CodeGenTarget.cpp 34 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908
  1. //===- CodeGenTarget.cpp - CodeGen Target Class Wrapper -------------------===//
  2. //
  3. // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
  4. // See https://llvm.org/LICENSE.txt for license information.
  5. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
  6. //
  7. //===----------------------------------------------------------------------===//
  8. //
  9. // This class wraps target description classes used by the various code
  10. // generation TableGen backends. This makes it easier to access the data and
  11. // provides a single place that needs to check it for validity. All of these
  12. // classes abort on error conditions.
  13. //
  14. //===----------------------------------------------------------------------===//
  15. #include "CodeGenTarget.h"
  16. #include "CodeGenDAGPatterns.h"
  17. #include "CodeGenIntrinsics.h"
  18. #include "CodeGenSchedule.h"
  19. #include "llvm/ADT/STLExtras.h"
  20. #include "llvm/ADT/StringExtras.h"
  21. #include "llvm/Support/CommandLine.h"
  22. #include "llvm/Support/Timer.h"
  23. #include "llvm/TableGen/Error.h"
  24. #include "llvm/TableGen/Record.h"
  25. #include "llvm/TableGen/TableGenBackend.h"
  26. #include <algorithm>
  27. using namespace llvm;
  28. cl::OptionCategory AsmParserCat("Options for -gen-asm-parser");
  29. cl::OptionCategory AsmWriterCat("Options for -gen-asm-writer");
  30. static cl::opt<unsigned>
  31. AsmParserNum("asmparsernum", cl::init(0),
  32. cl::desc("Make -gen-asm-parser emit assembly parser #N"),
  33. cl::cat(AsmParserCat));
  34. static cl::opt<unsigned>
  35. AsmWriterNum("asmwriternum", cl::init(0),
  36. cl::desc("Make -gen-asm-writer emit assembly writer #N"),
  37. cl::cat(AsmWriterCat));
  38. /// getValueType - Return the MVT::SimpleValueType that the specified TableGen
  39. /// record corresponds to.
  40. MVT::SimpleValueType llvm::getValueType(Record *Rec) {
  41. return (MVT::SimpleValueType)Rec->getValueAsInt("Value");
  42. }
  43. StringRef llvm::getName(MVT::SimpleValueType T) {
  44. switch (T) {
  45. case MVT::Other: return "UNKNOWN";
  46. case MVT::iPTR: return "TLI.getPointerTy()";
  47. case MVT::iPTRAny: return "TLI.getPointerTy()";
  48. default: return getEnumName(T);
  49. }
  50. }
  51. StringRef llvm::getEnumName(MVT::SimpleValueType T) {
  52. switch (T) {
  53. case MVT::Other: return "MVT::Other";
  54. case MVT::i1: return "MVT::i1";
  55. case MVT::i8: return "MVT::i8";
  56. case MVT::i16: return "MVT::i16";
  57. case MVT::i32: return "MVT::i32";
  58. case MVT::i64: return "MVT::i64";
  59. case MVT::i128: return "MVT::i128";
  60. case MVT::Any: return "MVT::Any";
  61. case MVT::iAny: return "MVT::iAny";
  62. case MVT::fAny: return "MVT::fAny";
  63. case MVT::vAny: return "MVT::vAny";
  64. case MVT::f16: return "MVT::f16";
  65. case MVT::bf16: return "MVT::bf16";
  66. case MVT::f32: return "MVT::f32";
  67. case MVT::f64: return "MVT::f64";
  68. case MVT::f80: return "MVT::f80";
  69. case MVT::f128: return "MVT::f128";
  70. case MVT::ppcf128: return "MVT::ppcf128";
  71. case MVT::x86mmx: return "MVT::x86mmx";
  72. case MVT::x86amx: return "MVT::x86amx";
  73. case MVT::Glue: return "MVT::Glue";
  74. case MVT::isVoid: return "MVT::isVoid";
  75. case MVT::v1i1: return "MVT::v1i1";
  76. case MVT::v2i1: return "MVT::v2i1";
  77. case MVT::v4i1: return "MVT::v4i1";
  78. case MVT::v8i1: return "MVT::v8i1";
  79. case MVT::v16i1: return "MVT::v16i1";
  80. case MVT::v32i1: return "MVT::v32i1";
  81. case MVT::v64i1: return "MVT::v64i1";
  82. case MVT::v128i1: return "MVT::v128i1";
  83. case MVT::v256i1: return "MVT::v256i1";
  84. case MVT::v512i1: return "MVT::v512i1";
  85. case MVT::v1024i1: return "MVT::v1024i1";
  86. case MVT::v1i8: return "MVT::v1i8";
  87. case MVT::v2i8: return "MVT::v2i8";
  88. case MVT::v4i8: return "MVT::v4i8";
  89. case MVT::v8i8: return "MVT::v8i8";
  90. case MVT::v16i8: return "MVT::v16i8";
  91. case MVT::v32i8: return "MVT::v32i8";
  92. case MVT::v64i8: return "MVT::v64i8";
  93. case MVT::v128i8: return "MVT::v128i8";
  94. case MVT::v256i8: return "MVT::v256i8";
  95. case MVT::v1i16: return "MVT::v1i16";
  96. case MVT::v2i16: return "MVT::v2i16";
  97. case MVT::v3i16: return "MVT::v3i16";
  98. case MVT::v4i16: return "MVT::v4i16";
  99. case MVT::v8i16: return "MVT::v8i16";
  100. case MVT::v16i16: return "MVT::v16i16";
  101. case MVT::v32i16: return "MVT::v32i16";
