1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690 |
- //===- ConstantRange.cpp - ConstantRange implementation -------------------===//
- //
- // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
- // See https://llvm.org/LICENSE.txt for license information.
- // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
- //
- //===----------------------------------------------------------------------===//
- //
- // Represent a range of possible values that may occur when the program is run
- // for an integral value. This keeps track of a lower and upper bound for the
- // constant, which MAY wrap around the end of the numeric range. To do this, it
- // keeps track of a [lower, upper) bound, which specifies an interval just like
- // STL iterators. When used with boolean values, the following are important
- // ranges (other integral ranges use min/max values for special range values):
- //
- // [F, F) = {} = Empty set
- // [T, F) = {T}
- // [F, T) = {F}
- // [T, T) = {F, T} = Full set
- //
- //===----------------------------------------------------------------------===//
- #include "llvm/ADT/APInt.h"
- #include "llvm/Config/llvm-config.h"
- #include "llvm/IR/ConstantRange.h"
- #include "llvm/IR/Constants.h"
- #include "llvm/IR/InstrTypes.h"
- #include "llvm/IR/Instruction.h"
- #include "llvm/IR/Intrinsics.h"
- #include "llvm/IR/Metadata.h"
- #include "llvm/IR/Operator.h"
- #include "llvm/Support/Compiler.h"
- #include "llvm/Support/Debug.h"
- #include "llvm/Support/ErrorHandling.h"
- #include "llvm/Support/KnownBits.h"
- #include "llvm/Support/raw_ostream.h"
- #include <algorithm>
- #include <cassert>
- #include <cstdint>
- using namespace llvm;
- ConstantRange::ConstantRange(uint32_t BitWidth, bool Full)
- : Lower(Full ? APInt::getMaxValue(BitWidth) : APInt::getMinValue(BitWidth)),
- Upper(Lower) {}
- ConstantRange::ConstantRange(APInt V)
- : Lower(std::move(V)), Upper(Lower + 1) {}
- ConstantRange::ConstantRange(APInt L, APInt U)
- : Lower(std::move(L)), Upper(std::move(U)) {
- assert(Lower.getBitWidth() == Upper.getBitWidth() &&
- "ConstantRange with unequal bit widths");
- assert((Lower != Upper || (Lower.isMaxValue() || Lower.isMinValue())) &&
- "Lower == Upper, but they aren't min or max value!");
- }
- ConstantRange ConstantRange::fromKnownBits(const KnownBits &Known,
- bool IsSigned) {
- assert(!Known.hasConflict() && "Expected valid KnownBits");
- if (Known.isUnknown())
- return getFull(Known.getBitWidth());
- // For unsigned ranges, or signed ranges with known sign bit, create a simple
- // range between the smallest and largest possible value.
- if (!IsSigned || Known.isNegative() || Known.isNonNegative())
- return ConstantRange(Known.getMinValue(), Known.getMaxValue() + 1);
- // If we don't know the sign bit, pick the lower bound as a negative number
- // and the upper bound as a non-negative one.
- APInt Lower = Known.getMinValue(), Upper = Known.getMaxValue();
- Lower.setSignBit();
- Upper.clearSignBit();
- return ConstantRange(Lower, Upper + 1);
- }
- ConstantRange ConstantRange::makeAllowedICmpRegion(CmpInst::Predicate Pred,
- const ConstantRange &CR) {
- if (CR.isEmptySet())
- return CR;
- uint32_t W = CR.getBitWidth();
- switch (Pred) {
- default:
- llvm_unreachable("Invalid ICmp predicate to makeAllowedICmpRegion()");
- case CmpInst::ICMP_EQ:
- return CR;
- case CmpInst::ICMP_NE:
- if (CR.isSingleElement())
- return ConstantRange(CR.getUpper(), CR.getLower());
- return getFull(W);
- case CmpInst::ICMP_ULT: {
- APInt UMax(CR.getUnsignedMax());
- if (UMax.isMinValue())
- return getEmpty(W);
- return ConstantRange(APInt::getMinValue(W), std::move(UMax));
- }
- case CmpInst::ICMP_SLT: {
- APInt SMax(CR.getSignedMax());
- if (SMax.isMinSignedValue())
- return getEmpty(W);
- return ConstantRange(APInt::getSignedMinValue(W), std::move(SMax));
- }
- case CmpInst::ICMP_ULE:
- return getNonEmpty(APInt::getMinValue(W), CR.getUnsignedMax() + 1);
- case CmpInst::ICMP_SLE:
- return getNonEmpty(APInt::getSignedMinValue(W), CR.getSignedMax() + 1);
- case CmpInst::ICMP_UGT: {
- APInt UMin(CR.getUnsignedMin());
- if (UMin.isMaxValue())
- return getEmpty(W);
- return ConstantRange(std::move(UMin) + 1, APInt::getNullValue(W));
- }
- case CmpInst::ICMP_SGT: {
- APInt SMin(CR.getSignedMin());
- if (SMin.isMaxSignedValue())
- return getEmpty(W);
- return ConstantRange(std::move(SMin) + 1, APInt::getSignedMinValue(W));
- }
- case CmpInst::ICMP_UGE:
- return getNonEmpty(CR.getUnsignedMin(), APInt::getNullValue(W));
- case CmpInst::ICMP_SGE:
- return getNonEmpty(CR.getSignedMin(), APInt::getSignedMinValue(W));
- }
- }
- ConstantRange ConstantRange::makeSatisfyingICmpRegion(CmpInst::Predicate Pred,
- const ConstantRange &CR) {
- // Follows from De-Morgan's laws:
- //
- // ~(~A union ~B) == A intersect B.
- //
- return makeAllowedICmpRegion(CmpInst::getInversePredicate(Pred), CR)
- .inverse();
- }
- ConstantRange ConstantRange::makeExactICmpRegion(CmpInst::Predicate Pred,
- const APInt &C) {
- // Computes the exact range that is equal to both the constant ranges returned
- // by makeAllowedICmpRegion and makeSatisfyingICmpRegion. This is always true
- // when RHS is a singleton such as an APInt and so the assert is valid.
- // However for non-singleton RHS, for example ult [2,5) makeAllowedICmpRegion
- // returns [0,4) but makeSatisfyICmpRegion returns [0,2).
- //
- assert(makeAllowedICmpRegion(Pred, C) == makeSatisfyingICmpRegion(Pred, C));
- return makeAllowedICmpRegion(Pred, C);
- }
- bool ConstantRange::getEquivalentICmp(CmpInst::Predicate &Pred,
- APInt &RHS) const {
- bool Success = false;
- if (isFullSet() || isEmptySet()) {
- Pred = isEmptySet() ? CmpInst::ICMP_ULT : CmpInst::ICMP_UGE;
- RHS = APInt(getBitWidth(), 0);
- Success = true;
- } else if (auto *OnlyElt = getSingleElement()) {
- Pred = CmpInst::ICMP_EQ;
- RHS = *OnlyElt;
- Success = true;
- } else if (auto *OnlyMissingElt = getSingleMissingElement()) {
- Pred = CmpInst::ICMP_NE;
- RHS = *OnlyMissingElt;
- Success = true;
- } else if (getLower().isMinSignedValue() || getLower().isMinValue()) {
- Pred =
- getLower().isMinSignedValue() ? CmpInst::ICMP_SLT : CmpInst::ICMP_ULT;
- RHS = getUpper();
- Success = true;
- } else if (getUpper().isMinSignedValue() || getUpper().isMinValue()) {
- Pred =
- getUpper().isMinSignedValue() ? CmpInst::ICMP_SGE : CmpInst::ICMP_UGE;
- RHS = getLower();
- Success = true;
- }
- assert((!Success || ConstantRange::makeExactICmpRegion(Pred, RHS) == *this) &&
- "Bad result!");
- return Success;
- }
- /// Exact mul nuw region for single element RHS.
- static ConstantRange makeExactMulNUWRegion(const APInt &V) {
- unsigned BitWidth = V.getBitWidth();
- if (V == 0)
- return ConstantRange::getFull(V.getBitWidth());
- return ConstantRange::getNonEmpty(
- APIntOps::RoundingUDiv(APInt::getMinValue(BitWidth), V,
- APInt::Rounding::UP),
- APIntOps::RoundingUDiv(APInt::getMaxValue(BitWidth), V,
- APInt::Rounding::DOWN) + 1);
- }
- /// Exact mul nsw region for single element RHS.
