123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599 |
- //===- InstCombineShifts.cpp ----------------------------------------------===//
- //
- // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
- // See https://llvm.org/LICENSE.txt for license information.
- // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
- //
- //===----------------------------------------------------------------------===//
- //
- // This file implements the visitShl, visitLShr, and visitAShr functions.
- //
- //===----------------------------------------------------------------------===//
- #include "InstCombineInternal.h"
- #include "llvm/Analysis/InstructionSimplify.h"
- #include "llvm/IR/IntrinsicInst.h"
- #include "llvm/IR/PatternMatch.h"
- #include "llvm/Transforms/InstCombine/InstCombiner.h"
- using namespace llvm;
- using namespace PatternMatch;
- #define DEBUG_TYPE "instcombine"
- bool canTryToConstantAddTwoShiftAmounts(Value *Sh0, Value *ShAmt0, Value *Sh1,
- Value *ShAmt1) {
- // We have two shift amounts from two different shifts. The types of those
- // shift amounts may not match. If that's the case let's bailout now..
- if (ShAmt0->getType() != ShAmt1->getType())
- return false;
- // As input, we have the following pattern:
- // Sh0 (Sh1 X, Q), K
- // We want to rewrite that as:
- // Sh x, (Q+K) iff (Q+K) u< bitwidth(x)
- // While we know that originally (Q+K) would not overflow
- // (because 2 * (N-1) u<= iN -1), we have looked past extensions of
- // shift amounts. so it may now overflow in smaller bitwidth.
- // To ensure that does not happen, we need to ensure that the total maximal
- // shift amount is still representable in that smaller bit width.
- unsigned MaximalPossibleTotalShiftAmount =
- (Sh0->getType()->getScalarSizeInBits() - 1) +
- (Sh1->getType()->getScalarSizeInBits() - 1);
- APInt MaximalRepresentableShiftAmount =
- APInt::getAllOnes(ShAmt0->getType()->getScalarSizeInBits());
- return MaximalRepresentableShiftAmount.uge(MaximalPossibleTotalShiftAmount);
- }
- // Given pattern:
- // (x shiftopcode Q) shiftopcode K
- // we should rewrite it as
- // x shiftopcode (Q+K) iff (Q+K) u< bitwidth(x) and
- //
- // This is valid for any shift, but they must be identical, and we must be
- // careful in case we have (zext(Q)+zext(K)) and look past extensions,
- // (Q+K) must not overflow or else (Q+K) u< bitwidth(x) is bogus.
- //
- // AnalyzeForSignBitExtraction indicates that we will only analyze whether this
- // pattern has any 2 right-shifts that sum to 1 less than original bit width.
- Value *InstCombinerImpl::reassociateShiftAmtsOfTwoSameDirectionShifts(
- BinaryOperator *Sh0, const SimplifyQuery &SQ,
- bool AnalyzeForSignBitExtraction) {
- // Look for a shift of some instruction, ignore zext of shift amount if any.
- Instruction *Sh0Op0;
- Value *ShAmt0;
- if (!match(Sh0,
- m_Shift(m_Instruction(Sh0Op0), m_ZExtOrSelf(m_Value(ShAmt0)))))
- return nullptr;
- // If there is a truncation between the two shifts, we must make note of it
- // and look through it. The truncation imposes additional constraints on the
- // transform.
- Instruction *Sh1;
- Value *Trunc = nullptr;
- match(Sh0Op0,
- m_CombineOr(m_CombineAnd(m_Trunc(m_Instruction(Sh1)), m_Value(Trunc)),
- m_Instruction(Sh1)));
- // Inner shift: (x shiftopcode ShAmt1)
- // Like with other shift, ignore zext of shift amount if any.
- Value *X, *ShAmt1;
- if (!match(Sh1, m_Shift(m_Value(X), m_ZExtOrSelf(m_Value(ShAmt1)))))
- return nullptr;
- // Verify that it would be safe to try to add those two shift amounts.
- if (!canTryToConstantAddTwoShiftAmounts(Sh0, ShAmt0, Sh1, ShAmt1))
- return nullptr;
- // We are only looking for signbit extraction if we have two right shifts.
- bool HadTwoRightShifts = match(Sh0, m_Shr(m_Value(), m_Value())) &&
- match(Sh1, m_Shr(m_Value(), m_Value()));
- // ... and if it's not two right-shifts, we know the answer already.
- if (AnalyzeForSignBitExtraction && !HadTwoRightShifts)
- return nullptr;
- // The shift opcodes must be identical, unless we are just checking whether
- // this pattern can be interpreted as a sign-bit-extraction.
- Instruction::BinaryOps ShiftOpcode = Sh0->getOpcode();
- bool IdenticalShOpcodes = Sh0->getOpcode() == Sh1->getOpcode();
- if (!IdenticalShOpcodes && !AnalyzeForSignBitExtraction)
- return nullptr;
- // If we saw truncation, we'll need to produce extra instruction,
- // and for that one of the operands of the shift must be one-use,
- // unless of course we don't actually plan to produce any instructions here.
- if (Trunc && !AnalyzeForSignBitExtraction &&
- !match(Sh0, m_c_BinOp(m_OneUse(m_Value()), m_Value())))
- return nullptr;
- // Can we fold (ShAmt0+ShAmt1) ?
- auto *NewShAmt = dyn_cast_or_null<Constant>(
- simplifyAddInst(ShAmt0, ShAmt1, /*isNSW=*/false, /*isNUW=*/false,
- SQ.getWithInstruction(Sh0)));
- if (!NewShAmt)
- return nullptr; // Did not simplify.
- unsigned NewShAmtBitWidth = NewShAmt->getType()->getScalarSizeInBits();
- unsigned XBitWidth = X->getType()->getScalarSizeInBits();
- // Is the new shift amount smaller than the bit width of inner/new shift?
- if (!match(NewShAmt, m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_ULT,
- APInt(NewShAmtBitWidth, XBitWidth))))
- return nullptr; // FIXME: could perform constant-folding.
- // If there was a truncation, and we have a right-shift, we can only fold if
- // we are left with the original sign bit. Likewise, if we were just checking
- // that this is a sighbit extraction, this is the place to check it.
- // FIXME: zero shift amount is also legal here, but we can't *easily* check
- // more than one predicate so it's not really worth it.
- if (HadTwoRightShifts && (Trunc || AnalyzeForSignBitExtraction)) {
- // If it's not a sign bit extraction, then we're done.
- if (!match(NewShAmt,
- m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_EQ,
- APInt(NewShAmtBitWidth, XBitWidth - 1))))
- return nullptr;
- // If it is, and that was the question, return the base value.
- if (AnalyzeForSignBitExtraction)
- return X;
- }
- assert(IdenticalShOpcodes && "Should not get here with different shifts.");
- // All good, we can do this fold.
- NewShAmt = ConstantExpr::getZExtOrBitCast(NewShAmt, X->getType());
- BinaryOperator *NewShift = BinaryOperator::Create(ShiftOpcode, X, NewShAmt);
- // The flags can only be propagated if there wasn't a trunc.
- if (!Trunc) {
- // If the pattern did not involve trunc, and both of the original shifts
- // had the same flag set, preserve the flag.
- if (ShiftOpcode == Instruction::BinaryOps::Shl) {
- NewShift->setHasNoUnsignedWrap(Sh0->hasNoUnsignedWrap() &&
- Sh1->hasNoUnsignedWrap());
- NewShift->setHasNoSignedWrap(Sh0->hasNoSignedWrap() &&
- Sh1->hasNoSignedWrap());
- } else {
- NewShift->setIsExact(Sh0->isExact() && Sh1->isExact());
- }
- }
- Instruction *Ret = NewShift;
- if (Trunc) {
- Builder.Insert(NewShift);
- Ret = CastInst::Create(Instruction::Trunc, NewShift, Sh0->getType());
- }
- return Ret;
- }
- // If we have some pattern that leaves only some low bits set, and then performs
- // left-shift of those bits, if none of the bits that are left after the final
- // shift are modified by the mask, we can omit the mask.
- //
- // There are many variants to this pattern:
- // a) (x & ((1 << MaskShAmt) - 1)) << ShiftShAmt
- // b) (x & (~(-1 << MaskShAmt))) << ShiftShAmt
- // c) (x & (-1 l>> MaskShAmt)) << ShiftShAmt
- // d) (x & ((-1 << MaskShAmt) l>> MaskShAmt)) << ShiftShAmt
- // e) ((x << MaskShAmt) l>> MaskShAmt) << ShiftShAmt
- // f) ((x << MaskShAmt) a>> MaskShAmt) << ShiftShAmt
- // All these patterns can be simplified to just:
- // x << ShiftShAmt
- // iff:
- // a,b) (MaskShAmt+ShiftShAmt) u>= bitwidth(x)
- // c,d,e,f) (ShiftShAmt-MaskShAmt) s>= 0 (i.e. ShiftShAmt u>= MaskShAmt)
- static Instruction *
- dropRedundantMaskingOfLeftShiftInput(BinaryOperator *OuterShift,
- const SimplifyQuery &Q,
- InstCombiner::BuilderTy &Builder) {
- assert(OuterShift->getOpcode() == Instruction::BinaryOps::Shl &&
- "The input must be 'shl'!");
- Value *Masked, *ShiftShAmt;
- match(OuterShift,
- m_Shift(m_Value(Masked), m_ZExtOrSelf(m_Value(ShiftShAmt))));
- // *If* there is a truncation between an outer shift and a possibly-mask,
- // then said truncation *must* be one-use, else we can't perform the fold.