  102. case MVT::v64i16: return "MVT::v64i16";
  103. case MVT::v128i16: return "MVT::v128i16";
  104. case MVT::v1i32: return "MVT::v1i32";
  105. case MVT::v2i32: return "MVT::v2i32";
  106. case MVT::v3i32: return "MVT::v3i32";
  107. case MVT::v4i32: return "MVT::v4i32";
  108. case MVT::v5i32: return "MVT::v5i32";
  109. case MVT::v8i32: return "MVT::v8i32";
  110. case MVT::v16i32: return "MVT::v16i32";
  111. case MVT::v32i32: return "MVT::v32i32";
  112. case MVT::v64i32: return "MVT::v64i32";
  113. case MVT::v128i32: return "MVT::v128i32";
  114. case MVT::v256i32: return "MVT::v256i32";
  115. case MVT::v512i32: return "MVT::v512i32";
  116. case MVT::v1024i32: return "MVT::v1024i32";
  117. case MVT::v2048i32: return "MVT::v2048i32";
  118. case MVT::v1i64: return "MVT::v1i64";
  119. case MVT::v2i64: return "MVT::v2i64";
  120. case MVT::v4i64: return "MVT::v4i64";
  121. case MVT::v8i64: return "MVT::v8i64";
  122. case MVT::v16i64: return "MVT::v16i64";
  123. case MVT::v32i64: return "MVT::v32i64";
  124. case MVT::v64i64: return "MVT::v64i64";
  125. case MVT::v128i64: return "MVT::v128i64";
  126. case MVT::v256i64: return "MVT::v256i64";
  127. case MVT::v1i128: return "MVT::v1i128";
  128. case MVT::v2f16: return "MVT::v2f16";
  129. case MVT::v3f16: return "MVT::v3f16";
  130. case MVT::v4f16: return "MVT::v4f16";
  131. case MVT::v8f16: return "MVT::v8f16";
  132. case MVT::v16f16: return "MVT::v16f16";
  133. case MVT::v32f16: return "MVT::v32f16";
  134. case MVT::v64f16: return "MVT::v64f16";
  135. case MVT::v128f16: return "MVT::v128f16";
  136. case MVT::v2bf16: return "MVT::v2bf16";
  137. case MVT::v3bf16: return "MVT::v3bf16";
  138. case MVT::v4bf16: return "MVT::v4bf16";
  139. case MVT::v8bf16: return "MVT::v8bf16";
  140. case MVT::v16bf16: return "MVT::v16bf16";
  141. case MVT::v32bf16: return "MVT::v32bf16";
  142. case MVT::v64bf16: return "MVT::v64bf16";
  143. case MVT::v128bf16: return "MVT::v128bf16";
  144. case MVT::v1f32: return "MVT::v1f32";
  145. case MVT::v2f32: return "MVT::v2f32";
  146. case MVT::v3f32: return "MVT::v3f32";
  147. case MVT::v4f32: return "MVT::v4f32";
  148. case MVT::v5f32: return "MVT::v5f32";
  149. case MVT::v8f32: return "MVT::v8f32";
  150. case MVT::v16f32: return "MVT::v16f32";
  151. case MVT::v32f32: return "MVT::v32f32";
  152. case MVT::v64f32: return "MVT::v64f32";
  153. case MVT::v128f32: return "MVT::v128f32";
  154. case MVT::v256f32: return "MVT::v256f32";
  155. case MVT::v512f32: return "MVT::v512f32";
  156. case MVT::v1024f32: return "MVT::v1024f32";
  157. case MVT::v2048f32: return "MVT::v2048f32";
  158. case MVT::v1f64: return "MVT::v1f64";
  159. case MVT::v2f64: return "MVT::v2f64";
  160. case MVT::v4f64: return "MVT::v4f64";
  161. case MVT::v8f64: return "MVT::v8f64";
  162. case MVT::v16f64: return "MVT::v16f64";
  163. case MVT::v32f64: return "MVT::v32f64";
  164. case MVT::v64f64: return "MVT::v64f64";
  165. case MVT::v128f64: return "MVT::v128f64";
  166. case MVT::v256f64: return "MVT::v256f64";
  167. case MVT::nxv1i1: return "MVT::nxv1i1";
  168. case MVT::nxv2i1: return "MVT::nxv2i1";
  169. case MVT::nxv4i1: return "MVT::nxv4i1";
  170. case MVT::nxv8i1: return "MVT::nxv8i1";
  171. case MVT::nxv16i1: return "MVT::nxv16i1";
  172. case MVT::nxv32i1: return "MVT::nxv32i1";
  173. case MVT::nxv64i1: return "MVT::nxv64i1";
  174. case MVT::nxv1i8: return "MVT::nxv1i8";
  175. case MVT::nxv2i8: return "MVT::nxv2i8";
  176. case MVT::nxv4i8: return "MVT::nxv4i8";
  177. case MVT::nxv8i8: return "MVT::nxv8i8";
  178. case MVT::nxv16i8: return "MVT::nxv16i8";
  179. case MVT::nxv32i8: return "MVT::nxv32i8";
  180. case MVT::nxv64i8: return "MVT::nxv64i8";
  181. case MVT::nxv1i16: return "MVT::nxv1i16";
  182. case MVT::nxv2i16: return "MVT::nxv2i16";
  183. case MVT::nxv4i16: return "MVT::nxv4i16";
  184. case MVT::nxv8i16: return "MVT::nxv8i16";
  185. case MVT::nxv16i16: return "MVT::nxv16i16";
  186. case MVT::nxv32i16: return "MVT::nxv32i16";
  187. case MVT::nxv1i32: return "MVT::nxv1i32";
  188. case MVT::nxv2i32: return "MVT::nxv2i32";
  189. case MVT::nxv4i32: return "MVT::nxv4i32";
  190. case MVT::nxv8i32: return "MVT::nxv8i32";
  191. case MVT::nxv16i32: return "MVT::nxv16i32";
  192. case MVT::nxv32i32: return "MVT::nxv32i32";
  193. case MVT::nxv1i64: return "MVT::nxv1i64";
  194. case MVT::nxv2i64: return "MVT::nxv2i64";
  195. case MVT::nxv4i64: return "MVT::nxv4i64";
  196. case MVT::nxv8i64: return "MVT::nxv8i64";
