle;
  8515. memcpy(NODEDATA(ni), &db, sizeof(db));
  8516. }
  8517. }
  8518. }
  8519. } else {
  8520. mc.mc_ki[mc.mc_top]++;
  8521. if (mc.mc_ki[mc.mc_top] < n) {
  8522. pgno_t pg;
  8523. again:
  8524. ni = NODEPTR(mp, mc.mc_ki[mc.mc_top]);
  8525. pg = NODEPGNO(ni);
  8526. rc = mdb_page_get(&mc, pg, &mp, NULL);
  8527. if (rc)
  8528. goto done;
  8529. mc.mc_top++;
  8530. mc.mc_snum++;
  8531. mc.mc_ki[mc.mc_top] = 0;
  8532. if (IS_BRANCH(mp)) {
  8533. /* Whenever we advance to a sibling branch page,
  8534. * we must proceed all the way down to its first leaf.
  8535. */
  8536. mdb_page_copy(mc.mc_pg[mc.mc_top], mp, my->mc_env->me_psize);
  8537. goto again;
  8538. } else
  8539. mc.mc_pg[mc.mc_top] = mp;
  8540. continue;
  8541. }
  8542. }
  8543. if (my->mc_wlen[toggle] >= MDB_WBUF) {
  8544. rc = mdb_env_cthr_toggle(my, 1);
  8545. if (rc)
  8546. goto done;
  8547. toggle = my->mc_toggle;
  8548. }
  8549. mo = (MDB_page *)(my->mc_wbuf[toggle] + my->mc_wlen[toggle]);
  8550. mdb_page_copy(mo, mp, my->mc_env->me_psize);
  8551. mo->mp_pgno = my->mc_next_pgno++;
  8552. my->mc_wlen[toggle] += my->mc_env->me_psize;
  8553. if (mc.mc_top) {
  8554. /* Update parent if there is one */
  8555. ni = NODEPTR(mc.mc_pg[mc.mc_top-1], mc.mc_ki[mc.mc_top-1]);
  8556. SETPGNO(ni, mo->mp_pgno);
  8557. mdb_cursor_pop(&mc);
  8558. } else {
  8559. /* Otherwise we're done */
  8560. *pg = mo->mp_pgno;
  8561. break;
  8562. }
  8563. }
  8564. done:
  8565. free(buf);
  8566. return rc;
  8567. }
  8568. /** Copy environment with compaction. */
  8569. static int ESECT
  8570. mdb_env_copyfd1(MDB_env *env, HANDLE fd)
  8571. {
  8572. MDB_meta *mm;
  8573. MDB_page *mp;
  8574. mdb_copy my = {0};
  8575. MDB_txn *txn = NULL;
  8576. pthread_t thr;
  8577. pgno_t root, new_root;
  8578. int rc = MDB_SUCCESS;
  8579. #ifdef _WIN32
  8580. if (!(my.mc_mutex = CreateMutex(NULL, FALSE, NULL)) ||
  8581. !(my.mc_cond = CreateEvent(NULL, FALSE, FALSE, NULL))) {
  8582. rc = ErrCode();
  8583. goto done;
  8584. }
  8585. my.mc_wbuf[0] = _aligned_malloc(MDB_WBUF*2, env->me_os_psize);
  8586. if (my.mc_wbuf[0] == NULL) {
  8587. /* _aligned_malloc() sets errno, but we use Windows error codes */
  8588. rc = ERROR_NOT_ENOUGH_MEMORY;
  8589. goto done;
  8590. }
  8591. #else
  8592. if ((rc = pthread_mutex_init(&my.mc_mutex, NULL)) != 0)
  8593. return rc;
  8594. if ((rc = pthread_cond_init(&my.mc_cond, NULL)) != 0)
  8595. goto done2;
  8596. #ifdef HAVE_MEMALIGN
  8597. my.mc_wbuf[0] = memalign(env->me_os_psize, MDB_WBUF*2);
  8598. if (my.mc_wbuf[0] == NULL) {
  8599. rc = errno;
  8600. goto done;
  8601. }
  8602. #else
  8603. {
  8604. void *p;
  8605. if ((rc = posix_memalign(&p, env->me_os_psize, MDB_WBUF*2)) != 0)
  8606. goto done;
  8607. my.mc_wbuf[0] = p;
  8608. }
  8609. #endif
  8610. #endif
  8611. memset(my.mc_wbuf[0], 0, MDB_WBUF*2);
  8612. my.mc_wbuf[1] = my.mc_wbuf[0] + MDB_WBUF;
  8613. my.mc_next_pgno = NUM_METAS;
  8614. my.mc_env = env;
  8615. my.mc_fd = fd;
  8616. rc = THREAD_CREATE(thr, mdb_env_copythr, &my);
  8617. if (rc)
  8618. goto done;
  8619. rc = mdb_txn_begin(env, NULL, MDB_RDONLY, &txn);
  8620. if (rc)
  8621. goto finish;
  8622. mp = (MDB_page *)my.mc_wbuf[0];
  8623. memset(mp, 0, NUM_METAS * env->me_psize);
  8624. mp->mp_pgno = 0;
  8625. mp->mp_flags = P_META;
  8626. mm = (MDB_meta *)METADATA(mp);
  8627. mdb_env_init_meta0(env, mm);
  8628. mm->mm_address = env->me_metas[0]->mm_address;
  8629. mp = (MDB_page *)(my.mc_wbuf[0] + env->me_psize);
  8630. mp->mp_pgno = 1;
  8631. mp->mp_flags = P_META;
  8632. *(MDB_meta *)METADATA(mp) = *mm;
  8633. mm = (MDB_meta *)METADATA(mp);
  8634. /* Set metapage 1 with current main DB */
  8635. root = new_root = txn->mt_dbs[MAIN_DBI].md_root;
  8636. if (root != P_INVALID) {
  8637. /* Count free pages + freeDB pages. Subtract from last_pg
  8638. * to find the new last_pg, which also becomes the new root.
