123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322 |
- /*
- * The copyright in this software is being made available under the 2-clauses
- * BSD License, included below. This software may be subject to other third
- * party and contributor rights, including patent rights, and no such rights
- * are granted under this license.
- *
- * Copyright (c) 2002-2014, Universite catholique de Louvain (UCL), Belgium
- * Copyright (c) 2002-2014, Professor Benoit Macq
- * Copyright (c) 2001-2003, David Janssens
- * Copyright (c) 2002-2003, Yannick Verschueren
- * Copyright (c) 2003-2007, Francois-Olivier Devaux
- * Copyright (c) 2003-2014, Antonin Descampe
- * Copyright (c) 2005, Herve Drolon, FreeImage Team
- * All rights reserved.
- *
- * Redistribution and use in source and binary forms, with or without
- * modification, are permitted provided that the following conditions
- * are met:
- * 1. Redistributions of source code must retain the above copyright
- * notice, this list of conditions and the following disclaimer.
- * 2. Redistributions in binary form must reproduce the above copyright
- * notice, this list of conditions and the following disclaimer in the
- * documentation and/or other materials provided with the distribution.
- *
- * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS `AS IS'
- * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
- * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
- * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
- * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
- * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
- * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
- * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
- * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
- * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
- * POSSIBILITY OF SUCH DAMAGE.
- */
- #ifndef OPJ_INTMATH_H
- #define OPJ_INTMATH_H
- /**
- @file opj_intmath.h
- @brief Implementation of operations on integers (INT)
- The functions in OPJ_INTMATH.H have for goal to realize operations on integers.
- */
- /** @defgroup OPJ_INTMATH OPJ_INTMATH - Implementation of operations on integers */
- /*@{*/
- /** @name Exported functions (see also openjpeg.h) */
- /*@{*/
- /* ----------------------------------------------------------------------- */
- /**
- Get the minimum of two integers
- @return Returns a if a < b else b
- */
- static INLINE OPJ_INT32 opj_int_min(OPJ_INT32 a, OPJ_INT32 b)
- {
- return a < b ? a : b;
- }
- /**
- Get the minimum of two integers
- @return Returns a if a < b else b
- */
- static INLINE OPJ_UINT32 opj_uint_min(OPJ_UINT32 a, OPJ_UINT32 b)
- {
- return a < b ? a : b;
- }
- /**
- Get the maximum of two integers
- @return Returns a if a > b else b
- */
- static INLINE OPJ_INT32 opj_int_max(OPJ_INT32 a, OPJ_INT32 b)
- {
- return (a > b) ? a : b;
- }
- /**
- Get the maximum of two integers
- @return Returns a if a > b else b
- */
- static INLINE OPJ_UINT32 opj_uint_max(OPJ_UINT32 a, OPJ_UINT32 b)
- {
- return (a > b) ? a : b;
- }
- /**
- Get the saturated sum of two unsigned integers
- @return Returns saturated sum of a+b
- */
- static INLINE OPJ_UINT32 opj_uint_adds(OPJ_UINT32 a, OPJ_UINT32 b)
- {
- OPJ_UINT64 sum = (OPJ_UINT64)a + (OPJ_UINT64)b;
- return (OPJ_UINT32)(-(OPJ_INT32)(sum >> 32)) | (OPJ_UINT32)sum;
- }
- /**
- Get the saturated difference of two unsigned integers
- @return Returns saturated sum of a-b
- */
- static INLINE OPJ_UINT32 opj_uint_subs(OPJ_UINT32 a, OPJ_UINT32 b)
- {
- return (a >= b) ? a - b : 0;
- }
- /**
- Clamp an integer inside an interval
- @return
- <ul>
- <li>Returns a if (min < a < max)
- <li>Returns max if (a > max)
- <li>Returns min if (a < min)
- </ul>
- */
- static INLINE OPJ_INT32 opj_int_clamp(OPJ_INT32 a, OPJ_INT32 min,
- OPJ_INT32 max)
- {
- if (a < min) {
- return min;
- }
- if (a > max) {
- return max;
- }
- return a;
- }
- /**
- Clamp an integer inside an interval
- @return
- <ul>
- <li>Returns a if (min < a < max)
- <li>Returns max if (a > max)
- <li>Returns min if (a < min)
- </ul>
- */
- static INLINE OPJ_INT64 opj_int64_clamp(OPJ_INT64 a, OPJ_INT64 min,
- OPJ_INT64 max)
- {
- if (a < min) {
- return min;
- }
- if (a > max) {
- return max;
- }
- return a;
- }
- /**
- @return Get absolute value of integer