  197. case MVT::nxv16i64: return "MVT::nxv16i64";
  198. case MVT::nxv32i64: return "MVT::nxv32i64";
  199. case MVT::nxv1f16: return "MVT::nxv1f16";
  200. case MVT::nxv2f16: return "MVT::nxv2f16";
  201. case MVT::nxv4f16: return "MVT::nxv4f16";
  202. case MVT::nxv8f16: return "MVT::nxv8f16";
  203. case MVT::nxv16f16: return "MVT::nxv16f16";
  204. case MVT::nxv32f16: return "MVT::nxv32f16";
  205. case MVT::nxv2bf16: return "MVT::nxv2bf16";
  206. case MVT::nxv4bf16: return "MVT::nxv4bf16";
  207. case MVT::nxv8bf16: return "MVT::nxv8bf16";
  208. case MVT::nxv1f32: return "MVT::nxv1f32";
  209. case MVT::nxv2f32: return "MVT::nxv2f32";
  210. case MVT::nxv4f32: return "MVT::nxv4f32";
  211. case MVT::nxv8f32: return "MVT::nxv8f32";
  212. case MVT::nxv16f32: return "MVT::nxv16f32";
  213. case MVT::nxv1f64: return "MVT::nxv1f64";
  214. case MVT::nxv2f64: return "MVT::nxv2f64";
  215. case MVT::nxv4f64: return "MVT::nxv4f64";
  216. case MVT::nxv8f64: return "MVT::nxv8f64";
  217. case MVT::token: return "MVT::token";
  218. case MVT::Metadata: return "MVT::Metadata";
  219. case MVT::iPTR: return "MVT::iPTR";
  220. case MVT::iPTRAny: return "MVT::iPTRAny";
  221. case MVT::Untyped: return "MVT::Untyped";
  222. case MVT::funcref: return "MVT::funcref";
  223. case MVT::externref: return "MVT::externref";
  224. default: llvm_unreachable("ILLEGAL VALUE TYPE!");
  225. }
  226. }
  227. /// getQualifiedName - Return the name of the specified record, with a
  228. /// namespace qualifier if the record contains one.
  229. ///
  230. std::string llvm::getQualifiedName(const Record *R) {
  231. std::string Namespace;
  232. if (R->getValue("Namespace"))
  233. Namespace = std::string(R->getValueAsString("Namespace"));
  234. if (Namespace.empty())
  235. return std::string(R->getName());
  236. return Namespace + "::" + R->getName().str();
  237. }
  238. /// getTarget - Return the current instance of the Target class.
  239. ///
  240. CodeGenTarget::CodeGenTarget(RecordKeeper &records)
  241. : Records(records), CGH(records) {
  242. std::vector<Record*> Targets = Records.getAllDerivedDefinitions("Target");
  243. if (Targets.size() == 0)
  244. PrintFatalError("ERROR: No 'Target' subclasses defined!");
  245. if (Targets.size() != 1)
  246. PrintFatalError("ERROR: Multiple subclasses of Target defined!");
  247. TargetRec = Targets[0];
  248. }
  249. CodeGenTarget::~CodeGenTarget() {
  250. }
  251. StringRef CodeGenTarget::getName() const { return TargetRec->getName(); }
  252. /// getInstNamespace - Find and return the target machine's instruction
  253. /// namespace. The namespace is cached because it is requested multiple times.
  254. StringRef CodeGenTarget::getInstNamespace() const {
  255. if (InstNamespace.empty()) {
  256. for (const CodeGenInstruction *Inst : getInstructionsByEnumValue()) {
  257. // We are not interested in the "TargetOpcode" namespace.
  258. if (Inst->Namespace != "TargetOpcode") {
  259. InstNamespace = Inst->Namespace;
  260. break;
  261. }
  262. }
  263. }
  264. return InstNamespace;
  265. }
  266. StringRef CodeGenTarget::getRegNamespace() const {
  267. auto &RegClasses = RegBank->getRegClasses();
  268. return RegClasses.size() > 0 ? RegClasses.front().Namespace : "";
  269. }
  270. Record *CodeGenTarget::getInstructionSet() const {
  271. return TargetRec->getValueAsDef("InstructionSet");
  272. }
  273. bool CodeGenTarget::getAllowRegisterRenaming() const {
  274. return TargetRec->getValueAsInt("AllowRegisterRenaming");
  275. }
  276. /// getAsmParser - Return the AssemblyParser definition for this target.
  277. ///
  278. Record *CodeGenTarget::getAsmParser() const {
  279. std::vector<Record*> LI = TargetRec->getValueAsListOfDefs("AssemblyParsers");
  280. if (AsmParserNum >= LI.size())
  281. PrintFatalError("Target does not have an AsmParser #" +
  282. Twine(AsmParserNum) + "!");
  283. return LI[AsmParserNum];
  284. }
  285. /// getAsmParserVariant - Return the AssemblyParserVariant definition for
  286. /// this target.
  287. ///
  288. Record *CodeGenTarget::getAsmParserVariant(unsigned i) const {
  289. std::vector<Record*> LI =
  290. TargetRec->getValueAsListOfDefs("AssemblyParserVariants");
  291. if (i >= LI.size())
  292. PrintFatalError("Target does not have an AsmParserVariant #" + Twine(i) +
  293. "!");
  294. return LI[i];
  295. }
  296. /// getAsmParserVariantCount - Return the AssemblyParserVariant definition
  297. /// available for this target.