  8639. */
  8640. MDB_ID freecount = 0;
  8641. MDB_cursor mc;
  8642. MDB_val key, data;
  8643. mdb_cursor_init(&mc, txn, FREE_DBI, NULL);
  8644. while ((rc = mdb_cursor_get(&mc, &key, &data, MDB_NEXT)) == 0)
  8645. freecount += *(MDB_ID *)data.mv_data;
  8646. if (rc != MDB_NOTFOUND)
  8647. goto finish;
  8648. freecount += txn->mt_dbs[FREE_DBI].md_branch_pages +
  8649. txn->mt_dbs[FREE_DBI].md_leaf_pages +
  8650. txn->mt_dbs[FREE_DBI].md_overflow_pages;
  8651. new_root = txn->mt_next_pgno - 1 - freecount;
  8652. mm->mm_last_pg = new_root;
  8653. mm->mm_dbs[MAIN_DBI] = txn->mt_dbs[MAIN_DBI];
  8654. mm->mm_dbs[MAIN_DBI].md_root = new_root;
  8655. } else {
  8656. /* When the DB is empty, handle it specially to
  8657. * fix any breakage like page leaks from ITS#8174.
  8658. */
  8659. mm->mm_dbs[MAIN_DBI].md_flags = txn->mt_dbs[MAIN_DBI].md_flags;
  8660. }
  8661. if (root != P_INVALID || mm->mm_dbs[MAIN_DBI].md_flags) {
  8662. mm->mm_txnid = 1; /* use metapage 1 */
  8663. }
  8664. my.mc_wlen[0] = env->me_psize * NUM_METAS;
  8665. my.mc_txn = txn;
  8666. rc = mdb_env_cwalk(&my, &root, 0);
  8667. if (rc == MDB_SUCCESS && root != new_root) {
  8668. rc = MDB_INCOMPATIBLE; /* page leak or corrupt DB */
  8669. }
  8670. finish:
  8671. if (rc)
  8672. my.mc_error = rc;
  8673. mdb_env_cthr_toggle(&my, 1 | MDB_EOF);
  8674. rc = THREAD_FINISH(thr);
  8675. mdb_txn_abort(txn);
  8676. done:
  8677. #ifdef _WIN32
  8678. if (my.mc_wbuf[0]) _aligned_free(my.mc_wbuf[0]);
  8679. if (my.mc_cond) CloseHandle(my.mc_cond);
  8680. if (my.mc_mutex) CloseHandle(my.mc_mutex);
  8681. #else
  8682. free(my.mc_wbuf[0]);
  8683. pthread_cond_destroy(&my.mc_cond);
  8684. done2:
  8685. pthread_mutex_destroy(&my.mc_mutex);
  8686. #endif
  8687. return rc ? rc : my.mc_error;
  8688. }
  8689. /** Copy environment as-is. */
  8690. static int ESECT
  8691. mdb_env_copyfd0(MDB_env *env, HANDLE fd)
  8692. {
  8693. MDB_txn *txn = NULL;
  8694. mdb_mutexref_t wmutex = NULL;
  8695. int rc;
  8696. size_t wsize, w3;
  8697. char *ptr;
  8698. #ifdef _WIN32
  8699. DWORD len, w2;
  8700. #define DO_WRITE(rc, fd, ptr, w2, len) rc = WriteFile(fd, ptr, w2, &len, NULL)
  8701. #else
  8702. ssize_t len;
  8703. size_t w2;
  8704. #define DO_WRITE(rc, fd, ptr, w2, len) len = write(fd, ptr, w2); rc = (len >= 0)
  8705. #endif
  8706. /* Do the lock/unlock of the reader mutex before starting the
  8707. * write txn. Otherwise other read txns could block writers.