- static ConstantRange makeExactMulNSWRegion(const APInt &V) {
- // Handle special case for 0, -1 and 1. See the last for reason why we
- // specialize -1 and 1.
- unsigned BitWidth = V.getBitWidth();
- if (V == 0 || V.isOneValue())
- return ConstantRange::getFull(BitWidth);
- APInt MinValue = APInt::getSignedMinValue(BitWidth);
- APInt MaxValue = APInt::getSignedMaxValue(BitWidth);
- // e.g. Returning [-127, 127], represented as [-127, -128).
- if (V.isAllOnesValue())
- return ConstantRange(-MaxValue, MinValue);
- APInt Lower, Upper;
- if (V.isNegative()) {
- Lower = APIntOps::RoundingSDiv(MaxValue, V, APInt::Rounding::UP);
- Upper = APIntOps::RoundingSDiv(MinValue, V, APInt::Rounding::DOWN);
- } else {
- Lower = APIntOps::RoundingSDiv(MinValue, V, APInt::Rounding::UP);
- Upper = APIntOps::RoundingSDiv(MaxValue, V, APInt::Rounding::DOWN);
- }
- // ConstantRange ctor take a half inclusive interval [Lower, Upper + 1).
- // Upper + 1 is guaranteed not to overflow, because |divisor| > 1. 0, -1,
- // and 1 are already handled as special cases.
- return ConstantRange(Lower, Upper + 1);
- }
- ConstantRange
- ConstantRange::makeGuaranteedNoWrapRegion(Instruction::BinaryOps BinOp,
- const ConstantRange &Other,
- unsigned NoWrapKind) {
- using OBO = OverflowingBinaryOperator;
- assert(Instruction::isBinaryOp(BinOp) && "Binary operators only!");
- assert((NoWrapKind == OBO::NoSignedWrap ||
- NoWrapKind == OBO::NoUnsignedWrap) &&
- "NoWrapKind invalid!");
- bool Unsigned = NoWrapKind == OBO::NoUnsignedWrap;
- unsigned BitWidth = Other.getBitWidth();
- switch (BinOp) {
- default:
- llvm_unreachable("Unsupported binary op");
- case Instruction::Add: {
- if (Unsigned)
- return getNonEmpty(APInt::getNullValue(BitWidth),
- -Other.getUnsignedMax());
- APInt SignedMinVal = APInt::getSignedMinValue(BitWidth);
- APInt SMin = Other.getSignedMin(), SMax = Other.getSignedMax();
- return getNonEmpty(
- SMin.isNegative() ? SignedMinVal - SMin : SignedMinVal,
- SMax.isStrictlyPositive() ? SignedMinVal - SMax : SignedMinVal);
- }
- case Instruction::Sub: {
- if (Unsigned)
- return getNonEmpty(Other.getUnsignedMax(), APInt::getMinValue(BitWidth));
- APInt SignedMinVal = APInt::getSignedMinValue(BitWidth);
- APInt SMin = Other.getSignedMin(), SMax = Other.getSignedMax();
- return getNonEmpty(
- SMax.isStrictlyPositive() ? SignedMinVal + SMax : SignedMinVal,
- SMin.isNegative() ? SignedMinVal + SMin : SignedMinVal);
- }
- case Instruction::Mul:
- if (Unsigned)
- return makeExactMulNUWRegion(Other.getUnsignedMax());
- return makeExactMulNSWRegion(Other.getSignedMin())
- .intersectWith(makeExactMulNSWRegion(Other.getSignedMax()));
- case Instruction::Shl: {
- // For given range of shift amounts, if we ignore all illegal shift amounts
- // (that always produce poison), what shift amount range is left?
- ConstantRange ShAmt = Other.intersectWith(
- ConstantRange(APInt(BitWidth, 0), APInt(BitWidth, (BitWidth - 1) + 1)));
- if (ShAmt.isEmptySet()) {
- // If the entire range of shift amounts is already poison-producing,
- // then we can freely add more poison-producing flags ontop of that.
- return getFull(BitWidth);
- }
- // There are some legal shift amounts, we can compute conservatively-correct
- // range of no-wrap inputs. Note that by now we have clamped the ShAmtUMax
- // to be at most bitwidth-1, which results in most conservative range.
- APInt ShAmtUMax = ShAmt.getUnsignedMax();
- if (Unsigned)
- return getNonEmpty(APInt::getNullValue(BitWidth),
- APInt::getMaxValue(BitWidth).lshr(ShAmtUMax) + 1);
- return getNonEmpty(APInt::getSignedMinValue(BitWidth).ashr(ShAmtUMax),
- APInt::getSignedMaxValue(BitWidth).ashr(ShAmtUMax) + 1);
- }
- }
- }
- ConstantRange ConstantRange::makeExactNoWrapRegion(Instruction::BinaryOps BinOp,
- const APInt &Other,
- unsigned NoWrapKind) {
- // makeGuaranteedNoWrapRegion() is exact for single-element ranges, as
- // "for all" and "for any" coincide in this case.
- return makeGuaranteedNoWrapRegion(BinOp, ConstantRange(Other), NoWrapKind);
- }
- bool ConstantRange::isFullSet() const {
- return Lower == Upper && Lower.isMaxValue();
- }
- bool ConstantRange::isEmptySet() const {
- return Lower == Upper && Lower.isMinValue();
- }
- bool ConstantRange::isWrappedSet() const {
- return Lower.ugt(Upper) && !Upper.isNullValue();
- }
- bool ConstantRange::isUpperWrapped() const {
- return Lower.ugt(Upper);
- }
- bool ConstantRange::isSignWrappedSet() const {
- return Lower.sgt(Upper) && !Upper.isMinSignedValue();
- }
- bool ConstantRange::isUpperSignWrapped() const {
- return Lower.sgt(Upper);
- }
- bool
- ConstantRange::isSizeStrictlySmallerThan(const ConstantRange &Other) const {
- assert(getBitWidth() == Other.getBitWidth());
- if (isFullSet())
- return false;
- if (Other.isFullSet())
- return true;
- return (Upper - Lower).ult(Other.Upper - Other.Lower);
- }
- bool
- ConstantRange::isSizeLargerThan(uint64_t MaxSize) const {
- assert(MaxSize && "MaxSize can't be 0.");
- // If this a full set, we need special handling to avoid needing an extra bit
- // to represent the size.
- if (isFullSet())
- return APInt::getMaxValue(getBitWidth()).ugt(MaxSize - 1);
- return (Upper - Lower).ugt(MaxSize);
- }
- bool ConstantRange::isAllNegative() const {
- // Empty set is all negative, full set is not.
- if (isEmptySet())
- return true;
- if (isFullSet())
- return false;
- return !isUpperSignWrapped() && !Upper.isStrictlyPositive();
- }
- bool ConstantRange::isAllNonNegative() const {
- // Empty and full set are automatically treated correctly.
- return !isSignWrappedSet() && Lower.isNonNegative();
- }
- APInt ConstantRange::getUnsignedMax() const {
- if (isFullSet() || isUpperWrapped())
- return APInt::getMaxValue(getBitWidth());
- return getUpper() - 1;
- }
- APInt ConstantRange::getUnsignedMin() const {
- if (isFullSet() || isWrappedSet())
- return APInt::getMinValue(getBitWidth());
- return getLower();
- }
- APInt ConstantRange::getSignedMax() const {
- if (isFullSet() || isUpperSignWrapped())
- return APInt::getSignedMaxValue(getBitWidth());
- return getUpper() - 1;
- }
- APInt ConstantRange::getSignedMin() const {
- if (isFullSet() || isSignWrappedSet())
- return APInt::getSignedMinValue(getBitWidth());
- return getLower();
- }
- bool ConstantRange::contains(const APInt &V) const {
- if (Lower == Upper)
- return isFullSet();
- if (!isUpperWrapped())
- return Lower.ule(V) && V.ult(Upper);
- return Lower.ule(V) || V.ult(Upper);
- }
- bool ConstantRange::contains(const ConstantRange &Other) const {
- if (isFullSet() || Other.isEmptySet()) return true;
- if (isEmptySet() || Other.isFullSet()) return false;
- if (!isUpperWrapped()) {
- if (Other.isUpperWrapped())
- return false;
- return Lower.ule(Other.getLower()) && Other.getUpper().ule(Upper);
- }
- if (!Other.isUpperWrapped())
- return Other.getUpper().ule(Upper) ||
- Lower.ule(Other.getLower());
- return Other.getUpper().ule(Upper) && Lower.ule(Other.getLower());
- }
- unsigned ConstantRange::getActiveBits() const {
- if (isEmptySet())
- return 0;
- return getUnsignedMax().getActiveBits();
- }
- unsigned ConstantRange::getMinSignedBits() const {
- if (isEmptySet())
- return 0;
- return std::max(getSignedMin().getMinSignedBits(),
- getSignedMax().getMinSignedBits());
- }
- ConstantRange ConstantRange::subtract(const APInt &Val) const {
- assert(Val.getBitWidth() == getBitWidth() && "Wrong bit width");
- // If the set is empty or full, don't modify the endpoints.
