IRSymtab.cpp 14 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413
  1. //===- IRSymtab.cpp - implementation of IR symbol tables ------------------===//
  2. //
  3. // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
  4. // See https://llvm.org/LICENSE.txt for license information.
  5. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
  6. //
  7. //===----------------------------------------------------------------------===//
  8. #include "llvm/Object/IRSymtab.h"
  9. #include "llvm/ADT/ArrayRef.h"
  10. #include "llvm/ADT/DenseMap.h"
  11. #include "llvm/ADT/SmallPtrSet.h"
  12. #include "llvm/ADT/SmallString.h"
  13. #include "llvm/ADT/SmallVector.h"
  14. #include "llvm/ADT/StringRef.h"
  15. #include "llvm/ADT/Triple.h"
  16. #include "llvm/Config/llvm-config.h"
  17. #include "llvm/IR/Comdat.h"
  18. #include "llvm/IR/DataLayout.h"
  19. #include "llvm/IR/GlobalAlias.h"
  20. #include "llvm/IR/GlobalObject.h"
  21. #include "llvm/IR/Mangler.h"
  22. #include "llvm/IR/Metadata.h"
  23. #include "llvm/IR/Module.h"
  24. #include "llvm/Bitcode/BitcodeReader.h"
  25. #include "llvm/MC/StringTableBuilder.h"
  26. #include "llvm/Object/IRObjectFile.h"
  27. #include "llvm/Object/ModuleSymbolTable.h"
  28. #include "llvm/Object/SymbolicFile.h"
  29. #include "llvm/Support/Allocator.h"
  30. #include "llvm/Support/Casting.h"
  31. #include "llvm/Support/Error.h"
  32. #include "llvm/Support/StringSaver.h"
  33. #include "llvm/Support/VCSRevision.h"
  34. #include "llvm/Support/raw_ostream.h"
  35. #include <cassert>
  36. #include <string>
  37. #include <utility>
  38. #include <vector>
  39. using namespace llvm;
  40. using namespace irsymtab;
  41. static const char *LibcallRoutineNames[] = {
  42. #define HANDLE_LIBCALL(code, name) name,
  43. #include "llvm/IR/RuntimeLibcalls.def"
  44. #undef HANDLE_LIBCALL
  45. };
  46. namespace {
  47. const char *getExpectedProducerName() {
  48. static char DefaultName[] = LLVM_VERSION_STRING
  49. #ifdef LLVM_REVISION
  50. " " LLVM_REVISION
  51. #endif
  52. ;
  53. // Allows for testing of the irsymtab writer and upgrade mechanism. This
  54. // environment variable should not be set by users.
  55. if (char *OverrideName = getenv("LLVM_OVERRIDE_PRODUCER"))
  56. return OverrideName;
  57. return DefaultName;
  58. }
  59. const char *kExpectedProducerName = getExpectedProducerName();
  60. /// Stores the temporary state that is required to build an IR symbol table.
  61. struct Builder {
  62. SmallVector<char, 0> &Symtab;
  63. StringTableBuilder &StrtabBuilder;
  64. StringSaver Saver;
  65. // This ctor initializes a StringSaver using the passed in BumpPtrAllocator.
  66. // The StringTableBuilder does not create a copy of any strings added to it,
  67. // so this provides somewhere to store any strings that we create.
  68. Builder(SmallVector<char, 0> &Symtab, StringTableBuilder &StrtabBuilder,
  69. BumpPtrAllocator &Alloc)
  70. : Symtab(Symtab), StrtabBuilder(StrtabBuilder), Saver(Alloc) {}
  71. DenseMap<const Comdat *, int> ComdatMap;
  72. Mangler Mang;
  73. Triple TT;
  74. std::vector<storage::Comdat> Comdats;
  75. std::vector<storage::Module> Mods;
  76. std::vector<storage::Symbol> Syms;
  77. std::vector<storage::Uncommon> Uncommons;
  78. std::string COFFLinkerOpts;
  79. raw_string_ostream COFFLinkerOptsOS{COFFLinkerOpts};
  80. std::vector<storage::Str> DependentLibraries;
  81. void setStr(storage::Str &S, StringRef Value) {
  82. S.Offset = StrtabBuilder.add(Value);
  83. S.Size = Value.size();
  84. }
  85. template <typename T>
  86. void writeRange(storage::Range<T> &R, const std::vector<T> &Objs) {
  87. R.Offset = Symtab.size();
  88. R.Size = Objs.size();
  89. Symtab.insert(Symtab.end(), reinterpret_cast<const char *>(Objs.data()),
  90. reinterpret_cast<const char *>(Objs.data() + Objs.size()));
  91. }
  92. Expected<int> getComdatIndex(const Comdat *C, const Module *M);
  93. Error addModule(Module *M);
  94. Error addSymbol(const ModuleSymbolTable &Msymtab,
  95. const SmallPtrSet<GlobalValue *, 8> &Used,
  96. ModuleSymbolTable::Symbol Sym);
  97. Error build(ArrayRef<Module *> Mods);
  98. };
  99. Error Builder::addModule(Module *M) {
  100. if (M->getDataLayoutStr().empty())