  8708. */
  8709. rc = mdb_txn_begin(env, NULL, MDB_RDONLY, &txn);
  8710. if (rc)
  8711. return rc;
  8712. if (env->me_txns) {
  8713. /* We must start the actual read txn after blocking writers */
  8714. mdb_txn_end(txn, MDB_END_RESET_TMP);
  8715. /* Temporarily block writers until we snapshot the meta pages */
  8716. wmutex = env->me_wmutex;
  8717. if (LOCK_MUTEX(rc, env, wmutex))
  8718. goto leave;
  8719. rc = mdb_txn_renew0(txn);
  8720. if (rc) {
  8721. UNLOCK_MUTEX(wmutex);
  8722. goto leave;
  8723. }
  8724. }
  8725. wsize = env->me_psize * NUM_METAS;
  8726. ptr = env->me_map;
  8727. w2 = wsize;
  8728. while (w2 > 0) {
  8729. DO_WRITE(rc, fd, ptr, w2, len);
  8730. if (!rc) {
  8731. rc = ErrCode();
  8732. break;
  8733. } else if (len > 0) {
  8734. rc = MDB_SUCCESS;
  8735. ptr += len;
  8736. w2 -= len;
  8737. continue;
  8738. } else {
  8739. /* Non-blocking or async handles are not supported */
  8740. rc = EIO;
  8741. break;
  8742. }
  8743. }
  8744. if (wmutex)
  8745. UNLOCK_MUTEX(wmutex);
  8746. if (rc)
  8747. goto leave;
  8748. w3 = txn->mt_next_pgno * env->me_psize;
  8749. {
  8750. size_t fsize = 0;
  8751. if ((rc = mdb_fsize(env->me_fd, &fsize)))
  8752. goto leave;
  8753. if (w3 > fsize)
  8754. w3 = fsize;
  8755. }
  8756. wsize = w3 - wsize;
  8757. while (wsize > 0) {
  8758. if (wsize > MAX_WRITE)
  8759. w2 = MAX_WRITE;
  8760. else
  8761. w2 = wsize;
  8762. DO_WRITE(rc, fd, ptr, w2, len);
  8763. if (!rc) {
  8764. rc = ErrCode();
  8765. break;
  8766. } else if (len > 0) {
  8767. rc = MDB_SUCCESS;
  8768. ptr += len;
  8769. wsize -= len;
  8770. continue;
  8771. } else {
  8772. rc = EIO;
  8773. break;
  8774. }
  8775. }
  8776. leave:
  8777. mdb_txn_abort(txn);
  8778. return rc;
  8779. }
  8780. int ESECT
  8781. mdb_env_copyfd2(MDB_env *env, HANDLE fd, unsigned int flags)
  8782. {
  8783. if (flags & MDB_CP_COMPACT)
  8784. return mdb_env_copyfd1(env, fd);
  8785. else
  8786. return mdb_env_copyfd0(env, fd);
  8787. }
  8788. int ESECT
  8789. mdb_env_copyfd(MDB_env *env, HANDLE fd)
  8790. {
  8791. return mdb_env_copyfd2(env, fd, 0);
  8792. }
  8793. int ESECT
  8794. mdb_env_copy2(MDB_env *env, const char *path, unsigned int flags)
  8795. {
  8796. int rc;
  8797. MDB_name fname;
  8798. HANDLE newfd = INVALID_HANDLE_VALUE;
  8799. rc = mdb_fname_init(path, env->me_flags | MDB_NOLOCK, &fname);
  8800. if (rc == MDB_SUCCESS) {
  8801. rc = mdb_fopen(env, &fname, MDB_O_COPY, 0666, &newfd);
  8802. mdb_fname_destroy(fname);
  8803. }
  8804. if (rc == MDB_SUCCESS) {
  8805. rc = mdb_env_copyfd2(env, newfd, flags);
  8806. if (close(newfd) < 0 && rc == MDB_SUCCESS)
  8807. rc = ErrCode();
  8808. }
  8809. return rc;
  8810. }
  8811. int ESECT
  8812. mdb_env_copy(MDB_env *env, const char *path)
  8813. {
  8814. return mdb_env_copy2(env, path, 0);
  8815. }
  8816. int ESECT
  8817. mdb_env_set_flags(MDB_env *env, unsigned int flag, int onoff)
  8818. {
  8819. if (flag & ~CHANGEABLE)
  8820. return EINVAL;
  8821. if (onoff)
  8822. env->me_flags |= flag;
  8823. else
  8824. env->me_flags &= ~flag;
  8825. return MDB_SUCCESS;
  8826. }
  8827. int ESECT
  8828. mdb_env_get_flags(MDB_env *env, unsigned int *arg)
  8829. {
  8830. if (!env || !arg)
  8831. return EINVAL;
  8832. *arg = env->me_flags & (CHANGEABLE|CHANGELESS);
  8833. return MDB_SUCCESS;
  8834. }
  8835. int ESECT
  8836. mdb_env_set_userctx(MDB_env *env, void *ctx)
  8837. {
  8838. if (!env)
  8839. return EINVAL;
  8840. env->me_userctx = ctx;
  8841. return MDB_SUCCESS;
  8842. }
  8843. void * ESECT
  8844. mdb_env_get_userctx(MDB_env *env)
  8845. {
  8846. return env ? env->me_userctx : NULL;
  8847. }
  8848. int ESECT
  8849. mdb_env_set_assert(MDB_env *env, MDB_assert_func *func)
  8850. {
  8851. if (!env)
  8852. return EINVAL;
  8853. #ifndef NDEBUG
  8854. env->me_assert_func = func;
  8855. #endif
  8856. return MDB_SUCCESS;
  8857. }
  8858. int ESECT
  8859. mdb_env_get_path(MDB_env *env, const char **arg)
  8860. {
  8861. if (!env || !arg)
  8862. return EINVAL;
  8863. *arg = env->me_path;
  8864. return MDB_SUCCESS;
  8865. }
  8866. int ESECT
  8867. mdb_env_get_fd(MDB_env *env, mdb_filehandle_t *arg)
  8868. {
  8869. if (!env || !arg)
  8870. return EINVAL;
  8871. *arg = env->me_fd;
  8872. return MDB_SUCCESS;
  8873. }
  8874. /** Common code for #mdb_stat() and #mdb_env_stat().
  8875. * @param[in] env the environment to operate in.
  8876. * @param[in] db the #MDB_db record containing the stats to return.
  8877. * @param[out] arg the address of an #MDB_stat structure to receive the stats.
  8878. * @return 0, this function always succeeds.