- if (Lower == Upper)
- return *this;
- return ConstantRange(Lower - Val, Upper - Val);
- }
- ConstantRange ConstantRange::difference(const ConstantRange &CR) const {
- return intersectWith(CR.inverse());
- }
- static ConstantRange getPreferredRange(
- const ConstantRange &CR1, const ConstantRange &CR2,
- ConstantRange::PreferredRangeType Type) {
- if (Type == ConstantRange::Unsigned) {
- if (!CR1.isWrappedSet() && CR2.isWrappedSet())
- return CR1;
- if (CR1.isWrappedSet() && !CR2.isWrappedSet())
- return CR2;
- } else if (Type == ConstantRange::Signed) {
- if (!CR1.isSignWrappedSet() && CR2.isSignWrappedSet())
- return CR1;
- if (CR1.isSignWrappedSet() && !CR2.isSignWrappedSet())
- return CR2;
- }
- if (CR1.isSizeStrictlySmallerThan(CR2))
- return CR1;
- return CR2;
- }
- ConstantRange ConstantRange::intersectWith(const ConstantRange &CR,
- PreferredRangeType Type) const {
- assert(getBitWidth() == CR.getBitWidth() &&
- "ConstantRange types don't agree!");
- // Handle common cases.
- if ( isEmptySet() || CR.isFullSet()) return *this;
- if (CR.isEmptySet() || isFullSet()) return CR;
- if (!isUpperWrapped() && CR.isUpperWrapped())
- return CR.intersectWith(*this, Type);
- if (!isUpperWrapped() && !CR.isUpperWrapped()) {
- if (Lower.ult(CR.Lower)) {
- // L---U : this
- // L---U : CR
- if (Upper.ule(CR.Lower))
- return getEmpty();
- // L---U : this
- // L---U : CR
- if (Upper.ult(CR.Upper))
- return ConstantRange(CR.Lower, Upper);
- // L-------U : this
- // L---U : CR
- return CR;
- }
- // L---U : this
- // L-------U : CR
- if (Upper.ult(CR.Upper))
- return *this;
- // L-----U : this
- // L-----U : CR
- if (Lower.ult(CR.Upper))
- return ConstantRange(Lower, CR.Upper);
- // L---U : this
- // L---U : CR
- return getEmpty();
- }
- if (isUpperWrapped() && !CR.isUpperWrapped()) {
- if (CR.Lower.ult(Upper)) {
- // ------U L--- : this
- // L--U : CR
- if (CR.Upper.ult(Upper))
- return CR;
- // ------U L--- : this
- // L------U : CR
- if (CR.Upper.ule(Lower))
- return ConstantRange(CR.Lower, Upper);
- // ------U L--- : this
- // L----------U : CR
- return getPreferredRange(*this, CR, Type);
- }
- if (CR.Lower.ult(Lower)) {
- // --U L---- : this
- // L--U : CR
- if (CR.Upper.ule(Lower))
- return getEmpty();
- // --U L---- : this
- // L------U : CR
- return ConstantRange(Lower, CR.Upper);
- }
- // --U L------ : this
- // L--U : CR
- return CR;
- }
- if (CR.Upper.ult(Upper)) {
- // ------U L-- : this
- // --U L------ : CR
- if (CR.Lower.ult(Upper))
- return getPreferredRange(*this, CR, Type);
- // ----U L-- : this
- // --U L---- : CR
- if (CR.Lower.ult(Lower))
- return ConstantRange(Lower, CR.Upper);
- // ----U L---- : this
- // --U L-- : CR
- return CR;
- }
- if (CR.Upper.ule(Lower)) {
- // --U L-- : this
- // ----U L---- : CR
- if (CR.Lower.ult(Lower))
- return *this;
- // --U L---- : this
- // ----U L-- : CR
- return ConstantRange(CR.Lower, Upper);
- }
- // --U L------ : this
- // ------U L-- : CR
- return getPreferredRange(*this, CR, Type);
- }
- ConstantRange ConstantRange::unionWith(const ConstantRange &CR,
- PreferredRangeType Type) const {
- assert(getBitWidth() == CR.getBitWidth() &&
- "ConstantRange types don't agree!");
- if ( isFullSet() || CR.isEmptySet()) return *this;
- if (CR.isFullSet() || isEmptySet()) return CR;
- if (!isUpperWrapped() && CR.isUpperWrapped())
- return CR.unionWith(*this, Type);
- if (!isUpperWrapped() && !CR.isUpperWrapped()) {
- // L---U and L---U : this
- // L---U L---U : CR
- // result in one of
- // L---------U
- // -----U L-----
- if (CR.Upper.ult(Lower) || Upper.ult(CR.Lower))
- return getPreferredRange(
- ConstantRange(Lower, CR.Upper), ConstantRange(CR.Lower, Upper), Type);
- APInt L = CR.Lower.ult(Lower) ? CR.Lower : Lower;
- APInt U = (CR.Upper - 1).ugt(Upper - 1) ? CR.Upper : Upper;
- if (L.isNullValue() && U.isNullValue())
- return getFull();
- return ConstantRange(std::move(L), std::move(U));
- }
- if (!CR.isUpperWrapped()) {
- // ------U L----- and ------U L----- : this
- // L--U L--U : CR
- if (CR.Upper.ule(Upper) || CR.Lower.uge(Lower))
- return *this;
- // ------U L----- : this
- // L---------U : CR
- if (CR.Lower.ule(Upper) && Lower.ule(CR.Upper))
- return getFull();
- // ----U L---- : this
- // L---U : CR
- // results in one of
- // ----------U L----
- // ----U L----------
- if (Upper.ult(CR.Lower) && CR.Upper.ult(Lower))
- return getPreferredRange(
- ConstantRange(Lower, CR.Upper), ConstantRange(CR.Lower, Upper), Type);
- // ----U L----- : this
- // L----U : CR
- if (Upper.ult(CR.Lower) && Lower.ule(CR.Upper))
- return ConstantRange(CR.Lower, Upper);
- // ------U L---- : this
- // L-----U : CR
- assert(CR.Lower.ule(Upper) && CR.Upper.ult(Lower) &&
- "ConstantRange::unionWith missed a case with one range wrapped");
- return ConstantRange(Lower, CR.Upper);
- }
- // ------U L---- and ------U L---- : this
- // -U L----------- and ------------U L : CR
- if (CR.Lower.ule(Upper) || Lower.ule(CR.Upper))
- return getFull();
- APInt L = CR.Lower.ult(Lower) ? CR.Lower : Lower;
- APInt U = CR.Upper.ugt(Upper) ? CR.Upper : Upper;
- return ConstantRange(std::move(L), std::move(U));
- }
- ConstantRange ConstantRange::castOp(Instruction::CastOps CastOp,
- uint32_t ResultBitWidth) const {
- switch (CastOp) {
- default:
- llvm_unreachable("unsupported cast type");
- case Instruction::Trunc:
- return truncate(ResultBitWidth);
- case Instruction::SExt:
- return signExtend(ResultBitWidth);
- case Instruction::ZExt:
- return zeroExtend(ResultBitWidth);
- case Instruction::BitCast:
- return *this;
- case Instruction::FPToUI:
- case Instruction::FPToSI:
- if (getBitWidth() == ResultBitWidth)
- return *this;
- else
- return getFull(ResultBitWidth);
- case Instruction::UIToFP: {
- // TODO: use input range if available
- auto BW = getBitWidth();
- APInt Min = APInt::getMinValue(BW).zextOrSelf(ResultBitWidth);
- APInt Max = APInt::getMaxValue(BW).zextOrSelf(ResultBitWidth);
- return ConstantRange(std::move(Min), std::move(Max));
- }
- case Instruction::SIToFP: {
- // TODO: use input range if available
- auto BW = getBitWidth();
- APInt SMin = APInt::getSignedMinValue(BW).sextOrSelf(ResultBitWidth);
- APInt SMax = APInt::getSignedMaxValue(BW).sextOrSelf(ResultBitWidth);
- return ConstantRange(std::move(SMin), std::move(SMax));
- }
- case Instruction::FPTrunc:
- case Instruction::FPExt:
- case Instruction::IntToPtr:
- case Instruction::PtrToInt:
- case Instruction::AddrSpaceCast:
- // Conservatively return getFull set.