- Value *Trunc;
- if (match(Masked, m_CombineAnd(m_Trunc(m_Value(Masked)), m_Value(Trunc))) &&
- !Trunc->hasOneUse())
- return nullptr;
- Type *NarrowestTy = OuterShift->getType();
- Type *WidestTy = Masked->getType();
- bool HadTrunc = WidestTy != NarrowestTy;
- // The mask must be computed in a type twice as wide to ensure
- // that no bits are lost if the sum-of-shifts is wider than the base type.
- Type *ExtendedTy = WidestTy->getExtendedType();
- Value *MaskShAmt;
- // ((1 << MaskShAmt) - 1)
- auto MaskA = m_Add(m_Shl(m_One(), m_Value(MaskShAmt)), m_AllOnes());
- // (~(-1 << maskNbits))
- auto MaskB = m_Xor(m_Shl(m_AllOnes(), m_Value(MaskShAmt)), m_AllOnes());
- // (-1 l>> MaskShAmt)
- auto MaskC = m_LShr(m_AllOnes(), m_Value(MaskShAmt));
- // ((-1 << MaskShAmt) l>> MaskShAmt)
- auto MaskD =
- m_LShr(m_Shl(m_AllOnes(), m_Value(MaskShAmt)), m_Deferred(MaskShAmt));
- Value *X;
- Constant *NewMask;
- if (match(Masked, m_c_And(m_CombineOr(MaskA, MaskB), m_Value(X)))) {
- // Peek through an optional zext of the shift amount.
- match(MaskShAmt, m_ZExtOrSelf(m_Value(MaskShAmt)));
- // Verify that it would be safe to try to add those two shift amounts.
- if (!canTryToConstantAddTwoShiftAmounts(OuterShift, ShiftShAmt, Masked,
- MaskShAmt))
- return nullptr;
- // Can we simplify (MaskShAmt+ShiftShAmt) ?
- auto *SumOfShAmts = dyn_cast_or_null<Constant>(simplifyAddInst(
- MaskShAmt, ShiftShAmt, /*IsNSW=*/false, /*IsNUW=*/false, Q));
- if (!SumOfShAmts)
- return nullptr; // Did not simplify.
- // In this pattern SumOfShAmts correlates with the number of low bits
- // that shall remain in the root value (OuterShift).
- // An extend of an undef value becomes zero because the high bits are never
- // completely unknown. Replace the `undef` shift amounts with final
- // shift bitwidth to ensure that the value remains undef when creating the
- // subsequent shift op.
- SumOfShAmts = Constant::replaceUndefsWith(
- SumOfShAmts, ConstantInt::get(SumOfShAmts->getType()->getScalarType(),
- ExtendedTy->getScalarSizeInBits()));
- auto *ExtendedSumOfShAmts = ConstantExpr::getZExt(SumOfShAmts, ExtendedTy);
- // And compute the mask as usual: ~(-1 << (SumOfShAmts))
- auto *ExtendedAllOnes = ConstantExpr::getAllOnesValue(ExtendedTy);
- auto *ExtendedInvertedMask =
- ConstantExpr::getShl(ExtendedAllOnes, ExtendedSumOfShAmts);
- NewMask = ConstantExpr::getNot(ExtendedInvertedMask);
- } else if (match(Masked, m_c_And(m_CombineOr(MaskC, MaskD), m_Value(X))) ||
- match(Masked, m_Shr(m_Shl(m_Value(X), m_Value(MaskShAmt)),
- m_Deferred(MaskShAmt)))) {
- // Peek through an optional zext of the shift amount.
- match(MaskShAmt, m_ZExtOrSelf(m_Value(MaskShAmt)));
- // Verify that it would be safe to try to add those two shift amounts.
- if (!canTryToConstantAddTwoShiftAmounts(OuterShift, ShiftShAmt, Masked,
- MaskShAmt))
- return nullptr;
- // Can we simplify (ShiftShAmt-MaskShAmt) ?
- auto *ShAmtsDiff = dyn_cast_or_null<Constant>(simplifySubInst(
- ShiftShAmt, MaskShAmt, /*IsNSW=*/false, /*IsNUW=*/false, Q));
- if (!ShAmtsDiff)
- return nullptr; // Did not simplify.
- // In this pattern ShAmtsDiff correlates with the number of high bits that
- // shall be unset in the root value (OuterShift).
- // An extend of an undef value becomes zero because the high bits are never
- // completely unknown. Replace the `undef` shift amounts with negated
- // bitwidth of innermost shift to ensure that the value remains undef when
- // creating the subsequent shift op.
- unsigned WidestTyBitWidth = WidestTy->getScalarSizeInBits();
- ShAmtsDiff = Constant::replaceUndefsWith(
- ShAmtsDiff, ConstantInt::get(ShAmtsDiff->getType()->getScalarType(),
- -WidestTyBitWidth));
- auto *ExtendedNumHighBitsToClear = ConstantExpr::getZExt(
- ConstantExpr::getSub(ConstantInt::get(ShAmtsDiff->getType(),
- WidestTyBitWidth,
- /*isSigned=*/false),
- ShAmtsDiff),
- ExtendedTy);
- // And compute the mask as usual: (-1 l>> (NumHighBitsToClear))
- auto *ExtendedAllOnes = ConstantExpr::getAllOnesValue(ExtendedTy);
- NewMask =
- ConstantExpr::getLShr(ExtendedAllOnes, ExtendedNumHighBitsToClear);
- } else
- return nullptr; // Don't know anything about this pattern.
- NewMask = ConstantExpr::getTrunc(NewMask, NarrowestTy);
- // Does this mask has any unset bits? If not then we can just not apply it.
- bool NeedMask = !match(NewMask, m_AllOnes());
- // If we need to apply a mask, there are several more restrictions we have.
- if (NeedMask) {
- // The old masking instruction must go away.
- if (!Masked->hasOneUse())
- return nullptr;
- // The original "masking" instruction must not have been`ashr`.
- if (match(Masked, m_AShr(m_Value(), m_Value())))
- return nullptr;
- }
- // If we need to apply truncation, let's do it first, since we can.
- // We have already ensured that the old truncation will go away.
- if (HadTrunc)
- X = Builder.CreateTrunc(X, NarrowestTy);
- // No 'NUW'/'NSW'! We no longer know that we won't shift-out non-0 bits.
- // We didn't change the Type of this outermost shift, so we can just do it.
- auto *NewShift = BinaryOperator::Create(OuterShift->getOpcode(), X,
- OuterShift->getOperand(1));
- if (!NeedMask)
- return NewShift;
- Builder.Insert(NewShift);
- return BinaryOperator::Create(Instruction::And, NewShift, NewMask);
- }
- /// If we have a shift-by-constant of a bitwise logic op that itself has a
- /// shift-by-constant operand with identical opcode, we may be able to convert
- /// that into 2 independent shifts followed by the logic op. This eliminates a
- /// a use of an intermediate value (reduces dependency chain).
- static Instruction *foldShiftOfShiftedLogic(BinaryOperator &I,
- InstCombiner::BuilderTy &Builder) {
- assert(I.isShift() && "Expected a shift as input");
- auto *LogicInst = dyn_cast<BinaryOperator>(I.getOperand(0));
- if (!LogicInst || !LogicInst->isBitwiseLogicOp() || !LogicInst->hasOneUse())
- return nullptr;
- Constant *C0, *C1;
- if (!match(I.getOperand(1), m_Constant(C1)))
- return nullptr;
- Instruction::BinaryOps ShiftOpcode = I.getOpcode();
- Type *Ty = I.getType();
- // Find a matching one-use shift by constant. The fold is not valid if the sum
- // of the shift values equals or exceeds bitwidth.
- // TODO: Remove the one-use check if the other logic operand (Y) is constant.
- Value *X, *Y;
- auto matchFirstShift = [&](Value *V) {
- APInt Threshold(Ty->getScalarSizeInBits(), Ty->getScalarSizeInBits());
- return match(V,
- m_OneUse(m_BinOp(ShiftOpcode, m_Value(X), m_Constant(C0)))) &&
- match(ConstantExpr::getAdd(C0, C1),
- m_SpecificInt_ICMP(ICmpInst::ICMP_ULT, Threshold));
- };
- // Logic ops are commutative, so check each operand for a match.
- if (matchFirstShift(LogicInst->getOperand(0)))
- Y = LogicInst->getOperand(1);
- else if (matchFirstShift(LogicInst->getOperand(1)))
- Y = LogicInst->getOperand(0);
- else
- return nullptr;
- // shift (logic (shift X, C0), Y), C1 -> logic (shift X, C0+C1), (shift Y, C1)
- Constant *ShiftSumC = ConstantExpr::getAdd(C0, C1);
- Value *NewShift1 = Builder.CreateBinOp(ShiftOpcode, X, ShiftSumC);
- Value *NewShift2 = Builder.CreateBinOp(ShiftOpcode, Y, C1);
- return BinaryOperator::Create(LogicInst->getOpcode(), NewShift1, NewShift2);
- }
- Instruction *InstCombinerImpl::commonShiftTransforms(BinaryOperator &I) {
- if (Instruction *Phi = foldBinopWithPhiOperands(I))
- return Phi;
- Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
- assert(Op0->getType() == Op1->getType());
- Type *Ty = I.getType();
- // If the shift amount is a one-use `sext`, we can demote it to `zext`.
- Value *Y;
- if (match(Op1, m_OneUse(m_SExt(m_Value(Y))))) {
- Value *NewExt = Builder.CreateZExt(Y, Ty, Op1->getName());
- return BinaryOperator::Create(I.getOpcode(), Op0, NewExt);
- }
- // See if we can fold away this shift.
- if (SimplifyDemandedInstructionBits(I))
- return &I;
- // Try to fold constant and into select arguments.