- */
- static INLINE OPJ_INT32 opj_int_abs(OPJ_INT32 a)
- {
- return a < 0 ? -a : a;
- }
- /**
- Divide an integer and round upwards
- @return Returns a divided by b
- */
- static INLINE OPJ_INT32 opj_int_ceildiv(OPJ_INT32 a, OPJ_INT32 b)
- {
- assert(b);
- return (OPJ_INT32)(((OPJ_INT64)a + b - 1) / b);
- }
- /**
- Divide an integer and round upwards
- @return Returns a divided by b
- */
- static INLINE OPJ_UINT32 opj_uint_ceildiv(OPJ_UINT32 a, OPJ_UINT32 b)
- {
- assert(b);
- return (OPJ_UINT32)(((OPJ_UINT64)a + b - 1) / b);
- }
- /**
- Divide an integer by a power of 2 and round upwards
- @return Returns a divided by 2^b
- */
- static INLINE OPJ_INT32 opj_int_ceildivpow2(OPJ_INT32 a, OPJ_INT32 b)
- {
- return (OPJ_INT32)((a + ((OPJ_INT64)1 << b) - 1) >> b);
- }
- /**
- Divide a 64bits integer by a power of 2 and round upwards
- @return Returns a divided by 2^b
- */
- static INLINE OPJ_INT32 opj_int64_ceildivpow2(OPJ_INT64 a, OPJ_INT32 b)
- {
- return (OPJ_INT32)((a + ((OPJ_INT64)1 << b) - 1) >> b);
- }
- /**
- Divide an integer by a power of 2 and round upwards
- @return Returns a divided by 2^b
- */
- static INLINE OPJ_UINT32 opj_uint_ceildivpow2(OPJ_UINT32 a, OPJ_UINT32 b)
- {
- return (OPJ_UINT32)((a + ((OPJ_UINT64)1U << b) - 1U) >> b);
- }
- /**
- Divide an integer by a power of 2 and round downwards
- @return Returns a divided by 2^b
- */
- static INLINE OPJ_INT32 opj_int_floordivpow2(OPJ_INT32 a, OPJ_INT32 b)
- {
- return a >> b;
- }
- /**
- Divide an integer by a power of 2 and round downwards
- @return Returns a divided by 2^b
- */
- static INLINE OPJ_UINT32 opj_uint_floordivpow2(OPJ_UINT32 a, OPJ_UINT32 b)
- {
- return a >> b;
- }
- /**
- Get logarithm of an integer and round downwards
- @return Returns log2(a)
- */
- static INLINE OPJ_INT32 opj_int_floorlog2(OPJ_INT32 a)
- {
- OPJ_INT32 l;
- for (l = 0; a > 1; l++) {
- a >>= 1;
- }
- return l;
- }
- /**
- Get logarithm of an integer and round downwards
- @return Returns log2(a)
- */
- static INLINE OPJ_UINT32 opj_uint_floorlog2(OPJ_UINT32 a)
- {
- OPJ_UINT32 l;
- for (l = 0; a > 1; ++l) {
- a >>= 1;
- }
- return l;
- }
- /**
- Multiply two fixed-precision rational numbers.
- @param a
- @param b
- @return Returns a * b
- */
- static INLINE OPJ_INT32 opj_int_fix_mul(OPJ_INT32 a, OPJ_INT32 b)
- {
- #if defined(_MSC_VER) && (_MSC_VER >= 1400) && !defined(__INTEL_COMPILER) && defined(_M_IX86)
- OPJ_INT64 temp = __emul(a, b);
- #else
- OPJ_INT64 temp = (OPJ_INT64) a * (OPJ_INT64) b ;
- #endif
- temp += 4096;
- assert((temp >> 13) <= (OPJ_INT64)0x7FFFFFFF);
- assert((temp >> 13) >= (-(OPJ_INT64)0x7FFFFFFF - (OPJ_INT64)1));
- return (OPJ_INT32)(temp >> 13);
- }
- static INLINE OPJ_INT32 opj_int_fix_mul_t1(OPJ_INT32 a, OPJ_INT32 b)
- {
- #if defined(_MSC_VER) && (_MSC_VER >= 1400) && !defined(__INTEL_COMPILER) && defined(_M_IX86)
- OPJ_INT64 temp = __emul(a, b);
- #else
- OPJ_INT64 temp = (OPJ_INT64) a * (OPJ_INT64) b ;
- #endif
- temp += 4096;
- assert((temp >> (13 + 11 - T1_NMSEDEC_FRACBITS)) <= (OPJ_INT64)0x7FFFFFFF);
- assert((temp >> (13 + 11 - T1_NMSEDEC_FRACBITS)) >= (-(OPJ_INT64)0x7FFFFFFF -
- (OPJ_INT64)1));
- return (OPJ_INT32)(temp >> (13 + 11 - T1_NMSEDEC_FRACBITS)) ;
- }
- /**
- Addition two signed integers with a wrap-around behaviour.
- Assumes complement-to-two signed integers.
- @param a
- @param b
- @return Returns a + b
- */
- static INLINE OPJ_INT32 opj_int_add_no_overflow(OPJ_INT32 a, OPJ_INT32 b)
- {
- void* pa = &a;
- void* pb = &b;
- OPJ_UINT32* upa = (OPJ_UINT32*)pa;
- OPJ_UINT32* upb = (OPJ_UINT32*)pb;
- OPJ_UINT32 ures = *upa + *upb;
- void* pures = &ures;
- OPJ_INT32* ipres = (OPJ_INT32*)pures;
- return *ipres;
- }
- /**
- Subtract two signed integers with a wrap-around behaviour.
- Assumes complement-to-two signed integers.
- @param a
- @param b
- @return Returns a - b
- */
- static INLINE OPJ_INT32 opj_int_sub_no_overflow(OPJ_INT32 a, OPJ_INT32 b)
- {
- void* pa = &a;
- void* pb = &b;
- OPJ_UINT32* upa = (OPJ_UINT32*)pa;
- OPJ_UINT32* upb = (OPJ_UINT32*)pb;
- OPJ_UINT32 ures = *upa - *upb;
- void* pures = &ures;
- OPJ_INT32* ipres = (OPJ_INT32*)pures;
- return *ipres;
- }
- /* ----------------------------------------------------------------------- */
- /*@}*/
- /*@}*/
- #endif /* OPJ_INTMATH_H */
|