- return getFull(ResultBitWidth);
- };
- }
- ConstantRange ConstantRange::zeroExtend(uint32_t DstTySize) const {
- if (isEmptySet()) return getEmpty(DstTySize);
- unsigned SrcTySize = getBitWidth();
- assert(SrcTySize < DstTySize && "Not a value extension");
- if (isFullSet() || isUpperWrapped()) {
- // Change into [0, 1 << src bit width)
- APInt LowerExt(DstTySize, 0);
- if (!Upper) // special case: [X, 0) -- not really wrapping around
- LowerExt = Lower.zext(DstTySize);
- return ConstantRange(std::move(LowerExt),
- APInt::getOneBitSet(DstTySize, SrcTySize));
- }
- return ConstantRange(Lower.zext(DstTySize), Upper.zext(DstTySize));
- }
- ConstantRange ConstantRange::signExtend(uint32_t DstTySize) const {
- if (isEmptySet()) return getEmpty(DstTySize);
- unsigned SrcTySize = getBitWidth();
- assert(SrcTySize < DstTySize && "Not a value extension");
- // special case: [X, INT_MIN) -- not really wrapping around
- if (Upper.isMinSignedValue())
- return ConstantRange(Lower.sext(DstTySize), Upper.zext(DstTySize));
- if (isFullSet() || isSignWrappedSet()) {
- return ConstantRange(APInt::getHighBitsSet(DstTySize,DstTySize-SrcTySize+1),
- APInt::getLowBitsSet(DstTySize, SrcTySize-1) + 1);
- }
- return ConstantRange(Lower.sext(DstTySize), Upper.sext(DstTySize));
- }
- ConstantRange ConstantRange::truncate(uint32_t DstTySize) const {
- assert(getBitWidth() > DstTySize && "Not a value truncation");
- if (isEmptySet())
- return getEmpty(DstTySize);
- if (isFullSet())
- return getFull(DstTySize);
- APInt LowerDiv(Lower), UpperDiv(Upper);
- ConstantRange Union(DstTySize, /*isFullSet=*/false);
- // Analyze wrapped sets in their two parts: [0, Upper) \/ [Lower, MaxValue]
- // We use the non-wrapped set code to analyze the [Lower, MaxValue) part, and
- // then we do the union with [MaxValue, Upper)
- if (isUpperWrapped()) {
- // If Upper is greater than or equal to MaxValue(DstTy), it covers the whole
- // truncated range.
- if (Upper.getActiveBits() > DstTySize ||
- Upper.countTrailingOnes() == DstTySize)
- return getFull(DstTySize);
- Union = ConstantRange(APInt::getMaxValue(DstTySize),Upper.trunc(DstTySize));
- UpperDiv.setAllBits();
- // Union covers the MaxValue case, so return if the remaining range is just
- // MaxValue(DstTy).
- if (LowerDiv == UpperDiv)
- return Union;
- }
- // Chop off the most significant bits that are past the destination bitwidth.
- if (LowerDiv.getActiveBits() > DstTySize) {
- // Mask to just the signficant bits and subtract from LowerDiv/UpperDiv.
- APInt Adjust = LowerDiv & APInt::getBitsSetFrom(getBitWidth(), DstTySize);
- LowerDiv -= Adjust;
- UpperDiv -= Adjust;
- }
- unsigned UpperDivWidth = UpperDiv.getActiveBits();
- if (UpperDivWidth <= DstTySize)
- return ConstantRange(LowerDiv.trunc(DstTySize),
- UpperDiv.trunc(DstTySize)).unionWith(Union);
- // The truncated value wraps around. Check if we can do better than fullset.
- if (UpperDivWidth == DstTySize + 1) {
- // Clear the MSB so that UpperDiv wraps around.
- UpperDiv.clearBit(DstTySize);
- if (UpperDiv.ult(LowerDiv))
- return ConstantRange(LowerDiv.trunc(DstTySize),
- UpperDiv.trunc(DstTySize)).unionWith(Union);
- }
- return getFull(DstTySize);
- }
- ConstantRange ConstantRange::zextOrTrunc(uint32_t DstTySize) const {
- unsigned SrcTySize = getBitWidth();
- if (SrcTySize > DstTySize)
- return truncate(DstTySize);
- if (SrcTySize < DstTySize)
- return zeroExtend(DstTySize);
- return *this;
- }
- ConstantRange ConstantRange::sextOrTrunc(uint32_t DstTySize) const {
- unsigned SrcTySize = getBitWidth();
- if (SrcTySize > DstTySize)
- return truncate(DstTySize);
- if (SrcTySize < DstTySize)
- return signExtend(DstTySize);
- return *this;
- }
- ConstantRange ConstantRange::binaryOp(Instruction::BinaryOps BinOp,
- const ConstantRange &Other) const {
- assert(Instruction::isBinaryOp(BinOp) && "Binary operators only!");
- switch (BinOp) {
- case Instruction::Add:
- return add(Other);
- case Instruction::Sub:
- return sub(Other);
- case Instruction::Mul:
- return multiply(Other);
- case Instruction::UDiv:
- return udiv(Other);
- case Instruction::SDiv:
- return sdiv(Other);
- case Instruction::URem:
- return urem(Other);
- case Instruction::SRem:
- return srem(Other);
- case Instruction::Shl:
- return shl(Other);
- case Instruction::LShr:
- return lshr(Other);
- case Instruction::AShr:
- return ashr(Other);
- case Instruction::And:
- return binaryAnd(Other);
- case Instruction::Or:
- return binaryOr(Other);
- case Instruction::Xor:
- return binaryXor(Other);
- // Note: floating point operations applied to abstract ranges are just
- // ideal integer operations with a lossy representation
- case Instruction::FAdd:
- return add(Other);
- case Instruction::FSub:
- return sub(Other);
- case Instruction::FMul:
- return multiply(Other);
- default:
- // Conservatively return getFull set.
- return getFull();
- }
- }
- ConstantRange ConstantRange::overflowingBinaryOp(Instruction::BinaryOps BinOp,
- const ConstantRange &Other,
- unsigned NoWrapKind) const {
- assert(Instruction::isBinaryOp(BinOp) && "Binary operators only!");
- switch (BinOp) {
- case Instruction::Add:
- return addWithNoWrap(Other, NoWrapKind);
- case Instruction::Sub:
- return subWithNoWrap(Other, NoWrapKind);
- default:
- // Don't know about this Overflowing Binary Operation.
- // Conservatively fallback to plain binop handling.
- return binaryOp(BinOp, Other);
- }
- }
- bool ConstantRange::isIntrinsicSupported(Intrinsic::ID IntrinsicID) {
- switch (IntrinsicID) {
- case Intrinsic::uadd_sat:
- case Intrinsic::usub_sat:
- case Intrinsic::sadd_sat:
- case Intrinsic::ssub_sat:
- case Intrinsic::umin:
- case Intrinsic::umax:
- case Intrinsic::smin:
- case Intrinsic::smax:
- case Intrinsic::abs:
- return true;
- default:
- return false;
- }
- }
- ConstantRange ConstantRange::intrinsic(Intrinsic::ID IntrinsicID,
- ArrayRef<ConstantRange> Ops) {
- switch (IntrinsicID) {
- case Intrinsic::uadd_sat:
- return Ops[0].uadd_sat(Ops[1]);
- case Intrinsic::usub_sat:
- return Ops[0].usub_sat(Ops[1]);
- case Intrinsic::sadd_sat:
- return Ops[0].sadd_sat(Ops[1]);
- case Intrinsic::ssub_sat:
- return Ops[0].ssub_sat(Ops[1]);
- case Intrinsic::umin:
- return Ops[0].umin(Ops[1]);
- case Intrinsic::umax:
- return Ops[0].umax(Ops[1]);
- case Intrinsic::smin:
- return Ops[0].smin(Ops[1]);
- case Intrinsic::smax:
- return Ops[0].smax(Ops[1]);
- case Intrinsic::abs: {
- const APInt *IntMinIsPoison = Ops[1].getSingleElement();
- assert(IntMinIsPoison && "Must be known (immarg)");
- assert(IntMinIsPoison->getBitWidth() == 1 && "Must be boolean");
- return Ops[0].abs(IntMinIsPoison->getBoolValue());
- }
- default:
- assert(!isIntrinsicSupported(IntrinsicID) && "Shouldn't be supported");
- llvm_unreachable("Unsupported intrinsic");
- }
- }
- ConstantRange
- ConstantRange::add(const ConstantRange &Other) const {
- if (isEmptySet() || Other.isEmptySet())
- return getEmpty();
- if (isFullSet() || Other.isFullSet())
- return getFull();
- APInt NewLower = getLower() + Other.getLower();
- APInt NewUpper = getUpper() + Other.getUpper() - 1;
- if (NewLower == NewUpper)
- return getFull();
- ConstantRange X = ConstantRange(std::move(NewLower), std::move(NewUpper));
- if (X.isSizeStrictlySmallerThan(*this) ||
- X.isSizeStrictlySmallerThan(Other))
- // We've wrapped, therefore, full set.