  298. ///
  299. unsigned CodeGenTarget::getAsmParserVariantCount() const {
  300. std::vector<Record*> LI =
  301. TargetRec->getValueAsListOfDefs("AssemblyParserVariants");
  302. return LI.size();
  303. }
  304. /// getAsmWriter - Return the AssemblyWriter definition for this target.
  305. ///
  306. Record *CodeGenTarget::getAsmWriter() const {
  307. std::vector<Record*> LI = TargetRec->getValueAsListOfDefs("AssemblyWriters");
  308. if (AsmWriterNum >= LI.size())
  309. PrintFatalError("Target does not have an AsmWriter #" +
  310. Twine(AsmWriterNum) + "!");
  311. return LI[AsmWriterNum];
  312. }
  313. CodeGenRegBank &CodeGenTarget::getRegBank() const {
  314. if (!RegBank)
  315. RegBank = std::make_unique<CodeGenRegBank>(Records, getHwModes());
  316. return *RegBank;
  317. }
  318. Optional<CodeGenRegisterClass *>
  319. CodeGenTarget::getSuperRegForSubReg(const ValueTypeByHwMode &ValueTy,
  320. CodeGenRegBank &RegBank,
  321. const CodeGenSubRegIndex *SubIdx,
  322. bool MustBeAllocatable) const {
  323. std::vector<CodeGenRegisterClass *> Candidates;
  324. auto &RegClasses = RegBank.getRegClasses();
  325. // Try to find a register class which supports ValueTy, and also contains
  326. // SubIdx.
  327. for (CodeGenRegisterClass &RC : RegClasses) {
  328. // Is there a subclass of this class which contains this subregister index?
  329. CodeGenRegisterClass *SubClassWithSubReg = RC.getSubClassWithSubReg(SubIdx);
  330. if (!SubClassWithSubReg)
  331. continue;
  332. // We have a class. Check if it supports this value type.
  333. if (!llvm::is_contained(SubClassWithSubReg->VTs, ValueTy))
  334. continue;
  335. // If necessary, check that it is allocatable.
  336. if (MustBeAllocatable && !SubClassWithSubReg->Allocatable)
  337. continue;
  338. // We have a register class which supports both the value type and
  339. // subregister index. Remember it.
  340. Candidates.push_back(SubClassWithSubReg);
  341. }
  342. // If we didn't find anything, we're done.
  343. if (Candidates.empty())
  344. return None;
  345. // Find and return the largest of our candidate classes.
  346. llvm::stable_sort(Candidates, [&](const CodeGenRegisterClass *A,
  347. const CodeGenRegisterClass *B) {
  348. if (A->getMembers().size() > B->getMembers().size())
  349. return true;
  350. if (A->getMembers().size() < B->getMembers().size())
  351. return false;
  352. // Order by name as a tie-breaker.
  353. return StringRef(A->getName()) < B->getName();
  354. });
  355. return Candidates[0];
  356. }
  357. void CodeGenTarget::ReadRegAltNameIndices() const {
  358. RegAltNameIndices = Records.getAllDerivedDefinitions("RegAltNameIndex");
  359. llvm::sort(RegAltNameIndices, LessRecord());
  360. }
  361. /// getRegisterByName - If there is a register with the specific AsmName,
  362. /// return it.
  363. const CodeGenRegister *CodeGenTarget::getRegisterByName(StringRef Name) const {
  364. return getRegBank().getRegistersByName().lookup(Name);
  365. }
  366. std::vector<ValueTypeByHwMode> CodeGenTarget::getRegisterVTs(Record *R)
  367. const {
  368. const CodeGenRegister *Reg = getRegBank().getReg(R);
  369. std::vector<ValueTypeByHwMode> Result;
  370. for (const auto &RC : getRegBank().getRegClasses()) {
  371. if (RC.contains(Reg)) {
  372. ArrayRef<ValueTypeByHwMode> InVTs = RC.getValueTypes();
  373. llvm::append_range(Result, InVTs);
  374. }
  375. }
  376. // Remove duplicates.
  377. llvm::sort(Result);
  378. Result.erase(std::unique(Result.begin(), Result.end()), Result.end());
  379. return Result;
  380. }
  381. void CodeGenTarget::ReadLegalValueTypes() const {
  382. for (const auto &RC : getRegBank().getRegClasses())
  383. llvm::append_range(LegalValueTypes, RC.VTs);
  384. // Remove duplicates.
  385. llvm::sort(LegalValueTypes);
  386. LegalValueTypes.erase(std::unique(LegalValueTypes.begin(),
  387. LegalValueTypes.end()),
  388. LegalValueTypes.end());
  389. }
  390. CodeGenSchedModels &CodeGenTarget::getSchedModels() const {
  391. if (!SchedModels)
  392. SchedModels = std::make_unique<CodeGenSchedModels>(Records, *this);
  393. return *SchedModels;
  394. }
  395. void CodeGenTarget::ReadInstructions() const {
  396. std::vector<Record*> Insts = Records.getAllDerivedDefinitions("Instruction");
  397. if (Insts.size() <= 2)
  398. PrintFatalError("No 'Instruction' subclasses defined!");
  399. // Parse the instructions defined in the .td file.