  8879. */
  8880. static int ESECT
  8881. mdb_stat0(MDB_env *env, MDB_db *db, MDB_stat *arg)
  8882. {
  8883. arg->ms_psize = env->me_psize;
  8884. arg->ms_depth = db->md_depth;
  8885. arg->ms_branch_pages = db->md_branch_pages;
  8886. arg->ms_leaf_pages = db->md_leaf_pages;
  8887. arg->ms_overflow_pages = db->md_overflow_pages;
  8888. arg->ms_entries = db->md_entries;
  8889. return MDB_SUCCESS;
  8890. }
  8891. int ESECT
  8892. mdb_env_stat(MDB_env *env, MDB_stat *arg)
  8893. {
  8894. MDB_meta *meta;
  8895. if (env == NULL || arg == NULL)
  8896. return EINVAL;
  8897. meta = mdb_env_pick_meta(env);
  8898. return mdb_stat0(env, &meta->mm_dbs[MAIN_DBI], arg);
  8899. }
  8900. int ESECT
  8901. mdb_env_info(MDB_env *env, MDB_envinfo *arg)
  8902. {
  8903. MDB_meta *meta;
  8904. if (env == NULL || arg == NULL)
  8905. return EINVAL;
  8906. meta = mdb_env_pick_meta(env);
  8907. arg->me_mapaddr = meta->mm_address;
  8908. arg->me_last_pgno = meta->mm_last_pg;
  8909. arg->me_last_txnid = meta->mm_txnid;
  8910. arg->me_mapsize = env->me_mapsize;
  8911. arg->me_maxreaders = env->me_maxreaders;
  8912. arg->me_numreaders = env->me_txns ? env->me_txns->mti_numreaders : 0;
  8913. return MDB_SUCCESS;
  8914. }
  8915. /** Set the default comparison functions for a database.
  8916. * Called immediately after a database is opened to set the defaults.
  8917. * The user can then override them with #mdb_set_compare() or
  8918. * #mdb_set_dupsort().
  8919. * @param[in] txn A transaction handle returned by #mdb_txn_begin()
  8920. * @param[in] dbi A database handle returned by #mdb_dbi_open()
  8921. */
  8922. static void
  8923. mdb_default_cmp(MDB_txn *txn, MDB_dbi dbi)
  8924. {
  8925. uint16_t f = txn->mt_dbs[dbi].md_flags;
  8926. txn->mt_dbxs[dbi].md_cmp =
  8927. (f & MDB_REVERSEKEY) ? mdb_cmp_memnr :
  8928. (f & MDB_INTEGERKEY) ? mdb_cmp_cint : mdb_cmp_memn;
  8929. txn->mt_dbxs[dbi].md_dcmp =
  8930. !(f & MDB_DUPSORT) ? 0 :
  8931. ((f & MDB_INTEGERDUP)
  8932. ? ((f & MDB_DUPFIXED) ? mdb_cmp_int : mdb_cmp_cint)
  8933. : ((f & MDB_REVERSEDUP) ? mdb_cmp_memnr : mdb_cmp_memn));
  8934. }
  8935. int mdb_dbi_open(MDB_txn *txn, const char *name, unsigned int flags, MDB_dbi *dbi)
  8936. {
  8937. MDB_val key, data;
  8938. MDB_dbi i;
  8939. MDB_cursor mc;
  8940. MDB_db dummy;
  8941. int rc, dbflag, exact;
  8942. unsigned int unused = 0, seq;
  8943. char *namedup;
  8944. size_t len;
  8945. if (flags & ~VALID_FLAGS)
  8946. return EINVAL;
  8947. if (txn->mt_flags & MDB_TXN_BLOCKED)
  8948. return MDB_BAD_TXN;
  8949. /* main DB? */
  8950. if (!name) {
  8951. *dbi = MAIN_DBI;
  8952. if (flags & PERSISTENT_FLAGS) {
  8953. uint16_t f2 = flags & PERSISTENT_FLAGS;
  8954. /* make sure flag changes get committed */
  8955. if ((txn->mt_dbs[MAIN_DBI].md_flags | f2) != txn->mt_dbs[MAIN_DBI].md_flags) {
  8956. txn->mt_dbs[MAIN_DBI].md_flags |= f2;
  8957. txn->mt_flags |= MDB_TXN_DIRTY;
  8958. }
  8959. }
  8960. mdb_default_cmp(txn, MAIN_DBI);
  8961. return MDB_SUCCESS;
  8962. }
  8963. if (txn->mt_dbxs[MAIN_DBI].md_cmp == NULL) {
  8964. mdb_default_cmp(txn, MAIN_DBI);
  8965. }
  8966. /* Is the DB already open? */
  8967. len = strlen(name);
  8968. for (i=CORE_DBS; i<txn->mt_numdbs; i++) {
  8969. if (!txn->mt_dbxs[i].md_name.mv_size) {
  8970. /* Remember this free slot */
  8971. if (!unused) unused = i;
  8972. continue;
  8973. }
  8974. if (len == txn->mt_dbxs[i].md_name.mv_size &&
  8975. !strncmp(name, txn->mt_dbxs[i].md_name.mv_data, len)) {
  8976. *dbi = i;
  8977. return MDB_SUCCESS;
  8978. }
  8979. }
  8980. /* If no free slot and max hit, fail */
  8981. if (!unused && txn->mt_numdbs >= txn->mt_env->me_maxdbs)
  8982. return MDB_DBS_FULL;
  8983. /* Cannot mix named databases with some mainDB flags */
  8984. if (txn->mt_dbs[MAIN_DBI].md_flags & (MDB_DUPSORT|MDB_INTEGERKEY))
  8985. return (flags & MDB_CREATE) ? MDB_INCOMPATIBLE : MDB_NOTFOUND;