- return getFull();
- return X;
- }
- ConstantRange ConstantRange::addWithNoWrap(const ConstantRange &Other,
- unsigned NoWrapKind,
- PreferredRangeType RangeType) const {
- // Calculate the range for "X + Y" which is guaranteed not to wrap(overflow).
- // (X is from this, and Y is from Other)
- if (isEmptySet() || Other.isEmptySet())
- return getEmpty();
- if (isFullSet() && Other.isFullSet())
- return getFull();
- using OBO = OverflowingBinaryOperator;
- ConstantRange Result = add(Other);
- // If an overflow happens for every value pair in these two constant ranges,
- // we must return Empty set. In this case, we get that for free, because we
- // get lucky that intersection of add() with uadd_sat()/sadd_sat() results
- // in an empty set.
- if (NoWrapKind & OBO::NoSignedWrap)
- Result = Result.intersectWith(sadd_sat(Other), RangeType);
- if (NoWrapKind & OBO::NoUnsignedWrap)
- Result = Result.intersectWith(uadd_sat(Other), RangeType);
- return Result;
- }
- ConstantRange
- ConstantRange::sub(const ConstantRange &Other) const {
- if (isEmptySet() || Other.isEmptySet())
- return getEmpty();
- if (isFullSet() || Other.isFullSet())
- return getFull();
- APInt NewLower = getLower() - Other.getUpper() + 1;
- APInt NewUpper = getUpper() - Other.getLower();
- if (NewLower == NewUpper)
- return getFull();
- ConstantRange X = ConstantRange(std::move(NewLower), std::move(NewUpper));
- if (X.isSizeStrictlySmallerThan(*this) ||
- X.isSizeStrictlySmallerThan(Other))
- // We've wrapped, therefore, full set.
- return getFull();
- return X;
- }
- ConstantRange ConstantRange::subWithNoWrap(const ConstantRange &Other,
- unsigned NoWrapKind,
- PreferredRangeType RangeType) const {
- // Calculate the range for "X - Y" which is guaranteed not to wrap(overflow).
- // (X is from this, and Y is from Other)
- if (isEmptySet() || Other.isEmptySet())
- return getEmpty();
- if (isFullSet() && Other.isFullSet())
- return getFull();
- using OBO = OverflowingBinaryOperator;
- ConstantRange Result = sub(Other);
- // If an overflow happens for every value pair in these two constant ranges,
- // we must return Empty set. In signed case, we get that for free, because we
- // get lucky that intersection of sub() with ssub_sat() results in an
- // empty set. But for unsigned we must perform the overflow check manually.
- if (NoWrapKind & OBO::NoSignedWrap)
- Result = Result.intersectWith(ssub_sat(Other), RangeType);
- if (NoWrapKind & OBO::NoUnsignedWrap) {
- if (getUnsignedMax().ult(Other.getUnsignedMin()))
- return getEmpty(); // Always overflows.
- Result = Result.intersectWith(usub_sat(Other), RangeType);
- }
- return Result;
- }
- ConstantRange
- ConstantRange::multiply(const ConstantRange &Other) const {
- // TODO: If either operand is a single element and the multiply is known to
- // be non-wrapping, round the result min and max value to the appropriate
- // multiple of that element. If wrapping is possible, at least adjust the
- // range according to the greatest power-of-two factor of the single element.
- if (isEmptySet() || Other.isEmptySet())
- return getEmpty();
- // Multiplication is signedness-independent. However different ranges can be
- // obtained depending on how the input ranges are treated. These different
- // ranges are all conservatively correct, but one might be better than the
- // other. We calculate two ranges; one treating the inputs as unsigned
- // and the other signed, then return the smallest of these ranges.
- // Unsigned range first.
- APInt this_min = getUnsignedMin().zext(getBitWidth() * 2);
- APInt this_max = getUnsignedMax().zext(getBitWidth() * 2);
- APInt Other_min = Other.getUnsignedMin().zext(getBitWidth() * 2);
- APInt Other_max = Other.getUnsignedMax().zext(getBitWidth() * 2);
- ConstantRange Result_zext = ConstantRange(this_min * Other_min,
- this_max * Other_max + 1);
- ConstantRange UR = Result_zext.truncate(getBitWidth());
- // If the unsigned range doesn't wrap, and isn't negative then it's a range
- // from one positive number to another which is as good as we can generate.
- // In this case, skip the extra work of generating signed ranges which aren't
- // going to be better than this range.
- if (!UR.isUpperWrapped() &&
- (UR.getUpper().isNonNegative() || UR.getUpper().isMinSignedValue()))
- return UR;
- // Now the signed range. Because we could be dealing with negative numbers
- // here, the lower bound is the smallest of the cartesian product of the
- // lower and upper ranges; for example:
- // [-1,4) * [-2,3) = min(-1*-2, -1*2, 3*-2, 3*2) = -6.
- // Similarly for the upper bound, swapping min for max.
- this_min = getSignedMin().sext(getBitWidth() * 2);
- this_max = getSignedMax().sext(getBitWidth() * 2);
- Other_min = Other.getSignedMin().sext(getBitWidth() * 2);
- Other_max = Other.getSignedMax().sext(getBitWidth() * 2);
- auto L = {this_min * Other_min, this_min * Other_max,
- this_max * Other_min, this_max * Other_max};
- auto Compare = [](const APInt &A, const APInt &B) { return A.slt(B); };
- ConstantRange Result_sext(std::min(L, Compare), std::max(L, Compare) + 1);
- ConstantRange SR = Result_sext.truncate(getBitWidth());
- return UR.isSizeStrictlySmallerThan(SR) ? UR : SR;
- }
- ConstantRange
- ConstantRange::smax(const ConstantRange &Other) const {
- // X smax Y is: range(smax(X_smin, Y_smin),
- // smax(X_smax, Y_smax))
- if (isEmptySet() || Other.isEmptySet())
- return getEmpty();
- APInt NewL = APIntOps::smax(getSignedMin(), Other.getSignedMin());
- APInt NewU = APIntOps::smax(getSignedMax(), Other.getSignedMax()) + 1;
- return getNonEmpty(std::move(NewL), std::move(NewU));
- }
- ConstantRange
- ConstantRange::umax(const ConstantRange &Other) const {
- // X umax Y is: range(umax(X_umin, Y_umin),
- // umax(X_umax, Y_umax))
- if (isEmptySet() || Other.isEmptySet())
- return getEmpty();
- APInt NewL = APIntOps::umax(getUnsignedMin(), Other.getUnsignedMin());
- APInt NewU = APIntOps::umax(getUnsignedMax(), Other.getUnsignedMax()) + 1;
- return getNonEmpty(std::move(NewL), std::move(NewU));
- }
- ConstantRange
- ConstantRange::smin(const ConstantRange &Other) const {
- // X smin Y is: range(smin(X_smin, Y_smin),
- // smin(X_smax, Y_smax))
- if (isEmptySet() || Other.isEmptySet())
- return getEmpty();
- APInt NewL = APIntOps::smin(getSignedMin(), Other.getSignedMin());
- APInt NewU = APIntOps::smin(getSignedMax(), Other.getSignedMax()) + 1;
- return getNonEmpty(std::move(NewL), std::move(NewU));
- }
- ConstantRange
- ConstantRange::umin(const ConstantRange &Other) const {
- // X umin Y is: range(umin(X_umin, Y_umin),
- // umin(X_umax, Y_umax))
- if (isEmptySet() || Other.isEmptySet())
- return getEmpty();
- APInt NewL = APIntOps::umin(getUnsignedMin(), Other.getUnsignedMin());
- APInt NewU = APIntOps::umin(getUnsignedMax(), Other.getUnsignedMax()) + 1;
- return getNonEmpty(std::move(NewL), std::move(NewU));
- }
- ConstantRange
- ConstantRange::udiv(const ConstantRange &RHS) const {
- if (isEmptySet() || RHS.isEmptySet() || RHS.getUnsignedMax().isNullValue())
- return getEmpty();
- APInt Lower = getUnsignedMin().udiv(RHS.getUnsignedMax());
- APInt RHS_umin = RHS.getUnsignedMin();
- if (RHS_umin.isNullValue()) {
- // We want the lowest value in RHS excluding zero. Usually that would be 1
- // except for a range in the form of [X, 1) in which case it would be X.