  101. return make_error<StringError>("input module has no datalayout",
  102. inconvertibleErrorCode());
  103. SmallPtrSet<GlobalValue *, 8> Used;
  104. collectUsedGlobalVariables(*M, Used, /*CompilerUsed*/ false);
  105. ModuleSymbolTable Msymtab;
  106. Msymtab.addModule(M);
  107. storage::Module Mod;
  108. Mod.Begin = Syms.size();
  109. Mod.End = Syms.size() + Msymtab.symbols().size();
  110. Mod.UncBegin = Uncommons.size();
  111. Mods.push_back(Mod);
  112. if (TT.isOSBinFormatCOFF()) {
  113. if (auto E = M->materializeMetadata())
  114. return E;
  115. if (NamedMDNode *LinkerOptions =
  116. M->getNamedMetadata("llvm.linker.options")) {
  117. for (MDNode *MDOptions : LinkerOptions->operands())
  118. for (const MDOperand &MDOption : cast<MDNode>(MDOptions)->operands())
  119. COFFLinkerOptsOS << " " << cast<MDString>(MDOption)->getString();
  120. }
  121. }
  122. if (TT.isOSBinFormatELF()) {
  123. if (auto E = M->materializeMetadata())
  124. return E;
  125. if (NamedMDNode *N = M->getNamedMetadata("llvm.dependent-libraries")) {
  126. for (MDNode *MDOptions : N->operands()) {
  127. const auto OperandStr =
  128. cast<MDString>(cast<MDNode>(MDOptions)->getOperand(0))->getString();
  129. storage::Str Specifier;
  130. setStr(Specifier, OperandStr);
  131. DependentLibraries.emplace_back(Specifier);
  132. }
  133. }
  134. }
  135. for (ModuleSymbolTable::Symbol Msym : Msymtab.symbols())
  136. if (Error Err = addSymbol(Msymtab, Used, Msym))
  137. return Err;
  138. return Error::success();
  139. }
  140. Expected<int> Builder::getComdatIndex(const Comdat *C, const Module *M) {
  141. auto P = ComdatMap.insert(std::make_pair(C, Comdats.size()));
  142. if (P.second) {
  143. std::string Name;
  144. if (TT.isOSBinFormatCOFF()) {
  145. const GlobalValue *GV = M->getNamedValue(C->getName());
  146. if (!GV)
  147. return make_error<StringError>("Could not find leader",
  148. inconvertibleErrorCode());
  149. // Internal leaders do not affect symbol resolution, therefore they do not
  150. // appear in the symbol table.
  151. if (GV->hasLocalLinkage()) {
  152. P.first->second = -1;
  153. return -1;
  154. }
  155. llvm::raw_string_ostream OS(Name);
  156. Mang.getNameWithPrefix(OS, GV, false);
  157. } else {
  158. Name = std::string(C->getName());
  159. }
  160. storage::Comdat Comdat;
  161. setStr(Comdat.Name, Saver.save(Name));
  162. Comdats.push_back(Comdat);
  163. }
  164. return P.first->second;
  165. }
  166. Error Builder::addSymbol(const ModuleSymbolTable &Msymtab,
  167. const SmallPtrSet<GlobalValue *, 8> &Used,
  168. ModuleSymbolTable::Symbol Msym) {
  169. Syms.emplace_back();
  170. storage::Symbol &Sym = Syms.back();
  171. Sym = {};
  172. storage::Uncommon *Unc = nullptr;
  173. auto Uncommon = [&]() -> storage::Uncommon & {
  174. if (Unc)
  175. return *Unc;
  176. Sym.Flags |= 1 << storage::Symbol::FB_has_uncommon;
  177. Uncommons.emplace_back();
  178. Unc = &Uncommons.back();
  179. *Unc = {};
  180. setStr(Unc->COFFWeakExternFallbackName, "");
  181. setStr(Unc->SectionName, "");
  182. return *Unc;
  183. };
  184. SmallString<64> Name;
  185. {
  186. raw_svector_ostream OS(Name);
  187. Msymtab.printSymbolName(OS, Msym);
  188. }
  189. setStr(Sym.Name, Saver.save(StringRef(Name)));
  190. auto Flags = Msymtab.getSymbolFlags(Msym);
  191. if (Flags & object::BasicSymbolRef::SF_Undefined)
  192. Sym.Flags |= 1 << storage::Symbol::FB_undefined;
  193. if (Flags & object::BasicSymbolRef::SF_Weak)
  194. Sym.Flags |= 1 << storage::Symbol::FB_weak;
  195. if (Flags & object::BasicSymbolRef::SF_Common)
  196. Sym.Flags |= 1 << storage::Symbol::FB_common;
  197. if (Flags & object::BasicSymbolRef::SF_Indirect)
  198. Sym.Flags |= 1 << storage::Symbol::FB_indirect;
  199. if (Flags & object::BasicSymbolRef::SF_Global)
  200. Sym.Flags |= 1 << storage::Symbol::FB_global;
  201. if (Flags & object::BasicSymbolRef::SF_FormatSpecific)
  202. Sym.Flags |= 1 << storage::Symbol::FB_format_specific;
  203. if (Flags & object::BasicSymbolRef::SF_Executable)
  204. Sym.Flags |= 1 << storage::Symbol::FB_executable;
  205. Sym.ComdatIndex = -1;
  206. auto *GV = Msym.dyn_cast<GlobalValue *>();
  207. if (!GV) {
  208. // Undefined module asm symbols act as GC roots and are implicitly used.