  8986. /* Find the DB info */
  8987. dbflag = DB_NEW|DB_VALID|DB_USRVALID;
  8988. exact = 0;
  8989. key.mv_size = len;
  8990. key.mv_data = (void *)name;
  8991. mdb_cursor_init(&mc, txn, MAIN_DBI, NULL);
  8992. rc = mdb_cursor_set(&mc, &key, &data, MDB_SET, &exact);
  8993. if (rc == MDB_SUCCESS) {
  8994. /* make sure this is actually a DB */
  8995. MDB_node *node = NODEPTR(mc.mc_pg[mc.mc_top], mc.mc_ki[mc.mc_top]);
  8996. if ((node->mn_flags & (F_DUPDATA|F_SUBDATA)) != F_SUBDATA)
  8997. return MDB_INCOMPATIBLE;
  8998. } else {
  8999. if (rc != MDB_NOTFOUND || !(flags & MDB_CREATE))
  9000. return rc;
  9001. if (F_ISSET(txn->mt_flags, MDB_TXN_RDONLY))
  9002. return EACCES;
  9003. }
  9004. /* Done here so we cannot fail after creating a new DB */
  9005. if ((namedup = strdup(name)) == NULL)
  9006. return ENOMEM;
  9007. if (rc) {
  9008. /* MDB_NOTFOUND and MDB_CREATE: Create new DB */
  9009. data.mv_size = sizeof(MDB_db);
  9010. data.mv_data = &dummy;
  9011. memset(&dummy, 0, sizeof(dummy));
  9012. dummy.md_root = P_INVALID;
  9013. dummy.md_flags = flags & PERSISTENT_FLAGS;
  9014. WITH_CURSOR_TRACKING(mc,
  9015. rc = mdb_cursor_put(&mc, &key, &data, F_SUBDATA));
  9016. dbflag |= DB_DIRTY;
  9017. }
  9018. if (rc) {
  9019. free(namedup);
  9020. } else {
  9021. /* Got info, register DBI in this txn */
  9022. unsigned int slot = unused ? unused : txn->mt_numdbs;
  9023. txn->mt_dbxs[slot].md_name.mv_data = namedup;
  9024. txn->mt_dbxs[slot].md_name.mv_size = len;
  9025. txn->mt_dbxs[slot].md_rel = NULL;
  9026. txn->mt_dbflags[slot] = dbflag;
  9027. /* txn-> and env-> are the same in read txns, use
  9028. * tmp variable to avoid undefined assignment
  9029. */
  9030. seq = ++txn->mt_env->me_dbiseqs[slot];
  9031. txn->mt_dbiseqs[slot] = seq;
  9032. memcpy(&txn->mt_dbs[slot], data.mv_data, sizeof(MDB_db));
  9033. *dbi = slot;
  9034. mdb_default_cmp(txn, slot);
  9035. if (!unused) {
  9036. txn->mt_numdbs++;
  9037. }
  9038. }
  9039. return rc;
  9040. }
  9041. int ESECT
  9042. mdb_stat(MDB_txn *txn, MDB_dbi dbi, MDB_stat *arg)
  9043. {
  9044. if (!arg || !TXN_DBI_EXIST(txn, dbi, DB_VALID))
  9045. return EINVAL;
  9046. if (txn->mt_flags & MDB_TXN_BLOCKED)
  9047. return MDB_BAD_TXN;
  9048. if (txn->mt_dbflags[dbi] & DB_STALE) {
  9049. MDB_cursor mc;
  9050. MDB_xcursor mx;
  9051. /* Stale, must read the DB's root. cursor_init does it for us. */
  9052. mdb_cursor_init(&mc, txn, dbi, &mx);
  9053. }
  9054. return mdb_stat0(txn->mt_env, &txn->mt_dbs[dbi], arg);
  9055. }
  9056. void mdb_dbi_close(MDB_env *env, MDB_dbi dbi)
  9057. {
  9058. char *ptr;
  9059. if (dbi < CORE_DBS || dbi >= env->me_maxdbs)
  9060. return;
  9061. ptr = env->me_dbxs[dbi].md_name.mv_data;
  9062. /* If there was no name, this was already closed */
  9063. if (ptr) {
  9064. env->me_dbxs[dbi].md_name.mv_data = NULL;
  9065. env->me_dbxs[dbi].md_name.mv_size = 0;
  9066. env->me_dbflags[dbi] = 0;
  9067. env->me_dbiseqs[dbi]++;
  9068. free(ptr);
  9069. }
  9070. }
  9071. int mdb_dbi_flags(MDB_txn *txn, MDB_dbi dbi, unsigned int *flags)
  9072. {
  9073. /* We could return the flags for the FREE_DBI too but what's the point? */
  9074. if (!TXN_DBI_EXIST(txn, dbi, DB_USRVALID))
  9075. return EINVAL;
  9076. *flags = txn->mt_dbs[dbi].md_flags & PERSISTENT_FLAGS;
  9077. return MDB_SUCCESS;
  9078. }
  9079. /** Add all the DB's pages to the free list.
  9080. * @param[in] mc Cursor on the DB to free.
  9081. * @param[in] subs non-Zero to check for sub-DBs in this DB.
  9082. * @return 0 on success, non-zero on failure.
  9083. */
  9084. static int
  9085. mdb_drop0(MDB_cursor *mc, int subs)
  9086. {
  9087. int rc;
  9088. rc = mdb_page_search(mc, NULL, MDB_PS_FIRST);
  9089. if (rc == MDB_SUCCESS) {
  9090. MDB_txn *txn = mc->mc_txn;
  9091. MDB_node *ni;
  9092. MDB_cursor mx;
  9093. unsigned int i;
  9094. /* DUPSORT sub-DBs have no ovpages/DBs. Omit scanning leaves.