- if (isa<Constant>(Op0))
- if (SelectInst *SI = dyn_cast<SelectInst>(Op1))
- if (Instruction *R = FoldOpIntoSelect(I, SI))
- return R;
- if (Constant *CUI = dyn_cast<Constant>(Op1))
- if (Instruction *Res = FoldShiftByConstant(Op0, CUI, I))
- return Res;
- if (auto *NewShift = cast_or_null<Instruction>(
- reassociateShiftAmtsOfTwoSameDirectionShifts(&I, SQ)))
- return NewShift;
- // Pre-shift a constant shifted by a variable amount with constant offset:
- // C shift (A add nuw C1) --> (C shift C1) shift A
- Value *A;
- Constant *C, *C1;
- if (match(Op0, m_Constant(C)) &&
- match(Op1, m_NUWAdd(m_Value(A), m_Constant(C1)))) {
- Value *NewC = Builder.CreateBinOp(I.getOpcode(), C, C1);
- return BinaryOperator::Create(I.getOpcode(), NewC, A);
- }
- unsigned BitWidth = Ty->getScalarSizeInBits();
- const APInt *AC, *AddC;
- // Try to pre-shift a constant shifted by a variable amount added with a
- // negative number:
- // C << (X - AddC) --> (C >> AddC) << X
- // and
- // C >> (X - AddC) --> (C << AddC) >> X
- if (match(Op0, m_APInt(AC)) && match(Op1, m_Add(m_Value(A), m_APInt(AddC))) &&
- AddC->isNegative() && (-*AddC).ult(BitWidth)) {
- assert(!AC->isZero() && "Expected simplify of shifted zero");
- unsigned PosOffset = (-*AddC).getZExtValue();
- auto isSuitableForPreShift = [PosOffset, &I, AC]() {
- switch (I.getOpcode()) {
- default:
- return false;
- case Instruction::Shl:
- return (I.hasNoSignedWrap() || I.hasNoUnsignedWrap()) &&
- AC->eq(AC->lshr(PosOffset).shl(PosOffset));
- case Instruction::LShr:
- return I.isExact() && AC->eq(AC->shl(PosOffset).lshr(PosOffset));
- case Instruction::AShr:
- return I.isExact() && AC->eq(AC->shl(PosOffset).ashr(PosOffset));
- }
- };
- if (isSuitableForPreShift()) {
- Constant *NewC = ConstantInt::get(Ty, I.getOpcode() == Instruction::Shl
- ? AC->lshr(PosOffset)
- : AC->shl(PosOffset));
- BinaryOperator *NewShiftOp =
- BinaryOperator::Create(I.getOpcode(), NewC, A);
- if (I.getOpcode() == Instruction::Shl) {
- NewShiftOp->setHasNoUnsignedWrap(I.hasNoUnsignedWrap());
- } else {
- NewShiftOp->setIsExact();
- }
- return NewShiftOp;
- }
- }
- // X shift (A srem C) -> X shift (A and (C - 1)) iff C is a power of 2.
- // Because shifts by negative values (which could occur if A were negative)
- // are undefined.
- if (Op1->hasOneUse() && match(Op1, m_SRem(m_Value(A), m_Constant(C))) &&
- match(C, m_Power2())) {
- // FIXME: Should this get moved into SimplifyDemandedBits by saying we don't
- // demand the sign bit (and many others) here??
- Constant *Mask = ConstantExpr::getSub(C, ConstantInt::get(Ty, 1));
- Value *Rem = Builder.CreateAnd(A, Mask, Op1->getName());
- return replaceOperand(I, 1, Rem);
- }
- if (Instruction *Logic = foldShiftOfShiftedLogic(I, Builder))
- return Logic;
- return nullptr;
- }
- /// Return true if we can simplify two logical (either left or right) shifts
- /// that have constant shift amounts: OuterShift (InnerShift X, C1), C2.
- static bool canEvaluateShiftedShift(unsigned OuterShAmt, bool IsOuterShl,
- Instruction *InnerShift,
- InstCombinerImpl &IC, Instruction *CxtI) {
- assert(InnerShift->isLogicalShift() && "Unexpected instruction type");
- // We need constant scalar or constant splat shifts.
- const APInt *InnerShiftConst;
- if (!match(InnerShift->getOperand(1), m_APInt(InnerShiftConst)))
- return false;
- // Two logical shifts in the same direction:
- // shl (shl X, C1), C2 --> shl X, C1 + C2
- // lshr (lshr X, C1), C2 --> lshr X, C1 + C2
- bool IsInnerShl = InnerShift->getOpcode() == Instruction::Shl;
- if (IsInnerShl == IsOuterShl)
- return true;
- // Equal shift amounts in opposite directions become bitwise 'and':
- // lshr (shl X, C), C --> and X, C'
- // shl (lshr X, C), C --> and X, C'
- if (*InnerShiftConst == OuterShAmt)
- return true;
- // If the 2nd shift is bigger than the 1st, we can fold:
- // lshr (shl X, C1), C2 --> and (shl X, C1 - C2), C3
- // shl (lshr X, C1), C2 --> and (lshr X, C1 - C2), C3
- // but it isn't profitable unless we know the and'd out bits are already zero.
- // Also, check that the inner shift is valid (less than the type width) or
- // we'll crash trying to produce the bit mask for the 'and'.
- unsigned TypeWidth = InnerShift->getType()->getScalarSizeInBits();
- if (InnerShiftConst->ugt(OuterShAmt) && InnerShiftConst->ult(TypeWidth)) {
- unsigned InnerShAmt = InnerShiftConst->getZExtValue();
- unsigned MaskShift =
- IsInnerShl ? TypeWidth - InnerShAmt : InnerShAmt - OuterShAmt;
- APInt Mask = APInt::getLowBitsSet(TypeWidth, OuterShAmt) << MaskShift;
- if (IC.MaskedValueIsZero(InnerShift->getOperand(0), Mask, 0, CxtI))
- return true;
- }
- return false;
- }
- /// See if we can compute the specified value, but shifted logically to the left
- /// or right by some number of bits. This should return true if the expression
- /// can be computed for the same cost as the current expression tree. This is
- /// used to eliminate extraneous shifting from things like:
- /// %C = shl i128 %A, 64
- /// %D = shl i128 %B, 96
- /// %E = or i128 %C, %D
- /// %F = lshr i128 %E, 64
- /// where the client will ask if E can be computed shifted right by 64-bits. If
- /// this succeeds, getShiftedValue() will be called to produce the value.
- static bool canEvaluateShifted(Value *V, unsigned NumBits, bool IsLeftShift,
- InstCombinerImpl &IC, Instruction *CxtI) {
- // We can always evaluate constants shifted.
- if (isa<Constant>(V))
- return true;
- Instruction *I = dyn_cast<Instruction>(V);
- if (!I) return false;
- // We can't mutate something that has multiple uses: doing so would
- // require duplicating the instruction in general, which isn't profitable.
- if (!I->hasOneUse()) return false;
- switch (I->getOpcode()) {
- default: return false;
- case Instruction::And:
- case Instruction::Or:
- case Instruction::Xor:
- // Bitwise operators can all arbitrarily be arbitrarily evaluated shifted.
- return canEvaluateShifted(I->getOperand(0), NumBits, IsLeftShift, IC, I) &&
- canEvaluateShifted(I->getOperand(1), NumBits, IsLeftShift, IC, I);
- case Instruction::Shl:
- case Instruction::LShr:
- return canEvaluateShiftedShift(NumBits, IsLeftShift, I, IC, CxtI);
- case Instruction::Select: {
- SelectInst *SI = cast<SelectInst>(I);
- Value *TrueVal = SI->getTrueValue();
- Value *FalseVal = SI->getFalseValue();
- return canEvaluateShifted(TrueVal, NumBits, IsLeftShift, IC, SI) &&
- canEvaluateShifted(FalseVal, NumBits, IsLeftShift, IC, SI);
- }
- case Instruction::PHI: {
- // We can change a phi if we can change all operands. Note that we never
- // get into trouble with cyclic PHIs here because we only consider
- // instructions with a single use.
- PHINode *PN = cast<PHINode>(I);
- for (Value *IncValue : PN->incoming_values())
- if (!canEvaluateShifted(IncValue, NumBits, IsLeftShift, IC, PN))
- return false;
- return true;
- }
- case Instruction::Mul: {
- const APInt *MulConst;
- // We can fold (shr (mul X, -(1 << C)), C) -> (and (neg X), C`)
- return !IsLeftShift && match(I->getOperand(1), m_APInt(MulConst)) &&
- MulConst->isNegatedPowerOf2() &&
- MulConst->countTrailingZeros() == NumBits;
- }
- }
- }
- /// Fold OuterShift (InnerShift X, C1), C2.
- /// See canEvaluateShiftedShift() for the constraints on these instructions.
- static Value *foldShiftedShift(BinaryOperator *InnerShift, unsigned OuterShAmt,
- bool IsOuterShl,
- InstCombiner::BuilderTy &Builder) {
- bool IsInnerShl = InnerShift->getOpcode() == Instruction::Shl;
- Type *ShType = InnerShift->getType();
- unsigned TypeWidth = ShType->getScalarSizeInBits();
- // We only accept shifts-by-a-constant in canEvaluateShifted().
- const APInt *C1;
- match(InnerShift->getOperand(1), m_APInt(C1));
- unsigned InnerShAmt = C1->getZExtValue();
- // Change the shift amount and clear the appropriate IR flags.
- auto NewInnerShift = [&](unsigned ShAmt) {
- InnerShift->setOperand(1, ConstantInt::get(ShType, ShAmt));
- if (IsInnerShl) {
- InnerShift->setHasNoUnsignedWrap(false);
- InnerShift->setHasNoSignedWrap(false);
- } else {
- InnerShift->setIsExact(false);
- }
- return InnerShift;
- };
- // Two logical shifts in the same direction:
- // shl (shl X, C1), C2 --> shl X, C1 + C2
- // lshr (lshr X, C1), C2 --> lshr X, C1 + C2
- if (IsInnerShl == IsOuterShl) {
- // If this is an oversized composite shift, then unsigned shifts get 0.