  209. if (Flags & object::BasicSymbolRef::SF_Undefined)
  210. Sym.Flags |= 1 << storage::Symbol::FB_used;
  211. setStr(Sym.IRName, "");
  212. return Error::success();
  213. }
  214. setStr(Sym.IRName, GV->getName());
  215. bool IsBuiltinFunc = false;
  216. for (const char *LibcallName : LibcallRoutineNames)
  217. if (GV->getName() == LibcallName)
  218. IsBuiltinFunc = true;
  219. if (Used.count(GV) || IsBuiltinFunc)
  220. Sym.Flags |= 1 << storage::Symbol::FB_used;
  221. if (GV->isThreadLocal())
  222. Sym.Flags |= 1 << storage::Symbol::FB_tls;
  223. if (GV->hasGlobalUnnamedAddr())
  224. Sym.Flags |= 1 << storage::Symbol::FB_unnamed_addr;
  225. if (GV->canBeOmittedFromSymbolTable())
  226. Sym.Flags |= 1 << storage::Symbol::FB_may_omit;
  227. Sym.Flags |= unsigned(GV->getVisibility()) << storage::Symbol::FB_visibility;
  228. if (Flags & object::BasicSymbolRef::SF_Common) {
  229. auto *GVar = dyn_cast<GlobalVariable>(GV);
  230. if (!GVar)
  231. return make_error<StringError>("Only variables can have common linkage!",
  232. inconvertibleErrorCode());
  233. Uncommon().CommonSize = GV->getParent()->getDataLayout().getTypeAllocSize(
  234. GV->getType()->getElementType());
  235. Uncommon().CommonAlign = GVar->getAlignment();
  236. }
  237. const GlobalObject *Base = GV->getBaseObject();
  238. if (!Base)
  239. return make_error<StringError>("Unable to determine comdat of alias!",
  240. inconvertibleErrorCode());
  241. if (const Comdat *C = Base->getComdat()) {
  242. Expected<int> ComdatIndexOrErr = getComdatIndex(C, GV->getParent());
  243. if (!ComdatIndexOrErr)
  244. return ComdatIndexOrErr.takeError();
  245. Sym.ComdatIndex = *ComdatIndexOrErr;
  246. }
  247. if (TT.isOSBinFormatCOFF()) {
  248. emitLinkerFlagsForGlobalCOFF(COFFLinkerOptsOS, GV, TT, Mang);
  249. if ((Flags & object::BasicSymbolRef::SF_Weak) &&
  250. (Flags & object::BasicSymbolRef::SF_Indirect)) {
  251. auto *Fallback = dyn_cast<GlobalValue>(
  252. cast<GlobalAlias>(GV)->getAliasee()->stripPointerCasts());
  253. if (!Fallback)
  254. return make_error<StringError>("Invalid weak external",
  255. inconvertibleErrorCode());
  256. std::string FallbackName;
  257. raw_string_ostream OS(FallbackName);
  258. Msymtab.printSymbolName(OS, Fallback);
  259. OS.flush();
  260. setStr(Uncommon().COFFWeakExternFallbackName, Saver.save(FallbackName));
  261. }
  262. }
  263. if (!Base->getSection().empty())
  264. setStr(Uncommon().SectionName, Saver.save(Base->getSection()));
  265. return Error::success();
  266. }
  267. Error Builder::build(ArrayRef<Module *> IRMods) {
  268. storage::Header Hdr;
  269. assert(!IRMods.empty());
  270. Hdr.Version = storage::Header::kCurrentVersion;
  271. setStr(Hdr.Producer, kExpectedProducerName);
  272. setStr(Hdr.TargetTriple, IRMods[0]->getTargetTriple());
  273. setStr(Hdr.SourceFileName, IRMods[0]->getSourceFileName());
  274. TT = Triple(IRMods[0]->getTargetTriple());
  275. for (auto *M : IRMods)
  276. if (Error Err = addModule(M))
  277. return Err;
  278. COFFLinkerOptsOS.flush();
  279. setStr(Hdr.COFFLinkerOpts, Saver.save(COFFLinkerOpts));
  280. // We are about to fill in the header's range fields, so reserve space for it
  281. // and copy it in afterwards.