  400. for (unsigned i = 0, e = Insts.size(); i != e; ++i)
  401. Instructions[Insts[i]] = std::make_unique<CodeGenInstruction>(Insts[i]);
  402. }
  403. static const CodeGenInstruction *
  404. GetInstByName(const char *Name,
  405. const DenseMap<const Record*,
  406. std::unique_ptr<CodeGenInstruction>> &Insts,
  407. RecordKeeper &Records) {
  408. const Record *Rec = Records.getDef(Name);
  409. const auto I = Insts.find(Rec);
  410. if (!Rec || I == Insts.end())
  411. PrintFatalError(Twine("Could not find '") + Name + "' instruction!");
  412. return I->second.get();
  413. }
  414. static const char *const FixedInstrs[] = {
  415. #define HANDLE_TARGET_OPCODE(OPC) #OPC,
  416. #include "llvm/Support/TargetOpcodes.def"
  417. nullptr};
  418. unsigned CodeGenTarget::getNumFixedInstructions() {
  419. return array_lengthof(FixedInstrs) - 1;
  420. }
  421. /// Return all of the instructions defined by the target, ordered by
  422. /// their enum value.
  423. void CodeGenTarget::ComputeInstrsByEnum() const {
  424. const auto &Insts = getInstructions();
  425. for (const char *const *p = FixedInstrs; *p; ++p) {
  426. const CodeGenInstruction *Instr = GetInstByName(*p, Insts, Records);
  427. assert(Instr && "Missing target independent instruction");
  428. assert(Instr->Namespace == "TargetOpcode" && "Bad namespace");
  429. InstrsByEnum.push_back(Instr);
  430. }
  431. unsigned EndOfPredefines = InstrsByEnum.size();
  432. assert(EndOfPredefines == getNumFixedInstructions() &&
  433. "Missing generic opcode");
  434. for (const auto &I : Insts) {
  435. const CodeGenInstruction *CGI = I.second.get();
  436. if (CGI->Namespace != "TargetOpcode") {
  437. InstrsByEnum.push_back(CGI);
  438. if (CGI->TheDef->getValueAsBit("isPseudo"))
  439. ++NumPseudoInstructions;
  440. }
  441. }
  442. assert(InstrsByEnum.size() == Insts.size() && "Missing predefined instr");
  443. // All of the instructions are now in random order based on the map iteration.
  444. llvm::sort(
  445. InstrsByEnum.begin() + EndOfPredefines, InstrsByEnum.end(),
  446. [](const CodeGenInstruction *Rec1, const CodeGenInstruction *Rec2) {
  447. const auto &D1 = *Rec1->TheDef;
  448. const auto &D2 = *Rec2->TheDef;
  449. return std::make_tuple(!D1.getValueAsBit("isPseudo"), D1.getName()) <
  450. std::make_tuple(!D2.getValueAsBit("isPseudo"), D2.getName());
  451. });
  452. }
  453. /// isLittleEndianEncoding - Return whether this target encodes its instruction
  454. /// in little-endian format, i.e. bits laid out in the order [0..n]
  455. ///
  456. bool CodeGenTarget::isLittleEndianEncoding() const {
  457. return getInstructionSet()->getValueAsBit("isLittleEndianEncoding");
  458. }
  459. /// reverseBitsForLittleEndianEncoding - For little-endian instruction bit
  460. /// encodings, reverse the bit order of all instructions.
  461. void CodeGenTarget::reverseBitsForLittleEndianEncoding() {
  462. if (!isLittleEndianEncoding())
  463. return;
  464. std::vector<Record *> Insts =
  465. Records.getAllDerivedDefinitions("InstructionEncoding");
  466. for (Record *R : Insts) {
  467. if (R->getValueAsString("Namespace") == "TargetOpcode" ||
  468. R->getValueAsBit("isPseudo"))
  469. continue;
  470. BitsInit *BI = R->getValueAsBitsInit("Inst");
  471. unsigned numBits = BI->getNumBits();
  472. SmallVector<Init *, 16> NewBits(numBits);
  473. for (unsigned bit = 0, end = numBits / 2; bit != end; ++bit) {
  474. unsigned bitSwapIdx = numBits - bit - 1;
  475. Init *OrigBit = BI->getBit(bit);
  476. Init *BitSwap = BI->getBit(bitSwapIdx);
  477. NewBits[bit] = BitSwap;
  478. NewBits[bitSwapIdx] = OrigBit;
  479. }
  480. if (numBits % 2) {
  481. unsigned middle = (numBits + 1) / 2;
  482. NewBits[middle] = BI->getBit(middle);
  483. }
  484. BitsInit *NewBI = BitsInit::get(NewBits);
  485. // Update the bits in reversed order so that emitInstrOpBits will get the
  486. // correct endianness.
  487. R->getValue("Inst")->setValue(NewBI);
  488. }
  489. }
  490. /// guessInstructionProperties - Return true if it's OK to guess instruction
  491. /// properties instead of raising an error.
  492. ///
  493. /// This is configurable as a temporary migration aid. It will eventually be
  494. /// permanently false.
  495. bool CodeGenTarget::guessInstructionProperties() const {
  496. return getInstructionSet()->getValueAsBit("guessInstructionProperties");
  497. }
  498. //===----------------------------------------------------------------------===//
  499. // ComplexPattern implementation
  500. //
  501. ComplexPattern::ComplexPattern(Record *R) {
  502. Ty = ::getValueType(R->getValueAsDef("Ty"));
  503. NumOperands = R->getValueAsInt("NumOperands");
  504. SelectFunc = std::string(R->getValueAsString("SelectFunc"));
  505. RootNodes = R->getValueAsListOfDefs("RootNodes");
  506. // FIXME: This is a hack to statically increase the priority of patterns which
  507. // maps a sub-dag to a complex pattern. e.g. favors LEA over ADD. To get best
  508. // possible pattern match we'll need to dynamically calculate the complexity
  509. // of all patterns a dag can potentially map to.
  510. int64_t RawComplexity = R->getValueAsInt("Complexity");
  511. if (RawComplexity == -1)
  512. Complexity = NumOperands * 3;
  513. else
  514. Complexity = RawComplexity;
  515. // FIXME: Why is this different from parseSDPatternOperatorProperties?