  9095. * This also avoids any P_LEAF2 pages, which have no nodes.
  9096. * Also if the DB doesn't have sub-DBs and has no overflow
  9097. * pages, omit scanning leaves.
  9098. */
  9099. if ((mc->mc_flags & C_SUB) ||
  9100. (!subs && !mc->mc_db->md_overflow_pages))
  9101. mdb_cursor_pop(mc);
  9102. mdb_cursor_copy(mc, &mx);
  9103. while (mc->mc_snum > 0) {
  9104. MDB_page *mp = mc->mc_pg[mc->mc_top];
  9105. unsigned n = NUMKEYS(mp);
  9106. if (IS_LEAF(mp)) {
  9107. for (i=0; i<n; i++) {
  9108. ni = NODEPTR(mp, i);
  9109. if (ni->mn_flags & F_BIGDATA) {
  9110. MDB_page *omp;
  9111. pgno_t pg;
  9112. memcpy(&pg, NODEDATA(ni), sizeof(pg));
  9113. rc = mdb_page_get(mc, pg, &omp, NULL);
  9114. if (rc != 0)
  9115. goto done;
  9116. mdb_cassert(mc, IS_OVERFLOW(omp));
  9117. rc = mdb_midl_append_range(&txn->mt_free_pgs,
  9118. pg, omp->mp_pages);
  9119. if (rc)
  9120. goto done;
  9121. mc->mc_db->md_overflow_pages -= omp->mp_pages;
  9122. if (!mc->mc_db->md_overflow_pages && !subs)
  9123. break;
  9124. } else if (subs && (ni->mn_flags & F_SUBDATA)) {
  9125. mdb_xcursor_init1(mc, ni);
  9126. rc = mdb_drop0(&mc->mc_xcursor->mx_cursor, 0);
  9127. if (rc)
  9128. goto done;
  9129. }
  9130. }
  9131. if (!subs && !mc->mc_db->md_overflow_pages)
  9132. goto pop;
  9133. } else {
  9134. if ((rc = mdb_midl_need(&txn->mt_free_pgs, n)) != 0)
  9135. goto done;
  9136. for (i=0; i<n; i++) {
  9137. pgno_t pg;
  9138. ni = NODEPTR(mp, i);
  9139. pg = NODEPGNO(ni);
  9140. /* free it */
  9141. mdb_midl_xappend(txn->mt_free_pgs, pg);
  9142. }
  9143. }
  9144. if (!mc->mc_top)
  9145. break;
  9146. mc->mc_ki[mc->mc_top] = i;
  9147. rc = mdb_cursor_sibling(mc, 1);
  9148. if (rc) {
  9149. if (rc != MDB_NOTFOUND)
  9150. goto done;
  9151. /* no more siblings, go back to beginning
  9152. * of previous level.
  9153. */
  9154. pop:
  9155. mdb_cursor_pop(mc);
  9156. mc->mc_ki[0] = 0;
  9157. for (i=1; i<mc->mc_snum; i++) {
  9158. mc->mc_ki[i] = 0;
  9159. mc->mc_pg[i] = mx.mc_pg[i];
  9160. }
  9161. }
  9162. }
  9163. /* free it */
  9164. rc = mdb_midl_append(&txn->mt_free_pgs, mc->mc_db->md_root);
  9165. done:
  9166. if (rc)
  9167. txn->mt_flags |= MDB_TXN_ERROR;
  9168. } else if (rc == MDB_NOTFOUND) {
  9169. rc = MDB_SUCCESS;
  9170. }
  9171. mc->mc_flags &= ~C_INITIALIZED;
  9172. return rc;
  9173. }
  9174. int mdb_drop(MDB_txn *txn, MDB_dbi dbi, int del)
  9175. {
  9176. MDB_cursor *mc, *m2;
  9177. int rc;
  9178. if ((unsigned)del > 1 || !TXN_DBI_EXIST(txn, dbi, DB_USRVALID))
  9179. return EINVAL;
  9180. if (F_ISSET(txn->mt_flags, MDB_TXN_RDONLY))
  9181. return EACCES;
  9182. if (TXN_DBI_CHANGED(txn, dbi))
  9183. return MDB_BAD_DBI;
  9184. rc = mdb_cursor_open(txn, dbi, &mc);
  9185. if (rc)
  9186. return rc;
  9187. rc = mdb_drop0(mc, mc->mc_db->md_flags & MDB_DUPSORT);
  9188. /* Invalidate the dropped DB's cursors */
  9189. for (m2 = txn->mt_cursors[dbi]; m2; m2 = m2->mc_next)
  9190. m2->mc_flags &= ~(C_INITIALIZED|C_EOF);
  9191. if (rc)
  9192. goto leave;
  9193. /* Can't delete the main DB */
  9194. if (del && dbi >= CORE_DBS) {
  9195. rc = mdb_del0(txn, MAIN_DBI, &mc->mc_dbx->md_name, NULL, F_SUBDATA);
  9196. if (!rc) {
  9197. txn->mt_dbflags[dbi] = DB_STALE;
  9198. mdb_dbi_close(txn->mt_env, dbi);
  9199. } else {
  9200. txn->mt_flags |= MDB_TXN_ERROR;
  9201. }
  9202. } else {
  9203. /* reset the DB record, mark it dirty */
  9204. txn->mt_dbflags[dbi] |= DB_DIRTY;
  9205. txn->mt_dbs[dbi].md_depth = 0;
  9206. txn->mt_dbs[dbi].md_branch_pages = 0;
  9207. txn->mt_dbs[dbi].md_leaf_pages = 0;
  9208. txn->mt_dbs[dbi].md_overflow_pages = 0;
  9209. txn->mt_dbs[dbi].md_entries = 0;
  9210. txn->mt_dbs[dbi].md_root = P_INVALID;