- if (InnerShAmt + OuterShAmt >= TypeWidth)
- return Constant::getNullValue(ShType);
- return NewInnerShift(InnerShAmt + OuterShAmt);
- }
- // Equal shift amounts in opposite directions become bitwise 'and':
- // lshr (shl X, C), C --> and X, C'
- // shl (lshr X, C), C --> and X, C'
- if (InnerShAmt == OuterShAmt) {
- APInt Mask = IsInnerShl
- ? APInt::getLowBitsSet(TypeWidth, TypeWidth - OuterShAmt)
- : APInt::getHighBitsSet(TypeWidth, TypeWidth - OuterShAmt);
- Value *And = Builder.CreateAnd(InnerShift->getOperand(0),
- ConstantInt::get(ShType, Mask));
- if (auto *AndI = dyn_cast<Instruction>(And)) {
- AndI->moveBefore(InnerShift);
- AndI->takeName(InnerShift);
- }
- return And;
- }
- assert(InnerShAmt > OuterShAmt &&
- "Unexpected opposite direction logical shift pair");
- // In general, we would need an 'and' for this transform, but
- // canEvaluateShiftedShift() guarantees that the masked-off bits are not used.
- // lshr (shl X, C1), C2 --> shl X, C1 - C2
- // shl (lshr X, C1), C2 --> lshr X, C1 - C2
- return NewInnerShift(InnerShAmt - OuterShAmt);
- }
- /// When canEvaluateShifted() returns true for an expression, this function
- /// inserts the new computation that produces the shifted value.
- static Value *getShiftedValue(Value *V, unsigned NumBits, bool isLeftShift,
- InstCombinerImpl &IC, const DataLayout &DL) {
- // We can always evaluate constants shifted.
- if (Constant *C = dyn_cast<Constant>(V)) {
- if (isLeftShift)
- return IC.Builder.CreateShl(C, NumBits);
- else
- return IC.Builder.CreateLShr(C, NumBits);
- }
- Instruction *I = cast<Instruction>(V);
- IC.addToWorklist(I);
- switch (I->getOpcode()) {
- default: llvm_unreachable("Inconsistency with CanEvaluateShifted");
- case Instruction::And:
- case Instruction::Or:
- case Instruction::Xor:
- // Bitwise operators can all arbitrarily be arbitrarily evaluated shifted.
- I->setOperand(
- 0, getShiftedValue(I->getOperand(0), NumBits, isLeftShift, IC, DL));
- I->setOperand(
- 1, getShiftedValue(I->getOperand(1), NumBits, isLeftShift, IC, DL));
- return I;
- case Instruction::Shl:
- case Instruction::LShr:
- return foldShiftedShift(cast<BinaryOperator>(I), NumBits, isLeftShift,
- IC.Builder);
- case Instruction::Select:
- I->setOperand(
- 1, getShiftedValue(I->getOperand(1), NumBits, isLeftShift, IC, DL));
- I->setOperand(
- 2, getShiftedValue(I->getOperand(2), NumBits, isLeftShift, IC, DL));
- return I;
- case Instruction::PHI: {
- // We can change a phi if we can change all operands. Note that we never
- // get into trouble with cyclic PHIs here because we only consider
- // instructions with a single use.
- PHINode *PN = cast<PHINode>(I);
- for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
- PN->setIncomingValue(i, getShiftedValue(PN->getIncomingValue(i), NumBits,
- isLeftShift, IC, DL));
- return PN;
- }
- case Instruction::Mul: {
- assert(!isLeftShift && "Unexpected shift direction!");
- auto *Neg = BinaryOperator::CreateNeg(I->getOperand(0));
- IC.InsertNewInstWith(Neg, *I);
- unsigned TypeWidth = I->getType()->getScalarSizeInBits();
- APInt Mask = APInt::getLowBitsSet(TypeWidth, TypeWidth - NumBits);
- auto *And = BinaryOperator::CreateAnd(Neg,
- ConstantInt::get(I->getType(), Mask));
- And->takeName(I);
- return IC.InsertNewInstWith(And, *I);
- }
- }
- }
- // If this is a bitwise operator or add with a constant RHS we might be able
- // to pull it through a shift.
- static bool canShiftBinOpWithConstantRHS(BinaryOperator &Shift,
- BinaryOperator *BO) {
- switch (BO->getOpcode()) {
- default:
- return false; // Do not perform transform!
- case Instruction::Add:
- return Shift.getOpcode() == Instruction::Shl;
- case Instruction::Or:
- case Instruction::And:
- return true;
- case Instruction::Xor:
- // Do not change a 'not' of logical shift because that would create a normal
- // 'xor'. The 'not' is likely better for analysis, SCEV, and codegen.
- return !(Shift.isLogicalShift() && match(BO, m_Not(m_Value())));
- }
- }
- Instruction *InstCombinerImpl::FoldShiftByConstant(Value *Op0, Constant *C1,
- BinaryOperator &I) {
- // (C2 << X) << C1 --> (C2 << C1) << X
- // (C2 >> X) >> C1 --> (C2 >> C1) >> X
- Constant *C2;
- Value *X;
- if (match(Op0, m_BinOp(I.getOpcode(), m_Constant(C2), m_Value(X))))
- return BinaryOperator::Create(
- I.getOpcode(), Builder.CreateBinOp(I.getOpcode(), C2, C1), X);
- bool IsLeftShift = I.getOpcode() == Instruction::Shl;
- Type *Ty = I.getType();
- unsigned TypeBits = Ty->getScalarSizeInBits();
- // (X / +DivC) >> (Width - 1) --> ext (X <= -DivC)
- // (X / -DivC) >> (Width - 1) --> ext (X >= +DivC)
- const APInt *DivC;
- if (!IsLeftShift && match(C1, m_SpecificIntAllowUndef(TypeBits - 1)) &&
- match(Op0, m_SDiv(m_Value(X), m_APInt(DivC))) && !DivC->isZero() &&
- !DivC->isMinSignedValue()) {
- Constant *NegDivC = ConstantInt::get(Ty, -(*DivC));
- ICmpInst::Predicate Pred =
- DivC->isNegative() ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_SLE;
- Value *Cmp = Builder.CreateICmp(Pred, X, NegDivC);
- auto ExtOpcode = (I.getOpcode() == Instruction::AShr) ? Instruction::SExt
- : Instruction::ZExt;
- return CastInst::Create(ExtOpcode, Cmp, Ty);
- }
- const APInt *Op1C;
- if (!match(C1, m_APInt(Op1C)))
- return nullptr;
- assert(!Op1C->uge(TypeBits) &&
- "Shift over the type width should have been removed already");
- // See if we can propagate this shift into the input, this covers the trivial
- // cast of lshr(shl(x,c1),c2) as well as other more complex cases.
- if (I.getOpcode() != Instruction::AShr &&
- canEvaluateShifted(Op0, Op1C->getZExtValue(), IsLeftShift, *this, &I)) {
- LLVM_DEBUG(
- dbgs() << "ICE: GetShiftedValue propagating shift through expression"
- " to eliminate shift:\n IN: "
- << *Op0 << "\n SH: " << I << "\n");
- return replaceInstUsesWith(
- I, getShiftedValue(Op0, Op1C->getZExtValue(), IsLeftShift, *this, DL));
- }
- if (Instruction *FoldedShift = foldBinOpIntoSelectOrPhi(I))
- return FoldedShift;
- if (!Op0->hasOneUse())
- return nullptr;
- if (auto *Op0BO = dyn_cast<BinaryOperator>(Op0)) {
- // If the operand is a bitwise operator with a constant RHS, and the
- // shift is the only use, we can pull it out of the shift.
- const APInt *Op0C;
- if (match(Op0BO->getOperand(1), m_APInt(Op0C))) {
- if (canShiftBinOpWithConstantRHS(I, Op0BO)) {
- Value *NewRHS =
- Builder.CreateBinOp(I.getOpcode(), Op0BO->getOperand(1), C1);
- Value *NewShift =
- Builder.CreateBinOp(I.getOpcode(), Op0BO->getOperand(0), C1);
- NewShift->takeName(Op0BO);
- return BinaryOperator::Create(Op0BO->getOpcode(), NewShift, NewRHS);
- }
- }
- }
- // If we have a select that conditionally executes some binary operator,
- // see if we can pull it the select and operator through the shift.
- //
- // For example, turning:
- // shl (select C, (add X, C1), X), C2
- // Into:
- // Y = shl X, C2
- // select C, (add Y, C1 << C2), Y
- Value *Cond;
- BinaryOperator *TBO;
- Value *FalseVal;
- if (match(Op0, m_Select(m_Value(Cond), m_OneUse(m_BinOp(TBO)),
- m_Value(FalseVal)))) {
- const APInt *C;
- if (!isa<Constant>(FalseVal) && TBO->getOperand(0) == FalseVal &&
- match(TBO->getOperand(1), m_APInt(C)) &&
- canShiftBinOpWithConstantRHS(I, TBO)) {
- Value *NewRHS =
- Builder.CreateBinOp(I.getOpcode(), TBO->getOperand(1), C1);
- Value *NewShift = Builder.CreateBinOp(I.getOpcode(), FalseVal, C1);
- Value *NewOp = Builder.CreateBinOp(TBO->getOpcode(), NewShift, NewRHS);
- return SelectInst::Create(Cond, NewOp, NewShift);
- }
- }
- BinaryOperator *FBO;
- Value *TrueVal;
- if (match(Op0, m_Select(m_Value(Cond), m_Value(TrueVal),
- m_OneUse(m_BinOp(FBO))))) {
- const APInt *C;
- if (!isa<Constant>(TrueVal) && FBO->getOperand(0) == TrueVal &&
- match(FBO->getOperand(1), m_APInt(C)) &&
- canShiftBinOpWithConstantRHS(I, FBO)) {
- Value *NewRHS =
- Builder.CreateBinOp(I.getOpcode(), FBO->getOperand(1), C1);
- Value *NewShift = Builder.CreateBinOp(I.getOpcode(), TrueVal, C1);
- Value *NewOp = Builder.CreateBinOp(FBO->getOpcode(), NewShift, NewRHS);
- return SelectInst::Create(Cond, NewShift, NewOp);
- }
- }
- return nullptr;
- }
- // Tries to perform
- // (lshr (add (zext X), (zext Y)), K)
- // -> (icmp ult (add X, Y), X)
- // where
- // - The add's operands are zexts from a K-bits integer to a bigger type.