  516. // Parse the properties.
  517. Properties = 0;
  518. std::vector<Record*> PropList = R->getValueAsListOfDefs("Properties");
  519. for (unsigned i = 0, e = PropList.size(); i != e; ++i)
  520. if (PropList[i]->getName() == "SDNPHasChain") {
  521. Properties |= 1 << SDNPHasChain;
  522. } else if (PropList[i]->getName() == "SDNPOptInGlue") {
  523. Properties |= 1 << SDNPOptInGlue;
  524. } else if (PropList[i]->getName() == "SDNPMayStore") {
  525. Properties |= 1 << SDNPMayStore;
  526. } else if (PropList[i]->getName() == "SDNPMayLoad") {
  527. Properties |= 1 << SDNPMayLoad;
  528. } else if (PropList[i]->getName() == "SDNPSideEffect") {
  529. Properties |= 1 << SDNPSideEffect;
  530. } else if (PropList[i]->getName() == "SDNPMemOperand") {
  531. Properties |= 1 << SDNPMemOperand;
  532. } else if (PropList[i]->getName() == "SDNPVariadic") {
  533. Properties |= 1 << SDNPVariadic;
  534. } else if (PropList[i]->getName() == "SDNPWantRoot") {
  535. Properties |= 1 << SDNPWantRoot;
  536. } else if (PropList[i]->getName() == "SDNPWantParent") {
  537. Properties |= 1 << SDNPWantParent;
  538. } else {
  539. PrintFatalError(R->getLoc(), "Unsupported SD Node property '" +
  540. PropList[i]->getName() +
  541. "' on ComplexPattern '" + R->getName() +
  542. "'!");
  543. }
  544. }
  545. //===----------------------------------------------------------------------===//
  546. // CodeGenIntrinsic Implementation
  547. //===----------------------------------------------------------------------===//
  548. CodeGenIntrinsicTable::CodeGenIntrinsicTable(const RecordKeeper &RC) {
  549. std::vector<Record *> IntrProperties =
  550. RC.getAllDerivedDefinitions("IntrinsicProperty");
  551. std::vector<Record *> DefaultProperties;
  552. for (Record *Rec : IntrProperties)
  553. if (Rec->getValueAsBit("IsDefault"))
  554. DefaultProperties.push_back(Rec);
  555. std::vector<Record *> Defs = RC.getAllDerivedDefinitions("Intrinsic");
  556. Intrinsics.reserve(Defs.size());
  557. for (unsigned I = 0, e = Defs.size(); I != e; ++I)
  558. Intrinsics.push_back(CodeGenIntrinsic(Defs[I], DefaultProperties));
  559. llvm::sort(Intrinsics,
  560. [](const CodeGenIntrinsic &LHS, const CodeGenIntrinsic &RHS) {
  561. return std::tie(LHS.TargetPrefix, LHS.Name) <
  562. std::tie(RHS.TargetPrefix, RHS.Name);
  563. });
  564. Targets.push_back({"", 0, 0});
  565. for (size_t I = 0, E = Intrinsics.size(); I < E; ++I)
  566. if (Intrinsics[I].TargetPrefix != Targets.back().Name) {
  567. Targets.back().Count = I - Targets.back().Offset;
  568. Targets.push_back({Intrinsics[I].TargetPrefix, I, 0});
  569. }
  570. Targets.back().Count = Intrinsics.size() - Targets.back().Offset;
  571. }
  572. CodeGenIntrinsic::CodeGenIntrinsic(Record *R,
  573. std::vector<Record *> DefaultProperties) {
  574. TheDef = R;
  575. std::string DefName = std::string(R->getName());
  576. ArrayRef<SMLoc> DefLoc = R->getLoc();
  577. ModRef = ReadWriteMem;
  578. Properties = 0;
  579. isOverloaded = false;
  580. isCommutative = false;
  581. canThrow = false;
  582. isNoReturn = false;
  583. isNoSync = false;
  584. isNoFree = false;
  585. isWillReturn = false;
  586. isCold = false;
  587. isNoDuplicate = false;
  588. isConvergent = false;
  589. isSpeculatable = false;
  590. hasSideEffects = false;
  591. if (DefName.size() <= 4 ||
  592. std::string(DefName.begin(), DefName.begin() + 4) != "int_")
  593. PrintFatalError(DefLoc,
  594. "Intrinsic '" + DefName + "' does not start with 'int_'!");
  595. EnumName = std::string(DefName.begin()+4, DefName.end());
  596. if (R->getValue("GCCBuiltinName")) // Ignore a missing GCCBuiltinName field.
  597. GCCBuiltinName = std::string(R->getValueAsString("GCCBuiltinName"));
  598. if (R->getValue("MSBuiltinName")) // Ignore a missing MSBuiltinName field.
  599. MSBuiltinName = std::string(R->getValueAsString("MSBuiltinName"));
  600. TargetPrefix = std::string(R->getValueAsString("TargetPrefix"));
  601. Name = std::string(R->getValueAsString("LLVMName"));
  602. if (Name == "") {
  603. // If an explicit name isn't specified, derive one from the DefName.
  604. Name = "llvm.";
  605. for (unsigned i = 0, e = EnumName.size(); i != e; ++i)
  606. Name += (EnumName[i] == '_') ? '.' : EnumName[i];
  607. } else {
  608. // Verify it starts with "llvm.".
  609. if (Name.size() <= 5 ||
  610. std::string(Name.begin(), Name.begin() + 5) != "llvm.")