  9211. txn->mt_flags |= MDB_TXN_DIRTY;
  9212. }
  9213. leave:
  9214. mdb_cursor_close(mc);
  9215. return rc;
  9216. }
  9217. int mdb_set_compare(MDB_txn *txn, MDB_dbi dbi, MDB_cmp_func *cmp)
  9218. {
  9219. if (!TXN_DBI_EXIST(txn, dbi, DB_USRVALID))
  9220. return EINVAL;
  9221. txn->mt_dbxs[dbi].md_cmp = cmp;
  9222. return MDB_SUCCESS;
  9223. }
  9224. int mdb_set_dupsort(MDB_txn *txn, MDB_dbi dbi, MDB_cmp_func *cmp)
  9225. {
  9226. if (!TXN_DBI_EXIST(txn, dbi, DB_USRVALID))
  9227. return EINVAL;
  9228. txn->mt_dbxs[dbi].md_dcmp = cmp;
  9229. return MDB_SUCCESS;
  9230. }
  9231. int mdb_set_relfunc(MDB_txn *txn, MDB_dbi dbi, MDB_rel_func *rel)
  9232. {
  9233. if (!TXN_DBI_EXIST(txn, dbi, DB_USRVALID))
  9234. return EINVAL;
  9235. txn->mt_dbxs[dbi].md_rel = rel;
  9236. return MDB_SUCCESS;
  9237. }
  9238. int mdb_set_relctx(MDB_txn *txn, MDB_dbi dbi, void *ctx)
  9239. {
  9240. if (!TXN_DBI_EXIST(txn, dbi, DB_USRVALID))
  9241. return EINVAL;
  9242. txn->mt_dbxs[dbi].md_relctx = ctx;
  9243. return MDB_SUCCESS;
  9244. }
  9245. int ESECT
  9246. mdb_env_get_maxkeysize(MDB_env *env)
  9247. {
  9248. return ENV_MAXKEY(env);
  9249. }
  9250. int ESECT
  9251. mdb_reader_list(MDB_env *env, MDB_msg_func *func, void *ctx)
  9252. {
  9253. unsigned int i, rdrs;
  9254. MDB_reader *mr;
  9255. char buf[64];
  9256. int rc = 0, first = 1;
  9257. if (!env || !func)
  9258. return -1;
  9259. if (!env->me_txns) {
  9260. return func("(no reader locks)\n", ctx);
  9261. }
  9262. rdrs = env->me_txns->mti_numreaders;
  9263. mr = env->me_txns->mti_readers;
  9264. for (i=0; i<rdrs; i++) {
  9265. if (mr[i].mr_pid) {
  9266. txnid_t txnid = mr[i].mr_txnid;
  9267. sprintf(buf, txnid == (txnid_t)-1 ?
  9268. "%10d %"Z"x -\n" : "%10d %"Z"x %"Z"u\n",
  9269. (int)mr[i].mr_pid, (size_t)mr[i].mr_tid, txnid);
  9270. if (first) {
  9271. first = 0;
  9272. rc = func(" pid thread txnid\n", ctx);
  9273. if (rc < 0)
  9274. break;
  9275. }
  9276. rc = func(buf, ctx);
  9277. if (rc < 0)
  9278. break;
  9279. }
  9280. }
  9281. if (first) {
  9282. rc = func("(no active readers)\n", ctx);
  9283. }
  9284. return rc;
  9285. }
  9286. /** Insert pid into list if not already present.
  9287. * return -1 if already present.
  9288. */
  9289. static int ESECT
  9290. mdb_pid_insert(MDB_PID_T *ids, MDB_PID_T pid)
  9291. {
  9292. /* binary search of pid in list */
  9293. unsigned base = 0;
  9294. unsigned cursor = 1;
  9295. int val = 0;
  9296. unsigned n = ids[0];
  9297. while( 0 < n ) {
  9298. unsigned pivot = n >> 1;
  9299. cursor = base + pivot + 1;
  9300. val = pid - ids[cursor];
  9301. if( val < 0 ) {
  9302. n = pivot;
  9303. } else if ( val > 0 ) {
  9304. base = cursor;
  9305. n -= pivot + 1;
  9306. } else {
  9307. /* found, so it's a duplicate */
  9308. return -1;
  9309. }
  9310. }
  9311. if( val > 0 ) {
  9312. ++cursor;
  9313. }
  9314. ids[0]++;
  9315. for (n = ids[0]; n > cursor; n--)
  9316. ids[n] = ids[n-1];
  9317. ids[n] = pid;
  9318. return 0;
  9319. }
  9320. int ESECT
  9321. mdb_reader_check(MDB_env *env, int *dead)
  9322. {
  9323. if (!env)
  9324. return EINVAL;
  9325. if (dead)
  9326. *dead = 0;
  9327. return env->me_txns ? mdb_reader_check0(env, 0, dead) : MDB_SUCCESS;
  9328. }
  9329. /** As #mdb_reader_check(). \b rlocked is set if caller locked #me_rmutex. */
  9330. static int ESECT
  9331. mdb_reader_check0(MDB_env *env, int rlocked, int *dead)
  9332. {
  9333. mdb_mutexref_t rmutex = rlocked ? NULL : env->me_rmutex;
  9334. unsigned int i, j, rdrs;
  9335. MDB_reader *mr;
  9336. MDB_PID_T *pids, pid;
  9337. int rc = MDB_SUCCESS, count = 0;
  9338. rdrs = env->me_txns->mti_numreaders;