- // - The add is only used by the shr, or by iK (or narrower) truncates.
- // - The lshr type has more than 2 bits (other types are boolean math).
- // - K > 1
- // note that
- // - The resulting add cannot have nuw/nsw, else on overflow we get a
- // poison value and the transform isn't legal anymore.
- Instruction *InstCombinerImpl::foldLShrOverflowBit(BinaryOperator &I) {
- assert(I.getOpcode() == Instruction::LShr);
- Value *Add = I.getOperand(0);
- Value *ShiftAmt = I.getOperand(1);
- Type *Ty = I.getType();
- if (Ty->getScalarSizeInBits() < 3)
- return nullptr;
- const APInt *ShAmtAPInt = nullptr;
- Value *X = nullptr, *Y = nullptr;
- if (!match(ShiftAmt, m_APInt(ShAmtAPInt)) ||
- !match(Add,
- m_Add(m_OneUse(m_ZExt(m_Value(X))), m_OneUse(m_ZExt(m_Value(Y))))))
- return nullptr;
- const unsigned ShAmt = ShAmtAPInt->getZExtValue();
- if (ShAmt == 1)
- return nullptr;
- // X/Y are zexts from `ShAmt`-sized ints.
- if (X->getType()->getScalarSizeInBits() != ShAmt ||
- Y->getType()->getScalarSizeInBits() != ShAmt)
- return nullptr;
- // Make sure that `Add` is only used by `I` and `ShAmt`-truncates.
- if (!Add->hasOneUse()) {
- for (User *U : Add->users()) {
- if (U == &I)
- continue;
- TruncInst *Trunc = dyn_cast<TruncInst>(U);
- if (!Trunc || Trunc->getType()->getScalarSizeInBits() > ShAmt)
- return nullptr;
- }
- }
- // Insert at Add so that the newly created `NarrowAdd` will dominate it's
- // users (i.e. `Add`'s users).
- Instruction *AddInst = cast<Instruction>(Add);
- Builder.SetInsertPoint(AddInst);
- Value *NarrowAdd = Builder.CreateAdd(X, Y, "add.narrowed");
- Value *Overflow =
- Builder.CreateICmpULT(NarrowAdd, X, "add.narrowed.overflow");
- // Replace the uses of the original add with a zext of the
- // NarrowAdd's result. Note that all users at this stage are known to
- // be ShAmt-sized truncs, or the lshr itself.
- if (!Add->hasOneUse())
- replaceInstUsesWith(*AddInst, Builder.CreateZExt(NarrowAdd, Ty));
- // Replace the LShr with a zext of the overflow check.
- return new ZExtInst(Overflow, Ty);
- }
- Instruction *InstCombinerImpl::visitShl(BinaryOperator &I) {
- const SimplifyQuery Q = SQ.getWithInstruction(&I);
- if (Value *V = simplifyShlInst(I.getOperand(0), I.getOperand(1),
- I.hasNoSignedWrap(), I.hasNoUnsignedWrap(), Q))
- return replaceInstUsesWith(I, V);
- if (Instruction *X = foldVectorBinop(I))
- return X;
- if (Instruction *V = commonShiftTransforms(I))
- return V;
- if (Instruction *V = dropRedundantMaskingOfLeftShiftInput(&I, Q, Builder))
- return V;
- Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
- Type *Ty = I.getType();
- unsigned BitWidth = Ty->getScalarSizeInBits();
- const APInt *C;
- if (match(Op1, m_APInt(C))) {
- unsigned ShAmtC = C->getZExtValue();
- // shl (zext X), C --> zext (shl X, C)
- // This is only valid if X would have zeros shifted out.
- Value *X;
- if (match(Op0, m_OneUse(m_ZExt(m_Value(X))))) {
- unsigned SrcWidth = X->getType()->getScalarSizeInBits();
- if (ShAmtC < SrcWidth &&
- MaskedValueIsZero(X, APInt::getHighBitsSet(SrcWidth, ShAmtC), 0, &I))
- return new ZExtInst(Builder.CreateShl(X, ShAmtC), Ty);
- }
- // (X >> C) << C --> X & (-1 << C)
- if (match(Op0, m_Shr(m_Value(X), m_Specific(Op1)))) {
- APInt Mask(APInt::getHighBitsSet(BitWidth, BitWidth - ShAmtC));
- return BinaryOperator::CreateAnd(X, ConstantInt::get(Ty, Mask));
- }
- const APInt *C1;
- if (match(Op0, m_Exact(m_Shr(m_Value(X), m_APInt(C1)))) &&
- C1->ult(BitWidth)) {
- unsigned ShrAmt = C1->getZExtValue();
- if (ShrAmt < ShAmtC) {
- // If C1 < C: (X >>?,exact C1) << C --> X << (C - C1)
- Constant *ShiftDiff = ConstantInt::get(Ty, ShAmtC - ShrAmt);
- auto *NewShl = BinaryOperator::CreateShl(X, ShiftDiff);
- NewShl->setHasNoUnsignedWrap(I.hasNoUnsignedWrap());
- NewShl->setHasNoSignedWrap(I.hasNoSignedWrap());
- return NewShl;
- }
- if (ShrAmt > ShAmtC) {
- // If C1 > C: (X >>?exact C1) << C --> X >>?exact (C1 - C)
- Constant *ShiftDiff = ConstantInt::get(Ty, ShrAmt - ShAmtC);
- auto *NewShr = BinaryOperator::Create(
- cast<BinaryOperator>(Op0)->getOpcode(), X, ShiftDiff);
- NewShr->setIsExact(true);
- return NewShr;
- }
- }
- if (match(Op0, m_OneUse(m_Shr(m_Value(X), m_APInt(C1)))) &&
- C1->ult(BitWidth)) {
- unsigned ShrAmt = C1->getZExtValue();
- if (ShrAmt < ShAmtC) {
- // If C1 < C: (X >>? C1) << C --> (X << (C - C1)) & (-1 << C)
- Constant *ShiftDiff = ConstantInt::get(Ty, ShAmtC - ShrAmt);
- auto *NewShl = BinaryOperator::CreateShl(X, ShiftDiff);
- NewShl->setHasNoUnsignedWrap(I.hasNoUnsignedWrap());
- NewShl->setHasNoSignedWrap(I.hasNoSignedWrap());
- Builder.Insert(NewShl);
- APInt Mask(APInt::getHighBitsSet(BitWidth, BitWidth - ShAmtC));
- return BinaryOperator::CreateAnd(NewShl, ConstantInt::get(Ty, Mask));
- }
- if (ShrAmt > ShAmtC) {
- // If C1 > C: (X >>? C1) << C --> (X >>? (C1 - C)) & (-1 << C)
- Constant *ShiftDiff = ConstantInt::get(Ty, ShrAmt - ShAmtC);
- auto *OldShr = cast<BinaryOperator>(Op0);
- auto *NewShr =
- BinaryOperator::Create(OldShr->getOpcode(), X, ShiftDiff);
- NewShr->setIsExact(OldShr->isExact());
- Builder.Insert(NewShr);
- APInt Mask(APInt::getHighBitsSet(BitWidth, BitWidth - ShAmtC));
- return BinaryOperator::CreateAnd(NewShr, ConstantInt::get(Ty, Mask));
- }
- }
- // Similar to above, but look through an intermediate trunc instruction.
- BinaryOperator *Shr;
- if (match(Op0, m_OneUse(m_Trunc(m_OneUse(m_BinOp(Shr))))) &&
- match(Shr, m_Shr(m_Value(X), m_APInt(C1)))) {
- // The larger shift direction survives through the transform.
- unsigned ShrAmtC = C1->getZExtValue();
- unsigned ShDiff = ShrAmtC > ShAmtC ? ShrAmtC - ShAmtC : ShAmtC - ShrAmtC;
- Constant *ShiftDiffC = ConstantInt::get(X->getType(), ShDiff);
- auto ShiftOpc = ShrAmtC > ShAmtC ? Shr->getOpcode() : Instruction::Shl;
- // If C1 > C:
- // (trunc (X >> C1)) << C --> (trunc (X >> (C1 - C))) && (-1 << C)
- // If C > C1:
- // (trunc (X >> C1)) << C --> (trunc (X << (C - C1))) && (-1 << C)
- Value *NewShift = Builder.CreateBinOp(ShiftOpc, X, ShiftDiffC, "sh.diff");
- Value *Trunc = Builder.CreateTrunc(NewShift, Ty, "tr.sh.diff");
- APInt Mask(APInt::getHighBitsSet(BitWidth, BitWidth - ShAmtC));
- return BinaryOperator::CreateAnd(Trunc, ConstantInt::get(Ty, Mask));
- }
- if (match(Op0, m_Shl(m_Value(X), m_APInt(C1))) && C1->ult(BitWidth)) {
- unsigned AmtSum = ShAmtC + C1->getZExtValue();
- // Oversized shifts are simplified to zero in InstSimplify.