- if (RHS.getUpper() == 1)
- RHS_umin = RHS.getLower();
- else
- RHS_umin = 1;
- }
- APInt Upper = getUnsignedMax().udiv(RHS_umin) + 1;
- return getNonEmpty(std::move(Lower), std::move(Upper));
- }
- ConstantRange ConstantRange::sdiv(const ConstantRange &RHS) const {
- // We split up the LHS and RHS into positive and negative components
- // and then also compute the positive and negative components of the result
- // separately by combining division results with the appropriate signs.
- APInt Zero = APInt::getNullValue(getBitWidth());
- APInt SignedMin = APInt::getSignedMinValue(getBitWidth());
- ConstantRange PosFilter(APInt(getBitWidth(), 1), SignedMin);
- ConstantRange NegFilter(SignedMin, Zero);
- ConstantRange PosL = intersectWith(PosFilter);
- ConstantRange NegL = intersectWith(NegFilter);
- ConstantRange PosR = RHS.intersectWith(PosFilter);
- ConstantRange NegR = RHS.intersectWith(NegFilter);
- ConstantRange PosRes = getEmpty();
- if (!PosL.isEmptySet() && !PosR.isEmptySet())
- // pos / pos = pos.
- PosRes = ConstantRange(PosL.Lower.sdiv(PosR.Upper - 1),
- (PosL.Upper - 1).sdiv(PosR.Lower) + 1);
- if (!NegL.isEmptySet() && !NegR.isEmptySet()) {
- // neg / neg = pos.
- //
- // We need to deal with one tricky case here: SignedMin / -1 is UB on the
- // IR level, so we'll want to exclude this case when calculating bounds.
- // (For APInts the operation is well-defined and yields SignedMin.) We
- // handle this by dropping either SignedMin from the LHS or -1 from the RHS.
- APInt Lo = (NegL.Upper - 1).sdiv(NegR.Lower);
- if (NegL.Lower.isMinSignedValue() && NegR.Upper.isNullValue()) {
- // Remove -1 from the LHS. Skip if it's the only element, as this would
- // leave us with an empty set.
- if (!NegR.Lower.isAllOnesValue()) {
- APInt AdjNegRUpper;
- if (RHS.Lower.isAllOnesValue())
- // Negative part of [-1, X] without -1 is [SignedMin, X].
- AdjNegRUpper = RHS.Upper;
- else
- // [X, -1] without -1 is [X, -2].
- AdjNegRUpper = NegR.Upper - 1;
- PosRes = PosRes.unionWith(
- ConstantRange(Lo, NegL.Lower.sdiv(AdjNegRUpper - 1) + 1));
- }
- // Remove SignedMin from the RHS. Skip if it's the only element, as this
- // would leave us with an empty set.
- if (NegL.Upper != SignedMin + 1) {
- APInt AdjNegLLower;
- if (Upper == SignedMin + 1)
- // Negative part of [X, SignedMin] without SignedMin is [X, -1].
- AdjNegLLower = Lower;
- else
- // [SignedMin, X] without SignedMin is [SignedMin + 1, X].
- AdjNegLLower = NegL.Lower + 1;
- PosRes = PosRes.unionWith(
- ConstantRange(std::move(Lo),
- AdjNegLLower.sdiv(NegR.Upper - 1) + 1));
- }
- } else {
- PosRes = PosRes.unionWith(
- ConstantRange(std::move(Lo), NegL.Lower.sdiv(NegR.Upper - 1) + 1));
- }
- }
- ConstantRange NegRes = getEmpty();
- if (!PosL.isEmptySet() && !NegR.isEmptySet())
- // pos / neg = neg.
- NegRes = ConstantRange((PosL.Upper - 1).sdiv(NegR.Upper - 1),
- PosL.Lower.sdiv(NegR.Lower) + 1);
- if (!NegL.isEmptySet() && !PosR.isEmptySet())
- // neg / pos = neg.
- NegRes = NegRes.unionWith(
- ConstantRange(NegL.Lower.sdiv(PosR.Lower),
- (NegL.Upper - 1).sdiv(PosR.Upper - 1) + 1));
- // Prefer a non-wrapping signed range here.
- ConstantRange Res = NegRes.unionWith(PosRes, PreferredRangeType::Signed);
- // Preserve the zero that we dropped when splitting the LHS by sign.
- if (contains(Zero) && (!PosR.isEmptySet() || !NegR.isEmptySet()))
- Res = Res.unionWith(ConstantRange(Zero));
- return Res;
- }
- ConstantRange ConstantRange::urem(const ConstantRange &RHS) const {
- if (isEmptySet() || RHS.isEmptySet() || RHS.getUnsignedMax().isNullValue())
- return getEmpty();
- // L % R for L < R is L.
- if (getUnsignedMax().ult(RHS.getUnsignedMin()))
- return *this;
- // L % R is <= L and < R.
- APInt Upper = APIntOps::umin(getUnsignedMax(), RHS.getUnsignedMax() - 1) + 1;
- return getNonEmpty(APInt::getNullValue(getBitWidth()), std::move(Upper));
- }
- ConstantRange ConstantRange::srem(const ConstantRange &RHS) const {
- if (isEmptySet() || RHS.isEmptySet())
- return getEmpty();
- ConstantRange AbsRHS = RHS.abs();
- APInt MinAbsRHS = AbsRHS.getUnsignedMin();
- APInt MaxAbsRHS = AbsRHS.getUnsignedMax();
- // Modulus by zero is UB.
- if (MaxAbsRHS.isNullValue())
- return getEmpty();
- if (MinAbsRHS.isNullValue())
- ++MinAbsRHS;
- APInt MinLHS = getSignedMin(), MaxLHS = getSignedMax();
- if (MinLHS.isNonNegative()) {
- // L % R for L < R is L.
- if (MaxLHS.ult(MinAbsRHS))
- return *this;
- // L % R is <= L and < R.
- APInt Upper = APIntOps::umin(MaxLHS, MaxAbsRHS - 1) + 1;
- return ConstantRange(APInt::getNullValue(getBitWidth()), std::move(Upper));
- }
- // Same basic logic as above, but the result is negative.
- if (MaxLHS.isNegative()) {
- if (MinLHS.ugt(-MinAbsRHS))
- return *this;
- APInt Lower = APIntOps::umax(MinLHS, -MaxAbsRHS + 1);
- return ConstantRange(std::move(Lower), APInt(getBitWidth(), 1));
- }
- // LHS range crosses zero.
- APInt Lower = APIntOps::umax(MinLHS, -MaxAbsRHS + 1);
- APInt Upper = APIntOps::umin(MaxLHS, MaxAbsRHS - 1) + 1;
- return ConstantRange(std::move(Lower), std::move(Upper));
- }
- ConstantRange ConstantRange::binaryNot() const {
- if (isEmptySet())
- return getEmpty();
- if (isWrappedSet())
- return getFull();
- return ConstantRange(APInt::getAllOnesValue(getBitWidth())).sub(*this);
- }
- ConstantRange
- ConstantRange::binaryAnd(const ConstantRange &Other) const {
- if (isEmptySet() || Other.isEmptySet())
- return getEmpty();
- // Use APInt's implementation of AND for single element ranges.
- if (isSingleElement() && Other.isSingleElement())
- return {*getSingleElement() & *Other.getSingleElement()};
- // TODO: replace this with something less conservative
- APInt umin = APIntOps::umin(Other.getUnsignedMax(), getUnsignedMax());
- return getNonEmpty(APInt::getNullValue(getBitWidth()), std::move(umin) + 1);
- }
- ConstantRange
- ConstantRange::binaryOr(const ConstantRange &Other) const {
- if (isEmptySet() || Other.isEmptySet())
- return getEmpty();
- // Use APInt's implementation of OR for single element ranges.