  9339. pids = malloc((rdrs+1) * sizeof(MDB_PID_T));
  9340. if (!pids)
  9341. return ENOMEM;
  9342. pids[0] = 0;
  9343. mr = env->me_txns->mti_readers;
  9344. for (i=0; i<rdrs; i++) {
  9345. pid = mr[i].mr_pid;
  9346. if (pid && pid != env->me_pid) {
  9347. if (mdb_pid_insert(pids, pid) == 0) {
  9348. if (!mdb_reader_pid(env, Pidcheck, pid)) {
  9349. /* Stale reader found */
  9350. j = i;
  9351. if (rmutex) {
  9352. if ((rc = LOCK_MUTEX0(rmutex)) != 0) {
  9353. if ((rc = mdb_mutex_failed(env, rmutex, rc)))
  9354. break;
  9355. rdrs = 0; /* the above checked all readers */
  9356. } else {
  9357. /* Recheck, a new process may have reused pid */
  9358. if (mdb_reader_pid(env, Pidcheck, pid))
  9359. j = rdrs;
  9360. }
  9361. }
  9362. for (; j<rdrs; j++)
  9363. if (mr[j].mr_pid == pid) {
  9364. DPRINTF(("clear stale reader pid %u txn %"Z"d",
  9365. (unsigned) pid, mr[j].mr_txnid));
  9366. mr[j].mr_pid = 0;
  9367. count++;
  9368. }
  9369. if (rmutex)
  9370. UNLOCK_MUTEX(rmutex);
  9371. }
  9372. }
  9373. }
  9374. }
  9375. free(pids);
  9376. if (dead)
  9377. *dead = count;
  9378. return rc;
  9379. }
  9380. #ifdef MDB_ROBUST_SUPPORTED
  9381. /** Handle #LOCK_MUTEX0() failure.
  9382. * Try to repair the lock file if the mutex owner died.
  9383. * @param[in] env the environment handle
  9384. * @param[in] mutex LOCK_MUTEX0() mutex
  9385. * @param[in] rc LOCK_MUTEX0() error (nonzero)
  9386. * @return 0 on success with the mutex locked, or an error code on failure.
  9387. */
  9388. static int ESECT
  9389. mdb_mutex_failed(MDB_env *env, mdb_mutexref_t mutex, int rc)
  9390. {
  9391. int rlocked, rc2;
  9392. MDB_meta *meta;
  9393. if (rc == MDB_OWNERDEAD) {
  9394. /* We own the mutex. Clean up after dead previous owner. */
  9395. rc = MDB_SUCCESS;
  9396. rlocked = (mutex == env->me_rmutex);
  9397. if (!rlocked) {
  9398. /* Keep mti_txnid updated, otherwise next writer can
  9399. * overwrite data which latest meta page refers to.
  9400. */
  9401. meta = mdb_env_pick_meta(env);
  9402. env->me_txns->mti_txnid = meta->mm_txnid;
  9403. /* env is hosed if the dead thread was ours */
  9404. if (env->me_txn) {
  9405. env->me_flags |= MDB_FATAL_ERROR;
  9406. env->me_txn = NULL;
  9407. rc = MDB_PANIC;
  9408. }
  9409. }
  9410. DPRINTF(("%cmutex owner died, %s", (rlocked ? 'r' : 'w'),
  9411. (rc ? "this process' env is hosed" : "recovering")));
  9412. rc2 = mdb_reader_check0(env, rlocked, NULL);
  9413. if (rc2 == 0)
  9414. rc2 = mdb_mutex_consistent(mutex);
  9415. if (rc || (rc = rc2)) {
  9416. DPRINTF(("LOCK_MUTEX recovery failed, %s", mdb_strerror(rc)));
  9417. UNLOCK_MUTEX(mutex);
  9418. }
  9419. } else {
  9420. #ifdef _WIN32
  9421. rc = ErrCode();
  9422. #endif
  9423. DPRINTF(("LOCK_MUTEX failed, %s", mdb_strerror(rc)));
  9424. }
  9425. return rc;
  9426. }
  9427. #endif /* MDB_ROBUST_SUPPORTED */
  9428. #if defined(_WIN32)
  9429. /** Convert \b src to new wchar_t[] string with room for \b xtra extra chars */
  9430. static int ESECT
  9431. utf8_to_utf16(const char *src, MDB_name *dst, int xtra)
  9432. {
  9433. int rc, need = 0;
  9434. wchar_t *result = NULL;
  9435. for (;;) { /* malloc result, then fill it in */
  9436. need = MultiByteToWideChar(CP_UTF8, 0, src, -1, result, need);
  9437. if (!need) {
  9438. rc = ErrCode();
  9439. free(result);
  9440. return rc;
  9441. }
  9442. if (!result) {
  9443. result = malloc(sizeof(wchar_t) * (need + xtra));
  9444. if (!result)
  9445. return ENOMEM;
  9446. continue;
  9447. }
  9448. dst->mn_alloced = 1;
  9449. dst->mn_len = need - 1;
  9450. dst->mn_val = result;
  9451. return MDB_SUCCESS;
  9452. }
  9453. }
  9454. #endif /* defined(_WIN32) */
  9455. /** @} */