  611. PrintFatalError(DefLoc, "Intrinsic '" + DefName +
  612. "'s name does not start with 'llvm.'!");
  613. }
  614. // If TargetPrefix is specified, make sure that Name starts with
  615. // "llvm.<targetprefix>.".
  616. if (!TargetPrefix.empty()) {
  617. if (Name.size() < 6+TargetPrefix.size() ||
  618. std::string(Name.begin() + 5, Name.begin() + 6 + TargetPrefix.size())
  619. != (TargetPrefix + "."))
  620. PrintFatalError(DefLoc, "Intrinsic '" + DefName +
  621. "' does not start with 'llvm." +
  622. TargetPrefix + ".'!");
  623. }
  624. ListInit *RetTypes = R->getValueAsListInit("RetTypes");
  625. ListInit *ParamTypes = R->getValueAsListInit("ParamTypes");
  626. // First collate a list of overloaded types.
  627. std::vector<MVT::SimpleValueType> OverloadedVTs;
  628. for (ListInit *TypeList : {RetTypes, ParamTypes}) {
  629. for (unsigned i = 0, e = TypeList->size(); i != e; ++i) {
  630. Record *TyEl = TypeList->getElementAsRecord(i);
  631. assert(TyEl->isSubClassOf("LLVMType") && "Expected a type!");
  632. if (TyEl->isSubClassOf("LLVMMatchType"))
  633. continue;
  634. MVT::SimpleValueType VT = getValueType(TyEl->getValueAsDef("VT"));
  635. if (MVT(VT).isOverloaded()) {
  636. OverloadedVTs.push_back(VT);
  637. isOverloaded = true;
  638. }
  639. }
  640. }
  641. // Parse the list of return types.
  642. ListInit *TypeList = RetTypes;
  643. for (unsigned i = 0, e = TypeList->size(); i != e; ++i) {
  644. Record *TyEl = TypeList->getElementAsRecord(i);
  645. assert(TyEl->isSubClassOf("LLVMType") && "Expected a type!");
  646. MVT::SimpleValueType VT;
  647. if (TyEl->isSubClassOf("LLVMMatchType")) {
  648. unsigned MatchTy = TyEl->getValueAsInt("Number");
  649. assert(MatchTy < OverloadedVTs.size() &&
  650. "Invalid matching number!");
  651. VT = OverloadedVTs[MatchTy];
  652. // It only makes sense to use the extended and truncated vector element
  653. // variants with iAny types; otherwise, if the intrinsic is not
  654. // overloaded, all the types can be specified directly.
  655. assert(((!TyEl->isSubClassOf("LLVMExtendedType") &&
  656. !TyEl->isSubClassOf("LLVMTruncatedType")) ||
  657. VT == MVT::iAny || VT == MVT::vAny) &&
  658. "Expected iAny or vAny type");
  659. } else {
  660. VT = getValueType(TyEl->getValueAsDef("VT"));
  661. }
  662. // Reject invalid types.
  663. if (VT == MVT::isVoid)
  664. PrintFatalError(DefLoc, "Intrinsic '" + DefName +
  665. " has void in result type list!");
  666. IS.RetVTs.push_back(VT);
  667. IS.RetTypeDefs.push_back(TyEl);
  668. }
  669. // Parse the list of parameter types.
  670. TypeList = ParamTypes;
  671. for (unsigned i = 0, e = TypeList->size(); i != e; ++i) {
  672. Record *TyEl = TypeList->getElementAsRecord(i);
  673. assert(TyEl->isSubClassOf("LLVMType") && "Expected a type!");
  674. MVT::SimpleValueType VT;
  675. if (TyEl->isSubClassOf("LLVMMatchType")) {
  676. unsigned MatchTy = TyEl->getValueAsInt("Number");
  677. if (MatchTy >= OverloadedVTs.size()) {
  678. PrintError(R->getLoc(),
  679. "Parameter #" + Twine(i) + " has out of bounds matching "
  680. "number " + Twine(MatchTy));
  681. PrintFatalError(DefLoc,
  682. Twine("ParamTypes is ") + TypeList->getAsString());
  683. }
  684. VT = OverloadedVTs[MatchTy];
  685. // It only makes sense to use the extended and truncated vector element
  686. // variants with iAny types; otherwise, if the intrinsic is not
  687. // overloaded, all the types can be specified directly.
  688. assert(((!TyEl->isSubClassOf("LLVMExtendedType") &&
  689. !TyEl->isSubClassOf("LLVMTruncatedType")) ||
  690. VT == MVT::iAny || VT == MVT::vAny) &&
  691. "Expected iAny or vAny type");
  692. } else
  693. VT = getValueType(TyEl->getValueAsDef("VT"));
  694. // Reject invalid types.
  695. if (VT == MVT::isVoid && i != e-1 /*void at end means varargs*/)
  696. PrintFatalError(DefLoc, "Intrinsic '" + DefName +
  697. " has void in result type list!");
  698. IS.ParamVTs.push_back(VT);
  699. IS.ParamTypeDefs.push_back(TyEl);
  700. }
  701. // Parse the intrinsic properties.
  702. ListInit *PropList = R->getValueAsListInit("IntrProperties");
  703. for (unsigned i = 0, e = PropList->size(); i != e; ++i) {
  704. Record *Property = PropList->getElementAsRecord(i);
  705. assert(Property->isSubClassOf("IntrinsicProperty") &&
  706. "Expected a property!");
  707. setProperty(Property);
  708. }
  709. // Set default properties to true.
  710. setDefaultProperties(R, DefaultProperties);
  711. // Also record the SDPatternOperator Properties.
  712. Properties = parseSDPatternOperatorProperties(R);
  713. // Sort the argument attributes for later benefit.
  714. llvm::sort(ArgumentAttributes);
  715. }
  716. void CodeGenIntrinsic::setDefaultProperties(
  717. Record *R, std::vector<Record *> DefaultProperties) {
  718. // opt-out of using default attributes.