- if (isSingleElement() && Other.isSingleElement())
- return {*getSingleElement() | *Other.getSingleElement()};
- // TODO: replace this with something less conservative
- APInt umax = APIntOps::umax(getUnsignedMin(), Other.getUnsignedMin());
- return getNonEmpty(std::move(umax), APInt::getNullValue(getBitWidth()));
- }
- ConstantRange ConstantRange::binaryXor(const ConstantRange &Other) const {
- if (isEmptySet() || Other.isEmptySet())
- return getEmpty();
- // Use APInt's implementation of XOR for single element ranges.
- if (isSingleElement() && Other.isSingleElement())
- return {*getSingleElement() ^ *Other.getSingleElement()};
- // Special-case binary complement, since we can give a precise answer.
- if (Other.isSingleElement() && Other.getSingleElement()->isAllOnesValue())
- return binaryNot();
- if (isSingleElement() && getSingleElement()->isAllOnesValue())
- return Other.binaryNot();
- // TODO: replace this with something less conservative
- return getFull();
- }
- ConstantRange
- ConstantRange::shl(const ConstantRange &Other) const {
- if (isEmptySet() || Other.isEmptySet())
- return getEmpty();
- APInt max = getUnsignedMax();
- APInt Other_umax = Other.getUnsignedMax();
- // If we are shifting by maximum amount of
- // zero return return the original range.
- if (Other_umax.isNullValue())
- return *this;
- // there's overflow!
- if (Other_umax.ugt(max.countLeadingZeros()))
- return getFull();
- // FIXME: implement the other tricky cases
- APInt min = getUnsignedMin();
- min <<= Other.getUnsignedMin();
- max <<= Other_umax;
- return ConstantRange(std::move(min), std::move(max) + 1);
- }
- ConstantRange
- ConstantRange::lshr(const ConstantRange &Other) const {
- if (isEmptySet() || Other.isEmptySet())
- return getEmpty();
- APInt max = getUnsignedMax().lshr(Other.getUnsignedMin()) + 1;
- APInt min = getUnsignedMin().lshr(Other.getUnsignedMax());
- return getNonEmpty(std::move(min), std::move(max));
- }
- ConstantRange
- ConstantRange::ashr(const ConstantRange &Other) const {
- if (isEmptySet() || Other.isEmptySet())
- return getEmpty();
- // May straddle zero, so handle both positive and negative cases.
- // 'PosMax' is the upper bound of the result of the ashr
- // operation, when Upper of the LHS of ashr is a non-negative.
- // number. Since ashr of a non-negative number will result in a
- // smaller number, the Upper value of LHS is shifted right with
- // the minimum value of 'Other' instead of the maximum value.
- APInt PosMax = getSignedMax().ashr(Other.getUnsignedMin()) + 1;
- // 'PosMin' is the lower bound of the result of the ashr
- // operation, when Lower of the LHS is a non-negative number.
- // Since ashr of a non-negative number will result in a smaller
- // number, the Lower value of LHS is shifted right with the
- // maximum value of 'Other'.
- APInt PosMin = getSignedMin().ashr(Other.getUnsignedMax());
- // 'NegMax' is the upper bound of the result of the ashr
- // operation, when Upper of the LHS of ashr is a negative number.
- // Since 'ashr' of a negative number will result in a bigger
- // number, the Upper value of LHS is shifted right with the
- // maximum value of 'Other'.
- APInt NegMax = getSignedMax().ashr(Other.getUnsignedMax()) + 1;
- // 'NegMin' is the lower bound of the result of the ashr
- // operation, when Lower of the LHS of ashr is a negative number.
- // Since 'ashr' of a negative number will result in a bigger
- // number, the Lower value of LHS is shifted right with the
- // minimum value of 'Other'.
- APInt NegMin = getSignedMin().ashr(Other.getUnsignedMin());
- APInt max, min;
- if (getSignedMin().isNonNegative()) {
- // Upper and Lower of LHS are non-negative.
- min = PosMin;
- max = PosMax;
- } else if (getSignedMax().isNegative()) {
- // Upper and Lower of LHS are negative.
- min = NegMin;
- max = NegMax;
- } else {
- // Upper is non-negative and Lower is negative.
- min = NegMin;
- max = PosMax;
- }
- return getNonEmpty(std::move(min), std::move(max));
- }
- ConstantRange ConstantRange::uadd_sat(const ConstantRange &Other) const {
- if (isEmptySet() || Other.isEmptySet())
- return getEmpty();
- APInt NewL = getUnsignedMin().uadd_sat(Other.getUnsignedMin());
- APInt NewU = getUnsignedMax().uadd_sat(Other.getUnsignedMax()) + 1;
- return getNonEmpty(std::move(NewL), std::move(NewU));
- }
- ConstantRange ConstantRange::sadd_sat(const ConstantRange &Other) const {
- if (isEmptySet() || Other.isEmptySet())
- return getEmpty();
- APInt NewL = getSignedMin().sadd_sat(Other.getSignedMin());
- APInt NewU = getSignedMax().sadd_sat(Other.getSignedMax()) + 1;
- return getNonEmpty(std::move(NewL), std::move(NewU));
- }
- ConstantRange ConstantRange::usub_sat(const ConstantRange &Other) const {
- if (isEmptySet() || Other.isEmptySet())
- return getEmpty();
- APInt NewL = getUnsignedMin().usub_sat(Other.getUnsignedMax());
- APInt NewU = getUnsignedMax().usub_sat(Other.getUnsignedMin()) + 1;
- return getNonEmpty(std::move(NewL), std::move(NewU));
- }
- ConstantRange ConstantRange::ssub_sat(const ConstantRange &Other) const {
- if (isEmptySet() || Other.isEmptySet())
- return getEmpty();
- APInt NewL = getSignedMin().ssub_sat(Other.getSignedMax());
- APInt NewU = getSignedMax().ssub_sat(Other.getSignedMin()) + 1;
- return getNonEmpty(std::move(NewL), std::move(NewU));
- }
- ConstantRange ConstantRange::umul_sat(const ConstantRange &Other) const {
- if (isEmptySet() || Other.isEmptySet())
- return getEmpty();
- APInt NewL = getUnsignedMin().umul_sat(Other.getUnsignedMin());
- APInt NewU = getUnsignedMax().umul_sat(Other.getUnsignedMax()) + 1;
- return getNonEmpty(std::move(NewL), std::move(NewU));
- }
- ConstantRange ConstantRange::smul_sat(const ConstantRange &Other) const {
- if (isEmptySet() || Other.isEmptySet())
- return getEmpty();
- // Because we could be dealing with negative numbers here, the lower bound is
- // the smallest of the cartesian product of the lower and upper ranges;
- // for example:
- // [-1,4) * [-2,3) = min(-1*-2, -1*2, 3*-2, 3*2) = -6.
- // Similarly for the upper bound, swapping min for max.
- APInt this_min = getSignedMin().sext(getBitWidth() * 2);
- APInt this_max = getSignedMax().sext(getBitWidth() * 2);
- APInt Other_min = Other.getSignedMin().sext(getBitWidth() * 2);
- APInt Other_max = Other.getSignedMax().sext(getBitWidth() * 2);
- auto L = {this_min * Other_min, this_min * Other_max, this_max * Other_min,
- this_max * Other_max};
- auto Compare = [](const APInt &A, const APInt &B) { return A.slt(B); };
- // Note that we wanted to perform signed saturating multiplication,
- // so since we performed plain multiplication in twice the bitwidth,
- // we need to perform signed saturating truncation.