- if (AmtSum < BitWidth)
- // (X << C1) << C2 --> X << (C1 + C2)
- return BinaryOperator::CreateShl(X, ConstantInt::get(Ty, AmtSum));
- }
- // If we have an opposite shift by the same amount, we may be able to
- // reorder binops and shifts to eliminate math/logic.
- auto isSuitableBinOpcode = [](Instruction::BinaryOps BinOpcode) {
- switch (BinOpcode) {
- default:
- return false;
- case Instruction::Add:
- case Instruction::And:
- case Instruction::Or:
- case Instruction::Xor:
- case Instruction::Sub:
- // NOTE: Sub is not commutable and the tranforms below may not be valid
- // when the shift-right is operand 1 (RHS) of the sub.
- return true;
- }
- };
- BinaryOperator *Op0BO;
- if (match(Op0, m_OneUse(m_BinOp(Op0BO))) &&
- isSuitableBinOpcode(Op0BO->getOpcode())) {
- // Commute so shift-right is on LHS of the binop.
- // (Y bop (X >> C)) << C -> ((X >> C) bop Y) << C
- // (Y bop ((X >> C) & CC)) << C -> (((X >> C) & CC) bop Y) << C
- Value *Shr = Op0BO->getOperand(0);
- Value *Y = Op0BO->getOperand(1);
- Value *X;
- const APInt *CC;
- if (Op0BO->isCommutative() && Y->hasOneUse() &&
- (match(Y, m_Shr(m_Value(), m_Specific(Op1))) ||
- match(Y, m_And(m_OneUse(m_Shr(m_Value(), m_Specific(Op1))),
- m_APInt(CC)))))
- std::swap(Shr, Y);
- // ((X >> C) bop Y) << C -> (X bop (Y << C)) & (~0 << C)
- if (match(Shr, m_OneUse(m_Shr(m_Value(X), m_Specific(Op1))))) {
- // Y << C
- Value *YS = Builder.CreateShl(Y, Op1, Op0BO->getName());
- // (X bop (Y << C))
- Value *B =
- Builder.CreateBinOp(Op0BO->getOpcode(), X, YS, Shr->getName());
- unsigned Op1Val = C->getLimitedValue(BitWidth);
- APInt Bits = APInt::getHighBitsSet(BitWidth, BitWidth - Op1Val);
- Constant *Mask = ConstantInt::get(Ty, Bits);
- return BinaryOperator::CreateAnd(B, Mask);
- }
- // (((X >> C) & CC) bop Y) << C -> (X & (CC << C)) bop (Y << C)
- if (match(Shr,
- m_OneUse(m_And(m_OneUse(m_Shr(m_Value(X), m_Specific(Op1))),
- m_APInt(CC))))) {
- // Y << C
- Value *YS = Builder.CreateShl(Y, Op1, Op0BO->getName());
- // X & (CC << C)
- Value *M = Builder.CreateAnd(X, ConstantInt::get(Ty, CC->shl(*C)),
- X->getName() + ".mask");
- return BinaryOperator::Create(Op0BO->getOpcode(), M, YS);
- }
- }
- // (C1 - X) << C --> (C1 << C) - (X << C)
- if (match(Op0, m_OneUse(m_Sub(m_APInt(C1), m_Value(X))))) {
- Constant *NewLHS = ConstantInt::get(Ty, C1->shl(*C));
- Value *NewShift = Builder.CreateShl(X, Op1);
- return BinaryOperator::CreateSub(NewLHS, NewShift);
- }
- // If the shifted-out value is known-zero, then this is a NUW shift.
- if (!I.hasNoUnsignedWrap() &&
- MaskedValueIsZero(Op0, APInt::getHighBitsSet(BitWidth, ShAmtC), 0,
- &I)) {
- I.setHasNoUnsignedWrap();
- return &I;
- }
- // If the shifted-out value is all signbits, then this is a NSW shift.
- if (!I.hasNoSignedWrap() && ComputeNumSignBits(Op0, 0, &I) > ShAmtC) {
- I.setHasNoSignedWrap();
- return &I;
- }
- }
- // Transform (x >> y) << y to x & (-1 << y)
- // Valid for any type of right-shift.
- Value *X;
- if (match(Op0, m_OneUse(m_Shr(m_Value(X), m_Specific(Op1))))) {
- Constant *AllOnes = ConstantInt::getAllOnesValue(Ty);
- Value *Mask = Builder.CreateShl(AllOnes, Op1);
- return BinaryOperator::CreateAnd(Mask, X);
- }
- Constant *C1;
- if (match(Op1, m_Constant(C1))) {
- Constant *C2;
- Value *X;
- // (X * C2) << C1 --> X * (C2 << C1)
- if (match(Op0, m_Mul(m_Value(X), m_Constant(C2))))
- return BinaryOperator::CreateMul(X, ConstantExpr::getShl(C2, C1));
- // shl (zext i1 X), C1 --> select (X, 1 << C1, 0)
- if (match(Op0, m_ZExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1)) {
- auto *NewC = ConstantExpr::getShl(ConstantInt::get(Ty, 1), C1);
- return SelectInst::Create(X, NewC, ConstantInt::getNullValue(Ty));
- }
- }
- if (match(Op0, m_One())) {
- // (1 << (C - x)) -> ((1 << C) >> x) if C is bitwidth - 1
- if (match(Op1, m_Sub(m_SpecificInt(BitWidth - 1), m_Value(X))))
- return BinaryOperator::CreateLShr(
- ConstantInt::get(Ty, APInt::getSignMask(BitWidth)), X);
- // The only way to shift out the 1 is with an over-shift, so that would
- // be poison with or without "nuw". Undef is excluded because (undef << X)
- // is not undef (it is zero).
- Constant *ConstantOne = cast<Constant>(Op0);
- if (!I.hasNoUnsignedWrap() && !ConstantOne->containsUndefElement()) {
- I.setHasNoUnsignedWrap();
- return &I;
- }
- }
- return nullptr;
- }
- Instruction *InstCombinerImpl::visitLShr(BinaryOperator &I) {
- if (Value *V = simplifyLShrInst(I.getOperand(0), I.getOperand(1), I.isExact(),
- SQ.getWithInstruction(&I)))
- return replaceInstUsesWith(I, V);
- if (Instruction *X = foldVectorBinop(I))
- return X;
- if (Instruction *R = commonShiftTransforms(I))
- return R;
- Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
- Type *Ty = I.getType();
- Value *X;
- const APInt *C;
- unsigned BitWidth = Ty->getScalarSizeInBits();
- // (iN (~X) u>> (N - 1)) --> zext (X > -1)
- if (match(Op0, m_OneUse(m_Not(m_Value(X)))) &&
- match(Op1, m_SpecificIntAllowUndef(BitWidth - 1)))
- return new ZExtInst(Builder.CreateIsNotNeg(X, "isnotneg"), Ty);
- if (match(Op1, m_APInt(C))) {
- unsigned ShAmtC = C->getZExtValue();
- auto *II = dyn_cast<IntrinsicInst>(Op0);
- if (II && isPowerOf2_32(BitWidth) && Log2_32(BitWidth) == ShAmtC &&
- (II->getIntrinsicID() == Intrinsic::ctlz ||
- II->getIntrinsicID() == Intrinsic::cttz ||
- II->getIntrinsicID() == Intrinsic::ctpop)) {
- // ctlz.i32(x)>>5 --> zext(x == 0)
- // cttz.i32(x)>>5 --> zext(x == 0)
- // ctpop.i32(x)>>5 --> zext(x == -1)
- bool IsPop = II->getIntrinsicID() == Intrinsic::ctpop;
- Constant *RHS = ConstantInt::getSigned(Ty, IsPop ? -1 : 0);
- Value *Cmp = Builder.CreateICmpEQ(II->getArgOperand(0), RHS);
- return new ZExtInst(Cmp, Ty);
- }
- Value *X;
- const APInt *C1;
- if (match(Op0, m_Shl(m_Value(X), m_APInt(C1))) && C1->ult(BitWidth)) {
- if (C1->ult(ShAmtC)) {
- unsigned ShlAmtC = C1->getZExtValue();
- Constant *ShiftDiff = ConstantInt::get(Ty, ShAmtC - ShlAmtC);
- if (cast<BinaryOperator>(Op0)->hasNoUnsignedWrap()) {
- // (X <<nuw C1) >>u C --> X >>u (C - C1)
- auto *NewLShr = BinaryOperator::CreateLShr(X, ShiftDiff);
- NewLShr->setIsExact(I.isExact());
- return NewLShr;
- }
- if (Op0->hasOneUse()) {
- // (X << C1) >>u C --> (X >>u (C - C1)) & (-1 >> C)
- Value *NewLShr = Builder.CreateLShr(X, ShiftDiff, "", I.isExact());
- APInt Mask(APInt::getLowBitsSet(BitWidth, BitWidth - ShAmtC));
- return BinaryOperator::CreateAnd(NewLShr, ConstantInt::get(Ty, Mask));
- }
- } else if (C1->ugt(ShAmtC)) {
- unsigned ShlAmtC = C1->getZExtValue();
- Constant *ShiftDiff = ConstantInt::get(Ty, ShlAmtC - ShAmtC);
- if (cast<BinaryOperator>(Op0)->hasNoUnsignedWrap()) {
- // (X <<nuw C1) >>u C --> X <<nuw (C1 - C)
- auto *NewShl = BinaryOperator::CreateShl(X, ShiftDiff);
- NewShl->setHasNoUnsignedWrap(true);
- return NewShl;
- }
- if (Op0->hasOneUse()) {
- // (X << C1) >>u C --> X << (C1 - C) & (-1 >> C)
- Value *NewShl = Builder.CreateShl(X, ShiftDiff);
- APInt Mask(APInt::getLowBitsSet(BitWidth, BitWidth - ShAmtC));
- return BinaryOperator::CreateAnd(NewShl, ConstantInt::get(Ty, Mask));
- }
- } else {
- assert(*C1 == ShAmtC);
- // (X << C) >>u C --> X & (-1 >>u C)
- APInt Mask(APInt::getLowBitsSet(BitWidth, BitWidth - ShAmtC));
- return BinaryOperator::CreateAnd(X, ConstantInt::get(Ty, Mask));
- }
- }
- // ((X << C) + Y) >>u C --> (X + (Y >>u C)) & (-1 >>u C)
- // TODO: Consolidate with the more general transform that starts from shl
- // (the shifts are in the opposite order).