  282. Symtab.resize(sizeof(storage::Header));
  283. writeRange(Hdr.Modules, Mods);
  284. writeRange(Hdr.Comdats, Comdats);
  285. writeRange(Hdr.Symbols, Syms);
  286. writeRange(Hdr.Uncommons, Uncommons);
  287. writeRange(Hdr.DependentLibraries, DependentLibraries);
  288. *reinterpret_cast<storage::Header *>(Symtab.data()) = Hdr;
  289. return Error::success();
  290. }
  291. } // end anonymous namespace
  292. Error irsymtab::build(ArrayRef<Module *> Mods, SmallVector<char, 0> &Symtab,
  293. StringTableBuilder &StrtabBuilder,
  294. BumpPtrAllocator &Alloc) {
  295. return Builder(Symtab, StrtabBuilder, Alloc).build(Mods);
  296. }
  297. // Upgrade a vector of bitcode modules created by an old version of LLVM by
  298. // creating an irsymtab for them in the current format.
  299. static Expected<FileContents> upgrade(ArrayRef<BitcodeModule> BMs) {
  300. FileContents FC;
  301. LLVMContext Ctx;
  302. std::vector<Module *> Mods;
  303. std::vector<std::unique_ptr<Module>> OwnedMods;
  304. for (auto BM : BMs) {
  305. Expected<std::unique_ptr<Module>> MOrErr =
  306. BM.getLazyModule(Ctx, /*ShouldLazyLoadMetadata*/ true,
  307. /*IsImporting*/ false);
  308. if (!MOrErr)
  309. return MOrErr.takeError();
  310. Mods.push_back(MOrErr->get());
  311. OwnedMods.push_back(std::move(*MOrErr));
  312. }
  313. StringTableBuilder StrtabBuilder(StringTableBuilder::RAW);
  314. BumpPtrAllocator Alloc;
  315. if (Error E = build(Mods, FC.Symtab, StrtabBuilder, Alloc))
  316. return std::move(E);
  317. StrtabBuilder.finalizeInOrder();
  318. FC.Strtab.resize(StrtabBuilder.getSize());
  319. StrtabBuilder.write((uint8_t *)FC.Strtab.data());
  320. FC.TheReader = {{FC.Symtab.data(), FC.Symtab.size()},
  321. {FC.Strtab.data(), FC.Strtab.size()}};
  322. return std::move(FC);
  323. }
  324. Expected<FileContents> irsymtab::readBitcode(const BitcodeFileContents &BFC) {
  325. if (BFC.Mods.empty())
  326. return make_error<StringError>("Bitcode file does not contain any modules",
  327. inconvertibleErrorCode());
  328. if (BFC.StrtabForSymtab.empty() ||
  329. BFC.Symtab.size() < sizeof(storage::Header))
  330. return upgrade(BFC.Mods);
  331. // We cannot use the regular reader to read the version and producer, because
  332. // it will expect the header to be in the current format. The only thing we
  333. // can rely on is that the version and producer will be present as the first
  334. // struct elements.
  335. auto *Hdr = reinterpret_cast<const storage::Header *>(BFC.Symtab.data());
  336. unsigned Version = Hdr->Version;
  337. StringRef Producer = Hdr->Producer.get(BFC.StrtabForSymtab);
  338. if (Version != storage::Header::kCurrentVersion ||
  339. Producer != kExpectedProducerName)
  340. return upgrade(BFC.Mods);
  341. FileContents FC;
  342. FC.TheReader = {{BFC.Symtab.data(), BFC.Symtab.size()},
  343. {BFC.StrtabForSymtab.data(), BFC.StrtabForSymtab.size()}};
  344. // Finally, make sure that the number of modules in the symbol table matches
  345. // the number of modules in the bitcode file. If they differ, it may mean that
  346. // the bitcode file was created by binary concatenation, so we need to create
  347. // a new symbol table from scratch.
  348. if (FC.TheReader.getNumModules() != BFC.Mods.size())
  349. return upgrade(std::move(BFC.Mods));
  350. return std::move(FC);
  351. }