  719. if (R->getValueAsBit("DisableDefaultAttributes"))
  720. return;
  721. for (Record *Rec : DefaultProperties)
  722. setProperty(Rec);
  723. }
  724. void CodeGenIntrinsic::setProperty(Record *R) {
  725. if (R->getName() == "IntrNoMem")
  726. ModRef = NoMem;
  727. else if (R->getName() == "IntrReadMem") {
  728. if (!(ModRef & MR_Ref))
  729. PrintFatalError(TheDef->getLoc(),
  730. Twine("IntrReadMem cannot be used after IntrNoMem or "
  731. "IntrWriteMem. Default is ReadWrite"));
  732. ModRef = ModRefBehavior(ModRef & ~MR_Mod);
  733. } else if (R->getName() == "IntrWriteMem") {
  734. if (!(ModRef & MR_Mod))
  735. PrintFatalError(TheDef->getLoc(),
  736. Twine("IntrWriteMem cannot be used after IntrNoMem or "
  737. "IntrReadMem. Default is ReadWrite"));
  738. ModRef = ModRefBehavior(ModRef & ~MR_Ref);
  739. } else if (R->getName() == "IntrArgMemOnly")
  740. ModRef = ModRefBehavior((ModRef & ~MR_Anywhere) | MR_ArgMem);
  741. else if (R->getName() == "IntrInaccessibleMemOnly")
  742. ModRef = ModRefBehavior((ModRef & ~MR_Anywhere) | MR_InaccessibleMem);
  743. else if (R->getName() == "IntrInaccessibleMemOrArgMemOnly")
  744. ModRef = ModRefBehavior((ModRef & ~MR_Anywhere) | MR_ArgMem |
  745. MR_InaccessibleMem);
  746. else if (R->getName() == "Commutative")
  747. isCommutative = true;
  748. else if (R->getName() == "Throws")
  749. canThrow = true;
  750. else if (R->getName() == "IntrNoDuplicate")
  751. isNoDuplicate = true;
  752. else if (R->getName() == "IntrConvergent")
  753. isConvergent = true;
  754. else if (R->getName() == "IntrNoReturn")
  755. isNoReturn = true;
  756. else if (R->getName() == "IntrNoSync")
  757. isNoSync = true;
  758. else if (R->getName() == "IntrNoFree")
  759. isNoFree = true;
  760. else if (R->getName() == "IntrWillReturn")
  761. isWillReturn = !isNoReturn;
  762. else if (R->getName() == "IntrCold")
  763. isCold = true;
  764. else if (R->getName() == "IntrSpeculatable")
  765. isSpeculatable = true;
  766. else if (R->getName() == "IntrHasSideEffects")
  767. hasSideEffects = true;
  768. else if (R->isSubClassOf("NoCapture")) {
  769. unsigned ArgNo = R->getValueAsInt("ArgNo");
  770. ArgumentAttributes.emplace_back(ArgNo, NoCapture, 0);
  771. } else if (R->isSubClassOf("NoAlias")) {
  772. unsigned ArgNo = R->getValueAsInt("ArgNo");
  773. ArgumentAttributes.emplace_back(ArgNo, NoAlias, 0);
  774. } else if (R->isSubClassOf("NoUndef")) {
  775. unsigned ArgNo = R->getValueAsInt("ArgNo");
  776. ArgumentAttributes.emplace_back(ArgNo, NoUndef, 0);
  777. } else if (R->isSubClassOf("Returned")) {
  778. unsigned ArgNo = R->getValueAsInt("ArgNo");
  779. ArgumentAttributes.emplace_back(ArgNo, Returned, 0);
  780. } else if (R->isSubClassOf("ReadOnly")) {
  781. unsigned ArgNo = R->getValueAsInt("ArgNo");
  782. ArgumentAttributes.emplace_back(ArgNo, ReadOnly, 0);
  783. } else if (R->isSubClassOf("WriteOnly")) {
  784. unsigned ArgNo = R->getValueAsInt("ArgNo");
  785. ArgumentAttributes.emplace_back(ArgNo, WriteOnly, 0);
  786. } else if (R->isSubClassOf("ReadNone")) {
  787. unsigned ArgNo = R->getValueAsInt("ArgNo");
  788. ArgumentAttributes.emplace_back(ArgNo, ReadNone, 0);
  789. } else if (R->isSubClassOf("ImmArg")) {
  790. unsigned ArgNo = R->getValueAsInt("ArgNo");
  791. ArgumentAttributes.emplace_back(ArgNo, ImmArg, 0);
  792. } else if (R->isSubClassOf("Align")) {
  793. unsigned ArgNo = R->getValueAsInt("ArgNo");
  794. uint64_t Align = R->getValueAsInt("Align");
  795. ArgumentAttributes.emplace_back(ArgNo, Alignment, Align);
  796. } else
  797. llvm_unreachable("Unknown property!");
  798. }
  799. bool CodeGenIntrinsic::isParamAPointer(unsigned ParamIdx) const {
  800. if (ParamIdx >= IS.ParamVTs.size())
  801. return false;
  802. MVT ParamType = MVT(IS.ParamVTs[ParamIdx]);
  803. return ParamType == MVT::iPTR || ParamType == MVT::iPTRAny;
  804. }
  805. bool CodeGenIntrinsic::isParamImmArg(unsigned ParamIdx) const {
  806. // Convert argument index to attribute index starting from `FirstArgIndex`.
  807. ArgAttribute Val{ParamIdx + 1, ImmArg, 0};
  808. return std::binary_search(ArgumentAttributes.begin(),
  809. ArgumentAttributes.end(), Val);
  810. }