- return getNonEmpty(std::min(L, Compare).truncSSat(getBitWidth()),
- std::max(L, Compare).truncSSat(getBitWidth()) + 1);
- }
- ConstantRange ConstantRange::ushl_sat(const ConstantRange &Other) const {
- if (isEmptySet() || Other.isEmptySet())
- return getEmpty();
- APInt NewL = getUnsignedMin().ushl_sat(Other.getUnsignedMin());
- APInt NewU = getUnsignedMax().ushl_sat(Other.getUnsignedMax()) + 1;
- return getNonEmpty(std::move(NewL), std::move(NewU));
- }
- ConstantRange ConstantRange::sshl_sat(const ConstantRange &Other) const {
- if (isEmptySet() || Other.isEmptySet())
- return getEmpty();
- APInt Min = getSignedMin(), Max = getSignedMax();
- APInt ShAmtMin = Other.getUnsignedMin(), ShAmtMax = Other.getUnsignedMax();
- APInt NewL = Min.sshl_sat(Min.isNonNegative() ? ShAmtMin : ShAmtMax);
- APInt NewU = Max.sshl_sat(Max.isNegative() ? ShAmtMin : ShAmtMax) + 1;
- return getNonEmpty(std::move(NewL), std::move(NewU));
- }
- ConstantRange ConstantRange::inverse() const {
- if (isFullSet())
- return getEmpty();
- if (isEmptySet())
- return getFull();
- return ConstantRange(Upper, Lower);
- }
- ConstantRange ConstantRange::abs(bool IntMinIsPoison) const {
- if (isEmptySet())
- return getEmpty();
- if (isSignWrappedSet()) {
- APInt Lo;
- // Check whether the range crosses zero.
- if (Upper.isStrictlyPositive() || !Lower.isStrictlyPositive())
- Lo = APInt::getNullValue(getBitWidth());
- else
- Lo = APIntOps::umin(Lower, -Upper + 1);
- // If SignedMin is not poison, then it is included in the result range.
- if (IntMinIsPoison)
- return ConstantRange(Lo, APInt::getSignedMinValue(getBitWidth()));
- else
- return ConstantRange(Lo, APInt::getSignedMinValue(getBitWidth()) + 1);
- }
- APInt SMin = getSignedMin(), SMax = getSignedMax();
- // Skip SignedMin if it is poison.
- if (IntMinIsPoison && SMin.isMinSignedValue()) {
- // The range may become empty if it *only* contains SignedMin.
- if (SMax.isMinSignedValue())
- return getEmpty();
- ++SMin;
- }
- // All non-negative.
- if (SMin.isNonNegative())
- return *this;
- // All negative.
- if (SMax.isNegative())
- return ConstantRange(-SMax, -SMin + 1);
- // Range crosses zero.
- return ConstantRange(APInt::getNullValue(getBitWidth()),
- APIntOps::umax(-SMin, SMax) + 1);
- }
- ConstantRange::OverflowResult ConstantRange::unsignedAddMayOverflow(
- const ConstantRange &Other) const {
- if (isEmptySet() || Other.isEmptySet())
- return OverflowResult::MayOverflow;
- APInt Min = getUnsignedMin(), Max = getUnsignedMax();
- APInt OtherMin = Other.getUnsignedMin(), OtherMax = Other.getUnsignedMax();
- // a u+ b overflows high iff a u> ~b.
- if (Min.ugt(~OtherMin))
- return OverflowResult::AlwaysOverflowsHigh;
- if (Max.ugt(~OtherMax))
- return OverflowResult::MayOverflow;
- return OverflowResult::NeverOverflows;
- }
- ConstantRange::OverflowResult ConstantRange::signedAddMayOverflow(
- const ConstantRange &Other) const {
- if (isEmptySet() || Other.isEmptySet())
- return OverflowResult::MayOverflow;
- APInt Min = getSignedMin(), Max = getSignedMax();
- APInt OtherMin = Other.getSignedMin(), OtherMax = Other.getSignedMax();
- APInt SignedMin = APInt::getSignedMinValue(getBitWidth());
- APInt SignedMax = APInt::getSignedMaxValue(getBitWidth());
- // a s+ b overflows high iff a s>=0 && b s>= 0 && a s> smax - b.
- // a s+ b overflows low iff a s< 0 && b s< 0 && a s< smin - b.
- if (Min.isNonNegative() && OtherMin.isNonNegative() &&
- Min.sgt(SignedMax - OtherMin))
- return OverflowResult::AlwaysOverflowsHigh;
- if (Max.isNegative() && OtherMax.isNegative() &&
- Max.slt(SignedMin - OtherMax))
- return OverflowResult::AlwaysOverflowsLow;
- if (Max.isNonNegative() && OtherMax.isNonNegative() &&
- Max.sgt(SignedMax - OtherMax))
- return OverflowResult::MayOverflow;
- if (Min.isNegative() && OtherMin.isNegative() &&
- Min.slt(SignedMin - OtherMin))
- return OverflowResult::MayOverflow;
- return OverflowResult::NeverOverflows;
- }
- ConstantRange::OverflowResult ConstantRange::unsignedSubMayOverflow(
- const ConstantRange &Other) const {
- if (isEmptySet() || Other.isEmptySet())
- return OverflowResult::MayOverflow;
- APInt Min = getUnsignedMin(), Max = getUnsignedMax();
- APInt OtherMin = Other.getUnsignedMin(), OtherMax = Other.getUnsignedMax();
- // a u- b overflows low iff a u< b.
- if (Max.ult(OtherMin))
- return OverflowResult::AlwaysOverflowsLow;
- if (Min.ult(OtherMax))
- return OverflowResult::MayOverflow;
- return OverflowResult::NeverOverflows;
- }
- ConstantRange::OverflowResult ConstantRange::signedSubMayOverflow(
- const ConstantRange &Other) const {
- if (isEmptySet() || Other.isEmptySet())
- return OverflowResult::MayOverflow;
- APInt Min = getSignedMin(), Max = getSignedMax();
- APInt OtherMin = Other.getSignedMin(), OtherMax = Other.getSignedMax();
- APInt SignedMin = APInt::getSignedMinValue(getBitWidth());
- APInt SignedMax = APInt::getSignedMaxValue(getBitWidth());
- // a s- b overflows high iff a s>=0 && b s< 0 && a s> smax + b.
- // a s- b overflows low iff a s< 0 && b s>= 0 && a s< smin + b.
- if (Min.isNonNegative() && OtherMax.isNegative() &&
- Min.sgt(SignedMax + OtherMax))
- return OverflowResult::AlwaysOverflowsHigh;
- if (Max.isNegative() && OtherMin.isNonNegative() &&
- Max.slt(SignedMin + OtherMin))
- return OverflowResult::AlwaysOverflowsLow;
- if (Max.isNonNegative() && OtherMin.isNegative() &&
- Max.sgt(SignedMax + OtherMin))
- return OverflowResult::MayOverflow;
- if (Min.isNegative() && OtherMax.isNonNegative() &&
- Min.slt(SignedMin + OtherMax))
- return OverflowResult::MayOverflow;
- return OverflowResult::NeverOverflows;
- }
- ConstantRange::OverflowResult ConstantRange::unsignedMulMayOverflow(
- const ConstantRange &Other) const {
- if (isEmptySet() || Other.isEmptySet())
- return OverflowResult::MayOverflow;
- APInt Min = getUnsignedMin(), Max = getUnsignedMax();
- APInt OtherMin = Other.getUnsignedMin(), OtherMax = Other.getUnsignedMax();
- bool Overflow;
- (void) Min.umul_ov(OtherMin, Overflow);
- if (Overflow)
- return OverflowResult::AlwaysOverflowsHigh;
- (void) Max.umul_ov(OtherMax, Overflow);
- if (Overflow)
- return OverflowResult::MayOverflow;
- return OverflowResult::NeverOverflows;
- }
- void ConstantRange::print(raw_ostream &OS) const {
- if (isFullSet())
- OS << "full-set";
- else if (isEmptySet())
- OS << "empty-set";
- else
- OS << "[" << Lower << "," << Upper << ")";
- }
- #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
- LLVM_DUMP_METHOD void ConstantRange::dump() const {
- print(dbgs());
- }
- #endif
- ConstantRange llvm::getConstantRangeFromMetadata(const MDNode &Ranges) {
- const unsigned NumRanges = Ranges.getNumOperands() / 2;
- assert(NumRanges >= 1 && "Must have at least one range!");
- assert(Ranges.getNumOperands() % 2 == 0 && "Must be a sequence of pairs");
- auto *FirstLow = mdconst::extract<ConstantInt>(Ranges.getOperand(0));
- auto *FirstHigh = mdconst::extract<ConstantInt>(Ranges.getOperand(1));
- ConstantRange CR(FirstLow->getValue(), FirstHigh->getValue());
- for (unsigned i = 1; i < NumRanges; ++i) {
- auto *Low = mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 0));
- auto *High = mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 1));
- // Note: unionWith will potentially create a range that contains values not
- // contained in any of the original N ranges.
- CR = CR.unionWith(ConstantRange(Low->getValue(), High->getValue()));
- }
- return CR;
- }
|