- Value *Y;
- if (match(Op0,
- m_OneUse(m_c_Add(m_OneUse(m_Shl(m_Value(X), m_Specific(Op1))),
- m_Value(Y))))) {
- Value *NewLshr = Builder.CreateLShr(Y, Op1);
- Value *NewAdd = Builder.CreateAdd(NewLshr, X);
- unsigned Op1Val = C->getLimitedValue(BitWidth);
- APInt Bits = APInt::getLowBitsSet(BitWidth, BitWidth - Op1Val);
- Constant *Mask = ConstantInt::get(Ty, Bits);
- return BinaryOperator::CreateAnd(NewAdd, Mask);
- }
- if (match(Op0, m_OneUse(m_ZExt(m_Value(X)))) &&
- (!Ty->isIntegerTy() || shouldChangeType(Ty, X->getType()))) {
- assert(ShAmtC < X->getType()->getScalarSizeInBits() &&
- "Big shift not simplified to zero?");
- // lshr (zext iM X to iN), C --> zext (lshr X, C) to iN
- Value *NewLShr = Builder.CreateLShr(X, ShAmtC);
- return new ZExtInst(NewLShr, Ty);
- }
- if (match(Op0, m_SExt(m_Value(X)))) {
- unsigned SrcTyBitWidth = X->getType()->getScalarSizeInBits();
- // lshr (sext i1 X to iN), C --> select (X, -1 >> C, 0)
- if (SrcTyBitWidth == 1) {
- auto *NewC = ConstantInt::get(
- Ty, APInt::getLowBitsSet(BitWidth, BitWidth - ShAmtC));
- return SelectInst::Create(X, NewC, ConstantInt::getNullValue(Ty));
- }
- if ((!Ty->isIntegerTy() || shouldChangeType(Ty, X->getType())) &&
- Op0->hasOneUse()) {
- // Are we moving the sign bit to the low bit and widening with high
- // zeros? lshr (sext iM X to iN), N-1 --> zext (lshr X, M-1) to iN
- if (ShAmtC == BitWidth - 1) {
- Value *NewLShr = Builder.CreateLShr(X, SrcTyBitWidth - 1);
- return new ZExtInst(NewLShr, Ty);
- }
- // lshr (sext iM X to iN), N-M --> zext (ashr X, min(N-M, M-1)) to iN
- if (ShAmtC == BitWidth - SrcTyBitWidth) {
- // The new shift amount can't be more than the narrow source type.
- unsigned NewShAmt = std::min(ShAmtC, SrcTyBitWidth - 1);
- Value *AShr = Builder.CreateAShr(X, NewShAmt);
- return new ZExtInst(AShr, Ty);
- }
- }
- }
- if (ShAmtC == BitWidth - 1) {
- // lshr i32 or(X,-X), 31 --> zext (X != 0)
- if (match(Op0, m_OneUse(m_c_Or(m_Neg(m_Value(X)), m_Deferred(X)))))
- return new ZExtInst(Builder.CreateIsNotNull(X), Ty);
- // lshr i32 (X -nsw Y), 31 --> zext (X < Y)
- if (match(Op0, m_OneUse(m_NSWSub(m_Value(X), m_Value(Y)))))
- return new ZExtInst(Builder.CreateICmpSLT(X, Y), Ty);
- // Check if a number is negative and odd:
- // lshr i32 (srem X, 2), 31 --> and (X >> 31), X
- if (match(Op0, m_OneUse(m_SRem(m_Value(X), m_SpecificInt(2))))) {
- Value *Signbit = Builder.CreateLShr(X, ShAmtC);
- return BinaryOperator::CreateAnd(Signbit, X);
- }
- }
- // (X >>u C1) >>u C --> X >>u (C1 + C)
- if (match(Op0, m_LShr(m_Value(X), m_APInt(C1)))) {
- // Oversized shifts are simplified to zero in InstSimplify.
- unsigned AmtSum = ShAmtC + C1->getZExtValue();
- if (AmtSum < BitWidth)
- return BinaryOperator::CreateLShr(X, ConstantInt::get(Ty, AmtSum));
- }
- Instruction *TruncSrc;
- if (match(Op0, m_OneUse(m_Trunc(m_Instruction(TruncSrc)))) &&
- match(TruncSrc, m_LShr(m_Value(X), m_APInt(C1)))) {
- unsigned SrcWidth = X->getType()->getScalarSizeInBits();
- unsigned AmtSum = ShAmtC + C1->getZExtValue();
- // If the combined shift fits in the source width:
- // (trunc (X >>u C1)) >>u C --> and (trunc (X >>u (C1 + C)), MaskC
- //
- // If the first shift covers the number of bits truncated, then the
- // mask instruction is eliminated (and so the use check is relaxed).
- if (AmtSum < SrcWidth &&
- (TruncSrc->hasOneUse() || C1->uge(SrcWidth - BitWidth))) {
- Value *SumShift = Builder.CreateLShr(X, AmtSum, "sum.shift");
- Value *Trunc = Builder.CreateTrunc(SumShift, Ty, I.getName());
- // If the first shift does not cover the number of bits truncated, then
- // we require a mask to get rid of high bits in the result.
- APInt MaskC = APInt::getAllOnes(BitWidth).lshr(ShAmtC);
- return BinaryOperator::CreateAnd(Trunc, ConstantInt::get(Ty, MaskC));
- }
- }
- const APInt *MulC;
- if (match(Op0, m_NUWMul(m_Value(X), m_APInt(MulC)))) {
- // Look for a "splat" mul pattern - it replicates bits across each half of
- // a value, so a right shift is just a mask of the low bits:
- // lshr i[2N] (mul nuw X, (2^N)+1), N --> and iN X, (2^N)-1
- // TODO: Generalize to allow more than just half-width shifts?
- if (BitWidth > 2 && ShAmtC * 2 == BitWidth && (*MulC - 1).isPowerOf2() &&
- MulC->logBase2() == ShAmtC)
- return BinaryOperator::CreateAnd(X, ConstantInt::get(Ty, *MulC - 2));
- // The one-use check is not strictly necessary, but codegen may not be
- // able to invert the transform and perf may suffer with an extra mul
- // instruction.
- if (Op0->hasOneUse()) {
- APInt NewMulC = MulC->lshr(ShAmtC);
- // if c is divisible by (1 << ShAmtC):
- // lshr (mul nuw x, MulC), ShAmtC -> mul nuw x, (MulC >> ShAmtC)
- if (MulC->eq(NewMulC.shl(ShAmtC))) {
- auto *NewMul =
- BinaryOperator::CreateNUWMul(X, ConstantInt::get(Ty, NewMulC));
- BinaryOperator *OrigMul = cast<BinaryOperator>(Op0);
- NewMul->setHasNoSignedWrap(OrigMul->hasNoSignedWrap());
- return NewMul;
- }
- }
- }
- // Try to narrow bswap.
- // In the case where the shift amount equals the bitwidth difference, the
- // shift is eliminated.
- if (match(Op0, m_OneUse(m_Intrinsic<Intrinsic::bswap>(
- m_OneUse(m_ZExt(m_Value(X))))))) {
- unsigned SrcWidth = X->getType()->getScalarSizeInBits();
- unsigned WidthDiff = BitWidth - SrcWidth;
- if (SrcWidth % 16 == 0) {
- Value *NarrowSwap = Builder.CreateUnaryIntrinsic(Intrinsic::bswap, X);
- if (ShAmtC >= WidthDiff) {
- // (bswap (zext X)) >> C --> zext (bswap X >> C')
- Value *NewShift = Builder.CreateLShr(NarrowSwap, ShAmtC - WidthDiff);
- return new ZExtInst(NewShift, Ty);
- } else {
- // (bswap (zext X)) >> C --> (zext (bswap X)) << C'
- Value *NewZExt = Builder.CreateZExt(NarrowSwap, Ty);
- Constant *ShiftDiff = ConstantInt::get(Ty, WidthDiff - ShAmtC);
- return BinaryOperator::CreateShl(NewZExt, ShiftDiff);
- }
- }
- }
- // Reduce add-carry of bools to logic:
- // ((zext BoolX) + (zext BoolY)) >> 1 --> zext (BoolX && BoolY)
- Value *BoolX, *BoolY;
- if (ShAmtC == 1 && match(Op0, m_Add(m_Value(X), m_Value(Y))) &&
- match(X, m_ZExt(m_Value(BoolX))) && match(Y, m_ZExt(m_Value(BoolY))) &&
- BoolX->getType()->isIntOrIntVectorTy(1) &&
- BoolY->getType()->isIntOrIntVectorTy(1) &&
- (X->hasOneUse() || Y->hasOneUse() || Op0->hasOneUse())) {
- Value *And = Builder.CreateAnd(BoolX, BoolY);
- return new ZExtInst(And, Ty);
- }
- // If the shifted-out value is known-zero, then this is an exact shift.
- if (!I.isExact() &&
- MaskedValueIsZero(Op0, APInt::getLowBitsSet(BitWidth, ShAmtC), 0, &I)) {
- I.setIsExact();
- return &I;
- }
- }
- // Transform (x << y) >> y to x & (-1 >> y)
- if (match(Op0, m_OneUse(m_Shl(m_Value(X), m_Specific(Op1))))) {
- Constant *AllOnes = ConstantInt::getAllOnesValue(Ty);
- Value *Mask = Builder.CreateLShr(AllOnes, Op1);
- return BinaryOperator::CreateAnd(Mask, X);
- }
- if (Instruction *Overflow = foldLShrOverflowBit(I))
- return Overflow;
- return nullptr;
- }
- Instruction *
- InstCombinerImpl::foldVariableSignZeroExtensionOfVariableHighBitExtract(
- BinaryOperator &OldAShr) {
- assert(OldAShr.getOpcode() == Instruction::AShr &&
- "Must be called with arithmetic right-shift instruction only.");
- // Check that constant C is a splat of the element-wise bitwidth of V.
- auto BitWidthSplat = [](Constant *C, Value *V) {
- return match(
- C, m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_EQ,
- APInt(C->getType()->getScalarSizeInBits(),
- V->getType()->getScalarSizeInBits())));
- };
- // It should look like variable-length sign-extension on the outside:
- // (Val << (bitwidth(Val)-Nbits)) a>> (bitwidth(Val)-Nbits)
- Value *NBits;
- Instruction *MaybeTrunc;
- Constant *C1, *C2;
- if (!match(&OldAShr,
- m_AShr(m_Shl(m_Instruction(MaybeTrunc),
- m_ZExtOrSelf(m_Sub(m_Constant(C1),
- m_ZExtOrSelf(m_Value(NBits))))),
- m_ZExtOrSelf(m_Sub(m_Constant(C2),
- m_ZExtOrSelf(m_Deferred(NBits)))))) ||
- !BitWidthSplat(C1, &OldAShr) || !BitWidthSplat(C2, &OldAShr))
- return nullptr;
- // There may or may not be a truncation after outer two shifts.
- Instruction *HighBitExtract;
- match(MaybeTrunc, m_TruncOrSelf(m_Instruction(HighBitExtract)));
- bool HadTrunc = MaybeTrunc != HighBitExtract;
- // And finally, the innermost part of the pattern must be a right-shift.
- Value *X, *NumLowBitsToSkip;
- if (!match(HighBitExtract, m_Shr(m_Value(X), m_Value(NumLowBitsToSkip))))
- return nullptr;
- // Said right-shift must extract high NBits bits - C0 must be it's bitwidth.
- Constant *C0;
- if (!match(NumLowBitsToSkip,
- m_ZExtOrSelf(
- m_Sub(m_Constant(C0), m_ZExtOrSelf(m_Specific(NBits))))) ||
- !BitWidthSplat(C0, HighBitExtract))
- return nullptr;
- // Since the NBits is identical for all shifts, if the outermost and
- // innermost shifts are identical, then outermost shifts are redundant.
- // If we had truncation, do keep it though.
- if (HighBitExtract->getOpcode() == OldAShr.getOpcode())
- return replaceInstUsesWith(OldAShr, MaybeTrunc);
- // Else, if there was a truncation, then we need to ensure that one
- // instruction will go away.
- if (HadTrunc && !match(&OldAShr, m_c_BinOp(m_OneUse(m_Value()), m_Value())))
- return nullptr;
- // Finally, bypass two innermost shifts, and perform the outermost shift on
- // the operands of the innermost shift.
- Instruction *NewAShr =
- BinaryOperator::Create(OldAShr.getOpcode(), X, NumLowBitsToSkip);
- NewAShr->copyIRFlags(HighBitExtract); // We can preserve 'exact'-ness.
- if (!HadTrunc)
- return NewAShr;
- Builder.Insert(NewAShr);
- return TruncInst::CreateTruncOrBitCast(NewAShr, OldAShr.getType());
- }
- Instruction *InstCombinerImpl::visitAShr(BinaryOperator &I) {
- if (Value *V = simplifyAShrInst(I.getOperand(0), I.getOperand(1), I.isExact(),
- SQ.getWithInstruction(&I)))
- return replaceInstUsesWith(I, V);
- if (Instruction *X = foldVectorBinop(I))
- return X;
- if (Instruction *R = commonShiftTransforms(I))
- return R;
- Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
- Type *Ty = I.getType();
- unsigned BitWidth = Ty->getScalarSizeInBits();
- const APInt *ShAmtAPInt;
- if (match(Op1, m_APInt(ShAmtAPInt)) && ShAmtAPInt->ult(BitWidth)) {
- unsigned ShAmt = ShAmtAPInt->getZExtValue();
- // If the shift amount equals the difference in width of the destination
- // and source scalar types:
- // ashr (shl (zext X), C), C --> sext X
- Value *X;
- if (match(Op0, m_Shl(m_ZExt(m_Value(X)), m_Specific(Op1))) &&
- ShAmt == BitWidth - X->getType()->getScalarSizeInBits())
- return new SExtInst(X, Ty);
- // We can't handle (X << C1) >>s C2. It shifts arbitrary bits in. However,
- // we can handle (X <<nsw C1) >>s C2 since it only shifts in sign bits.
- const APInt *ShOp1;
- if (match(Op0, m_NSWShl(m_Value(X), m_APInt(ShOp1))) &&
- ShOp1->ult(BitWidth)) {
- unsigned ShlAmt = ShOp1->getZExtValue();
- if (ShlAmt < ShAmt) {
- // (X <<nsw C1) >>s C2 --> X >>s (C2 - C1)
- Constant *ShiftDiff = ConstantInt::get(Ty, ShAmt - ShlAmt);
- auto *NewAShr = BinaryOperator::CreateAShr(X, ShiftDiff);
- NewAShr->setIsExact(I.isExact());
- return NewAShr;
- }
- if (ShlAmt > ShAmt) {
- // (X <<nsw C1) >>s C2 --> X <<nsw (C1 - C2)
- Constant *ShiftDiff = ConstantInt::get(Ty, ShlAmt - ShAmt);
- auto *NewShl = BinaryOperator::Create(Instruction::Shl, X, ShiftDiff);
- NewShl->setHasNoSignedWrap(true);
- return NewShl;
- }
- }
- if (match(Op0, m_AShr(m_Value(X), m_APInt(ShOp1))) &&
- ShOp1->ult(BitWidth)) {
- unsigned AmtSum = ShAmt + ShOp1->getZExtValue();
- // Oversized arithmetic shifts replicate the sign bit.
- AmtSum = std::min(AmtSum, BitWidth - 1);
- // (X >>s C1) >>s C2 --> X >>s (C1 + C2)
- return BinaryOperator::CreateAShr(X, ConstantInt::get(Ty, AmtSum));
- }
- if (match(Op0, m_OneUse(m_SExt(m_Value(X)))) &&
- (Ty->isVectorTy() || shouldChangeType(Ty, X->getType()))) {
- // ashr (sext X), C --> sext (ashr X, C')
- Type *SrcTy = X->getType();
- ShAmt = std::min(ShAmt, SrcTy->getScalarSizeInBits() - 1);
- Value *NewSh = Builder.CreateAShr(X, ConstantInt::get(SrcTy, ShAmt));
- return new SExtInst(NewSh, Ty);
- }
- if (ShAmt == BitWidth - 1) {
- // ashr i32 or(X,-X), 31 --> sext (X != 0)
- if (match(Op0, m_OneUse(m_c_Or(m_Neg(m_Value(X)), m_Deferred(X)))))
- return new SExtInst(Builder.CreateIsNotNull(X), Ty);
- // ashr i32 (X -nsw Y), 31 --> sext (X < Y)
- Value *Y;
- if (match(Op0, m_OneUse(m_NSWSub(m_Value(X), m_Value(Y)))))
- return new SExtInst(Builder.CreateICmpSLT(X, Y), Ty);
- }
- // If the shifted-out value is known-zero, then this is an exact shift.
- if (!I.isExact() &&
- MaskedValueIsZero(Op0, APInt::getLowBitsSet(BitWidth, ShAmt), 0, &I)) {
- I.setIsExact();
- return &I;
- }
- }
- // Prefer `-(x & 1)` over `(x << (bitwidth(x)-1)) a>> (bitwidth(x)-1)`
- // as the pattern to splat the lowest bit.
- // FIXME: iff X is already masked, we don't need the one-use check.
- Value *X;
- if (match(Op1, m_SpecificIntAllowUndef(BitWidth - 1)) &&
- match(Op0, m_OneUse(m_Shl(m_Value(X),
- m_SpecificIntAllowUndef(BitWidth - 1))))) {
- Constant *Mask = ConstantInt::get(Ty, 1);
- // Retain the knowledge about the ignored lanes.
- Mask = Constant::mergeUndefsWith(
- Constant::mergeUndefsWith(Mask, cast<Constant>(Op1)),
- cast<Constant>(cast<Instruction>(Op0)->getOperand(1)));
- X = Builder.CreateAnd(X, Mask);
- return BinaryOperator::CreateNeg(X);
- }
- if (Instruction *R = foldVariableSignZeroExtensionOfVariableHighBitExtract(I))
- return R;
- // See if we can turn a signed shr into an unsigned shr.
- if (MaskedValueIsZero(Op0, APInt::getSignMask(BitWidth), 0, &I)) {
- Instruction *Lshr = BinaryOperator::CreateLShr(Op0, Op1);
- Lshr->setIsExact(I.isExact());
- return Lshr;
- }
- // ashr (xor %x, -1), %y --> xor (ashr %x, %y), -1
- if (match(Op0, m_OneUse(m_Not(m_Value(X))))) {
- // Note that we must drop 'exact'-ness of the shift!
- // Note that we can't keep undef's in -1 vector constant!
- auto *NewAShr = Builder.CreateAShr(X, Op1, Op0->getName() + ".not");
- return BinaryOperator::CreateNot(NewAShr);
- }
- return nullptr;
- }
|